
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Plans for ASCEND IV: Our Next Generation
Equational-Based Modeiinf Environment

A.W. Westerberg, K. Abbott, B. Allan

EDRC 06-180-94

PLANS FOR ASCEND IV: OUR NEXT
GENERATION EQUATIONAL-BASED

MODELING ENVIRONMENT^

Arthur W.Westerberg
Kirk Abbott
Ben Allan

Dept of Chemical Engineering
and the Engineering Design Research Center

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We discuss features of the current version of our ASCEND modeling environment and then many of the
modeling insights we have obtained from using it. From this experience and what others are learning
when using their environments, we suggest ways we intend to increase the scope and size problem we
can solve with a future version of ASCEND.

Introduction

The goal of the research group of the first author for the almost three decades has been to improve our ability to develop
and solve process models. In the late 1960s, we worked on extending the flowsheet tearing algorithms to the solving and
optimizing of models described only by their equations. By the early 1970s [Edie and Westerberg, 1972] we concluded that
solution algorithms based on embedded tearing were fatally flawed, in that they frequently introduced singularities in the
solving process not present in the original model. Following the lead of Hutchison and his students [Bending and
Hutchison, 1973], we switched to using the Newton-based sparse matrix methods electrical engineers were developing to
solve electronic circuit models. Both the tearing approach [Westerberg and deBrosse, 1973] and this approach readily
supported using generalized reduced gradients for optimization. The switch to using sequential quadratic programming
methods - to remove the last "loop" in the computation - followed in the late 1970s, and we were able to optimize 5000
equation models having 10 degrees of freedom in our ASCEND II system [Berna et al, 1976,1980; Locke and Westerberg,
1983]. We knew that these methods had to be more robust, but they promised to be about as efficient as we were going to
get, taking only two to three times as long to optimize as it took to solve. At the prodding of Dean Benjamin, a student
in the group, we wondered how people were going to "feed" these systems [Westerberg and Benjamin, 1985]; i.e., how can
engineers efficiently develop models of that size. Peter Piela joined the group in 1984 with the project to "create a
programming system where an engineer could create, debug and solve a new model one order of magnitude more rapidly (in
terms of his/her time) than possible with current technology." He took this goal to heart, with the ASCEND III system
being the result [Picla, 1989; Picla et al, 1991/92]. It featured two parts: a modeling language based on object-oriented
concepts and an interactive user interface for debugging and solving. Our current group is using and improving this
system in their research, including the solving of complex processes such as azeotropic distillation columns.

— We have learned many things from this work, which we share in this paper. We are also ready to extend this system,
i.e., to create ASCEND IV. We discuss here our ideas on the features this system should have, ideas which have come
from many sources: the work on Omola by Mattsson and coworkers in Lund [Andersson, 1989], the work of

Presented at Aspen World '94, Boston, Massachusetts, November, 1994.

Stephanopoulos on MODEL.LA [Stephanopoulos, et al, 1990a,b)], the work of Barton and Pantelides [Barton and
Pantelides, 1991; Pantelides and Barton, 1992] on gProms and of course on our own experiences.

Equational-bascd modeling vs. modular
modeling

What are the reasons (Hie would want to do equational-
based modeling? One argument often made is that
modelers should only supply the equations, and the system
will supply the solution method. Writing the equations
without prescribing how to solve them is much less work,
sometimes stated to be something like one sixth as much
work.

The real advantage, however, is caisfi as the equations
can be a separate concept from how to solve them. Once
one has created than, one would like to use them in any of
a number of ways: e.g., for simulation, optimization,
dynamics, etc., or any combination of these. This reason
is also emphasized in a recent paper by Pantelides and Britt
[1994].

Current modular systems (conventional flowsheeting
systems such as Aspen or Pro II) have two significant
advantages over most equational-based systems. First, the
modeling is generally only by configuration; thus it is
fairly easy for the user to get the degrees of freedom right
A user wires together predefined parts where the modeler of
the parts has already made the decisions on what someone
who plans to use this model has to specify when using it.
Second, a model is both the equations and how to solve
them; thus a unit operation model such as a distillation
column can contain domain knowledge on how to guess
initial conditions for it and how to overcome many
convergence problems for it.

We suggest that these last two advantages for modular
systems must not be lost in modern equational-based
modeling. We will suggest here the properties that an
equational-based system must have to gain back these
advantages. Further we have created the ASCEND system
specifically to demonstrate how one can incorporate these
properties.

The ASCEND HI system

The ASCEND system is in its third generation. It is an
environment to support equational-based modeling in any
technical domain. Most of our models have been in
chemical engineering, but others have used it in
architecture and in mechanical and electrical engineering. It
comprises two main parts: the ASCEND modeling
language and the interactive user interface for debugging
and solving.

Object oriented language concepts

The modeling language in ASCEND is based on object-
oriented concepts. It has both a declarative section where
one defines the variables and equations that are to be true
when one solves such a model and a procedural section to

aid in recapturing the properties mentioned above. We list
here many of its features.

Strong typing: One creates an ASCEND model by
establishing a hierarchy of type (concept) definitions from
which one constructs iL ASCEND supports strong typing
where one most declare every part of a modd to be of a
previously defined type. This declaration is done using the
IS_A operator. For example one might declare a variable
T Ts_A temperature or a more complex pan si IS_A
molar_stream. Type definitions for variables are called
atoms which we have used to define such types as
temperature, pressure and molarjlow. We can assign
attributes to these type definitions for variables such as
dimensionality, nominal value, and lower and upper
bounds. Thus we can easily construct a model where all
temperature have the same nominal value of 300 (K).

More complex concept definitions, which we call
models, can involve parts which themselves are instances
of previously defined models, atoms, and which thea also
include equations that can be in terms of any of the
variables in the model (including those within the parts).
Model definitions can contain parts that contain parts that
contain parts, etc., to any level.

This use of strong typing is useful to detect errors
involving model misuse. It permits ASCEND to have
principled handling of dimensionality and units, where
perhaps a third of our modeling errors used to arise.

Inheritance: ASCEND's REFINES operator (which is
often called IS A in object oriented systems) supports
inheritance. An example would be to say that

MODEL liquid.stream REFINES stream;

To refine a previous type definition means that the new
type is everything the old one was plus whatever the
modeler then wishes to add. The main purpose for this
operator is to allow a modeler to state which types this
new type can replace in previously defined models. If
"liquid_stream" refines "stream", one can use it in place of
a stream. Inheritance supports both the merge operator and
the deferred binding operator to follow.

Merging: One uses the ARE_THE_SAME operator to
merge two parts contained in a model into a single instance
which wilT then have two names. It is much like an
equivalence operator. The ASCEND compiler does three
things for a merge: (1) checks that the two parts are type
compatible, (2) puts all the variables for each part into
common storage locations and (3) lets only one instance
create its equations. This last reflects that a model
contains both variables and equations. Merging with the
ARE_THE_SAME instruction is a very natural way to
configure a complex object out of simpler ones. We shall

PLANS FOR ASCEND IV

return to this instruction later when we talk about
modeling "without mentioning equations."

Deferred binding: In ASCEND one can "reach" inside a
part and upgrade the type of one of its parts by using the
IS_REFINED_TO operator. For example suppose a
modeler has included a column called Cl inside her
flowsheet model definition. She can alter the type of a
liquid_stream inside that column by stating that the
liquid_stream is a WilsonJiquid.stream as long as
Wilson_liquid_stream is a refinement of liquid.stream.
Deferred binding reduces the number of type definitions
required by a modeling system. In some systems, if one
wants to upgrade the type of a part, one must copy the
existing model and edit the copy to show the new type,
creating another type definition within the system. Lots of
added copies, each a minor variation of the original, can
easily result

Deferred binding is also available through the solving
interface. When used, one can pick out a part of a model
one has loaded and is solving and ask that it become a
more specialized type. The system alters the type and
restarts the compiler to propagate the implications of that
change throughout the current instance. Values for
variables the system previously computed are the initial
values for the new more refined instance. Thus one can
solve a flash unit using constant relative volatilities, then
defer bind the physical property instances to be nonideal
types, compile this change into the flash instance just
solved and resolve as a nonideal flash model.

Type propagation: If our modeler alters one
l iquid.s tream inside a column to be a
Wilson Jiquid.strcam, she probably wants all streams of
type liquid_stream to become of type
Wilson Jiquid.stream. She would not like being required
to know of all the liquid streams within the column to
accomplish this change. The A R E A L I K E operator
permits the propagation of type. The person writing the
column model can state that all pans of type liquid.stream
within his column model ARE_ALIKE. When our
flowsheet modeler makes one liquid_stream within the
column Cl into a Wilson Jiquid_stream, the system
propagates this type to all other liquid streams with which
it is alike.

Universal: Some parts in a model should be globally
defined. For example the constants that describe the
physical properties of mcthanol would be the same in all
models. Declaring a type to be UNIVERSAL (e.g.,
UNIVERSAL mcthanol REFINES component.constants;)
makes all instances of it only one instance, as if one had
merged them all into that one instance.

Arrays of anything: In ASCEND one can ask that any
instance be defined over a set cither of integers or symbols.
Thus one can have a mole fraction defined over a set of
component names or a flowsheet defined over a set of time

points, the latter being useful when collocating a model
containing differential and algebraic equations ova* time.

Set manipulation: ASCEND has a full complement of
set manipulation capabilities. For example, it allows one
to state that a set is each component name in the set of all
component mimes such that that name is in any of three
other sets. Set manipulation is crucial for defining finite
element meshes in a natural way or for implementing a
Unifac model for physical properties.

Case statement: We are about to incorporate the work
of Joe Zaher which adds the case statement to the
ASCEND language. As Joe is implementing it,
ASCEND will allow one to describe a model that operates
in different regions such as a flash model that call operate
in the subcqoled, two-phase and superheated regions
depending on the temperature and pressure levels for it at
the solution of the problem. In each region a different set
of equations holds. The solver has to select the region in
which to find the solution as well as solve the equations in
that region. Initial guesses may well be in another region,
and the solver has to be able to move from it to one where
it can find a solution. We do not demand that the same
variables are in the equations in the different regions. Joe
has had to discover how to do partitioning and precedence
ordering, how to aid a user to pick which variables s/he can
fix, and how to move across boundaries both when solving
and when optimizing such a problem.

Methods: One can attach methods to any ASCEND
model definition. We put these in originally to allow a
modeler to establish initial guesses for the values of all the
variables in a model. We subsequently discovered that they
were crucial for getting the degrees of freedom right in a
complex model built of parts which are themselves built of
parts, etc. In constructing our models which we put into
our libraries, we require that each model definition contains
a method to fix exactly enough variables in it to make it
into a set of n equations in n unknowns, i.e., to make
itself square. A model comprising several parts can then
send a message to each of its parts asking it to fix its
variables so it is square. The outer model then makes
itself square by making a few alterations to the settings
done by its included parts, something that is much easier
to do than to start from scratch to get itself square. Our
models also contain methods to rescale variables.

When solving a model, one can ask that any part
create its equations and send them to the solver. The
solver will then solve only the equations for that part. It
is essential that the part be square. Sending a message to
its "square yourself1 method accomplishes just that. If the
part did not have this method attached to it, such a solving
of parts would be very difficult to accomplish.

If a model definition is a refinement of another, it
inherits the methods of the other unless the modeler decides
to create a method with the same name, in which case the
new definition replaces the earlier one.

Scripting: To capture the experience in solving, one
needs the ability to attach the steps to solve to a model
definition, which ASCEND accomplishes through the use
of scripts. A script captures the sequence of commands
one has executed when solving it through the interactive
interface. It can be replayed at any time for the model.
Thus when one has learned to solve a model, he can
capture it in a script and pass that learning to others.
Since the manipulations possible through the interface are
many, scripts can capture very complex solving
procedures. For example* one can ask that each of the
trays in a column be isolated, made square and solved (a
tray-by-tray initialization). The scripts can also capture a
sequence of solving, deferred binding to make parts more
complex, resolving, etc. Scripts and methods are our
means to attach the learning one does to solve a model to
the equations that (Mine it, gaining back one of the
advantages we described earlier as belonging to the modular
approach to modeling.

The user interface

The user interface partitions the problem of debugging and
solving a model into many different steps: loading and
compiling (LIBRARY tool set), maintaining compiled
instances (SIMULATIONS tool set), browsing to see what
is in a compiled instance and to isolate and examine any
part of it (BROWSER tool set), solving and delecting and
diagnosing convergence problems (SOLVER tool set),
changing the units (e.g., kmol/s or m3/kg) with which to
display variables (UNITS tool set), capturing and running
scripts (SCRIPT tool set), displaying models and instances
of models (DISPLAY tool set) and finally, but not least,
collecting parts of the model to be displayed together much
like one might copy parts of a spreadsheet into a single
page so the parts can be seen on one screen (PROBE tool
set). This partitioning is a model of how the user would
like to approach solving his/her problem. The approach to
developing the interface was to set up a team of developers
and users with the team charter being to improve the
usability of the ASCEND system. Many hours of
observation and discussions among users and developers led
to substantial changes and improvements to the interface
[Piela,etal, 1991/2]

Each of these tool sets has individual tools to aid the
user to solve an instance of a model and, if solving fails,
to find out why and to make suggestions as to what
changes may overcome this failure. For example, the
system can display the incidence matrix for the problem,
where each incidence, when moused, tells the user which
variable and equation s/he just touched. If many variables
and equations are in a block to be solved simultaneously
(visually obvious from looking at the incidence matrix),
there is a tool called the debugger that allows one to list all
the equations and variables in that block.

If the problem is numerically singular, it can be that
there is a dependent or inconsistent equation in the model

or that one has selected the degrees of freedom in such a
way that the remaining problem contains a dependency.
Tools in the system aid the user to explore which might be
the problem. One tool tells the user that trading one of a
given set of fixed variables for one of a given set of
computed variables will overcome the numerical
singularity. If the system fails to discover these sets,
another tool will repent which equations appear to be
mutually dependent based on a local linear analysis. The
user can alter the values for the dependent variables and, if
the same equations remain related, become very\
that these equations are dependent, even for a nonlinear
model.

What we have learned using ASCEND

We are continually evolving the ASCEND system. It has
been quite similar to its present form for about four years
so we have been able to use it for setting up and solving a
wide variety of models, ranging from azeotropic columns
to dynamic batch column simulation, from process
optimizaUOT to optimal control problems. In this activity
(and previous modeling activities with earlier ASCEND
incarnations - like ASCEND II) we have learned a number
of useful things about process modeling that we list here.
We will list our beliefs and give brief arguments
supporting them.

Modeling is a design problem

Modeling is a design problem. It is not just coding. We
should carefully lay out our goals for the problem at hand.
Do we want it to be fast, accurate, or what? Will it require
the use of extensive physical property computations? We
need to enumerate the alternative decisions we may be
willing to make in solving it (which languages* which
platforms, which assumptions, etc.) and devise methods to
search this space. Most important is that we establish
tests to verify we meet our goals for the model. We need
to decide if we are going to start from scratch in crafting it
or if we will be using previously written models as a
starting point It is a good idea to do this type of planning
before we set pen to paper or fingers to keyboard to write
the code.

Elegance is necessary to manage complexity and
maintainability

At one extreme there are the so-called "expedient" modelers
who say that a model is good enough if it gives the
answer. The code can look like spaghetti, and they do not
care. At the other extreme are modelers who will never
turn over a piece of code because it is not pretty enough.
We advocate being close to, but not at, the elegant
extreme. An example of elegance is that we should treat
all instances of the same type in a model as close to the
same way as possible so we can just look at a model to
discern it correctness with respect to that concept. All
streams should be treated the same. We should not include

PLANS FOR ASCEND IV

a statement that the sum of mole fractions add to unity for
some and not others, for example. Elegance often gives a
model that is more general than we expected when creating
it.

The remaining rules are more specific to coding of
flowsheet models.

In flowsheet modeling, model material balances using
molar/lows

Material balances written in terms of molar flows are
linear. If one is solving using a Newton-based method
where the method often takes full Newton steps, the
material balances are satisfied after each such step.
Solving thus tends to be along a path satisfying the
material balances. A useful study to carry out would be to
demonstrate whether this rule is a good one.

In flowsheet modeling, equilibrium must be stated using
mole fractions and not in terms of molar flows

This rule is more easily justified than the previous one.
Examine the following equations which are a way to
express vapor/liquid equilibrium.

yi = = K

&r i = 1 .,2 om ps

In this last form, we can see that these equations are
satisfied if V is zero (as then ail VJ are also) or if L is zero
(then so are all l\) as well as at the point where the first
form is satisfied. One has introduced two spurious roots
into the problem. The problem is that the ratio of v; to V
becomes zero over zero as V goes to zero, a well defined
limit known as yi which the computer fails to see if one
does not use mole fractions in these equations.

We are, therefore, advocating the use both of molar
quantities for material balances and mole fractions for
equilibrium when defining a stream in flowsheet modeling.
We always do both.

A stream and a holdup should always have its state as a
single concept within it. A state contains all the intensive
variables and all the equations that we can write among
them. A stream is then a state and a total flowrate while a
holdup is a state and an amount.

Intensive variables are those whose values do not change if
we change the flowrate of the stream or the amount of a
holdup: temperature, pressure, mole fractions, molar
enthalpies, molar Gibbs free energies, molar volumes and
the like. We might call this collection of variables and all
possible independent equations which we can write in
terms of them the state of the stream or a holdup. Then a

stream is a state and a flowrate while a holdup is a state
and an amount If we know n^m^-l mote fractions, the
temperature, pressure and assume the phase fen* a stream or
a holdup, we can compute all the other intensive variables
mentioned above - without knowing the amount of the
holdup or flowrate of the stream.

We use the simple stream splitter to motivate this
rule. We specify noUtputs-l split fractions which we use
to split the flows, stating, for example, that each of the
four exit streams gets 20%, 30%, 10% and 100-
(20+30+10) = 40% of the feed flow to the splitter. We
then also require that all the states for all the streams
ARE_THE_S AME, in the sense we described this operator
above for the ASCEND modeling language; that is, all the
intensive variables defining the states for all the streams
are stored in the same storage location and only one of the
instances is allowed to generate its equations. Even if the
equational-based modeling environment does not support
merging using the ARE_THE_S AME operator, this way
of thinking is one that allows one to get this model
written correctly.

Thinking this way we get two benefits. First, the
stream concept for all streams is the same. We do not
make a special case of the output streams. Second, no
matter how many intensive variables we add to the
definition of the stream, this stream splitter model works.
The splitter is a set of split equations and the merging of
all the states. A corollary of this rule is that one should
always test the stream concept by using it with an existing
stream splitter. Almost all attempts at this test, until one
understands the issue above, will lead to a model that
generates too many equations.

Understanding degrees of freedom for chemical process
requires a profound appreciation of the Duhems other
theorem which states

Whatever the number of phases, of components or
of chemical reactions, the equilibrium state of a
closed system, for which we know the total initial
masses of each component that will ultimately
appear in it, is completely determined by two
independent variables."

First this theorem is not the classical phase rule as it talks
about the extensive properties of a stream while the phase
rule talks only about the state as we defined it just above.
From this theorem we argue that, if one specifies the
molar or mass amounts for all the species in an
equilibrium stream and the temperature (alternatively,
enthalpy per mole) and pressure for that stream, we may

derive all other tfrerrnodynamic properties for it. Eachfrfifl frny pp
stream introduces exactly ncomps+2 new variables to a
model no matter how many variables we use to characterize
it. Added variables always bring along an equal number of
equations to define them. Any model that violates this
rule cannot be right.

it- *.

An equational'based approach must provide the modeler
with the means to aid a subsequent user to get the degrees
of freedom right for his/her model

We made the argument for this statement when we
described methods above for ASCEND. Essentially each
type should have a message to "square itselT so a modeler
of a complex type CM write the "square itself1 method as
the difference of what the parts do and what this model
requires, a step that is markedly easier than getting it right
from scratch.

A modeling environment must aid a user to make proper
trades when changtng degrees offreedom in a model

Without these types of aids normal human beings cannot
be expected to adopt the equational-based approach to
modeling. An example is for the system to drop a window
and tell the user that his/her system is not square and that
he/she should fix one of the following variables if
underspeciftcd or release one of them if overspcrified In
ASCEND, ope can ask die system to show only those
optipns that are within a specific part of the instance being
solved. For example, one could ask the system to list
variables to fix that are in the column - if there are any.

The system must allow the modeler to do his!her own
scaling of equations

Scaling is not understood well enough at this time to
exclude the modeler from participating in its definition.
There are times when only the modeler knows how a
variable is to be scaled. The system must allow a user to
create a method which, when called, will do the scaling
s/he desires for that model. Again this step is much easier
if it can be done by calling scaling methods for each of the
parts and fixing up the differences.

Scaling can affect the convergence of a model in two
ways. Poorly scaled equations will make it difficult to
detect convergence when it may in fact have occurred.
Poor scaling of variables and equations will affect the
pivots a sparse matrix package will use when solving the
Newton equations. The steps taken by a Newton method
are scale invariant if one computes them using infinite
accuracy. Unfortunately computers have a finite word
length, thus one will find that a poor pivot selection can
introduce significant numerical errors in solving a set of
linear equations. Try solving the two equations

10"

i o - 6

1

using first the diagonal pivots and then the off diagonals as
pivots where you can retain only four significant digits in
any computation. In the latter case the solution is not
only incorrect, it is independent of the 2 in the right hand
side of the second equation.

Methods are absolutely necessary for modeling in an
object-oriented setting

This observations summarizes a number of the above
observations.

Scripts or their equivalent are necessary for a modeling
environment

The environment must allow a modeler to creep up on the
solution in almost any way desired so the modeler can gam
experience in solving the model and can then encode this
experience in the final model description. Scripts are a
mechanism to encode ami pass this experience to others.

Avoid the divide operator in both the model equations and
in the forming of the partial derivatives needed by the
Newton method if the divisor has any chance of

With rare exceptions in our models, we do not allow the
divide operator. In fact, it might be a good idea tt> prohibit
its use. We would except there are some modelers who
would never forgive us if we did. The divide operator
invites divide faults as variables get near to zero while
trying to solve. We do not allow divide in the evaluation
of Jacobian elements either. Thus we advise that an
equation of the form

should be replaced by the two equivalent equations

exp(v) = x
v+v=z-3

In the former form, the partial of the equation widi respect
to x leads to the Jacobian clement 1/x while die latter form
avoids division by x. The latter form has a much larger
region from which initial guesses will converge.

One typically has to add equations and variables to the
problem to rid the model of divides, but it is worth it

Watch out for completely recycling species in steady-state
modeling

Think of a refrigeration cycle. Typically the refrigerant
completely recycles in such a process. It appears to the
network analyzer in a sequential modular flowsheeting
system that the flow is a tear variable to be guessed and
converged when in fact it is a variable whose value the
modeler can fix. Not realizing it is a degree of freedom for
the problem is a mistake. This same problem shows up in
equational-based modeling as the inclusion of a redundant
material balance equation. The issue here is that one can
introduce singularities into one's models by configuring
properly written models which do not contain any

PLANS FOR ASCEND IV

singularities. The process of hooking up the pans
introduces the singularity.

Equationless modeling

Several studies have investigated allowing a modeler to
state the assumptions behind the creation of a process
model and then have the system write the material and
energy balances and so forth for the resulting model. We
would like to argue that we can emulate such an approach
within the ASCEND system by developing the proper
hierarchy of concepts. Modeling of the kind suggested for
equationless modeling is then limited to configuring of
instances of these concepts using the IS_A,
IS JREFINEDJTO and AREJTHE.SAME operators.

One approach is to invent the concepts of a region and
a transfer mechanism. Roger Sargent at Imperial College
and, independently, Jack Ponton at Edinburgh proposed
this idea to the first author while he was on sabbatical in
Edinburgh in the fall of 1992. A region is a quantity of
material which one wishes to treat as being homogeneous.
It is essentially what we have called a holdup above: a state
and an amount In addition it has an arbitrary number each
of input and output ports. A transfer mechanism connects
an output port of one region to an input port of another
region with positive flow being designated as going from
output to input. The mechanism transfers energy and/or
material with the amount depending on the properties of
the two regions it is joining and the parameters that
characterize the transfer mechanism.

In ASCEND we model a region as a holdup with a
state. It has four arrays, one each of input material ports,
input energy ports, output material ports and output energy
ports. Dynamic material and energy equations complete
this definition. The summations to write these balance
equations are over all elements in the appropriate sets
defining the inputs and outputs. We do not declare the
members of the sets within this definition. We buried the
equations in the region definition. They need not be
visible to the person using the region as a predefined
concept

We model the transfer mechanism as having an input
port and an output port. We include also the equation that
relates the transfer rate(s) to the states of the regions being
joined and the .mechanism parameters. For example the
mechanism could be a valve, and the model includes the
equation to relate flow through the valve to upstream and
downstream pressures as well as to the parameters
describing the valve geometry.

An example of a complex model we can construct
from such building blocks is that of a dynamic model for a
flash unit based on mass transfer mechanisms between the
vapor and liquid phases. One region is the liquid region;
the second is the vapor. We model the feed, any heat
input, the vapor and liquid products streams and the mass
transfer between the vapor and liquid regions as instances
of appropriate transfer mechanisms. It is in this outer
model that includes the regions as parts that we declare the

members of the sets over which we define the ports for
each of the regions. For example, we reach inside the
instance defining the liquid region and say that the set
listing its input material flow ports contains the single
symbol 'feed1. We declare the elements liq_product' and
Vaporization1 to be in the set listing the output ports.
Note that, at this level of modeling, we sure only
configuring from predefined concepts. We are noi writing
equations. It is in this sense that we suggest that the
operators in the ASCEND language are sufficient to
emulate equationless modeling in a very useful way.

An interesting question is whether we should partition
a region into phases which are in equilibrium with each
other or whether equilibrium should be treated as a special
transfer mechanism* We based our thermodynamics library
on the former; i.e., we partition a region into equilibrium
phases. We associate the output ports with each phase and
the input ports with the region as a whole.

Transfer mechanisms and regions are a very elegant
way to model chemical processes. They are very domain
specific. We still have to program other concepts which
introduce equations (e.g., how do we write the
thermodynamics library itself); regions and transfer
mechanisms are not sufficient for all our modeling needs.

The next generation ASCEND

When we first had the essential features of the current
ASCEND system available, it was difficult for us to see
how to improve it Experience has shown us several ways
we can extend it to create a next generation of ASCEND.
Succinctly, we want to solve much larger models and we
want to increase the scope of things we can model.

Solving much larger models

We routinely solve models of the size of 5000 to 10,000
equations and can solve upwards of 25,000 algebraic
equations at this time. The actual size of course depends
on the structure of the model. If the model is one large
block of simultaneous equations, the solving time and
space taken is much larger than if the model fully
partitions into a sequence of single equations which the
solver solves one at a time. The number of equations is,
therefore, often very misleading when one is stating what
can be handled by a simulator. Maximum block size is
probably a better way to describe the size problem one can
solve.

We want to solve models involving half a million
equations with block sizes that can number in the tens of
thousands. The question is how? We need to solve faster
and in less space. Also, we need methods to verify we are
solving the problem we intend. Finally we need methods
to state and debug such large models. The approach we
advocate is again to build large things from smaller things.

Procedures: One way to increase the size of models that
we can solve is to use the lesson one has learned from

8

sequential modular simulation; namely, encode parts of the
model as well debugged code that we know solves
robustly. This means using procedures. These can have
two uses in the larger model: to supply equations and to
supply initial guesses. We must accomodate both, the
former in the "declarative" part of the model definition and
the latter in the methods attached to model definitions. We
have already implemented the use of procedures, and one
can use them in both these ways. Further the
implementation uses dynamic loading so they need be in
memory only while they are executing. Thai reduces space
requirements substantially.

Why are procedures useful? First of all they eliminate
internal variables, reducing tie size of the outer problem.
Thus they can reduce the space required to solve,
superficially appearing to twde reduced spioe for increased
time. Second, there may be a highly specialized and
efficient way to solve the equations in the unit model (a
distillation column generates a block tridiagonal structure
for its equations which one can solve efficiently [NapthaU
and Sandholm, 1971])* Thus the overall model may
actually be faster in solving. Third, if tearing is used to
solve the model within the procedure, one could map its
tear variables and functions to the outside to become a part
of the outer problem and not converge them internally, an
idea that Bill Johns showed could be extremely effective in
the early 1970s while he was at ICI.

Finally, the procedure could create its full set of
residuals and partial derivatives during a Newton step on
which it would carry out a local forward elimination,
passing a reduced set of linearized equations to the outer
problem. When the outer problem back substitutes it
equations, it triggers the inner procedure to back substitute
its also, this idea is really a disguised multifront method
[Westerberg and Berna, 1978]. Here the advantage is
keeping the pivoting localized which may reduce fill
substantially over the fill a general purpose sparse linear
equation solving package creates.

The following analysis shows the potential for
speeding up the solution process for a multifront method.
Suppose that the solving time for a model grows
quadratically and that the quadratic term dominates when
problems are 5000 or more equations in size; i.e., assume
for larger problems that solving time is equal to aN2 for
accomplishing the L\U factorization when solving using a
Newton based method. Suppose we can break our problem
naturally into M roughly equally sized parts. Then the
solving time for the parts will be Ma(N/M)2 which equals
aN2/M rather than aN2. We reduce the linear solving time
by about 1/M. For M about 10, we are looking at the
potential for an order of magnitude reduction in the solving
time for the linear equations of the inner Newton step.

The speedup comes because the solving package can
control sparsity better, it keeps the pivoting localized in
the parts, keeping at bay the time when the sparse matrices
become full matrices during the elimination process.

Recursive ASCEND: We can next wonder how we are
to produce those procedures if they do not yet exist. One
way is to use ASCEND recursively. We see two ways to
dothat

First we can work initially and independently on a
model type definition, learning to solve instances of it for
many different example problems. We can pick the
variables that we find best to specify, leaving a
computation for the remaining that proves robust. For
example, we typically find that we am solve simulations
much easier than we cm solve design computations. We
propose then that we push a button and have ASCEND
write C code thai en solve the model in this final form.
The C code uses a fixed way to solve and is very fast as it
does not have to trace through the pointers oar general
purpose solvers have to when tied to the current very
flexible ASCEND data structures. In other words, if we
remove die need for flexftUty, we can remove the need for
complex data structures. The modeler must also define the
interface to this code to tell the user which variables it
expects as inputs and which it will give back after solving
the model. It will also evaluate and pas& bicfc needed
partial derivatives of its computed variables with respect to
its input variables.

The C code can create a reduced set of residuals and
partials or it can process the sub model as in a multifront
method for embedding it within the larger proMcm.

A second approach to use ASCEND recursively,
which is useful when debugging, is for ASCEND to
reopen itself in another set of windows on this part of the
problem when the it invokes a procedure. The user can
then work interactively on the part to get it to solve.
When successful this part can send back its residuals and
partial derivatives for the reduced problem. The outer
problem will be much smaller. The major difference is
that instead of creating aC code to solve the inner problem
without aid from the user, the user aids in solving the
inner problem.

Embedded complex parts: The parts that one embeds
may be operate in a manner that is more complex than just
supplying equations. For example, the part may itself
solve a simulation or optimization problem subject to
inequality constraints. It may operate either as a glass
box, a gray box or a black box. The outer problem can see
everything that is inside an included glass box while it can
see nothing inside a black box.

What if the inner problem, operating as a black box,
fails. Should the outer problem fail or should it attempt to
work around failure of the inner box? Kirk Abbott (second
author) is looking at the coordination problem for these
classes of problems. He has looked at the inner problem
being a black box simulation that can report back either a
successful solution for its outputs given its inputs or a
message that it has failed because the inputs lead to an
infeasible solution. He has also looked at the case where a
glass box inner problem contributes a part of the overall
objective function for an optimization problem. Methods

PLANS FOR ASCEND IV

to coordinate this problem type include two-level
optimization methods as well as methods based on Benders
decomposition.

The really hard problem to coordinate is one where the
inner problem is optimizing an objective that is unrelated
to the objective function of the outer problem, leading to a
multilevel optimization problem [Clark, 1983]. An
example would be for the inner problem to find a solution
to a collocation problem where grid point locations are the
result of minimizing some modeling error criterion while
the outer problem is optimizing a cost objective. Another
is the classic problem of two competitive companies each
optimizing its own objective while being aware of the
other's objectives.

We would like the ASCEND system to allow a user
to set up and solve these kinds of coordination problems,
with numerous aids to diagnose modeling errors and to
suggest ways to overcome them.

Increasing scope

The second way to extend ASCEND is to increase the
scope of the problems one is able to set up and solve using
it. At the present time, it can solve and optimize
problems where the model contains only variables which
can be represented as reals. While that allows us to model
many classes of problems, we would like to broaden the
scope significantly.

Integers, binaries, logicals, etc.: The first way to
broaden the scope is to allow a modeler the ability to use
more types of variables: complex, integer, binary, logical,
stochastic, interval variables and field variables. Interval
variables are expressed by stating an upper and lower limit
for each. They obey the algebra of intervals in any
equations in which they appear. The temperature variable
in a slab is a field variable. One can define it implicitly by
writing a partial differential equation that must hold for it
over a field. It has values everywhere in the slab for all the
times in the specified time period of the simulation.

We can add integer and binary variables with
absolutely no change to the current ASCEND compiler by
noting that the type integer is a refinement of real and
binary is a refinement of integer. For each real and any
refinement of a real, the system sets aside a double
precision real value slot to hold its value. A solver can
then count on having a real value as a relaxation of an
integer if that solver chooses to solve first by removing
the integer constraint. The effort to add integer and binary
variables is to add the solvers that can deal with them, such
as an MILP or a MINLP solver.

We already use Boolean variables as flags, but they
cannot appear as unknowns in a model. We have to alter
the compiler to allow logical equations to be a part of a
model. We intend to maintain the equational-based
approach when including them; namely, we want modelers
to state the logical equations that must be true at the

solution to the problem but not how to solve these
equations. Thus we will allow an equation of the form

Tl>300{K}=P<10{atm};

This equations will have the equivalent of a residual
attached to it. This residual will indicate whether the
equation is true or not If not, it will also indicate why
not We envision feasible path solvers that will insist on
such equations being true as they iterate to a solution as
well as infeasible path solvers which will not

We have not thought our way through allowing
complex, stochastic and interval variables as of yet;
therefore, we shall not comment on than here*

Variables that have values over a field are more
interesting. In a personal communication while the first
author was visiting Impend College in 1992, Pantelides
describe adding such variables to gProms. As our group
has reflected on them in the ASCEND environment, we
see them as a simple extension of the ASCEND modeling
language. Namely, they are variables defined over an
infinite set ASCEND already supports allowing one to
define anything over a finite set Thus the linguistic
extension is pretty straight forward. However, the
compiling and solving implications are anything but
straight forward. For finite sets, we require the sets to be
explicitly defined before compiling commences. The
compiled data structure contains storage space for every
variable and equation defined over such a set The intervals
over which one intends to define an infinite set can be
defined, yet the compiler cannot set aside the space as the
solver controls how many points it will need in time and
space as it solves. For example, it will chose the number
of steps it needs to solve a set of differential equations
while marching forward in time for a dynamic simulation.
What can be compiled, however, is one instance in time
and space of the model as we already do to solve a dynamic
simulation. In principle, the solver uses the compiled
instance to determine the time derivatives and algebraic
variables, given values for the states. The solver uses this
same model repeatedly for different values of the states to
integrate forward in time.

The expressiveness of the modeling language increases
enormously with the extension to allow field variables.
Every variable can be thought to be available at each
instant in time and at each point in space over which one
defines it. We have used the ASCEND constructs that
exist or that we have discussed in this paper to model on
paper both the description of a batch process and the tasks
that one wishes to perform using the equipment in that
process. We have even modeled irreversible transitions. In
other words, the language is rich enough by itself to model
both processes and tasks.

Calculus-based modeling: Ben Allan (third author) is
currently looking at how to add calculus operators to the
ASCEND modeling language. Underneath the system will
do all the manipulations to set up such models by using

10

exact numerical differentiation methods [Ponton, 1982]
rather than symbolic manipulations. Work in the last five
years at Argonne National Laboratory extends these ideas
and is producing code to implement them. Allan's first
goal is to provide tools ©aid a modeler overcome an index
problem if s/he creates one in a dynamic simulation model.
This goal motivated the extensions we shall mention in a
moment

An index problem occurs whenever the model places
an algebraic constraint among the state variables in the
simulation. An example is for the modeler to ask for a
dynamic flash model to run at fixed pressure when s/he has
modeled the vapor phase as having holdup. Any good
control engineer knows that such a specification is not
possible. Rather one must place a pressure control loop
on the flash model to hold pressure near to a constant
setpoinL One can select the pressure to be a state variable
for such a model; holding it constant is to place an
algebraic constraint on it Another example is to model
two tanks coupled with a pipe which allows flow in either
direction. If the resistance of that pipe becomes very low,
the two heights are algebraically coupled; i.e., they should
become equal to each other.

An index problem results because the model does not
explicitly contain all the constraints it can, complicating
life for the solver. If a state variable is algebraically
constrained, so is its time derivative. For example, saying
that pressure is to be constant also says that F=0, and
saying that the two heights are equal, i.e., hi=h2, also
implies that their time derivatives are equal, i.e., hi'-h^.
The model does not include these latter equations. Solving
while unaware of these latter constraints leads to problems
with error control and/or to initial conditions that are
inconsistent If we include these equations, we have a
well-posed problem with one less state variable, and any
dynamic simulator should be able to solve it without any
unusual precautions.

We believe that one should be able to request a
solution where we hold pressure constant - albeit, with a
warning from the system - as there is a solution to this
problem. Not everyone would agree with us on this point,
however. Some argue that, if the solution is not physical,
it should not be allowed. We argue that, if the solution is
there to be had, we should try to find it. In requiring
constant pressure, one may wish to compute the changes
one has to make to a variable that a controller would
manipulate. We might wish to see if these manipulations
are possible for the controller (they may ask a valve to
more than close, for example).

To adopt our approach, we have to discover the
algebraic constraint on the state variable and add the time
derivative for it to the model. Discovery involves finding
singularities in the model. Pantelides, in his PhD thesis,
provides algorithms to do this if the singularity is one
caused by the structure of the problem, as in the pressure
example above. However, it cannot detect the problem if
the resistance goes towards zero as the solution progresses,
as in the second example above. Here one has to discover

singularity by detecting ill-conditioning. We have
proposed an algorithm and are working on improving it for
problems where the system would find ill-conditioning
difficult to detect

To set up the problem we need to add the time
derivative of one or more equations that are in the model.
If we allow the system to add the time derivatives of
equations to a model, why not let the modeler do it also if
s/hc chooses to do so. We are extending the syntax of the
language, allowing a modeler to say something like (we
are still exploring the exact syntax):

x$_defn: x$«x+y;
x$$ defiu full dct(x$ defivtime)

The system will add this equation and introduce new
variables x$$ and y$, if they are not already in the
problem, where x$ is the full time derivative of x with
respect to time. Note the modeler does not state the actual

The system will generate it (by generating its
Newton equations directly using exact numerical
differentiation).

In a similar fashion, we are adding operators that can
add the partial derivatives of any expression to the model.
Thus one will be able to model the Newton equations
directly to solve a set of equations. We will also allow the
user to add partial differential equations. An example
(syntax not yet fixed) is:

T$=partial_dcr(T^>fux*partial_der(Tpc);

dT dT

17!)

With the availability of partial derivatives, we see modelers
asking ASCEND to do Taylor Series expansions of
functions and with these examining new computational
algorithms.

There are interesting implications on what the system
can compile and what it must insist one does only to an
instance. For example, (Hie cannot ask the present system
to create a set containing all the variables in a part Sets,
once specified, are fixed in ASCEND as they determine the
size of the data structure resulting from the compile step.
A part, through deferred binding, could become more
complex and have more variables. The system would have
to redefine the set listing all variables in that part,
something it cannot do at present.

In summary

We have discussed the current ASCEND modeling
environment Using it we have developed many insights
into modeling which we discussed here. Finally we
present several ways we can improve ASCEND to solve
larger problems and to increase significantly the kinds of
models we can write.

PLANS FOR ASCEND IV 11

References

Andersson, M., Omola - An Object-oriented Language for
Model Representation. Lic.Tech thesis TFRT-3208,
Dept. Automatic Control, Lund Inst. Tech., Lund,
Sweden (1990).

Barton, P., and C. Pantelides, The Modelling and Simulation
of Combined Discrete/Continuous Processes," in
Proc. Process System Engng Conf. (PSE'91),
Montebello, Ontario. Canada (1991).

Bending, M.J., and H.P. Hutchison, The Calculation of
Steady-state Incompressible Flow in Large Networks
of Pipes." Chem. Eng. Sci., 28, 1857-1864 (1973).

Berna, T.J.. M.H. Locke, and AW. Westerberg, "Optimization
of Large Chemical Process Systems," 2nd Intn'l
Symp. Large Engineering Systems, May 15-16
(1978).

Berna, T.J., M.H. Locke, and A.W. Westerberg, "A New
Approach to Optimization of Chemical Processes."
AIChE J, 26(1), 37-44 (1980).

Clark. P.A.. Embedded Optimization Problems in Chemical
Process Design PhD Thesis, Dept. Chem. Engng.
Carnegie Mellon Univ., Pittsburgh, PA 15213
(1983).

Edie, F.C., and A.W. Westerberg, "A Potpourri of
Convergence and Tearing," in Chemical Engny
Computing. Vol.1, Proc. of an AIChE Workshop,
AIChE, New York, 35-39 (1972).

Locke, M.H., and A.W. Westerberg, The ASCEND-D System -
A Flowsheeting Application of a Successive
Quadratic Programming Methodology," Comput.
Chem. Engng, 7(5), 615-630 (1983).

Napthali, L.M., and D.P. Sandholm, "Multicomponent
Separation Calculations by Linearizations," AIChE
J, 17(1). 148-153 (1971).

Pantelides. C.C., H.I. Britt, "Multipurpose Process Modeling
Environments," Foundations Computer Aided
Process Design Conf. (FOCAPD'94), Snowmass
(1994).

Pantelides, C, and P. Barton, "Equation-oriented Dynamic
Simulation. Current Status and Future Perspectives,"
In Proc. European Symp. Comp. Aided Engng-2
(1992).

Piela, P.C., ASCEND: An Object-oriented Computer
Environment for Modeling and Analysis. PhD
Thesis, Dept. of Chem. Engng, Carnegie Mellon
Univ., Pittsburgh. PA 15213 (1989).

Piela, P.C., R. McKelvey, and A. Westerbcrg, "An
Introduction to the ASCEND Modeling System: Its
Language and Interactive Environment," J.
Management Info. Systems. 9(3), 91-121, Winter
(1991/1992).

Ponton, J.W., "The Numerical Evaluation of Analytical
Derivatives," Comp. Chem. Engng., 6(4), 331-333
(1982).

Slcphanopoulos, G., G. Hcnning, and H. Leone, "MODEL.LA.
A Modeling Language for Process Engineering - I.
The Formal Framework," Comput. Chem. Engng,
14(8), 847-869 (1990b).

Stcphanopoulos, G., G. Hcnning, and H. Leone, "MODEL.LA.
A Modeling Language for Process Engineering - II.
Multifacctcd Modeling of Process Systems,"
Comput. Chem. Engng, 14(8). 813-846 (1990a).

Westcrbcrg, A.W., and D.R. Benjamin, "Thoughts on a Future
Equation-oriented Flowsheeting System," Comput.
Chem. Engng, 9(5), 517-526 (1985).

Westerberg, A.W., and T.J. Bern* "Decomposition of Very
Large-scale Newton-Raphson Based Flowsheeting
Problems,** Comput. Chem. Engng, 2(1), 61-63
(1978).

Westerberg, A.W., and C.J. deBrosse, "An Optimization
Algorithm for Structured Design Systems,** AIChE J,
19, 355 (1973).

- • . -IM^^,, &

