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Abstract. Reduced Hessian Successive Quadratic Programming (SQP) is well suited for the solution
of large-scale process optimization problems with many variables and constraints but few degrees
of freedom. The reduced space method involves four major steps: an initial preprocessing phase
followed by an iterative procedure which requires the solution oj a set of nonlinear equations, a QP
subproblem and a line search. The overall performance of the algorithm depends directly on the
robustness and computational efliciency of the techniques used to handle each of these sub-tasks.
Here, we discuss improvements to all of these steps in order to specialize this approach to real-
time optimization. A numerical comparison of reduced Hessian SQP with MINOS (Murtagh and
Saunders, 1982, 1987) is provided for the optimization of the Sunoco Hydrocracker Fractionation
Plant (Bailey et a/., 1992). The case study consists of about 3000 variables and constraints and
includes several scenarios related to parameter estimation and on-line process-wide optimization. A
study of the effect of optimizing the DIB distillation column which constitutes a subproblem of the
Sunoco example is also included. The results indicate that our algorithm is at least as robust and
an order of magnitude faster than MINOS for this set of problems.
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1. REDUCED HESSIAN SQP

Reduced Hessian Successive Quadratic Program-
ming (SQP) has been shown to be well suited
for large-scale process optimization problems with
relatively few degrees of freedom (see Vasanthara-
jan et a/., 1990). These problems are described by
a nonlinear programming problem of the form

mm (1)

s.t. h(z) = 0
.L < „ < ^U

where / : Rn — R and h : Rn -> Rm. This
formulation is not restrictive since inequality con-
straints are easily converted to equalities through
the addition of slack variables. At the kth iter-
ation, SQP methods generate a search direction
dk by solving the quadratic programming (QP)
subproblem

mm
R

(2)

s.t.

< zk
dk < zu

Here, Bk denotes the Hessian of the Lagrange
function or its approximation at iteration k. The
reduced space SQP method results from a suitable

change of basis representation applied to (2). The
new basis vectors are obtained by partitioning the
search space into two subspaces:

Z e Rnx<n-m) s.t.VhT{zk)Zk = 0 (3)
Y € R n x m s.t. [Y Z] nonsingular (4)

Thus, Y and Z together span the entire search
space and the search direction dk can be expressed
as the sum of its components in the two subspaces

= Ypy + (5)

Several reduced Hessian SQP methods, using dif-
ferent definitions for Y and Z have been discussed
in the literature; for a comparison see Schmid and
Biegler (1993a). For the purpose of this study,
we divide the variables z into dependent variables
y 6 Rm with Vy/iT nonsingular, and independent
variables x 6 Rn~m and then use coordinate bases
(Gabay, 1982; Locke et «/., 1983),

Y = (6)

It is easily seen that the linearized equality con-
straints in (2) are reduced and py is fully deter-
mined through the solution of a set of linear equa-
tions:

py = - (7)



Once the Y space move has been calculated, terms
involving py can be treated as constant and the
QP subproblem (2) reduces to

min [ZTVf + ZTBYpy]Tpz

+\pT
zZ

TBZpz

s.t. zL <zk+ Ypv + Zpz < zu

(8)

This reduced QP subproblem is solved in the space
of the independent variables and, for most process
optimization applications, (8) will be considerably
smaller than (2). The second order information
required for the objective function of (8) is often
not available analytically, and must therefore be
obtained through other means. The reduced Hes-
sian, ZTBZ, is expected to be positive definite at
the solution of the NLP (1). Consequently, this
matrix can be approximated by a positive definite
quasi-Newton update formula such as BFGS. The
other second order term, ZTBYpy, is neglected
in most reduced space SQP implementations be-
cause it is assumed that py (the "Newton step")
converges to zero faster than pz- For cases in
which ZTBYpy is not small, Biegler et al. (1993)
propose the inclusion of a second order correction
term calculated via finite differences or a Broyden
update formula.

The first order Kuhn-Tucker conditions which
yield the multiplier values are given by

YT (BYpy + BZpz + V/iA) = - y T V / (9)

Since exact values of the multipliers are only re-
quired at the solution of (1), once the method has
converged and py = pz = 0, these multipliers can
be estimated using

A = - V y / i ^ V , , / (10)

2. SOLUTION TECHNIQUES

Having presented the mathematical framework for
reduced Hessian SQP, we will now focus more
closely on the individual steps of the algorithm
and, in particular, the solution strategies used to
handle each of these tasks.

The first step in the solution procedure is the par-
titioning of the variables into independent and
dependent ones. For most real-time process op-
timization applications, this choice is straightfor-
ward since the control variables constitute a suit-
able set of independent variables. If, on the other
hand, this selection cannot be made a priori, a
number of options are available. The sparse linear
equation solver MA28 provides a "rectangular op-
tion" which can be used to automatically select a
consistent snhsefc of linparlv inrtanpivtant. #»nnalitv

constraints and basic variables. A preprocessing
step based on the solution of a linear programming
problem at the initial point has the additional ad-
vantage of ensuring that the quadratic program-
ming subproblem will be feasible (see Schmid and
Biegler, 1993b).

The Y space move requires the solution of ,a sys-
tem of linear equations according to (7) and can
be calculated efficiently using any sparse linear
equation solver such as MA28. In addition, the
Newton step for individual units or even the en-
tire process can also be generated using special-
ized solution techniques which take advantage of
the mathematical structure of the model equa-
tions (see Schmid and Biegler, 1993a).

The reduced quadratic programming problem,
which must be solved at every SQP iteration to
obtain the search direction in the Z subspace, has
the dimensionality of the number of degrees of
freedom of the problem. For most process op-
timization applications it will therefore be quite
small, as compared to the size of the full problem.
To solve this subproblem efficiently, we have de-
veloped a new QP solver QPKWIK (see Schmid
and Biegler, 1993b), motivated by the work of
Goldfarb and Idnani (1983). This algorithm in-
corporates a procedure which allows us to update
the inverse Cholesky factor of the reduced Hessian
matrix directly; as a result, QPKWIK is O(n2)
with respect to the number of variables in the QP
as opposed to most existing solution procedures
which require O(n3) operations. In addition, we
take advantage of the fact that the quadratic pro-
gram is only a subproblem of the SQP algorithm
by incorporating a warm start strategy in order
to improve the selection of the correct, set of ac-
tive constraints. We also account explicitly for
the doubly bounded nature of the inequalities in
the QP resulting from the original bounds on the
process variables. Finally, we have developed a
strategy which allows QPKWIK to handle infeasi-
ble quadratic programmingsubproblcms properly.
These result when the constraint linearizations are
inconsistent and care must be taken not to violate
the bounds on the variables since this could result
in numerical difficulties.

Once the search direction has been determined, a
line search is still required in order to guarantee
sufficient progress towards the solution. Here, we
use the line search method proposed by Biegler
and Cuthrell (1985) which is based on an aug-
mented line search function. It has been tested
succesfully on a number of problems and exhibits
global and local superlinear convergence proper-
ties.



3. PROCESS OPTIMIZATION

The first set of results provides a comparison of
the reduced Hessian algorithm discussed above
with MINOS 5.1, a nonlinear programming soft-
ware package developed by Murtagh and Saun-
ders (1982). The problem considered is that of
determining the optimal operating conditions of
the Sunoco Hydrocracker Fractionation Plant; we
use the model presented by Bailey et al. (1992).
This case study is based on an existing process
and is typical of real-time optimization problems.
The fractionation plant, shown in Fig. 1 is used
to separate the effluent stream from a hydrocrack-
ing unit. The portion of the fractionation plant
which is represented by the model is highlighted
in Fig. 1; it includes the absorber, the stripper,
debutanizer, C3/C4 splitter and deisobutanizer.
Details on the individual units may be found in
Bailey et al. (1992).

In addition to solving the optimization problem
from the given initial point, a two-step procedure
was also considered. As in Bailey et al. (1992),
we first solve a single square parameter case in or-
der to fit the model to an operating point. The
optimization is then performed starting from the
"good" initial point thus obtained. In an on-
line system, the solution to the parameter case
would be readily available, since it constitutes the
current operating conditions. In addition to the
equality constraints used to describe the process,
a number of simple bounds are also included in
the model. These bounds fall into three main cat-
egories:

1. Bounds representing actual physical limits
(e.g. nonnegativity constraints on temper-
atures) are included to prevent numerical
problems.

2. For the optimization cases, bounds placed on
key variables prevent the solution from mov-
ing too far from the starting point. These
bounds are specified so that the control sys-
tem would be able to take the maximum step
and bring the plant back to steady-state over
a one to three hour span.

3. Upper and lower bounds which are used to
fix certain variables:

(a) Variables fixed in both the parameter
and optimization case constitute variables
that are not part of the optimization but
are included for consistency. These in-
clude the composition and thermal condi-
tions of the feed streams entering the ab-
sorber/stripper.

(b) Certain variables are fixed only for the pa-
rameter case. In effect, enough variables
must be fixed for each piece of equipment
such that a square system results.

lated during the parameter case and then
fixed for the optimization. Typically, these
include heat exchange coefficients, heat loss
factors and catalyst activities.

The problem statistics are summarized in Table 1.

Table 1 Problem Statistics for the
Hydrocracker Fractionation Plant.

Parameter Optimization
Case Case

Variables
Equality constraints
Jacobian elements
Fixed variables: (a)

(b)
(c)

Independent variables

2891
2S36

24123
42
13
0
0

2891
2836
24123

42
0
3
10

The objective function which drives the operating
conditions of the plant must account for energy
costs and provide a measure of the value added to
the raw materials through processing. The form of
the objective function used for this study is given
by (11). Details on each of the four terms in this
equation may be found in Bailey et al. (1992).

( i i )

where

p =
CG =
CE =

u =

profit,
feed and product streams valued as gasoline,
feed and product streams valued as fuel,
pure component feed and products, and
utility costs.

Ill addition to the base optimization case (Case 1),
the effect of heat exchanger fouling on the optimal
solution was considered (Cases 2 and 3) as was the
effect of changing market conditions (Cases 4 and
5). The effect of fouling is simulated by reducing
the heat exchanger coefficients for the debutanizer
and the splitter feed/bottoms exhangers. Chang-
ing market conditions are reflected by an increase
in the price for propane (Case 4) or an increase
in the base price for gasoline together with an in-
crease in the octane credit (Case 5). The numer-
ical values for the above parameters are included
in Table 2.

All cases were solved on a DEC 5000/200 using
a convergence tolerance of 10"8. The results are
reported in Table 2, where "infeasible initializa-
tion" indicates initialization at the original initial

(r\ nKor r^f
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Fig. 1. Sunoco Hydrocracker Fractionation Plant.

were obtained using the solution to the parame-
ter case as the initial point. For the optimization
case, 10 of the 13 variables which are fixed only
during the parameter case were used as indepen-
dent variables. We also report the results obtained
by Bailey et ai (1992) using MINOS 5.1. In Ta-
ble 2 their results for a VAX G330 are converted to
equivalent CPU seconds on a DEC 5000/200 us-
ing a conversion factor of 0.1518. In all cases, both
our method and their MINOS cases terminated at
the same optimal solution. For an interpretation
of the objective function values, see Bailey et ai
(1992).

From Table 2 it is apparent that, for this problem,
our algorithm is at least as robust and consider-
ably more efficient than MINOS 5.1. Let us now
consider each of the sets of results in turn. Re-
duced Hessian SQP was S limes faster than MI-
NOS as far as the parameter case is concerned.
This is to be expected since, for a square system,
SQP simply reduces to Newton's method for solv-
ing a set of linear equations while MINOS is un-
able to take advantage of the fact that the prob-
lem solution is completely determined by the con-
straints. Bailey et ai (1992) report only one re-
sult for an optimization case which was initialized
at the original "infeasible initialization". When
this MINOS result is compared to the SQP re-
suit, there is a difference of almost two orders of
magnitude. It seems that, for this problem, SQP

is less sensitive to a poor initial point than MI-
NOS. However, as mentioned earlier, the solution
to the parameter case would be available in an
on-line system, so it is more important to com-
pare the "parameter initialization" results. Here,
the results in Table 2 indicate an order of magni-
tude improvement in CPU times when comparing
our algorithm to MINOS.

The .second set of numerical results deals with op-
timization of the deisobutanizer (DIB) column; a
sub-unit of the Sunoco Hydrocracker Fractiona-
tion Plant. A mixture of butane and iso-butane
containing small amounts of propane and iso-
pentane enters the column. Iso-butane is retrieved
at the top of the column while the bottoms prod-
uct is rich in butane. The model developed by
Bailey ct ai (1992) includes 361 variables and 351
equality constraints, with 2211 nonzero elements
in the constraint Jacobian. As for the optimiza-
tion of the full plant, we solve both the parameter
and optimization cases. 10 variables are fixed for
the parameter case to give a square system. Two
of these are freed for the optimization case; these
provide a natural choice of independent variables.
For the optimization case, bounds on the variables
of type (1) and (2), as discussed above, are also in-
cluded. Bounds such as nonnegativity of the exit
flow rates are not expected to be active at the so-
lution but are required to prevent numerical diffi-
culties during the course of the optimization. The



Table 2 Numerical results for the Sunoco Hydrocracker Fractionation Plant problem.

Heat Exchange
Coefficient (GJ/d°C)

Debutanizer Feed/Bottoms
Splitter Feed/Bottoms

Pricing
Propane ($/m3)
Gasoline Base Price ($/m3)
Octane Credit ($/(RON m3))

Profit
Change from base case
(«/d, %)

In feasible Initialization
MINOS
Iterations (Major/Minor)
CPU Time (s)

SQP
Iterations
CPU Time (s)
Parameter Initialization

MINOS
Iterations (Major/Minor)
CPU Time (s)

SQP
Iterations
CPU Time (s)

Time 5OI/ ,,,,x

Case 0
Base

Parameter

0.6565
1.030

180
300
2.5

230968.96
-

5/275
1S2

5
23.3

n/a
n/a

n/a
n/a

12.S%

Case 1
Base

Optimization

0.6565
1.030

180
300
2.5

239277.37
8308.41
(3.6%)

9/788
5768

20
80.1

12/132
462

13
58.8

12.7%

Case* 2
Fouling 1

0.5000
0.500

ISO
300
2.5

239*207.57
829S.G1
(:uvX)

-
-

12
54.0

14/120
408

Case 3
Fouling 2

0.2000
0.200

180
300
2.5

236706.82
5737.86
(2.5%)

-
-

24
93.9

16/156
1022

IS
74.4
7.3%

Case 4
Changing
Market 1

0.6565
1.030

300
300
2.5

258913.2S
27944.32
(12.1%)

-
-

17
69.8

11/166
916

11
52.5
5.7%

Case 5
Changing
Market 2

0.6565
1.030

ISO
350
10

370053.98
139085.02
(60.2%)

-
_

12
54.2

11/76
309

10
49.7

16.1%

second class of bounds defines the operating lim-
its of the system; these constraints are frequently
active at the solution. Here, upper bounds on the
amount of butane and iso-butane in the top and
bottom exit streams respi.r lively are included so
as to ensure a minimum purity of the exit streams.
In addition, bounds are placed on the reflux ratio
as well as the heat duties of the reboiler and con-
denser. These bounds reflect the range of normal
operating conditions of 1 he 1)113 column and char-
acterize the boundaries of 1 lie region for which we
are confident of the validity of the model.

We first solve the param<.i« r case (Case 0), and
the base optimization case (Case 1). We then re-
solve the problem with a dillerent objective func-
tion. Instead of maximizing profit, we wish to
determine the maximum purity of iso-butane in
the overhead product (Case 2) or of butane in the
bottoms product (Case .>). given the above op-
erating bounds. Finally, we remove the bounds
on the reflux ratio and on ihe heat duties (Case
4). The results are given in Table 3 below. We
indicate the profit at IIK solution as well as the
mole fraction of iso-butane in the bottoms stream.
In addition, we also report the value of the vari-
ables which are constrain*\\ by operating bounds
and indicate which bounds become active at the
solution.

Comparing the results lor Case 0 and Case 1, we
observe an increase of almost 50% in the profit as
a results of optimizing t he operating conditions of

the DM3 column. The solution is constrained by
the lower bounds on the reflux ratio and the up-
per bound on the mole fraction of butane in the
overhead stream. The results for Case 2 and Case
3 give us an upper bound on the maximum pu-
rity we can achieve, given the operating bounds
on the variables. The maximum mole fraction of
iso-butaue in the overhead stream is 0.927, as op-
posed 10 0.806 for Case 1. The maximum pu-
rity of butane is 0.849, only slightly higher than
0.84-1, 1I1.* mole fraction obtained for Case 1. In
both cases, the profit is reduced. However, we
have noi accounted for the possibility that the in-
crease in purity may increase the sales price of
the product. The point here was simply to de-
termine 1 he achievable limits on purity. Finally,
the results for Case 4 indicate that by removing
the bounds on the reflux ratio and heat duties we
are able \o almost double the profits as compared
to Ca.se 1. This suggests that it may be worth-
while 10 investigate the physical effect of relaxing
these bounds. In particular, the validity of the
model ai these new operating conditions must be
verified and certain parameters may have to be
readjusted.

1 CONCLUSION

This paper briefly presents the key steps of a re-
duced Hessian SQP algorithm. In addition, we
summarize the solution techniques which we ap-
ply to each of the sub-tasks in order to achieve



Table 3 Numerical results for the. DIB column.

Hclliix |{;iiio
Top Ural Duly

Bottom ll«\it Duty
Overhead Butane

Bottom is<>-Butane
Overlic.it 1 is. •-! ki t.aue

Bottom 1 iiiilai ic
Profit (S/..I)

Change in profit from
base case (*/«l, %)

SOP it oral i<»ns
CPU seconds on a

DRO "OMu/JOO

Case 0
9.05
0.716
0.734
0.019
0.053
0.924
0.820

443.336
n/a
n/a

5
3.3

Case 1
8.00 (LB)

0.670
0.692

0.05 (UB)
0.012
0.896
0.844

663.373
220.037

(49.63%)
8

4.1

Cas<; 2
10.00 (UB)

O.TIM )

U.S08
0.UIG

0.05 (UB)
0.927
O.SJ.i

264.476
-178.800
(-4O.:il(/t)

")
3.G

Case 3
9.o6

0.70 (UB)
0.S12
0.039
0.012
0.906
0.849

350.725
-92.611

(-20.80%)
12

4.7

Case 4
5.40

0.444
0.465

0.05 (UB)
0.05 (UB)

0.895
0.S12

1167.011
723.675

(163.23%)
9
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