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Abstract 

A knowledge representation based on first principles and a library of techniques for 
expanding the space of design alternatives are reviewed. They have been developed for the 
algorithmic innovation of engineering designs. 

The knowledge representation consists of an algebraic design objective, a set of algebraic 
equality and inequality constraints, and variable and constraint typing specifications. The 
algebraic relations model the fundamental physical and chemical phenomena, as well as 
manufacturing, safety, and performance considerations. Within this representation, variable 
typing describes physical, processing and manufacturing characteristics of variables within a 
design. Constraint typing describes the region(s) in which each constraint is applicable in a 
design. This representation may be useful in applications which are amenable to mathematical 
representations, and require additional information on variable characteristics and constraint 
applicability, to achieve their reasoning goals. 

The expansion techniques introduce new independently modeled features in a known 
design. Presently there are two expansion techniques: Dimensional Variable Expansion, 
DVE, and Input Variable Expansion, IVE. These techniques are the means for modifying 
design topology. DVE and IVE have been defined as mathematical operators, to manipulate 
our knowledge representation. The concept of design space expansion is useful independently 
of knowledge representation. 

The knowledge representation and the library of design space expansion techniques have 
been combined into the l s t PRINCE design methodology for innovation in engineering design. 
This methodology uses optimization information to decide which expansion technique may 
produce improved designs and induction to examine limiting behavior. Starting from an initial 
design, l s t PRINCE has algorithmically innovated interesting engineering concepts, such as the 
electric bus, the tapered and hollow beam, the wheel, and the plug flow reactor. 



1. Introduction 
Design may be described as a search for a good solution in a space of possible 

configurations that satisfy the user's goals. Design frequently involves three important aspects: 
1. a set of design objectives, 
2. a representation of design alternatives, and 
3. a search technique. 

In this paper we review (a) a knowledge representation which is based on first principles, (b) a 
library of design space expansion techniques for innovating designs, and (c) a search technique 
which is based on optimization. 

The first principle knowledge of this paper is represented as an algebraic objective, a set 
of algebraic engineering equations, a design topology, and a set of specifications of constraint 
and variable types. The equations are derived from detailed physical, chemical, manufacturing, 
safety, and performance considerations. This knowledge representation is useful in domains 
which can be described mathematically, and require additional information on variable 
characteristics and constraint applicability, to achieve their reasoning goals. 

The expansion techniques are mathematical heuristics which innovate designs by 
introducing new features into a known design. Optimization information is used to decide 
which expansion technique is applicable. 

The first principle knowledge representation, the library of expansion techniques, and the 
optimization-based search have been incorporated into the l s t PRINCE design methodology for 
innovation in engineering design. The knowledge representation and the expansion techniques 
may be useful to other research efforts independently. 

This paper unifies various pieces of this research effort, which have been published in 
[Cagan and Agogino, 1987,1991a, and 1991b] and in [Aelion, et al, 1991 and 1992]. After a 
discussion of each of these research issues, the l s t PRINCE methodology is applied to the 
design of a vehicle fueling strategy. Other applications are also summarized. 

2. Classes of Engineering Design 
We categorize design into three main classes based on the resulting artifact: routine, 

innovative, and creative designs [Cagan and Agogino, 1991a]. We differentiate between the 
artifact and process in our definitions, and characterize processes based on the type of artifacts 
they typically produce. 

A routine design has a fixed set of features. A routine design process involves finding 
the best solution among known alternative design topologies. The challenge in routine design 
is to develop design objectives that adequately characterize the user's goals and search 
techniques capable of finding the best design in a reasonable computational time. 
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In an innovative design, new features are introduced to known designs. A technique 
which introduces these features to a design class is an innovative design process. While a 
well-defined objective and a powerful search technique are important in innovative design, the 
emphasis is in finding ways to expand the space of design alternatives. 

Finally, creative designs are not based on known designs. In this category of designs the 
emphasis is placed almost exclusively on finding design solutions in previously unexplored 
design spaces. Creative designs could result from the development of new technologies, or the 
application of technologies different from the ones already in use. 

The library of expansion techniques, presented in section 5, is capable of introducing new 
features into known designs, and supports innovative engineering design. Other work on 
algorithmic innovation is reviewed in the following section. 

3. Related Literature on Innovation in Engineering Design 
Traditionally research in artificial intelligence has produced designs by decomposing and 

manipulating existing design fragments [McDermott, 1977; Roylance, 1980; Mitchell, et ai, 
1983; Ressler, 1984; Mitchell, et ai, 1985; Brown and Chandrasekaran, 1985; Mittal, et al., 
1986; Tong and Sriram, 1991]. Decomposition expedites search; however, a large class of 
engineering designs (e.g., structures, mechanisms) cannot be easily decomposed, especially 
when new features are desired. Design reasoning systems capable of innovative designs 
usually are not based on the decomposition of the problem. 

Innovation often occurs by expanding the space of engineering alternatives to introduce 
new design features. Other researchers have developed theories for design innovation. 
Murthy and Addanki [1987] developed the PROMPT system which uses heuristics based on 
first principles to reason about mechanical structures. PROMPT represents the various design 
models of engineering equations in a graph, called a graph of models, and uses domain-
specific heuristics to modify the models. The approach looks for constraint satisfaction and 
uses numerical approaches to analyze and modify the structures. 

Lenat [1982,1983a, 1983b] developed the EURISKO system which also uses heuristics 
to mutate a frame-based LISP representation of a design. These mutations create new design 
configurations which may possess innovative characteristics. The system mutates LISP 
structures that are considered most interesting based on the number of occurrences of a LISP 
phrase and the success of designs with this phrase. In EURISKO the heuristics themselves 
are subjected to mutation, which leads to new heuristics. EURISKO has been most successful 
in designs with large and unexplored spaces. 

Dyer, et ai, [1986] developed the EDISON project, a framework for invention by 
heuristic-based mutation and analogy. EDISON uses a fixed knowledge base that represents 
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the decomposition of a device to derive new combinations or uses of devices. A pre-defined 
set of mutations on given devices is used to achieve sub-goals and create new devices. 

Maher, et al.9 [1989] also examined the use of heuristic-based analogy and mutation of 
prototypes to derive new structural configurations. They developed a frame-based 
representation, called a prototype, that models function, structure, and the relationship between 
function and structure, of a device. By searching through a prototype for specified slots, their 
methodology can determine whether the prototype satisfies design requirements, partially 
satisfies the requirements, or cannot satisfy the requirements at all. The prototype then can be 
used unchanged, or mutated by domain-specific heuristics to satisfy problem requirements. 

Ulrich and Seering [1988] pointed out that decoupled approaches to design have limited 
applications in mechanical design and examined the use of function sharing to derive new 
designs of dynamic systems. They deleted certain features from fluid devices and developed a 
hierarchy of hindrances which may result from the modification, features that cause the 
hindrances, and modifications to remove the hindrances from the system. They modeled the 
actual device in a decomposition of form, but maintained coupling through a sufficient model 
of the physics of the problem. 

Joskowicz and Addanki [1988] related function to geometry via a space of kinematic 
configurations to derive innovative kinematic pairs. A complete mathematical mapping 
between geometry and kinematics is required to reason about the coupling between form and 
function. By examining the bounds between feasible and infeasible solutions, new devices can 
be derived. 

Fairings [1991] employed qualitative reasoning to map relationships between function 
and form for the conceptual design of kinematic pairs. He also derived configuration spaces to 
aid in the conceptualization of an object, and derived a qualitative model of the configuration 
feasibility rather than the precise mathematical formulation of Joskowicz and Addanki. 
Fairings used a first-order predicate logic representation of geometry and inference to search 
within the representation. 

Mitchell [1989] reasoned about shapes and their grammars in creative design. Mitchell 
looked at issues of emergence, ambiguity and discontinuity in shape interpretation, instability 
in the grammatical rules for carrying out shape computations, and non-monotonicity in 
reasoning about shapes. Shapes are represented as a collection of maximal geometric lines and 
shape grammars describe a language for modifying the model [Stiny, 1980]. 

Williams [1991] used abstract first principle representations of dynamic systems to 
derive topological configurations. The interaction-based design approach focused on coupling 
between components to solve configuration problems. A topological map between form and 
function for a general domain and one for a specific device instance were built from classes of 
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physical structures. The mapping modeled fundamental constitutive laws, such as continuity 
of fluid flow. Solutions with minimal sets of interactions were derived. 

4. First Principle Knowledge Representation 
First principle knowledge representations model problems based directly on the 

fundamental physical and chemical phenomena, as well as on manufacturing, safety, and 
performance considerations. There are many choices of first principle knowledge 
representations. A detailed representation, for example, may involve partial differential 
equation models of the system. Less detailed representations may be based on order of 
magnitude information, for example [Mavrovouniotis and Stephanopoulos, 1988]. A more 
abstract choice is a list of pairs of interacting variables, including the sign of the interaction 
(first partial derivative information), for example [Williams, 1991]. The more detailed the 
representation, the higher the precision in modeling a phenomenon, and the higher the 
complexity in analyzing a design. 

Our representation uses algebraic relations in symbolic or in numerical form. Designs 
are described by an algebraic objective and a set of algebraic constraints. The representation 
also models fundamental characteristics of each quantity and each relation in the system, by 
typing the variables and constraints. Designs can have multiple regions. A region is a section 
of a design, which may be independently modeled and may have independent properties 
[Cagan and Agogino, 1991b]. The connectivity among regions is described by a topology. All 
of this information is provided by a designer. 

The first principle information is captured by the notion of a primitive-prototype, based 
on an objective function, /(x), to be minimized over a set of variables, x, bounded by a set of 
equality and inequality constraints, h(x) = 0 and g(x) < 0: 

\ Minimize f(x) 

We defirife^ive variable types. The first two, namely the system and region variables, 
designate whether these variables depend on the physical size of the system or a have a 
regional effect. The next three variables are subsets of these variable types and have been used 
by l s t PRINCE to expand the design space. 

System variables, xs, express quantities that depend on a characteristic size of a system. 
Examples of such variables include weight, reactor volume, capacitor charge and mass 
flowrate. System variables are replicated when new regions appear in the design. Note that 

Subject to h(x) = 0 
g(x)<0. 
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system variables have an extensive quality, as defined in the field of thermodynamics [Sandler, 
1977]. 

Region variables, xr, express quantities that describe a property of a design region. Such 
quantities are independent of all the region characteristic sizes. Region variables include 
temperature, pressure, density, Young's modulus and thermal conductivity. Region variables 
are replicated when new regions appear in the design. Region variables have an intensive 
quality, as defined in thermodynamics. 

Assignment variables, express quantities that have contributions from multiple design 
regions, or that appear in specific design locations, such as the first and the last region. These 
variables facilitate the accounting within a design. Examples that account for contributions 
from multiple regions include total weight of a design, average density, total sales and total 
cost Examples of variables which are specific to a particular design region include entering 
and exiting chemical reactant concentration. 

In addition to the variable types defined above, we define two more variable types, which 
are subclasses of the types already defined. Dimensional variables are a special subclass of 
system variables that denotes the physical dimensions of a design, such as length, radius, or 
volume. Input variables are another subclass of system variables that describes quantities to 
be processed by a design. Examples of input variables include material flows in chemical 
reactor designs and loads in structural designs. 

Constraints are classified in four types: serial, parallel, boundary, and assignment 
constraints. Serial constraints, cs, are functions only of assignment variables and apply across 
all design regions. Parallel constraints, cP, apply to individual design regions. Boundary 
constraints, c b , are defined for each boundary between neighboring design regions. Finally, 
assignment constraints, c 3 , are the definitions of the corresponding assignment variables. 

Based on these definitions, the primitive-prototype becomes: 

primitive-prototype = / bounded by {cs} u {cP} u {c b } u {c 3} over {JCs} u {jcr} u {jca}. 

Within this representation, searching for the best design involves minimizing the 
objective, while satisfying the design constraints. The space of solutions is limited by a fixed 
set of features. Design space expansion is one way to remove this limitation. 

5. Design Space Expansion: A Method for innovation in Engineering Design 
Design space expansion introduces new features into a known design. This is achieved 

by creating new design regions, each of which can be independently modeled and assigned 
independent properties (independent intensive variables). All expansion techniques have a 
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similar basic algorithm, presented in Figure 1. 
In this algorithm, step 1 is the identification of a region for expansion. In steps 2 and 3, a 

number of replicate regions is chosen and a new design topology is created. The connectivity 
of this new topology depends on which particular expansion technique is applied. In step 4, 
assignment constraints update the symbolic or the numerical values of assignment variables 
for the new topology. Step 5 accounts for the possible creation of new boundary constraints 
for each new region boundary. Step 6 is the creation of parallel constraints for each region in 
the new topology. Finally, in step 7, the objective function and the serial constraints are 
updated, based on the new values of the assignment variables. 

BEGIN (*Any Expansion*) 
1. Identify a region for expansion. 
2. Choose a number of replicate regions (default = 2). 
3. Create new design topology. 
4. Apply assignment constraints. 
5. Create new boundary constraints. 
& For each region create parallel constraints. 
7. Update objective function and serial constraints. 

END 

Figure 1. General expansion algorithm 

Two expansion techniques are currently available: Dimensional Variable Expansion, 
DVE, and Input Variable Expansion, IVE. DVE, shown in Figure 2, focuses on a region 
with a dimensional variable, in this case Dim 1. The initial design, which comprises of a 
single region in this case, is expanded into multiple regions along Dim 1. Each new region is 
independently modeled and assigned new properties. 

Initial Design 

Dim 1 

Dim 

DVE 
over Dim 1 
to n Regions 

Dim! 

New Design 

Figure 2. Conceptual illustration of DVE 

Region Region 
1 if 

An example application of DVE involving a beam is shown in Figure 3. The weight of 
a beam under flexural load is to be minimized, subject to a yield stress constraint. Application 
of DVE over the length, a dimensional variable, produces the expanded design space of a 
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stepped beam. Application of D VE along the radius, another dimensional variable, would 
produce a beam with several concentric regions. 

F 

Figure 3. Application of DVE on a beam example 

IVE, on the other hand, proposes the parallel processing of an input into design regions 
whose topologies are replicates of the initial design region, as shown in Figure 4. In doing so, 
IVE automatically introduces new features in the design, which may lead to better designs. In 
Figure 4, Input 1 is distributed to the multiple design regions which appear in the new design. 
The newly created design regions can be independently modeled. Application of IVE to the 
beam design over the load, an input variable, proposes designs of multiple beams, each of 
which carries a fraction of the original load, as shown in Figure 5. 

DVE and IVE initiate a library of formal expansion techniques. These techniques are the 
means of expanding the space of possible design solutions, and provide the power to innovate 
designs. They have been developed for the knowledge representation presented in section 4, 
but their principle may be extended to other representations. 

Initial Design 

Input 2 Input m 

Input 1 

IVE 
over Input 1 
to n Regions 

New Design 

Input 2 Input m 

H 
Region 1 

^ 1 Region n v 

Figure 4. Conceptual illustration of IVE 
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Figure 5. Application of IVE on a beam example 

6. Search using Optimization 
Optimization is an approach to problem solving in which an objective, / (x) , is minimized 

over a set of variables, x, bounded by a set of equality and inequality constraints, h(x) = 0 and 
g(x) < 0. Optimization can be used in conjunction with our knowledge representation and 
expansion library in two ways: (a) to find the optimal solution within each design topology and 
(b) to determine which expansion technique to apply for expanding the current design 
topology. These roles of optimization are discussed in the two next sections. 

6.1 Search for an Optimal Design within a Design Topology 
The traditional role of optimization in engineering design is that of sizing individual 

components [Hrymak, 1985]. A more modern use of optimization is the simultaneous 
selection of a design topology and the sizing of the components within this topology. The 
problem definition makes use of a superstructure of alternative design topologies, i.e. a 
representation where multiple design topologies are imbedded [Duran and Grossmann, 1986]. 
This form of optimization employs the use of binary variables, whose values indicate the 
existence or non-existence of a particular component, and continuous variables, whose values 
indicate sizes of individual components and operating conditions. 

Both of the described uses of optimization are applicable to predefined design topologies. 
The challenge in this class of problems lies in locating the global optimum within a reasonable 
amount of time. Research in this field continues in the direction of improved search 
algorithms, more efficient problem formulations, and global optimization [Nemhauser, et a/., 
1989]. 

Both symbolic and numerical optimization techniques are available. We have employed 
the symbolic technique of monotoniaty analysis [Papalambros and Wilde, 1988] to reason 
about functional relations between variables. In monotonicity analysis only the direction of the 
rate of change of one variable with respect to another is necessary. Monotonic functions have a 
constant sign in all their first partial derivatives. The level of abstraction in monotonicity 
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analysis is similar to those found in the traditional qualitative reasoning literature [Forbus, 
1983; de Kleer and Brown, 1983; Williams, 1991]. Numerical optimization can be also 
applied to reason about functional relations in designs that are too complex for optimization 
using monotonicity analysis. 

6.2 Optimization and Design Space Expansion 
The design space expansion techniques of DVE and IVE are applicable to all 

dimensional and all input variables respectively. Among all possible expansions, only 
expansions of regions with critical variables will produce improved designs. Critical variables 
are those which influence the objective, and whose expansion will also influence the objective. 

Cagan [1990] has proven a necessary condition for improving the objective after design 
space expansion for a certain class of problems. The Rule of Critical Variables is strictly 
applicable to initial and resulting primitive-prototypes that involve only monotonic constraints 
and objectives. It states that critical variables always appear in active constraints in monotonic 
problems. Active constraints are those which influence the location of the optimum in a 
design. The Rule of Critical Variables is applicable to both DVE and IVE, but these 
techniques do not require monotonic functions. The rule can still be applied in a heuristic 
manner in problems involving non-monotonic functions, and still identifies critical variables. 
Symbolic and numerical optimization is used to identify active constraints, and therefore 
candidate critical variables. 

7. Limiting Designs by Induction 
Repeated application of design space expansion and subsequent optimization of the 

resulting primitive-prototype frequently reveals patterns of interesting constraint activity. After 
each expansion, monotonicity analysis or numerical optimization derives sets of active 
constraints and an optimization analysis of the design is performed. This sequence of actions 
is called a design generation. If the activity of the analogous constraints remains the same 
across several design generations, then we can induce that this pattern will hold for an infinite 
number of generations, and take the limit of this expansion activity. More formally, Cagan and 
Agogino [1991a] define: 

Inductively active (inactive) constraint: If a constraint is active (inactive) for n 
consecutive generations of expansion then it is induced to be active (inactive) 
for infinite generations. 

The number of consecutive design generations, n, required before attempting induction is 
specified by the user. 

Induction is not a required step, rather it is an additional analysis step capable of produc-
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ing certain designs which would otherwise require infinite design generations. Induction is 
fundamentally an aggressive design policy, which risks the possibility that some constraint be 
violated at the limit. It is important to check the result of induction against the design 
constraints to ensure that they have not been violated. In addition, when taking limits a 
designer should always determine whether or not the primitive-prototype remains a valid 
model of the design. 

8. 1*PRINCE Design Methodology 
The first principle knowledge representation, the library of expansion techniques, the 

optimization-based search, and the induction step have been incorporated in the l s t PRINCE 
design methodology. l s t PRINCE is an acronym for FIRST PRINnciple Computational 
Evaluator. The goal of this methodology, introduced by Cagan and Agogino [1987,1991a, 
1991b] and extended by Aelion, et al [1991 and 1992], has been to innovate engineering 
designs. The means for innovating designs is the introduction of new features in a known 
design, by applying design space expansion techniques. 

In l s t PRINCE, expansion techniques operate on a space of design solutions, defined by 
first principle knowledge. This knowledge, described in section 4, is captured in a primitive-
prototype, which consists of an algebraic objective, algebraic equality and inequality 
constraints, a design topology, and constraint and variable types. An optimum is determined 
within the space of solutions, and the space is expanded (augmented). This new design space, 
while including the previous designs, provides an opportunity for including better designs. 

The design space in l s t PRINCE changes dynamically, and goes beyond constraint 
satisfaction to produce designs which approach the global minimum. Cagan and Agogino 
[1991b] describe this design process as optimally directed, defined as an approach to design 
which attempts to determine optimal regions of the design space by directing the search toward 
improving the objectives and eliminating suboptimal regions. 

l s t PRINCE is described conceptually in Figure 6. The initial design is optimized. If the 
resulting design meets the designer's requirements a satisfactory solution is found and the 
design is completed. Alternatively, the design space is expanded via the library of design space 
expansion techniques. The resulting design is again subjected to optimization and the design 
loop is repeated. Four points are of particular interest: 

(i) If specific design trends appear after a certain number of iterations, then the 
corresponding limit is induced to obtain the maximum benefit of that expansion. 

(ii) If expansion does not improve performance, the design generation is stopped. 
Performance can be enhanced either by improving the objective or by satisfying 
previously violated constraints. 
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(iii) This algorithm makes use of optimization in two ways: (a) the traditional way of 
optimizing a given design and (b) the use of optimization information to suggest 
which expansion may improve design performance. The results are optimally 
directed design configurations. 

(iv) The designer is involved in each design generation in two ways: (a) in deciding if 
a design is satisfactory and (b) in choosing among candidate expansion 
techniques determined algorithmically. 

l s t PRINCE is a domain independent approach to innovation in design, based on a 
mathematical representation. We have presently used this approach to create new design 
alternatives in the domains of chemical engineering, mechanical engineering and economics. 

Induce Trends 
if Appropriate Optimize Design 

I 
Expand Design Space 

based on 
Optimization Information 

Satisfactory n Progress n ^ 
Design? Made? 

Stop with Solution 
of Previous Iteration 

Figure 6. The l s t PRINCE design methodology 

9. Algorithm and Implementation 
The l s t PRINCE algorithm, shown in Figure 7a, examines the presence of candidate 

critical dimensional and/or input variables and reports candidate expansion techniques. The 
designer specifies one of these techniques for the next design generation. The algorithms for 
DVE and IVE are shown in Figures 7b and 7c respectively. In some cases we can determine 
a priori which expansion technique will not produce better designs; however, we cannot 
predetermine which technique, or combination of techniques, will produce the most 
improvement. Currently the designer chooses among candidate techniques (step 5 in Figure 
7a) and the resulting objective is checked for improvement over that of the previous generation. 
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The DVE and IVE modules of l s t PRINCE have been implemented in Mathematica on 
Macintosh Ilex. The induction module has been implemented in Franz Lisp and Flavors on 
Vax-series computers by Cagan and Agogino [1991a]. Monotonicity analysis, symbolic 
algebra, and symbolic application of the optimality conditions have been implemented in the 
SYMON/SYMFUNE programs by Choy and Agogino [1986] and Agogino and Almgren 
[1987]. The user must currently input the problem formulation into each module. The 
methodology remains to be integrated into a single environment. 

BEGIN (*INPUT primitive-prototype*) 
1. Specify model template (objective and constraints). 
2. Specify regions of initial design (topology). 
3. Specify variable and constraint types. 

END 
BEGIN (*l s t PRINCE*) 

4. If first design generation, go to step 8. 
5. Select critical variable and expansion type. 
6. Choose a number of expansion regions (default = 2). 
7. Update design topology by calling expansion technique. 
8. Apply assignment constraints. 
9. Create new boundary constraints. 

10. For each region create parallel constraints. 
11. Update objective function and serial constraints. 
12. Optimize design. 
13. If design generations > induction limit, and analogous 

constraints remain active (inactive), then induce 
expansion limit. 

14. If design satisfactory, return result. 
15. If design improved, go to step 5. 
16. Return current design. 

END  

Figure 7a. The l s t PRINCE algorithm 

BEGIN (*DVE*) 
1. R = region involving critical dimensional variable. 

RU = connected regions topologically upstream of R. 
RD = connected regions topologically downstream of R. 

2. Replace R with specified number of connected 
expansion regions. 

3. Connect uppermost expansion region with all regions 
previously connecting RU and R. 

4. Connect lowermost expansion region with all regions 
previously connecting R and RD. 

5. Return new topology. 
END 

Figure 7b. The DVE algorithm 
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BEGIN (*IVE*) 
1. R = region involving critical input variable. 

RU = connected regions topologically upstream of R. 
RD = connected regions topologically downstream of R. 

2. Replace R with specified number of unconnected 
expansion regions. 

3. Connect all expansion regions with all regions 
previously connecting RU and R. 

4. Connect ¿11 expansion regions with all regions 
previously connecting R and RD. 

5. Return new topology. 
END 

Figure 7c. The IVE algorithm 

10. Examples 
The following examples aim to demonstrate the power of innovation and the domain 

independence of the l s t PRINCE design methodology. 

10.1 Innovation of a Vehicle Fueling Design 
Consider a problem where the net weekly income of a shipping process is to be 

maximized. The income depends on the annual volume of freight carried and fuel costs. The 
vehicle has volume capacity, Q. The volume of the merchandise is x. The total number of 
trips per week is v/d> where v is the average speed and d is the shipping distance. Fuel 
consumption varies with the square of the speed and the distance, /Jiv 2 , where p is a constant 
The weekly fuel consumption, j3v3, is equal to the fuel consumption in each trip, jSrfv2, times 
the number of trips, v/d. P is the revenue per unit volume of delivered merchandise and F is 
the cost per unit volume of fuel. The problem of minimizing net weekly cost can be written as: 

Minimize C - R 
Subject to R = Pxvld 

C = pFv* 
x + pdv2 < Q, 

where R and C are the total revenue per week and the total cost per week respectively. One 
possible input to l s t PRINCE includes variable and constraint typing: 
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Minimize C-R 
R = Pxvld 
C = j8Fv3 

di=d 
x + pd\v2 <> Q 

Cfi 
(ai 
(a2 
(a3 
(Pi 

- objective) 

Subject to - assignment constraint) 
- assignment constraint) 

- assignment constraint) 
- parallel constraint) 

The variable type specifications are given below: 

R = total revenue / week (assignment), 
C = total cost / week (assignment), 
x = merchandise volume / trip (system, input), 
d\ = region distance per trip (system, dimensional), 
d = total distance per trip (assignment), 
v = speed (region). 

Constraints (ai) and (a2) define the total revenue / trip and the total cost / trip respectively. 
Constraint (a3) specifies that the trip distance in the design region is equal to the total trip 
distance, d> because there is only one design region in this design. Finally, constraint (pi), the 
only parallel constraint in this design, specifies that the sum of the volumes occupied by the 
merchandise and the fuel cannot exceed the total volume of the vehicle. 

l s t PRINCE starts by optimizing the initial design, shown in Figure 8. The shaded area 
represents the fraction of the total capacity used for storing merchandise, and the remaining is 
the fuel volume. Monotonicity analysis indicates that all constraints are active and constraint 
(ll) is satisfied as an equality. A detailed application of monotonicity analysis within 
l s t PRINCE appears in [Aelion, et al.y 1992]. By optimization and backsubstitution of the 
active constraints into the objective function we determine that the minimum net weekly cost 
is: 

33/2^3/2^1/2 I P + F J 
-2PQ3/2 I P U/2 

I d\ 1 
Figure 8. First Generation of the Fueling Design 

3 
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The designer may either accept the above design, or search for a better design. The 
designer can do the latter by directing l s tPRINCE to apply DVE. The only dimensional 
variable is the distance, d\. The region which contains d\ is expanded to the default value of 
two regions. The corresponding design is expressed with the following primitive-prototype: 

Minimize 
Subject to 

C-R 
R=Pxv/d 
C = j8Fv3 

d\i +d\2 = d 
x + ßd\\v2<Q 
x + ßdnv2 < Q 

(fl -objective) 
(ai - assignment constraint) 
(a2 - assignment constraint) 
(a3 - assignment constraint) 
(p 11 - parallel constraint) 
(p 12 - parallel constraint) 

refueling stop 

Figure 9. Second Generation of the Fueling Design 

In this two-region design, shown in Figure 9, constraint (a3) specifies that the sum of the 
distances in each region be equal to the total distance of the trip. Again, all constraints are 
active and the parallel constraints, (pi i) and (pi2), are satisfied as equalities. After 
backsubstitution and symbolic optimization, it turns out that d\\ is equal to d\2 and the 
minimum weekly cost of this design becomes: 

to - ' 2 P Q 

T2, min — 
3/2 

33/2^3/2^1/2 

This objective, /2 , min> is smaller than the previous objective, f\% min> indicating an 
improvement in performance. l s tPRINCE has been able to innovate because it has introduced 
a new feature into the original design. The new feature, stopping to refuel, provides a larger 
fraction of the vehicle capacity for storing merchandise, as shown by the increase of the shaded 
area in Figure 9. The stop was created by recognizing the existence of a dimensional variable 
and applying DVE to the design space. 

The same procedure can be carried through for another design iteration to determine that 
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the four-region design produces further improvement. The objective becomes: 

_ - 2 P Q m I P \ l / 2 
J4, min — ~ 

33/2^/2^1/2 ^ + F j 

1 P R I N C E now notes that the analogous constraints remain active across design 
generations and induces the limit of infinitely many and differentially small design regions 
which sum up to the total distance of the trip, d. The objective becomes: 

f n m i n = -2PQm I P \ l / 2 ^ l [ m [ f n , -2P3f2Q3/2  

, l , m m 33/2d3/2pl/2[Zn + F} n^oo n ' m m 3 3 / 2 ^ 3 / 2 ^ 1 / 2 ^ , 1 / 2 * 

This objective indicates the maximum improvement that DVE can produce with this 
system description. l s t PRINCE has been able to innovate the concept of a vehicle which 
refuels continuously along a trip, shown in Figure 10, and resembles the operation of an 
electric bus. In this design, all the volume capacity of the vehicle is used for storing 
merchandise. This innovation happens automatically as l s t PRINCE manipulates the initial 
design using its library of heuristic expansions. The designer also uses l s t PRINCE to try 
IVE, which proposes the design of two vehicles making this trip in parallel. Given the initial 
system description, this design does not improve the objective. 

energy source 

Figure 10. The Fueling Design after Induction of Constraint Activity 

In this formulation several simplifying assumptions have been made: the average speed 
of the vehicle, v, remains unaffected with the creation of refueling stops and there is are no 
costs associated with stopping to refuel, building refueling stops, or building an energy source. 
The problem can be solved without these assumptions and perhaps innovate still other designs. 
The main interest during conceptual design is to observe trends of improvement by expanding 
the design alternatives. 
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Ultimately, the designer must recognize the meaning and implement the design ideas 
produced by l s t PRINCE. The application of this design methodology helped in exploring 
alternative designs and provided the stimulus of a new design idea. l s t PRINCE works 
interactively with the designer who critiques the emerging designs and provides guidance on 
which expansion types to be applied. The automation of this methodology supports rapid 
exploration of a certain class of innovative designs. 

The following examples are applications of l s t PRINCE to mechanical and chemical 
engineering designs, which aim to demonstrate the domain independent nature of the approach. 

10.2 Innovation in Beam Design 
l s t PRINCE was originally developed for mechanical design, and applied to various 

structural and dynamics models. In this example, the weight of a solid beam of circular cross-
section under flexural or torsion load is to be minimized. In addition, the bending and shear 
stresses should not exceed the corresponding yield stresses. The design can be formulated as 
follows: 

Minimize weight 
Subject to bending stress < bending yield stress 

shear stress < shear yield stress 

A detailed analysis of this design can be found in [Cagan and Agogino, 1991a]. 
Depending on the critical variable and the expansion technique, a number of alternative designs 
have been innovated, as shown in Figure 11. Depending on their complexity, most of these 
designs are obtained in closed form. 

Application of DVE along the length of the beam under flexural load and subsequent 
independent modeling of each region, produces the concept of a composite beam. If the 
material properties of the individual regions are required to remain the same, optimization 
makes the radii progressively smaller, and induction innovates the concept of a tapered beam. 
DVE over the radius of a beam under torsion load, and independent densities of the resulting 
regions produces the concept of a hollow tube, because optimization drives the density of the 
internal region to zero. IVE over either flexural or torsion loads proposes the design of 
multiple beams, each of which carries only a fraction of the original load. This may be useful 
if it is impossible to achieve the design goal without violating the constraint. Finally, 
combinations of these techniques could produce solutions like the hollow / tapered beam 
shown in Figure 11. l s t PRINCE has been able to innovate these designs by creating new 
features. Subsequent optimization gives these features the most desirable shape. 
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Figure 11. Application of l s t PRINCE to beam design 

10.3 Innovation of Chemical Reactor Systems 
An application of l s t PRINCE to the design of chemical reactors is shown in Figure 12. 

The goal of this design is to maximize a first-order chemical reaction, subject to a maximum 
volume constraint. The initial design is that of a well-mixed reactor. The well-mixed reactor is 
an ideal conception in which all the contents are perfectly mixed. The design becomes: 

Minimize exiting reactant concentration 
Subject to well-mixed reactor mass balance 

reactor volume < upper bound 

A detailed analysis of this and similar problems can be found in [Aelion, et al, 1991 and 
1992]. Applications of DVE on reactor volume and IVE on input flow produce serial and 
parallel reactor systems. Of particular interest is the limit of infinitely many and differentially 
small well-mixed reactors in series, which produces the identical behavior of a plug-flow 
reactor. This reactor type is another theoretical conception, where there is no axial mixing. 
There is only radial mixing in every differential slug traversing the reactor. l s t PRINCE is able 
to innovate this design based purely on variable and constraint typing and the application of 
DVE. 
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Figure 12. Application of l s t PRINCE to chemical reactor design 

10.4 Reinventing the Wheel 
l s t PRINCE has been applied to the following problem: 

Minimize resistance to spinning 
Subject to object area > lower bound 

Starting from the initial design of a square, shown in Figure 13, application of DVE over two 
dimensions, while maintaining symmetry, has proposed the design of a wheel This example 
is described in detail in [Cagan and Agogino, 1987]. 

Figure 13. Application of l s t PRINCE to the minimum resistance design 
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11. Discussion 
This paper describes (a) a knowledge representation which is based on first principles, 

(b) a library of mathematical heuristics for expanding the space of design alternatives, and (c) 
an optimization-based search technique. These have been combined in the l s t PRINCE 
methodology for innovation in engineering design. 

The first principle knowledge representation, reviewed in section 4, is based on the 
engineering paradigm of modeling systems with mathematical relations. The representation 
also includes variable and constraint typing. Variable typing is domain dependent knowledge 
which describes fundamental roles of variables within a design. Constraint typing describes 
the region(s) in which each constraint is applicable in a design. Typing provides additional 
information on a system, which may be necessary for reasoning in particular applications. We 
have used this information to decide on how to extend the space of design alternatives. This 
representation may be useful in other applications that are amenable to mathematical 
representations and that require additional information on variable characteristics, constraint 
applicability, and topology to achieve their reasoning goals. 

The expansion techniques, described in section 5, are based on the idea that introducing 
new independently modeled regions in designs can produce new features in these designs. 
Currently the library of expansion techniques has two members: DVE and IVE. These 
techniques are the grammar for modifying design topology, so the more members in this 
library, the stronger the power to create new designs. DVE and IVE have been defined as 
mathematical operators, a formulation which accommodates our knowledge representation. 
The concept of design space expansion, however, is useful independently of knowledge 
representation. In their current form, design space expansion techniques target variables with 
specific roles in a design. As we identify variables with other interesting roles, we can define 
corresponding variable types and develop corresponding expansion techniques. 

The l s t PRINCE design methodology is a domain independent framework for innovation 
in engineering design. It starts with an initial design and innovates designs by adding new 
features. The methodology makes use of optimization in a unique way because it employs 
mathematics to perform synthesis, even though its traditional role is in analysis. l s t PRINCE 
also uses induction to examine the limiting designs for each expansion. 

With the exception of designs produced by induction, the results of l s t PRINCE are 
sound, because the newly created regions are modeled by physically valid equality and 
inequality constraints (assuming a correct initial primitive-prototype). Induction, on the other 
hand, is an aggressive design policy which poses two risks: (a) some constraints may be 
violated at the limit, and (b) the primitive-prototype may or may not be a valid model of the 
substantially different topology. When induction has been used, the user must act as a critic of 
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the resulting designs. With this additional check, l s t PRINCE becomes a sound algorithm. 
The generation of designs by l s t PRINCE is combinatoric. The system offers a choice 

among expansion types, target regions for expansion, and number of newly created regions. 
The combinatorial explosion can be managed in two ways: (a) automatically prune out certain 
expansions based on domain knowledge, and (b) interactively include the user in the design 
loop to help make decisions when the preferred course of action is ambiguous. In limited 
cases, currently we can assess a priori which expansion type or region will produce better 
designs. 

l s t PRINCE may be viewed as a part of a larger system for engineering design, where a 
front-end methodology would develop an initial design, which would be further processed by 
l s l PRINCE to produce other design alternatives. All these alternatives could then be 
incorporated into a superstructure to be evaluated in detail by mixed-integer non-linear 
programming (MINLP) optimization methods. [Williams, 1991] presents an interesting 
methodology for discovering topological configurations which could be inputs to l s tPRINCE, 

12. Conclusions 
A first principle knowledge representation for innovation in engineering design has been 

presented. It consists of an algebraic objective, algebraic equality and inequality constraints, 
and variable and constraint types. The constraints come from the fundamental physics and 
chemistry, as well as manufacturing, safety, and performance considerations. This 
representation is useful in domains which can be described mathematically, but additional 
information needs to be modeled for reasoning purposes. 

A library of design space expansion techniques has been also presented. These 
techniques are used to innovate designs by introducing new features into known designs. 
Presently two techniques are available: Dimensional Variable Expansion and Input Variable 
Expansion. The concept of design space expansion can be useful independently of our design 
methodology. 

The knowledge representation and the library of design space expansion techniques have 
been combined into the l s t PRINCE design methodology. This methodology uses 
optimization information to decide which expansion technique may produce improved designs 
and induction to examine limiting behavior. Starting from an initial design, l s t PRINCE has 
innovated interesting engineering concepts, such as the electric bus, the tapered and hollow 
beam, the wheel, and the plug flow reactor. 
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