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Abstract

A novel solution approach that addresses uncertainty, flexibility evaluation and design of

linear processes is presented, based on sensitivity analysis and linear programming. The idea is

to evaluate the flexibility index of a process by successively expanding within a bounding search

procedure a hyper-rectangle around a nominal point in the uncertainty parameter domain, thus

expanding the limits of feasibility for an existing design. Sensitivity information, derived from

the solution of a special form of the imbedded min-max problem, is utilized for the identification

and investigation of the supporting active sets. Since the proposed approach automatically

generates all the supporting active sets, it is incorporated within a design model for automatically

generating flexibility constraints. As demonstrated by example problems, this approach

identifies all critical points, including multiple equidistant ones, without enumerating (explicitly

or implicitly) all possible active sets, and considering only the supporting active sets. Therefore,

it offers an efficient and constructive way for the evaluation and design of linear processes.



1. Introduction

Addressing uncertainty at the design stage of a plant is a very significant problem for two

reasons. On the one hand, it is only realistic to expect variations in the input and output streams

of a chemical plant. These variations can be either the result of market forces (changing product

demands) or natural occurrences (changing feed compositions or upstream equipment failures).

On the other hand, uncertainty is always inherently present in the modeling parameters such as

physical properties (kinetic, transfer or thermodynamic data) which are predicted or measured

with a finite accuracy and often within a substantial margin of error. In addition to the above,

even the models themselves may not be accurate and hence additional uncertainty has to be

accounted for. To address these uncertainties, the common practice is to overdesign or perform

ad-hoc case studies over the uncertain parameter domain. Over the last decade, considerable

effort has been devoted to developing a systematic approach for designing flexible chemical

plants (for a review on the state of the art, see Grossmann and Straub, 1992). The proposed

approaches can be classified in two broad classes: (i) deterministic, in which the parameter

uncertainty is described through bounds of expected deviations, and (ii) stochastic, that describes

the uncertainty through a probability distribution function.

It is the purpose of this paper to develop a computationally efficient framework for

addressing the evaluation of flexibility and the optimal design of a plant for a desired flexibility

in the case of a linear deterministic model. The flexibility index by Swaney and Grossmann

(1985a) is considered as well as the design model for fixed flexibility by Pistikopoulos and

Grossmann (1988). Since a major difficulty is the identification of the active sets of constraints

that limit flexibility, a new method for the flexibility analysis is proposed that is based on

sensitivity analysis and has the feature of systematically identifying all the supporting active sets

for a fixed design, which is further utilized in the flexibility design problem. The proposed

approach uses the sensitivity analysis of the feasibility function with respect to the uncertain

modeling parameters. This methodology addresses the problem in a rigorous way and at the

same time reduces the combinatorial search involved in previous methods. The rest of the paper

is organized as follows. In the next section we present the problem statement and a brief review

of existing approaches to this problem. Sections 3 and 4 describe the development of the

proposed method for evaluating flexibility. Section 5 states the detailed of the algorithm and

section 6 illustrates the application to several example problems. Section 7 presents a brief

account of the proposed method. In section 8 we extend these ideas to a design procedure for

achieving a given flexibility, and we demonstrate the method with example problems. Finally

present the conclusions of this work in section 9.



2. Problem Statement and Background

The model of the process can be described, in the case where the topology is fixed, by a

set of equations and inequalities involving continuous variables of the form:

w«o

g(d,z,x,0)<0

where the variables are defined as follows:

d e Rnd - denotes an rid vector of design variables that defines the structure and equipment sizes

of the process

zeR"z - denotes an nz vector of control variables that can be adjusted during plant operation

xeRn* - denotes an nx vector of state variables that describes the behavior of the process

6eRn° - denotes an n$ vector of uncertain parameters.

For simplicity in the presentation and consistency with the existing literature (Grossmann and

Floudas, 1987), it is assumed that the state variables in (FO) are eliminated from the equations

and thus the model reduces to:

/ , ( z ,6U)<0 jeJ

Note, however, that in the development of the proposed methodology this projection will not be

necessary.

For a given design dN, the first important question is to determine whether this design is

feasible for a realization of the uncertain parameters 0^, also known as the feasibility problem

(Fl). The formulation of this problem (Halemane and Grossmann, 1983) is:

)

(Fl)
s.t. fj(z,0,d)<u jeJ; ueR1

Note that problem (Fl) is an optimization problem where the objective is to find a point z*, for

fixed d and 0, such that the maximum potential constraint violation is minimized. However, u is

in principle a function of d and 9, and expressed in that form it represents the projected



feasibility function. The projected feasibility function y<0, d) is a key concept in the flexibility

analysis and its construction is an important and challenging task (see Grossmann and Straub,

1991). As can be deduced from (Fl), y/< 0 indicates feasibility and y/> 0, infeasibility.

The problem of evaluating flexibility, also known as the flexibility index problem (F2), is

to determine the maximum deviation 8 that a given design dN can tolerate, such that every point

9 in the uncertain parameter space: T(8) = J01 6N - 8A6~ < 0 <0N + <5A0+} is feasible. Here,

A9+ and A8- are the expected deviations of uncertain parameters in the positive and negative

direction. The formulation for this problem (Swaney and Grossmann, 1985a), is:

F = max 8

s.t. max y/(0,d)<0 (F2)

8>0 8eR{

As seen from the implicit form of the projected feasibility function y(0,d)> problem (F2)

cannot be directly solved unless \|/ is determined. The simplest way around this problem (see

Swaney and Grossmann, 1985b) is to determine the flexibility index in (F2) by vertex

enumeration search in which the maximum displacement is computed along each vertex

direction, thus avoiding the explicit construction of y/. This vertex enumeration scheme relies on

the assumption that the critical points 0* lie at the vertices of T(8*), which is valid for the case of

a linear model and in general only if certain convexity conditions hold. The drawback with this

approach, however, is that it requires the solution of 2no optimization problems, and therefore, it

scales exponentially with the number of uncertain parameters. Recently, though, Kabatek and

Swaney (1992) have developed an implicit enumeration procedure that does not require the

exhaustive enumeration of all vertices.

An alternative method for evaluating the flexibility index that does not rely on the

assumption that critical points correspond to vertices, is the active set strategy by Grossmann and

Floudas (1987). In this method the key idea is that the feasible region projected into the space of

d and 8, can be expressed in terms of active sets of constraints//(z, 0, d) = w, je JAk, k=l, nA&

where nAS is the number of possible active sets of fj. These active sets are defined by all subsets

of non-zero multipliers that satisfy the Kuhn-Tucker conditions of (Fl):

55



By reformulating problem (F2) for evaluating the flexibility index, and using (2.1) with

0-1 variables for the complementarity conditions and slacks, we get a mixed-integer optimization

problem that can explicitly solve (F2) without having to find a-priori all the active sets. This

method essentially amounts to solving an MINLP problem (or MILP if all constraints are linear)

with n/= card{/} binary variables. In the worst case, this method scales exponentially with the

number of projected constraints rtf.

At the design stage the goal is to design a plant with a desired flexibility F. This problem

calls for the optimization of an objective function involving the design variables which invokes

as a constraint a desired flexibility F, in the form of problem (F2). The formulation of the design

problem is then:

min
s.t. fj(z,0,d) < 0 V/ e 7, V0 G T(F) (F3)

T(F)=[e | eN - FAe- < e <eN+FA#+}

In order to address this design problem with explicit linear flexibility constraints, Pistikopoulos

and Grossmann (1988) proposed a systematic enumeration procedure to identify all the nAS

active sets of constraints, provided that the corresponding sub-matrices in (2.1) are of full rank.

In this way the following the design problem (F3) can be reformulated as:

111111

s.t. max yr(6,d)<0 k = l,nA. v J

6eT(F)

where the projected feasibility function \|/ for each active set is given by:

kjfj(z,0,d) fc = l,flA5 (2.2)

Since the number of active sets can become rather large, these authors also proposed a method

that requires the solution of a sequence of MILP problems to identify subsets of active sets.

Feasibility must be verified in this case and, if needed, proceed in an iterative fashion.

3. Flexibility Evaluation through Sensitivity Analysis

In order to develop a method for flexibility analysis that is computationally efficient, and

still generate all supporting, or non-redundant, active sets and determine the flexibility index for



a given design, we propose a sensitivity analysis based method. Here, we define as supporting

active sets (ASs), all the active sets that define the segments (or supports) of the feasibility

function \|/ within a hyper-rectangle with size F. This concept of the supporting active sets as

well as the distinction between them and the redundant ones is illustrated in Figure 1. A major

motivation is also to solve problem (F4) more efficiently without having to generate a-priori all

active sets. The basic idea in the proposed method is to start with a nominal value of the

uncertain parameters and then, based on the sensitivity information of the flexibility problem

(Fl) with respect to the uncertain parameters, systematically expand within a bounding search

procedure the flexibility boundaries from the inside out, identifying non-redundant active sets as

defined by (2.2) for a fixed design d. Here, the main assumption is linearity in the performance

models.

Sensitivity analysis with respect to the uncertain parameters can be used in determining

the flexibility limits -or the flexibility index- of an existing or proposed design. The continuous

uncertain parameters, 0, in the process operation problem are fixed at a nominal point Oft along

with the existing design dN. Considering model (FO) we can write the feasibility problem (PO) in

a way similar to (Fl) as:

minw

s.t. h(x9z,d\9N) = 0

g(x,z,dN,0N) + s = u

xL<x<xu ^ }

zL<z<zu

s>0

For the linear case (PO) has the special form (PI):

minw

s.t. A\xT\zT]T

r \TD[xT\zT]
s>0

where D incorporates all inequality constraints as well as bounds on x and z, so that there are no

explicit bounds on them in (PI) (of course the bounds are still included, but expressed in terms of

slack variables). In the above formulations we minimize the worst constraint violation so that if

w* < 0 the design is feasible for the given value of the uncertain parameters, 6N. The main

difference, however, between formulation (Fl) and the one proposed here, is the inclusion of the



slack variables. It is interesting to note that the MILP formulation by Grossmann and Floudas

(1987) also incorporates slacks. However, as shown in this paper the use of slack variables in the

inequality constraints enables us to capture with the infinity norm all the trends in changes of the

active set, through the sensitivity information rather than through the use of binary 0-1 variables.

As will be seen later on, this is a key concept for the development of this method.

Sensitivity information with respect to the uncertain parameters, 9, can be obtained by

means of differentiating the optimality conditions of the original feasibility problem (PI) with

respect to 9 and setting them equal to zero. At the optimum of (PI) we have:

Ab + ANbN + C6N + a = 0 (3.1)

where b and bN are the basic and non-basic variables respectively, and A,C and a are the

augmented matrices and vectors that include the two type of equalities in (PI). If we

differentiate the above with respect to 9 we have:

"de Nd0 ~ "

since the analysis is carried for the current basis the non-basic variables are fixed and thus they

have zero sensitivity:

^ = 0 (3.3)

and so (3.2) becomes:

This information defines the optimal trends for all the basic variables with respect to the

parameters 9, and since the models are linear, conditions (3.3) and (3.4) are exact for a given

active set. Moreover, dependencies or correlation between the uncertain parameters can be also

addressed through this sensitivity analysis, as shown in Appendix A. Note that from a flexibility

analysis standpoint the solution of (PI) automatically identifies an active set, according to

definition (2.1), since all the relevant multipliers Xk are given by the optimal solution of (PI).

The idea in the proposed method is to progressively generate and identify all the
supporting active sets, in order of proximity to the nominal point 9N. In order to accomplish
that, we need to introduce the concept of the allowable displacement distance, 5, in the shortest



directions pointing towards all neighboring active sets and infeasibility barriers. As stated

earlier, sensitivity analysis provides all the information relevant to the optimal changes of all the

basic variables of (PI) within this active set. Utilizing this information, we can express the

feasible region of (PI) for a given active set in terms of the allowable displacement distance, 8,

the basic slacks Sj and u.

For a given active set, ke AS, the corresponding feasible region FR projected in the

parameter space, 0, and expressed parametrically with the scalar parameter 5 (8 > 0), is given by

the following set of constraints:

ds T

—i- (A0)q8 V/eB*
du

0>uk+— (Ad)"S
d6

V? (P2)

where k denotes the optimum of (PI) for active set k, B the set of basic slack variables defined

as B = {j I j: index of all slack variables Sj in (PI), currently basic} (note that only the slack
ds,

variables are explicitly bounded in (PI)); —j- are the sensitivities of the basic variables
dd

computed at the optimum of (PI) as presented earlier; (A0>1 are all vertex directions in the

parameter space. Note also that in the above formulation the corresponding inequalities for the

multipliers are not needed since their sensitivity is zero (dX/dO = 0 for linear programming

problems) and therefore are satisfied for all 6.

Within active set k and for each basic slack variable Sj, we introduce 5* to be the

maximum feasible scaled displacements from 0N in the space of the uncertain parameters,

without making the current basic slack variables non-basic, and by considering all vertex
directions and given displacements AQ±. In the same context we define 5* to be the scaled

distance, within the current active set k, to an infeasibility barrier (where u > 0). For practical
purposes we distinguish between 5* and Sk since they represent different measures:

5* is the shortest distance (within the current active set k) to an adjacent active set

involving the currently basic variable SJ

5* is the shortest distance to an infeasibility boundary (within the current active set k)

following the direction of minimax constraint violation (u > 0)



The proposed procedure for finding the flexibility index can be viewed as the progressive

expansion of a hyper-cube (or hyper-rectangle in general) in the projected parameter space,

centered at the nominal parameter point GN. As this hyper-cube expands uniformly, it encounters

adjacent active sets and points of infeasibility. As new active sets are encountered, problem (PI)

is solved at the new critical point (0C) and the corresponding sensitivities are evaluated (in fact in

order to avoid degeneracy it should be solved at 6C+e in the present direction). As we move to a

new active set k+1 and in order to evaluate the new allowable displacement distances
(5*+1, 5*+1), we have to project them back to the nominal point 6N. The procedure is terminated

when an infeasible point is encountered in this search so that the hypercube cannot expand

further in a feasible manner. The following property relates the above allowable displacement

distances to the lower bound on flexibility.

Property 1. The minimum among the distances 8* and 5*, is a lower bound to the flexibility

index (FL = mini5*, 5* }). (The proof is given in Appendix B).

The above property can be qualitatively explained based on the fact that (P2) is the projected

feasibility region and all the active sets are generated in order of proximity to 9N . Based on the

above argument it can be also seen that the minimum of all generated 8u
k

> is an upper bound to

the flexibility index Fu = min{5*}). The proposed flexibility evaluation procedure is

terminated when Fu = FL = F, or equivalently when F = minj55 ,8U\ = Su. (These concepts are

illustrated below and formally stated in Properties 2 and 3).

4. Computation of Feasibility Displacements

All changes in the active sets are captured through the sensitivity of the variables,

provided that the solution of (PI) is non-degenerate. This is true, since any basis change implies

that one non-basic variable will become basic and one basic variable will become non-basic. In
the representation of the feasible region (P2) we can find all (8S , Su) analytically with the

following procedure. Note that (P2) can be re-written as:



where %jq = —L(A0)q or %q = —(A0)q . From the above it is clear that only one value of 8 per

variable bj can be a candidate for defining the shortest distance to a new active set. We can

compute:

s* s*
(4.1)

Su =-=?- = - r - ^ ^ (4.2)
max£ * f d d .__]max£ * f du AO¥ du1 lrwe

As stated earlier, from Appendix B it follows that the largest 8 that satisfies (P2) is a lowerbound

to the flexibility index, given by: 8 = FL = m i n j ^ , 8U j (4.3)

Property 2. The largest 8 that satisfies (P2) is given by (4.3).

Proof: For the constraints in (P.2.1) we consider two cases where £q is positive or negative. In

the £q = 0 case, any 8 is a trivial solution to (P.2)\ In addition, if we consider the maximization

of 8, (P.2.1) can be written as:

/ = max 8
*

sj.S>^ Vq\L>0; VjeB

s*-i ?l

-"* w . i e ^n (P2-2)8<

5>£-T V<7l£,<0

Since the first and fourth set of inequalities are redundant (it is a maximization problem) they can

be dropped, so that finally we have:
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FL = max S

s.t. 8< SJT-^ VjeB (P2.3)

S<
max

By using (P2.3) with the definitions (4.1) and (4.2), we conclude that the maximum 5 in (P2)

isgiven by (4.3) r.

From the above analysis it is clear that each 8S has an associated critical direction Ds in

the parameter space, defined for each variable sj as a vector with elements:

D^sign(A0jtPmial p = l,ne (4.4)

f ds. ds- }
where A0j%Pwlm refers to the corresponding terms of min — - 4 0 * , —LA0~ . Note that if the

ds.
sensitivity —— is zero, any (e.g. +1 or -1) direction along this axis can be selected. This is

d0p

equivalent to multiple vertices having the same flexibility. Note, form (P2.1), that the number of

8's considered in each active set is/i£ + 1 (where nB is the number of basic slack variables Sj in

(PD).

5. Algorithm for Flexibility Evaluation

The proposed method can be viewed as a constructive approach to the evaluation of

flexibility. Starting from a nominal point and zero flexibility, we expand the boundaries of

feasible operation as we move from the nominal point outwards with the implicit solution of

problem (P2), going through all the changes in supporting active set whose lower bound FL < F.

At each active set k that is generated we evaluate 5* and 8k
u. If at any point 8u

k is the smallest,

the lower and the upper bound become identical and the search is stopped. Otherwise, we order
the displacements for all past active sets in a list A, in ascending order, keeping only the elements
<5* that are lower than the current upper bound on the flexibility F u . Each time we visit a new

active set, we update the lower bound on the flexibility FL . Eventually, as shown later in

Property 3, Fu = FL = F.
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It is important for this method to guarantee that it will never go back to an active set

already visited. This is ensured by an added provision according to which at any active set k, the

variable that just entered the basis (SJ') is not considered in the analysis. Therefore, the new basis

is one that has not been examined before. Since the new point 9C is defined as marginally into

the new active set, variable Sj' has just entered the basis and therefore has a marginally positive

value which in turn gives rise to a corresponding 8 of value £. The above provision can also be

seen as an anti-cycling scheme (although it is an obvious step in the construction of this method).

Formal proof of the above is provided in Property 3. The above concepts are illustrated in the

following example.

Example 1. In order to demonstrate this method we introduce an example problem consisting of

three inequality constraints, one unbounded control variable z and one uncertain parameter 0. In

this problem (El), we need to find the flexibility index for a nominal value 0N = 2 and symmetric

deviations of A0 = ±2 (see Fig. 2).

fx=z-0-2.667 <0

/ 2 =-z —+ 2.667 <0
3

/3 = z + 0-5.333<O

Q
-z + 2.667 + s2 - u = 0

3 2

(El)

Solving the above by minimizing u with 0N = 2 we have:

{6 = 2}:

u = -0.667

s, = 1.333

s2=0.
s3=0.
z = 2.667

Basic Variables: [sv u]

ds, - du 1£ *- = -_ . . . ds, - du 1Sen****-£ = *- = -

Distance: SS{ = —; Su = 1]

Directions: D, = -1; D= 1

which gives rise to active set (AS)1 ={f2, f3} with a lower bound for the flexibility index FL =

0.333. As seen in Figure 2, the limiting point is then A (0 = 1.333) which is at the boundary of a

change to the active set (AS)2 = {fi, f2l- Now we can move to the critical parameter point 0C =

1.333 and solve again the feasibility problem that gives:
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= 1.333 -e

u = -0.889

^ = 0 .

Basic Variables: [ ̂ 3*, u]

n . . . ds,* „ du 2
Sensitivity:—- =-2; — = —

y dO dO 3
Distance: 8, =— ;SU = —

3 4 3
1*

Pr oj.Dist. 8S =- \8U = 1

Directions: Dv = 1*; Z> = -1

which gives rise to the active set (AS)2 with a lower bound on the flexibility index FL = 1, hence

the procedure converges. The asterisk (*) above, refers to the fact that this variable need not be

considered since it refers to a variable non-basic in the previous iteration and hence it points

towards the active set already visited (the relevant numbers are shown here only for

demonstration). Note that for the non-degenerate case, only one basic variable is exchanged

between active sets. This information is not relevant to our search since we have already

analyzed the corresponding active set (f2, f3). However, the projection of the distance from 0C to

0N is necessary in order to establish a common reference point. The above procedure can be also

seen graphically on Figure 2.

The algorithm for the above method can be summarized as follows:

Algorithm I - Evaluation of the Flexibility Index for a given design

Step 0. Set iteration count k= 1. Set 0N = 6C. Set FL = 0 and Fu = «>. Set Bk = 0 and Ak = 0.

Step 1. Solve (PI) based on 0C, define the corresponding active set (AS)k, and evaluate the
ds-

sensitivities —L using (3.4).
d0p

Step 2. Solve (P2) and evaluate all Ss
k>8* as well as Dk

s,D
k
u for u and all the basic variables

Sj e Bk = {j I j: index of a basic slack variable Sj in current active set (AS)k that also

satisfies Sj e Bk'1 (k>l)}, using (4.1), (4.2) and (4.4). (Note that the definition of Bk

excludes variables that were non-basic in the previous iteration, and hence prohibits

revisiting active sets already considered).

a. Based on the values of <55* and 8k evaluate the equivalent 8k and 8k based on the

nominal point (by projecting into the original 0N if necessary, i.e. in case OP * Gfi and
Dk & Dk~l). The projection step will be detailed below.
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b. Set Fu =8U = min{S*,Fu}. Update the set of candidate allowable distances

Ak = Id. S's.*Sl
c and S'.<Fu;l = 1, k\. Set FL = 8k

c = min Id*,5U\ and the

associated critical direction Dk. If Fu = FL terminate with F = F^ = FL.

c. Evaluate the new 0C as follows: 6C = 0N + 8kAdk. Setk<-k+l. Go to step 1.

Projection Scheme: The projection of 8k to 8k
s, (step 2a) is done through the simultaneous

solution of (AS)k and the fixed bound on the candidate variable Sj\ (this is the variable that will
define a new active set) along the direction Dk,. The reason for this projection is to scale the 8k

from the local analysis of the current active set, back to our nominal point, 0 N . The

corresponding system of linear equations to be solved is:

(5.1)

V/eAS*

where the parameters 6 are given parametrically with respect to 8.

System (5.1) (which essentially describes the possible intersection of the current active
set with the new one that involves Sjf) is a square system with a unique solution that corresponds
to the projected 8k,. If, however, the solution of the above system does not exist this indicates

that Sk, = oo, so this variable does not participate in any adjacent active set. Note here, that if

there are multiple 8k with the same critical direction Dk only the smallest needs to be

considered for the projection step. The information for the rest is redundant, since it corresponds

to a different active set.

If the predicted direction Dk, coincides with the previous direction (Dk, =Dc
k'1) and 8k_

is the minimum in this direction, then the corresponding projected 8 is simply the sum of Sk, and

S^'1, as in Example 1:

(5.2)
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In order to show that the method will not cycle, provided that the active sets are non-

degenerate, we first need to show that the lower bound on the flexibility index FL will

monotonically increase in each iteration.

Property 3. The lower bound on the flexibility index generated by Algorithm I is monotonically

increasing, provided that the active sets encountered are not degenerate.

Proof: From the projection scheme and the definition of Ak it is guaranteed that all encountered

active sets are ordered and examined in order of proximity to the nominal point. When a new

active set is encountered, 8c
k is increased slightly by 6 in order to avoid solving (PI) at the

intersection of the two active sets. Since u is a continuous function of 6 (Swaney and

Grossmann, 1985a) the above procedure for visiting a new active set is valid. Therefore, any

active set k examined lies by definition strictly beyond active set k-1, so that:

By definition,
(FL)k-l=8k

c-
l<8l

Sj98
l
u / = U - 1

and also
( F L ) k < 8 l

S j 9 8 l
u l = l 9 k

By combining the above with the definition of Ak we finally get:

(FL)k-{<(FL)k.

We are now left to eliminate the case (FL)k~l = (FL)k. Since the previous active set cannot be

considered (note the strict inequality sign in (5.4) and the corresponding reasoning), in order for

the equality to hold, two active sets in the same iteration have to be at exactly the same distance

from the nominal point. This case, however, implies that the solution of (PI) in that point is not

unique. In that case we can arbitrarily order the active sets through a lexicographic method.

Hence, the equality case is excluded, by the above ordering argument, so that we conclude:

(FL)k-l<(FL)k r.

Corollary 1. If the lower bound on the flexibility index increases monotonically in each

iteration, Algorithm I will not cycle.

Proof: Cycling requires that the method will encounter the same active set and hence the same

flexibility bound at least twice. From Property 2 this cannot happen r.
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The above method will converge to the flexibility index F, since it systematically

generates a strictly increasing (for non-degenerate cases) sequence of lower bounds to F, as

shown in Property 3. These lower bounds will converge to the upper bound given by Fu = 5U =

min{§uk}. The convergence property for this method is shown below in Property 4.

Property 4. The method described in Algorithm I will converge to the flexibility index of the

corresponding problem.

Proof: The proposed method creates a sequence of lower bounds of the flexibility index. It also

generates upper bounds for F. We have to show that the two bounds will converge so that Fu =

FL = F. Since there is a finite number of active sets and since every one is considered at most

once, there exists an active set k' for which there are no other active set directions so that Ak' =

0, and hence FL = 8U. But also by definition Fu = 5U, so that Fu = FL = F. r.

Note also that although in this development we assumed non-degenerate active sets this is

not a restricting element. In particular, the case of degeneracy could be addressed by the

introduction of an ordering lexicographic method for all the relevant basic variables Sj. This

provision will enable the ordering of the active sets in a degenerate case. Also in that case all

degenerate active sets should be excluded from Bk (where for example active sets k-1 and k-2

are degenerate). In this work, however, only non-degenerate cases are considered.

6. Flexibility Evaluation Examples

In order to demonstrate the proposed sensitivity based feasibility index method and

illustrate the steps of the algorithm we consider the following example problems.

Example 2. This is a four heat exchanger network design problem with five inequality

constraints, one non-negative control variable (Qc) and two uncertain parameters, 6 = [Ti, T2F,

with symmetric deviations (Grossmann, 1987). This is a small version of Example 3 to better

illustrate the steps of the algorithm. The process model in projected form is described as follows:

/ 2 : - r i - r 2 + 0 . 5 £ + 9 2 3 . 5 + s2-w = 0

/ 3 : - 2 r 1 - r 2 + a + i i 44+5 3 -« = o ( E 2 )

/ 4 : - 2 r i - r 2 + & + 1274 + s4-M = 0

f5: 2r i



16

Nominal point: 6N = [388,583]r. Expected symmetric deviations A0 = [±10, ±10]T.

First iteration:

Starting from the nominal point we solve (PI) and obtain the optimal solution. Based on this and

using (3.4) we obtain the sensitivities for all the basic slack variables and u. Using (4.1) and

(4.2) we find the allowable displacement for all Sj and u, along with the corresponding critical
directions Ds using (4.4). Based on that we find Fu and &.

(s4=0; A4=O.5>1
ss=0; A5=0.5

sl = 10.36

'388Y">
,583 ) -

52=2.50

s3 = 130.0

s6 = 75.0

u = -5.0

Ss =1.04 D,

SS2=0.50DSi

8,, =

which gives rise to active set (AS)1 = {£4, f$) with FL = 0.5. Also, note that since the

resulting critical direction (0,-1 )T is not uniquely defined. Here (1,-1)T and (-1,-1)T are

both acceptable and we can select an of the two. Although, this selection will not affect

the continuation of this method as far as the final result is concerned, in order to

demonstrate the projection scheme we will examine both instances below (graphically

presented in Figure 3 as AB and AB'):

Second iteration - Case I: (D0)1 = (-1, -1)T:

We follow a procedure similar to the one in the first iteration. The only difference is that here,
since (P2) was solved at a parameter point different than 0N we need to project the allowable
distances S* , to 5* using (3.12).



17

eN =

^,=0.6

-lOVo

^ 2

s5=0; A5=0.33
5, =5.35

53 = 130.0
S4=£

s6 = 59.97

M = - 5 . 0

U SSi =1.10

(3.4)

Projection step SSi -» 5^: Since DSi s (D c)' , which means that the predicted direction is

the same with the previous critical direction, we evaluate the projected 8 by simply

adding 8 to the previous critical (SP)1, so 8Si =(8c)l + 8Si =0 .5 + 0.6 = 1.1
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Second iteration - Case II: D c
l = (1, -1)T:

s2 = 0 ; X2 =0 .67
ss=0; A 5 =0.33

s, =8.69

'388^

,583.
eN=\"~J+o.5^

10 s3 = 130.0

S4=£

s6= 80.01

M = - 5 . 0

(3.4)

dd

(P2)

^,=0.98

SSi=l9.5

^=1.10

=2.67 Ds = 5,
S6

du_
dd

82
C= 1.10

'0.33^ N

^0.56j

[-0.67,

[-0.67,

ILOJ

.-0.33J

(P2)

Projection step SSi -> 5^: we have to solve (5.1) to find the intersection of the current

active set with the intersection with the new active set defined by the removal of si from
the basis, along direction DSi. The corresponding system of equations to be solved as

defined by (5.1) is:
(s2 = 0 ; .s5=0; s{ = <

(E3)

Graphically this step from 8Si = 0.98 to SSi = 1.1 is given by segments B'C'C in Figure 3.



Third iteration:

19

'388

(P2)

5,3=23.5

5Si=0J

S. =2.26 D. =

$,=0; A,=0.43
s2=0; A2=0.57

s3 = 134.0

S5 =£

s6 =41.93

w = -3.0

(3.4)

dO

dd

dd

^-0.43,

1,-0.43,
f-0.43'
1-0-72,

foil
,-0.57

•5. =1.52

S-L52 flf-l
L = 1.52]

* =1.521
= 1.52

Graphically this step is given by the segment CD in Figure 3.

The evolution of this example solution and the above steps are graphically presented in
Figure 3. Note that all the information with respect to the values of 5* and 5* for all the basic

variables Sj and u is exact only for 8c
k and not necessarily for the rest. This is due to the possible

existence of multiple basis changes along some of these directions.

Example 3. This is also a heat exchanger problem with four units (Grossmann and Floudas,

1987). The model for this problem in the projected form, with just the inequality constraints and

the control variables, has five inequality constraints, one non-negative control variable (Qc) and

four uncertain parameters 6 = [Ti, T2, T3,
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f2: -0.
J3 1 2 3 *c 3

/ 4 : -1 .57,-2^-73-2^ + ^ 2 8 3 0 + ̂ ^ 0 V ;

/ 5 : L

U -

The nominal point is 0" = [620,388,583,313]r and the expected deviations Ad are ±10 for all

the uncertain parameters. Our goal is to determine the flexibility index for this structure. The

method converges in two iterations and the details are given in Table I. The flexibility index is F

= 0.5 and the critical direction DF = [0, 0, - 1 , 1]T. This result verifies the one found in

(Grossmann and Floudas, 1987) but here, due to the nature of this method, all possible critical

directions are identified as opposed to only one reported in the above reference. The multiplicity

in the critical direction denotes the fact that there are actually four critical directions with the

same flexibility. In other words the displacements to the boundary in the four critical directions

are identical, bounded by a single hyperplane at the space of 0.

7. Remarks on the Flexibility Evaluation Methodology

The above method presents several advantages compared to the MILP approach by

Grossmann and Floudas (1987). First, the solution yields not a single critical point or active set,

but rather it provides all supporting active sets and consequently all critical directions in case

there is multiplicity. Second, unlike the above method, the proposed approach does not require

the solution of an MILP problem. Instead, a sequence of bounding LP's suffices for the

sensitivity based method since the identification of the active sets is essentially done on a need-

to-construct basis, as a direct result of the solution of (PI). The solution of a new LP in our

method corresponds to a new active set. Hence, the number of the required LP's is bounded by

the number of supporting active sets, nsAS. Note that all the possible (but not necessary feasible)

active set combinations are given by:

V
nPAS~~ 7 , IM / 777 (' •

Therefore, npAS is the number of active sets that the existing methods need to consider in the

worst case. In contrast, as it is evident from the construction of the proposed method, only the

supporting active sets, nsAS wiU be considered. Although this number may still be rather large,
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the computational complexity of the method may be reduced. On the other hand a disadvantage

of the proposed method is that its implementation is not as direct as the mixed-integer approach

since its efficient implementation requires that the sensitivity computation in (3.4) be performed

as part of the pivot operations in the simplex algorithm. Also the mixed-integer approach can be

more readily applied to non-linear problems, it has no difficulties in handling degeneracies in the

active sets and it can easily accomodate a wide variety of correlated uncertainties (see

Grossmann and Floudas, 1987).

8. Flexible Design for Given Operability Requirements and Uncertainty

After addressing the first important issue in flexibility, which was to determine the

flexibility index of an existing design, the next challenging issue is to design (or redesign) a plant

so that it will be capable of withstanding some parameter variation expressed in terms of a

flexibility index.

Given a model with state and design variables (JC/, d) and a set of parameters 0, the goal is

to determine a design so that an objective function <^d) will be minimal subject to feasibility

over a range of values for the parameters 9. Based on the sensitivity analysis procedure for

finding the flexibility index for a given design, we describe a method for addressing the problem

of designing a plant with a given flexibility and that takes advantage of the fact that all

supporting active sets are generated.

Based on the linear model (PI), formulation (F3) yields:

min cTd

s.L A[xT\zTf + Bd + C0 + a = 0

D[xT\zT]T + Ed + F6 + b + s = u (P3)

.y>0 ueR{

V0 e T(F) = {01 0" - FAO' < 0 <9N + FA6+}

In this problem a set of uncertain parameters with nominal values 0N, is given along with

positive and negative expected deviations A0+ and A0~ and a desired degree of flexibility F.

The idea in the design procedure is to solve problem (P3) through a relaxation of (F3) in

which all the supporting \|/'s are generated. This approach follows an evolutionary scheme in

which the \|/'s are defined at each point from the solution of (PI). In particular, starting with a

design dN and the nominal 0N we find the corresponding flexibility index. From the above
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procedure a set of projectedfeasibility functions y/* is determined. These functions are expressed

in terms of G and d. Maximizing each \\f over 8 (with fixed d), we reduce \|/ to a function of d

only. As shown by Pistikopoulos and Grossmann (1988) this can be accomplished by analyzing

the sign of the gradients of y at any arbitrary design. A new design can be found based on the

minimization of (|>(d) subject to these projected feasibility constraints yf(dft, as seen below in

problem (P4). The algorithm, summarized below, consists of the iterative solution of the above

scheme until a specified flexibility index F* is achieved.

Algorithm II - Design for Fixed Flexibility F*.

Step 0: Set iteration count M = 1. Select d1 setting dl = min <t>(d).

Step 1: a. Evaluate the flexibility index FM (using Algorithm I in section 5).

b. If FM > F* terminate with optimum design (PP* = dM. If FM < F*, based on the

examined active sets determine all the supporting feasibility functions y/kht, k\i = 1, .

KM, given by either (2.2) or (8.2) depending on whether explicit equalities are present.

(Note that 1CM is the iteration index of Algorithm I).

c. Determine the critical parameters 0*" that will solve max y/kM(09d
M). This can be

o
accomplished by evaluating the signs at dy/k" /dO.

Step 2: Solve design problem (P4) to find the optimal design d* for all the accumulated

projected constraints km=l, Km; m=l, M.

min <j>(d)
d (P4)

s.t. yA(</,0*")<O fcm=l, Km\ m = lM

Set M <- M+l. Update dM by setting dM <- d*. Go to step 1.

The above algorithm provides the optimal solution for the design problem (P3) for fixed

flexibility F*. On the one hand, from step 1 the optimal design solution dM has an associated

flexibility index FM > F*, so that at the conclusion of the algorithm we have a feasible design

solution with flexibility at least F*. On the other hand, this solution is the minimum since all the

constraints in (P4) are valid projected feasibility constraints, according to (F2).

Note that in step l.a of Algorithm II all supporting active sets are generated, all the
limiting \|/'s are systematically identified (limiting y/s are the ones that define the design for a
given flexibility F* at the optimum). The set of all limiting i[/fs consists of all yfi for which
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= 0. Note also, as it is evident from the structure of (P4), that the maximum number of

limiting flexibility constraints is rid = dim{d}. A similar result was also independently developed

through bottleneck period arguments for multiperiod design problems (Varvarezos et al., 1993).

In order to illustrate the above method, we present the following example problem.

Example 4. This is an analytical design problem (from Pistikopoulos and Grossmann, 1988)

with one uncertain parameter, two design variables, a single unbounded control variable and

three inequalities:

3 3
(E4)

The uncertain parameter has a nominal value 0N = 2, and expected deviations A0+ = A0" =2. Our

goal is to design this process (find the values of di and d2) so that the above model is feasible for

the entire uncertain range (0 < 0 < 4; F* = 1), with the minimal investment cost. The cost is

given by the following objective function: (/> = l0dx + \0d2.

Iteration 1. Following the initialization procedure in Algorithm II, we start with d1 = [0,0]T.

s2=0\X2=0S

« = 0.33

y/1 =—L + -2- +
Y 2 2 3 31

F'<0

s.t. max w <0
9 T

Iteration 2. We start with d2 = [2,0]T

mmlO( 1+ 2) U ^ = p l
s.r.-34+3</2+6<0j L°J

6N=2
s2=0;A2=0.5
w =-0.167

26 1
+

F2 =0.125

s.t. max y/1 <0

max y/2 < 0

min
d

s.t.-3d1+3d2+6<0

3dx-6d2 + l<0

J4.3331
[2.333]

Iteration 3. We start with d3 = [4.333,2.333]T
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s2=0;X2=0.5

^3=0;A3=0.5

w = -0.667

An alternative design procedure could involve the initial sampling of the parameter space,

by solving (PI) and (P2) for different GN. This can produce different active sets to start off

problem (P4), and amounts to a "warm start". Also, while the above example can be solved in

one iteration with the analytical method by Pistikopoulos and Grossmann (1988), it requires in

general the a-priori identification of all feasible active sets.

Another important issue particularly relevant to larger scale problems is the direct use of

the process model without projecting it on the space of control variables. Although this

projection has been quite popular in the past mainly due to its simplicity for the presentation, it

can become troublesome and unrealistic for large scale models. The proposed method was

developed without any projection simplifications. Although the construction of the projected

feasibility functions \|/(G, d) can be done in principle by using (2.2), in general we have to

account for the state variables as well. This can be accomplished by applying the Lagrangian

function in the full space and making use of all the multipliers in (PI) which leads to:

fo(*. 0,d) + £ Afo(x, 09d)
J (8.1)

An alternative way to construct the projected feasibility functions \|/(6, d) is based on the

sensitivity information with respect to both the uncertain parameters and the design variables.

This leads to formulation (8.2):

T T

y de) ydd) ( 8 .2)

The following example problem addresses the above issues and demonstrates the use of a full

process model without the elimination of state variables.
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Example 5. This is the problem of estimation and possible redesign of a chemical complex that

processes 10 chemicals, and involves 6 processing units and 22 process streams, based on the

model presented in Grossmann et al., 1982. The flowsheet for this complex is presented in

Figure 4. The complete model for this complex is given below.

Process Material Balances
w2 - 1.2w3 = 0

w3-O.8w4=O

w8-O.3w13=O

w9-0.7w5=0

w,0-0.2w3 = 0

wM-0.3w16=0

wI2-l.lw13=O

wI5-1.3w16=0

w18-l.lw19=0

w20-0.5w4=0

Node Material Balances

w 2 0 - w 2 1 - w 2 2 = 0

w5 — 0, — vv7 = 0

w9-wlo-wn=O

Design Equations

w4-d2+s2=u
w3-dl+sl=u

w!3 - d4 + s4 = u

wl6-d5+s5 = u
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Process Bounds

w2l —
wl7-04+sl0=u

—W7 + 05 + £,, = W

W 1 2 - H £ + 5 1 2 = K (<2=120)

=II (<4=50)

2 = w i = 1,22

The existing design is dN = [100,150,80,120,100,30]r. Additional data on this problem are

presented in Tables II and HI. Using Algorithm I, the flexibility index for the above process was

determined being F = 0.47. During this phase two supporting active sets were determined.

However, since one of them had a zero sensitivity with respect to the feasibility variable u,

(—^- = [0,0,0,0,0,-0.227f;—^- = 0), only the first is relevant in the design phase. The
d{d) d(d)

corresponding projected feasibility function, y 1 , is determined using (8.2). Using Algorithm II,

we solve a minimization problem with only one constraint (\\fl) that involves only one design

variable (d6) and results into a new design for process 6 (from d6 = 30 to d6 = 45, kg h"1). Note

that due to the fact that there is only one constraint involving one variable (6$) in a linear form,

any monotonic objective function (strictly a function of design variables) will give the same

optimum design (that is \\fl < 0 => d$ > 45 => d6* = 45). However, in the general case problem

(P4) should be solved with an appropriate objective function. Finally, using Algorithm I, for this

new design we confirm the flexibility index for the redesigned process to be 1.

9. Conclusions

In this paper we have presented a novel solution approach to the systematic evaluation

and design of flexible linear processes. In particular, a sensitivity based method that uses a

bounding search procedure was proposed for the evaluation of the flexibility index of an existing

design. This approach is computationally competitive compared to existing methods as it can

effectively address the dimensionality problem in terms of both the number of the uncertain

parameters as well as the number of the model constraints. The method also has the interesting

feature of generating all the supporting feasibility projected functions given the constructive
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element of the search procedure. This property is directly utilized in the optimal design model

by Pistikopoulos and Grossmann (1988), thus providing a systematic framework for generating

flexibility constraints in the design of linear processes under uncertainty. Finally, examples

have been presented to illustrate the steps of the methods and their performance.
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Appendix A - Dependencies Between the Uncertain Parameters

The case of dependencies between the uncertain parameters can be addressed within a

sensitivity analysis framework as follows. Assume that there is a dependency among the

uncertain parameters 0, described by:

0•FM:H: ; ] (A.1)

where 0i and 0D are the independent and dependent parameters respectively. In that case the

sensitivities with respect to the uncertain parameters are estimated based on (3.4) and in addition,

for the independent uncertainty parameters we have:

db^=db^de^^db_=db^HT

dOj d0D dO, ddt ddD

In the case where the parameter dependency comes through inequalities, the latter can be

transformed into inequalities with the addition of a new uncertain parameter:

6s

<es
 (A3)

The above can be addressed within the proposed framework (eq. (3.4)).
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Appendix B - Flexibility Index and Sensitivity Analysis

In order to show that the combined solution of (PI) and (P2) will determine the lower

bound on the flexibility index for a given active set we need to show that the optimal (as well as

any feasible) solution 8 of (P2) will always be a feasible solution of the flexibility problem (PI).

If we project the equalities out in (PO) and express the uncertainty domain parametrically in 8

through set T(5), we have:
F = max 8

s.t. fj(z,0,dN)<0 jeJ

~<6<dN + SA6+\ (Bl)

zeZ = {z\zL<z<zu}

8>0

where J is the set of all projected inequalities/ The above can be also expressed equivalently in

a minimax form:

s.t. max min mdxfi(z,0,dN)<0 ^ 2 )

0eT(8c) z j J

The solution of the above problem will also give the flexibility index of our design dN over the

uncertain parameter space T(9). Note that all the functions involved are considered linear.

Property Bl. Any feasible solution of (P2), 8, is a feasible solution of (B1).

Proof: It has been shown (Halemane and Grossmann, 1983), that the constraint in problem (B2)

is equivalent to the following logical constraint (for a fixed value of 8= fr):

V8eT(8c){3z(VjeJ\fj(z,0,dN)<0)} (B.3)

From the solution of (PI) and the sensitivity analysis in (P2) for any feasible 8, and for all

0 G T(8C) there is always a z = z + — ( 0 - 9N)8C that yields a feasible (u<0) solution of (PI)
dO

and therefore satisfies: /y(z, 6,dN) < 0 V/ G /, or in other words:

V0G7T<5C):

and therefore: V0 € T(SC); 3z e ZI / .(z, 6,dN) < 0; V; e J r.
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Corollary Bl. Any feasible solution of (P2), 5, is a lower bound FL to the flexibility index F.

Proof: Since 8 is a feasible solution of (Bl) it follows trivially that it corresponds to a lower

bound to F r.
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List of Tables

Table I. Detailed solution of Example 2, where the solution of problems (PI) and (P2) are

presented in a condensed form.

Iteration

AS-Non-basic v.

Basic Variables

o • • • dbJ
Sensitivity —-

dd

Projected 8k
b

Direction £>£

1

si S2

10.6 2.5

A.on (o \
0.34
0.67

,2.18,

0
0.5

,-0.8,

0.25 0.20
"-1"

-1

-1

-1

"0 "

0

-1

1

S4 S

S3

160
(0 \

0
0

8.0
"0"

0

0

. 1 .

5

S6 ii-

lS -5

2.0
1.0

,3.0,

(0 ^

0
0

,0.5,

1.0 1.0
'-11
-1
. 1

-1

"0"

0

0

1

2

si
10.9

(1.01 ̂

0.34
0.56

,2.34,

oo

• - r

- l

- i

. - i .

S3

156
(0 ^

0
-0.7

,-1.0,

OO

"0"

0

1

1

S2 Si

S4

• e

(° 1
0
-0.7

1,1.0 ,
(a)

(a)

S6

72

2.0
1.0

,3.0,

24.0
"-1"
-1

-1

- 1

u

-4
(0 ^

0
-0.3

,1.0 J
0.5

"0 1
0

-1

1

(a) This variable is not considered in the sensitivity analysis since it corresponds to the active set in iteration 1 that is
already explored.
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Table H Nominal values and deviations of the uncertain parameters in Example 5.
Uncertain Nominal Value Positive Deviation Negative Deviation
Parameter (kg. hr1) (kg. hr1) (kg. hr1)

5

50

10

10

15

e2
e3
e4
%

10
200

50

50

50

5
50

10

10

15

Table HI. Bounds on the process streams for Example 5.

Process Stream Lower Bound (kg hr1) Upper Bound (kg hr1)
w3 10
W4 10
W5 10

120
10
20 50
10

vv/9 10
20 20
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List of Figures

Figure 1. Illustration of the concepts of supporting and redundant active sets in flexibility
analysis for a given design.

t Supporting AS \|/ \|/ \j/
ddRedundant AS

2 Y3

Flexibility Index

Feasibility Envelope
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Figure 2. The two active sets projected in z - 6 and \\f - 8 space. The active sets and the

procedure path are denoted by the dark lines - Example 1.

A
(6 = 1.333)

Second Iteration
First Iteration

4 e
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Figure 3. Graphical representation of the procedure for evaluating the flexibility index. Areas

with different shade represent different active sets - Example 2.
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Figure 4. Process Flowsheet for the Chemical Complex in Example 5.


