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ABSTRACT
This paper develops a new approach to an old
important and difficult problem: security planning in
power system operations. The complexity of the
problem is due primarily to two factors: (i) the large
number of contingencies that need to be analyzed
make it computationally intractable for real-time
operations, and (ii) the problem has many solutions,
and the global optimum is likely to be much better
than the many local optima. We believe the problem
is too big and difficult to be solved by any single,
monolithic agent. Instead, we have developed a
team of co-operative agents, called an A-Team, that
is well-suited to solve this problem. The agents are
autonomous, work in parallel, and communicate
asynchronously. The paper describes the
organizational structure of the team and presents
results obtained both for the security-planning
problem and for some other difficult global
optimization problems.

Key-words: power systems security, parallel
processing, distributed artificial intelligence, global
optimization

1. PROBLEM FORMULATION

1.1 Background and Terminology
Think of a power system as a network containing m
switches, each of which can be either open or
closed. Thus, the system can adopt M = 2m different
configurations, denoted by Co, C-|,... C M , where Co
is the current configuration. Let Xn be a vector
whose elements are the bus voltages and bus power
injections of Cn. Though Xn contains both state and
control variables, we will, for the purposes of brevity,
call it a state vector.

The concerns in operating a power system can be
divided into two broad categories: cost and quality.
Cost is usually represented by a function: f(Xn, D(t)),
where t is time and D is a vector of exogenous, time-
varying quantities, such as customer demands for
electric energy. Quality concerns are usually
expressed as a set of nonlinear relations
(sometimes, called load and operating constraints)
that are configuration-specific, and have the general
form:

Gn(Xn,D(t)) = 0
Hn(Xn,D(t)) < 0

Xn is said to be a normal state if it satisfies these
constraints. S n , the set of all normal states for
configuration Cn , is called the normal set of Cn .
Configurations for which Sn is empty are said to be
uncorrectable; all other configurations are said to be
correctable.

Two sorts of events can cause a system state to
become abnormal: gradual changes in the
exogenous variables, D, and sudden disturbances
that result in random configuration changes. The
latter can cause far larger excursions, and hence, are
much more dangerous.

This paper is largely concerned with control actions
that can be used to counter the effects of sudden
disturbances. These actions can be discrete
(switching operations) or continuous (changes in the
independently controllable components of the state
vector). We will concentrate on the latter.

Let in (Xna. Xnb) b e t h e l e a s t t i m e r e c l u i r e d t 0

change the state of Cn from Xna to Xnb through a
sequence of control actions. We will call xn a
transition delay. Note that xn is non-zero because
many control actions are rate limited. The output of a



typical generator can, for instance, be increased at
most by a few megawatts per minute.

1.2 Optimum Power Flows (OPFs)
One of the simplest operating philosophies is to
attempt to minimize instantaneous costs while
keeping the state normal. In other words:

(OPF): Min f(X0)
s.t. Go(Xo,D) = 0

Ho(Xo,D) < 0

Since the dimensions of Xo, Go. a n d Ho are often of
the order of 1000, this is a large problem; available
techniques are barely able to solve it fast enough for
the results to be useful in real-time operations.

1.3 Adding Contingency Constraints
How can one limit the ill effects of the random
configurational changes that result from sudden
disturbances? By far the most common practice
involves two steps. First, a set of critical
configurational changes (called contingencies) is
identified. Second, plans are made to reestablish a
normal state within some short period after each
contingency.

The identification of critical contingencies requires
system-specific knowledge, much of which can be
encoded in expert systems [1]. In other words, much
if not all of the identification process can be
automated with existing techniques. The same is not
true for planning responses to these contingencies.
To understand why, suppose that the n-th
contingency would cause the system's state to
change from Xo to Xnc- If Xnc is a b n o r m a l ' t h e

planning problem is to find a normal state, Xn, that
can be achieved within an acceptably short time, say
Tn . There are two different ways to formulate this
problem: the first treats correction times as hard
constraints, the second, in a softer way, specifically,
as terms of an objective function. The modifications
that result to (OPF) from these two treatments are
indicated below:

contingency to be corrected, wn is a weight
assigned to the n-th contingency; and it has been
assumed that xn(Xn - Xn c ) can be approximated by
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where: N is the number of contingencies to be
considered; Tn is the time allowed for the n-th

Both these formulations are very large-at least N+1
times as large as (OPF) As such, both are beyond
existing capabilities for fast, reliable and repeated
solution. In addition, each requires the user to select
some parameters: {Tn} in the case of (CCP-1) and
{wn} in the case of (CCP-2). It happens that the
selection of {Tn} is much more difficult. The
explanation is as follows. Let X= [Xo.Xi , . . . ,XN ] be a
vector called a super-state. Let S1 be the feasible
set of (CCP1), that is, the set of all values of X that
satisfy the constraints of (CCP1). Let S2 be the
feasible set of (CCP2). Then S1 is small and
sensitive to the values selected for {Tn} while S2 is
much bigger and insensitive to the values of {wn}.
Another way of putting it is that the constraints of
(CCP1) require all the contingencies be correctable
and also, ail the corrections be completed within time
limits, {Tn}, that must be selected apriori. In contrast,
the constraints of (CCP2) require only that all the
contingencies be correctable. In selecting {Tn} there
is a considerable risk of making S1 empty, in which
case little useful information may result from attempts
to solve (CCP1), even though the attempts would be
long and painful. In selecting {wn}, however, the user
is merely expressing an opinion on the relative
importance of contingencies and could adjust this
opinion interactively.

Because of (CCP1)'s profound disadvantages
relative to (CCP2), we will henceforth consider only
(CCP2). Also, recall that the vector of exogenous
variables, D, is time varying, and therefore, the
solution of (CCP2) is time varying.

1.4 A Decomposition
Notice that the constraints of (CCP2) consist of N+1
independent blocks. As a result, (CCP2) can be
decomposed into a set. {(IPn)}. of N+1 subproblems
each having the form:

(IPn): Min fn (Xn, Xn)
Xn

s.t: Gn(Xn,D) = 0

Hn(Xn,D) < 0

where:

Xn = X \X n , that is, the super-state X with the
elements of Xn removed

N

f0 (X0, Xo) = f(X0) + X wn tn(Xn - Xo)
n=1

fn (Xn, Xn) = xn(Xn - Xo) for n = 1, 2 N



Let X* be a solution of {(IPn)}. Then, it can easily be
shown that X* is also a solution of (CCP2), and
hence, {(IPn)} and (CCP2) are equivalent.

1.5 A Skewed Approximation
Can the couplings among the members of {(IPn)} be
made more loose so their parallel solution becomes
more easy?

Note that the exact solution of {(IPn)} is unobtainable
because the exact value of the exogenous vector,
D, is unknown. The elements of D are time varying
and are measured by sensors that can be hundreds
of miles apart. There is always some delay and time
skew in these measurements. What if delays and
time skews were allowed for the values of Xn? More
specifically, suppose that each (IPn) is treated as a
separate problem that is solved iteratively for Xn,
while Xn and D are treated as exogenous variables
whose values are updated as new estimates of them
become available. Then we have a set, {(IPn')}. of
more loosely coupled problems, each of the form:

(IPn'):Min fn (Xn. 5Cn)
Xn

s.t: Gn(Xn ,D')= 0
Hn(Xn ,D')< 0

where X'n and D' are the latest available values of Xn

and D. Intuitively, one would expect the solution of
(IPn') to track the solution of (IPn) as it varies in time,
the tracking error increasing smoothly with the skew
in the values of X'n and D\ That this is actually the
case is easily proved [2].

2. MULTI-AGENT SOLUTION PROCESSES

2.1 Asynchronous Teams (A-Teams)
The preceding sections have decomposed the
contingency constrained problem, (CCP2), into a
set, {(IPn1)}, of N+1 smaller problems, each of the
form and size of an optimum power flow. The smaller
problems are very loosely coupled and can be
solved by a team of agents working in parallel,
provided the team is properly organized.

An organization can be characterized by a
quadruple: (C, D, A, I); where: C is a graph, called a
control flow, that shows who supervises whom; D is a
graph, called a data flow, that indicates who does
what and who may exchange data with whom; A is a
set of criteria, called activity constraints, that
prescribe how agents are to operate in time; and I is a
set of criteria, called insertion constraints, that
specify what must be done to add or delete an agent
from the organization [3].

The space of all organizations contains a set whose
members, called A-Teams, have two very desirable

properties. First, they are exceedingly open (new
agents can be added to an A-Team almost
effortlessly). Second, they are easily distributed (an
A-Team fits naturally into a network of computers, its
agents use only locally available information and it is
less sensitive to communication delays than other
organizations).

An A-Team is defined as follows [3]:

• C, its control flow, is null, meaning that it
contains no supervisors; all its agents are
autonomous.

• D, its data flow is cyclic so its agents can use
feedback and iteration in developing solutions.

• A, its set of activity constraints, is empty,
meaning that its agents are free to act when
they wish. In particular, there is no
predetermined schedule for exchanges of
information; rather, exchanges occur
asynchronously (spontaneously). Moreover, all
the agents can work in parallel all the time.

• I, its set of insertion constraints, is unspecified
but tends to be "half empty." (Because the
agents are autonomous, there is no managerial
superstructure to modify when an agent is
added or deleted; the only changes that need
to be made are to the agent itself.)

Clearly, the structure of an A-Team allows for
anarchic behavior. Autonomous agents, each
deciding for itself what it is going to do and when, if
ever, it will communicate its results, can act at cross
purposes. Surprisingly, there are simple strategies,
not only to prevent this from happening, but to make
A-Teams high in performance (fast at finding good
solutions to difficult problems). Two categories of
these strategies are [3]: mixing and socialization.
"Mixing" means choosing agents so there is a
balance between those that create solutions and
those that destroy them. The balance must be such
that a population of solutions is maintained and
herded along paths that lead to profitable
conclusions. "Socialization" means the insertion of a
few instincts (rules) in each agent that cause it to
seek a local consensus (align its actions with those of
its immediate neighbors).

Often, a well selected mix of agents is sufficient to
make an A-Team effective, no special socialization
strategy being needed. This seems to be the case in
the contingency constrained problem, {(IPn1)}.

2.2 A Data Flow
Consider (IPn')- It uses one memory and five types of
agents:

• Importers: collect values of X*n and D.

• Voyagers: coarse search



• Probes: fine search (conventional nonlinear
programming algorithms)

• Inhibitors: place a "fence" around solutions that
have been found. Fence's strength may
decrease with time.

• Destroyers: eliminate obsolete solutions and
fences

The voyagers need further explanation.

2.3 Coarse Search by a Relaxed Interior
Point Method
(IPn

f) is replaced by a vector field such that
singularities of the field correspond to solutions of
(IPn'). The magnitude of the vector field is unity
everywhere except at the solutions of IPn' (where it is
zero). The direction of the vector field is such that it
points towards feasible regions when outside them,
and towards minima when inside the feasible
regions.

Voyagers circulate in this field influenced by the
force exerted by the field. The force directly
influences the direction of the voyager. The speed
of the voyager is altered independently through
heuristics; the speed is never zero. Consequently,
the voyagers are always in motion (and don't stop at
the singularities). The voyagers follow the flux lines
in an inertial manner; thus are able to smoothly
traverse areas where the field fluctuates rapidly.

The constraint-handling approach has the flavor of a
relaxed interior-point method since the inequality
constraints behave like elastic membranes permitting
some violations but acting to reduce the violation by
coercing the voyager back into the feasible region. In
contrast, in a strict interior-point method, the
constraints act as rigid walls permitting no violations.
A relaxed approach has computational advantages
since it is unnecessary to monitor constraints every
iteration. Each equality constraint of the form G(X) = 0
is approximated by a pair of inequalities of the form:
G(X) > -a, G(X) < a where a is a parameter.

The field leads the voyagers to the basins of
attraction of the solutions of (IPn'). In each basin, the
Voyager plants a flag (Fig. 1) that serves as a launch-
point for the Probes which conduct a fine-grained
search of the basin to find the minimum. Heuristics
govern the choice of this launch-point and are
designed to minimize the chance of occurrence of
more than one launch-point per basin. Also, when
several basins (and hence, minima) are clustered
close together, the heuristics try to select a single
launch-point in the basin of the best solution,
thereby avoiding the determination of inferior
solutions.

Repeated re-determination of found solutions is
avoided through the erection of "fences" (spherical
constraints) around known minima. These fences are
one way in which the voyagers help each other out

by preventing others from revisiting regions visited
by one.

Fig. 1: V represents the trajectory of the voyager;
Tx* is the trajectory of the solution x\ x*i, x*2 are the
solutions obtained at times tt, \2- FR represents the
feasible region, L denotes launch-point, and F is a
fence.

3. EXAMPLES
This section presents the results of using the A-
Team approach both for the security-planning
problem in power systems, and for some other
difficult global optimization problems.

3.1 Power Systems
A system with 6-buses, 11-lines, and 3-generators
[4] was used to test our approach to the CCP2
problem. A single line outage constituted a
contingency. Nine contingencies were included.

g

where, q = cost coefficient for generator i
Pg. = real-power generation at the ith

generator
o) = HXn-Xoll, the euclidean norm

There are 10 sub-problems (base-case and 9
contingencies). Each sub-problem has 17 decision
variables (generator real/reactive powers, bus
voltage magnitudes, bus voltage angles [except
slack]), and 47 constraints (12 equalities - power
balance equations; 35 inequalities [loading limits
{MVA} on 11 lines, bounds on real/reactive
generation, bounds on bus-voltage magnitudes]).
Thus (CCP2) has 170 decision-variables, and 470
constraints. A team of 10 voyagers (one for each
sub-problem) and 10 probes (distributed over
networked workstations) was used to solve the
decomposed problem, and the results are tabulated
in Table 1.

Four cases were studied.

Case 1: Only the base-case sub-problem
was given an objective (f(xo) - only cost). The results
show that the feasible regions are considerably



further apart - especially contingency-2 which would
take more than a half-hour to correct.

Case 2: Contingency-2 was given sole
consideration for the security-term in the objective.
Cost was not considered. As is to be expected, the
correction time for contingency-2 dropped
considerably, while the times for the other
contingencies increased.

Case 3: The security was "compromised" by
adding a cost term to the objective. All contingencies
were weighted equally. Compared to case 2, most of
the correction times are significantly lower, except for
contingency-2.

Case 4: This is similar to case 3 except that
contingency-2 was weighted 10 times as much as
the other contingencies. As a result, the correction
time for this contingency reduced significantly.

Table 1
Results for a 6-bus, 11 -line, 3-qenerator system

evaluations counts for both the objective and
constraints. The formula used for the combination is:

function-evaluations +
(dimension x gradient-evaluations)

Table 2: Results for Optimization Problems

Objective

Base Case
Cost ($)

Time

(minutes) for

correction

for contin-

gencies

C1-C9

Cl

C2

C3

C4

C5

05

a
CB

09

Casei

19.32

4.61

31.76

20.41

4.52

8.18

11.90

11.08

28.75

3.24

Case 2

-

29.67

4.67

9.75

30.32

32.68

29.41

35.70

30.72

30.42

Case 3

20.03

5.13

28.07

14.32

0.76

8.03

5.97

11.78

6.62

0.82

Case 4

18.65

0.24

13.03

3.78

21.77

24.30

21.20

27.07

22.29

22.02

3.2 Global Optimization Problems
The A-team approach was tested against a
conventional approach (Random Multi-Start) for
solving some difficult optimization problems [5]. The
Random Multi-Start (R.M.S.) approach generates
(random) points within a hypercube enclosing the
feasible region. These points are used as launch
points for the probes. The A-team consists of 6
copies of voyager and 3 copies of a probe
distributed over 7 workstations (Dec 5000s
connected by an ethemet). The SQP routine VF13
from the Harwell Library was used as the probe.

The optimization problems (He-6, Gr-10, Gr-15 and
Gr-20) are described in the appendix. Both the
methods were run till the global optimum was found.
The results are averages over three trials. "Good"
solutions are those for which the value of the
objective function is within 30% of the value of the
global minimum value. The function evaluation count
is a combination of the function and gradient

Problem

He-6

Gr-10

Gr-15

Gr-20

Method

A-Team

R.M.S.

A-Team

R.M.S.

A-Team

R.M.S.

A-Team

R.M.S.

no. of
function

evals
required

36,587

44,030

217,963

659,853

467,653

1,850,368

1,454,397

5,916,456

no. of
solutions

found

13

10

49

48

49

45

86

85

no. of
good

solutions
found

7

3

47

38

49

38

85

71

Two things are note-worthy:

• For all the problems, the A-team found more
good solutions than the R.M.S. approach.

• The problems are tabulated as per increasing
size and complexity (number of minima). He-6
is the least complex and Gr-20 the most. As
the size increases, the A-team is significantly
cheaper than the R.M.S. This is evidence that
as the problem gets larger and more complex,
the A-Team approach would be undoubtedly
less expensive than the R.M.S. approach.

The results reflect the following advantages of the A-
Team over R.M.S.:

1) Better (closeri launch-points

The voyager visits every basin & launches a
launch-point therein which is, in general,
closer to the nearest optimum than the
corresponding random point generated by
R.M.S. Hence the corresponding probe has to
work less hard (and thus require lesser
function evaluations) for the launch-points of
the voyager.

2) Prevention of repeated re-determination of
optima

R.M.S. wastes a lot of function evaluations in
finding the same solution over again (several
launch-points are generated leading to the
same minima). A-Team prevents this through
the use of fences.

3) Selection of launch-points

The heuristics for selecting launch-points
eliminate lesser optima (a factor when there are
lots of optima).



For He-6 factors (1) and (2) were important. For
the other problems factors (1) and (3) were
important.

4. SUMMARY
The original security planning problem is a
computationally intractable global optimization
problem. This paper has developed a new
formulation, of the problem, consisting of several
loosely-coupled sub-problems. A team of
autonomous, asynchronous, concurrent and co-
operative agents was described to solve this
decomposed problem. Results were presented both
for the security-planning problem, and for some
other difficult global optimization problems.

Problem 2: Gr-10

10 2 / 1 0

X x i / 4 0 0 0 -
x i i =

10 2/ 10

Min X x i / 4 0 0 0 - 11 cos(Xj/VT)
x i i

s.t. -600 < XJ < 600 , i = 1, 2,... 10
10 2 2
£ x,<(1800)

Problem Statistics: 10 variables, 21 constraints

Solution
Global minimum at the origin with value zero.
There are several thousand local minima.
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APPENDIX

Description of test problems

Problem 1: He-6

Min - (25(Xi - 2)2 + (x2 - 2)2 + (x3 -1 )2

X1...X6 +(x4-4)2 + (x5-1)2 + (x6-4)2

S.t. x«|,X2>0,1 <X3<5, 0<X4<6, 1 <X5<5,
0 < X6 ̂  10, 2 < X-| + X2 < 6, -x«| + X2 < 2,
Xi - 3x2 < 2, 4 < (*3 * 3 ) 2 + X4. 4 < (x5 - 3)2

Problem Statistics: 6 variables, 16 constraints

Solution
Global minimum at x* = (5,1, 5, 0, 5,10) with value
-310

Problem 3: Gr-15

15 2 / 1 5

Min T Xj/80,000 - n cos(Xj/VT) +
xi i = i 1 = 1

s.t. -600 < Xj < 600 , i = 1, 2,... 15

x2,<(1800)2

Problem Statistics: 15 variables, 31 constraints

Solution
Global minimum at the origin with value zero.
There are several thousand local minima.

Problem 4: Gr-20

20 202 / &
Min Y Xi/800,000 - n cos(Xj/VT)+1
Xj j t ^ j = 1

s.t. -600 < Xj < 600 , i = 1, 2,... 20
20 2 2
Zx,<(1800)

Problem Statistics: 20 variables, 41 constraints

Solution
Global minimum at the origin with value zero.
There are several thousand local minima.


