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Abstract, Process engineering provides a wealth of applications for dynamic optimization
problems. This problem is usually solved by transforming it to a nonlinear programming (NLP)
problem with either sequential or simultaneous approaches. However, both approaches can still
be inefficient to tackle large problems. In addition, many problems in chemical engineering arc
naturally boundary value problems (BVP) which suffer from instability if we utilize a decom-
position based on single shooting solvers. In this paper, we will introduce a simple extension
to the simultaneous approach that will alleviate the dimensionality problem as well as ensure
stability for BVP's. Many numerical aspects of the problem will be discussed, especially the
discretization of the differential equations and the index problem. By using Radau collocation,
the algorithm has favorable stability properties for high index problems and by exploiting the
structure of the resulting system, a stable and efficient decomposition algorithm results. Here
solution of this NLP formulation is considered through a reduced Hessian Successive Quadratic
Programming (SQP) approach, where linearized state variables are eliminated and reduced
quadratic programming (QP) subproblems update the control variables. Although this study
primarily addresses fixed element problems, another key aspect of the success of the DAE opti-
mization is the element placement. In order to enforce accuracy in the solution profiles, highly
nonlinear constraints have to be added and these further complicate the solution formulation.
As a result, the formulation turns out to be very sensitive to initializations. To address these
problems, we will introduce a new framework that will decouple the element placement from the
optimal control procedure. This framework consists of two layers of optimization, the inner and
outer problems. The inner problem is a traditional optimal control problem with fixed element
sizes and the outer problem is then used to update them solely via error control criteria and
optimality conditions. We will also present an example to illustrate the element placement via
bilevel optimization.

Key Words, Dynamic Optimization, Optimal Control, Successive Quadratic Program-
ming, Finite Difference, Multiple Shooting

1 Introduction ,

The interest in dynamic optimization has been expanded to diverse areas of applications in various
fields of engineering. Within chemical engineering, typical examples involve dynamic simulation,
reactor network synthesis [6] and optimal control for various units. The motivation for this research
comes from the fact that steady state simulations are not adequate for many processes. Common
problems that require the solution of dynamic optimization are:

• Control and scheduling of batch processes, due to their transient nature.
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• Processes with tight transient requirements, for example for safety, waste, and operability.

• Sophisticated control schemes, e.g., predictive, optimal or adaptive controls.

• Procedures for start-up and shut-down periods.

The dynamic optimization problem can be formulated using a differential-algebraic equation (DAE)
formulation. The DAE system consists of differential equations that describe the behavior of the
system, such as mass and energy balances, and algebraic constraints that ensure thermodynamic
consistency or other physically meaningful relations, such as rate constants or temperature limits.

A general DAE optimization problem (DAE1) can be stated as:

*(0,y(t)»u(<)«'/»P

s.t.: F(z(t),z/(t),y(t),u(t),t,p) = Q (2)
G{z(tU(t)Mtht,p)<Q (3)

1 Gs(z(ts),y(ts),u(ts),ts,p)<O (4)

where <p is a scalar objective function,
G are algebraic inequality constraints,
Gs are point condition constraints (e.g., initial or final conditions) at times tsi

2, y are state profile vectors,
u are control profile vectors,
tj is final time, and
p is time-independent parameter vector.

The solution techniques for DAE optimization problems have been investigated since the 1960's
(for a review see [19]). Most of the numerical techniques in this area can be classified into two
major approaches.

The first attempt to solve the optimal control problem employed the idea of calculus of variation
that was introduced in the 1960's (Pontryagin Maximum Principle [22]). In the variational formu-
lation approach the optimization problem is transformed into a two-point boundary value problem
(TPBVP). This approach works very well for unconstrained problems, however, the solution of the
TPBVp is still difficult to solve, especially with the presence of inequalities in the model.

Another approach is to apply a nonlinear programming (NLP) solver to the DAE model. In
order to use an existing solver, a modification has to be made to transform a DAE optimization
problem to an NLP. Most methods used in this approach fall into two groups, namely sequential
and simultaneous strategies.

Sequential Strategy

This approach has been applied to the optimal control problem for over two decades (s£e {28] for
review). The idea is to discretize the control profile into a piecewise polynomial on finite elements.
Then the state and sensitivity equations are integrated using standard DAE solvers for given control
profiles ancl this yields function and gradient values for the NLP solver. An optimization routine
is then applied in an outer loop to update the control actions. The advantage of this strategy
lies in its reduced dimensionality of the optimization problem. However, state variable constraints
cannot be enforced directly. Moreover, the integration step might be infeasible or too expensive to
converge at intermediate trial points.

Simultaneous Strategy



In the simultaneous strategy [19, 27], on the other hand, the DAE solution and optimization
are simultaneously converged through discretization of both the state and control profiles. Vasan-
tharajan and Biegfer [27] proved the equivalence of this formulation to the calculus of variations
and suggested a decomposition scheme for solving the resulting NLP. The advantages of this ap-
proach are the treatment of profile constraints as w&U as the elimination of expensive and possibly
hifeasible intermediate solutions. The main drawback of this approach is its explosive problem
size. To easS the dimensionality issue, an NLP decomposition was introduced [19], corresponding
to a linearized single shooting method. However like the sequential method, this approach is not
guaranteed to be stable for some boundary value problems (BVP) [1]. In addition, the formulation
generated has a high degree of nonlinearity due to the nonlinear element placement constraints in-
troduced in the process. As a result, it can be very sensitive to starting points and requires careful
initializations. We will base our analysis on the simultaneous strategy with a new decomposition
that will overcome these difficulties.

To summarize, the difficulties associated with the resulting NLP can be categorized into four main
areas:

• the presence of algebraic equations (index problem),

• the determination of the step size for discretization,

• the high dimensionality of the discretized system, and

• the integration of the state equations.

Although the last two issues will be the main foci of this study, in the last section we will briefly
discuss our preliminary work concerning step size selection. In the next section we discuss the
advantages of a BVP approach to DAE optimization over current methods. This motivates the
problem formulation in section 3 that are based on COLDAE and the reduced Hessian SQP method.
This is demonstrated on several examples in section 4 and future work on element placement is
described in section 5.

2 Differential Algebraic Equation System

In order to transform a DAE optimization problem to an NLP problem, we discretize the state and
control profiles with a suitable polynomial to implicitly integrate the DAE. In the 1970's, de Boor
and co-workers [5] demonstrated that the collocation method has a high order of convergence and
can be factored by an efficient algorithm. The collocation method requires that the approximation
profiles satisfy the mih order differential equations at M collocation points by finding the coefficients
of the polynomials in the form

A/+m
z(t)= ^ajTjity (5)

where Fj is an independent polynomial basis function.

The collocation method is equivalent to the Runge-Kutta method and its accuracy depends on
the number and locations of the collocation points, and the range of integration (for further details
on stability of the Runge-Kutta method see [1]). In practice, the number of collocation points is
usually small, because high degree polynomials tend to oscillate. In addition, global interpolations
are not suited for steep or discontinuous profiles. Instead, the finite element method, where the
time horizon is divided into subintervals, is usually the method of choice.



Using the finite element method, the sfate profiles are required to be continuous throughout
the time horizon. On the other hand, control and algebraic variable profiles are allowed to have
discontinuities at the boundaries of the elements. In addition to state an4 control variables, the
optimization routine also determines the finite element lengths. The sizes of the finite elements are
governed by stability, accuracy syid the optimal locations of breakpoints for control profiles. In this
work, the monomial basis is used as recommended in [5] because of its smaller condition number
and smaller rounding errors. For an mth order ODE, the state profiles are approximated by

where z^ , wij are unknown polynomial coefficients, aud
7j is a polynomial of order M + m satisfying,

^ r T 7 i ( 0 ) = 0 / o r / = l , . . . , m ; j = l , . . . , M (7)

dm

•(ffr) = *j> for r = ! , • . . , M ; j = l , . . . ,Af (8)

where gr is the collocation point within each element.

Although the local error can be kept small by using small element sizes or high order integration
schemes, several researchers [3] observed that the error in DAE systems can propagate and be
amplified along the trajectory. In particular, the presence of algebraic constraints in the differential
equation system not only makes the integration unstable, but also causes problems in initialization.
The Index problem, associated with integration from consistent initial values, can be resolved by
symbolically differentiating the algebraic constraints that caused the index, but the index structure
first has to be detected before differentiation can be carried out. Then the invariants, resulting
from differentiation must be enforced with appropriate stabilizing schemes [3].

There have been several approaches to develop a systematic way for detecting the structural in-
dex of the problem. For instance, Pantelides [21] proposed an algorithm using graph representation,
and Chung and Westerberg [13] provided a general treatment for index and near-index problems.
For the optimal control problem, however, we cannot apply these techniques directly because we
do not know a priori which constraints will be active along the optimal trajectory. Examples of
profiles with different index for different parts within the solution trajectory can be found in sec-
tion 5. Another way to solve a high index DAE problem, as proposed by Ascher et al [2], is to use
an appropriate integration scheme, such as Radau collocation. Here we assume consistent initial
conditions are given. This method coincides with the projected implicit Runge-Kutta method that
has favorable stability properties even for high index problems.

2A Multiple Shooting Method vs . Single Shooting

As discussed in the previous section, the solution to the DAE system is effected by solving the
collocation equations. The two most important approaches that are normally used are single
shooting (SS) and multiple shooting (MS).

In the single shooting method, an initial value problem (IVP) is explicitly integrated by guess-
ing the missing initial values. The appeal of this method is that the storage space required is
considerably smaller and that only the local Jacobian matrices have to be inverted. The major
disadvantage of single shooting is the poor stability for solving boundary value (BVP) problems
that have inherently unstable modes in the forward direction. The error in BVP's solved using SS



Figure 1: Multiple shooting (a) and single shooting (b)

tends to accumulate in a disastrous fashion and even good problem initializations are often not ade-
quate for successful solutions. Unfortunately, many problems in chemical engineering are naturally
BVP problems, for example kinetic and transport problems in various geometries. These difficulties
can be redjice<d by using multiple shooting approaches if the problem is well-conditioned. We will
define the condition of the problem in the next section. In MS. the domain of the integration will
be divided into subintervals that correspond to t^e finite element representation that we used for
approximating the profiles.

Several difficult parameter estimation examples solved by Bock and coworkers [9] demonstrate
the advantages of this concept. For example, consider a problem [9] given as follows,

2/2 = T2

Vi = V2

7r2)sin(;r?)

The solution of this problem, for any value of r, is given by

(9)
(10)

(11)

This problem can be solved as a boundary value problem (BVPl) with the following conditions,

(12)

(13)

On the other hand, if we specify initial conditions (14-15) for this problem (IVP1) instead of
boundary values (12-13), we have:

y»(0) = o
y 2 ( 0 ) = 7T

(14)
(15)
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Figure 2: Multiple shooting for BVP and IVP (a) and single shooting for IVP (b)

The (IVP1) formulation is solved using both SS (LSODE [17] with tolerance of 1(T6) and MS
(C0LDAE [4] with tolerance of 10~6) methods with r set to 60. As seen in Figure 2, the SS method



tracks the solution only for one-fourth of the time horizon and then diverges, even though the value
of 7r is correct up to 9 digits. The result from MS method are almost identical for both (BVP1) and
(IVP1), although the computational time of the MS method with (IVP1) taken is about double
that of the (BVP1) formulation.

2.2 Problem Conditioning

As seen, the (IVP1) formulation is extremely sensitive to the structure of ttteSide conditions. In
order to understand the computational aspects of the problem, we separate the origiti of the failure
into two major sources. The first is the algorithm-depetident instability, i.e. errors, either roundoff
ot discretized errors, can be magnified along the trajettory. This can be circumvented by using a
more stable or more accurate numerical method. On the other hand, roundoff error can also be
magnified if the problem is too sensitive to parameters used, or ill-conditioned. This second cause
cannot be avoided by simply selecting a more stable method.

To illustrate the influence of the problem formulation, we consider the following linear BVP
(16-17) and provide an analysis from [1].

Bay(a) + Bby(b) = /? (17)

x€ [a, b]

The solution to this problem can be written as:

y = Y(x)(BaY(a) + BbY(b)yl(3 + t G{x,t)q{t)dt (18)
Ja

where Y(x) is a fundamental solution, and
G(x,t) is the Green's function of the problem.

From (18), a bound on error can be obtained as:

K > \\Y(x)(BaY(a) + BiYib))-1]] (20)
rb

K> max / \\G(x,t)\\dt (21)
x Ja.

where 6/3 and 6q are perturbations on /3 and q, respectively.

The derivation above shows that the integration error (e) can be arbitrary large, even with
small initial errors, because of the quantity K. Moreover, the bound on error may vary substantially
depending on the problem formulation (or the boundary conditions). We use the notion of condition
number (K) to quantify this phenomena, as in solving linear systems. Intuitively, the problem
is well-conditioned if a small change in parameters produces a corresponding small error in the
result, in other words, the problem has a moderate condition number. This condition number is
therefore, used to determine if the problem, not the method, is well(or ill)-conditioned. For a
detailed procedure to calculate this condition number, see [1].

For (BVP1) above, the corresponding BVP problem is well-conditioned with condition number
of the problem about 5 [1] for r >> 1. Thus, if any stable integration scheme is applied, the
solution is stable and accurate. The resulting profile using COLDAE integrator is also given in
Figure 2.



The resulting initial value problem (IVP1), as it turns out, is not as well-conditoned as (BVP1).
The condition number of this problem, K ~ exp(r), becomes much larger than the BVP counterpart
when r >> 1, even if the analytical solutions for both cases are identical.

This example has implications for t^e choice of optimal control method, because any method
based on single shooting will fail on this problem. Recall that for an IVP shooting integration, an
approximate upper bound on roundoff error is given by eexpLh where e is the machine precision, h
is the length of integration interval, and L is the largest eigenvalue of the problem and in this case
L ~ T. Also, note that the SS algorithm will be uniformly stable if L has a negative real part.

In this section, we demonstrated that the problem formulation, specifically boundary conditions,
can affect the performace of the method. Although it is not possible to determine whether a set
of side conditions agrees with the underlying characteristics of the outcome without the analyical
solution, it is still much better to use the MS method, at least to reduce the integration interval, h
and counter the exponential growth of roundoff error.

3 Fixed-Mesh Problems

If we adopt the multiple shooting approach and substitute a collocation appoach in each element
and we assume for the moment that the element lengths are fixed, we have the following problem
statement (NLP1)

min $(zi,zi,yijruij,p,fii,tf) (22)
you>pt/

s. t. : Discretized DAE model:

i, Zi, yijy uijyp) = 0 (23)

uZi,yi5, tiij,p) < 0 (24)

for i = 1, . . . , ne; j = 1, . . . , ncol

point condition:
iJyij,uij,p)<0 (25)

for k = 1 , . . . , ns

bounds:

zL<za<zv (26)

VL < Vij < VU (27)

uL < mj < uu (28)

PL<P<PU (29)
tL <tf<tu (30)

for i = 1, . . . , ne; j = 1, . . . , ncol

where ncol is the number of collocation points,
ne is the number of elements, and
ns is the number of point conditions.

For this formulation hi 's are fixed, and we will discuss the variation of hi 's in section 5



3.1 Successive Quadratic Programming (SQP)

It is often argued that SQP methods are best suited to process problems compared to other methods,
because they require fewer function and gradient evaluations. Here, the dimension of the state
variables is generally much larger than that of the control variables (degrees of freedom). Hence,
to solve large-scale problems efficiently, we consider a reduced space SQP algorithm. At each
iteration k, a quadratic programming subproblem (QPl) is created from (NLP1) and solved to
obtain a search direction d for .r, of the form:

min V$(xk)Td+l/2dTBkd (31)

s.t. c(xk)+Vc(xkfd = 0 '. (32)

d€[xL-xk,xu-xk] (33)

x = [z zy uptf]T (34)

A decomposition algorithm can then be applied by partitioning variables into decision (control)
variables and dependent (state) variables. Thus, the search directidn is divided1 into:

k (35)

with the range space direction (Ypy) obtained by :

(VcTY)py = ~c(xk) (36)

and the following reduced QP subproblem (QP2) for the null space direction:

min V$(xk)Tp + l/2pT(ZTBZ)p2 + l/2(ZT BYpy)
Tpz (37)

s.t. xk + Ypy + Zp2 e [xL.xu] (38)

Here (ZTBZ) is a quasi-Newton approximation to the reduced Hessian of the Lagrange function
and (ZTBYpy) can be approximated through various options [8]. The QP subproblem was solved
using the QPKWIK algorithm described in (25). QPKWIK is specifically tailored to solve large
scale problems by updating the inverse Cholesky factors of the reduced Hessian (ZTBZ) ; therefore,
it is 0(n2) with respect to the degrees of freedom of the problem. Another advantage of QPKWIK
over a conventional QP solver is its handling of highly-constrained QP subproblems, which often
occur in DAE optimization problems.

3.2 Determination of the Y space move

A key issue related to reduced Hessian SQP is the determination of the Y space move, or equiv-
alently. a Newton step for the system equations. The routine chosen for evaluating this move is
COLDAE [4]. Along with its antecedents, COLSYS and COLNEW, this code is a well-tested im-
plementation of collocation on finite elements and offers the following advantages. First, it is an
efficient collocation code that exploits the almost block diagonal (ABD) structure of the colloca-
tion equations through the use of monomial basis functions and a sparse and stable decomposition.
Second, it allows flexible specification of the DAE system, boundary conditions and approximation
order. Third, as a Newton-based solver it allows an easy interface to reduced Hessian SQP methods
and thus ensures all the benefits of a simultaneous strategy.

Using COLDAE, the collocation systems have two types of unknowns: global and local vari-
ables. Local variables are eliminated by decomposition of collocation equations in each element;

'^^^Lkz f *



consequently, the size of the linear system that has to be factored for each iteration is drastically
reduced. The resulting linear system of global variables is cast in an almost block diagonal form
and solved by de Boor's sparse SOLVEBLOK routine [10]. From the definition of Ypy (36), the
limiting case of Ypy = 0 leads to a reduced gradient (GRG) or a feasible path approach. Another
case is the infeasible path approach, where Ypy is the Newton step from the state equations. Fi-
nally, we modified COLDAE to accommodate Radau collocation as well as feasible andUnfeasible
path optimization algorithms.

Feasible Path
In the feasible path, or GRG approach, the state equations are satisfied exactly; therefore,

the Y space movement is zero. This approach has the same concept as the sequential approach
described in section 1, which separates integration and optimization steps. As a result, this reduces
the amount of the data storage and the need for Lagrange multipliers in the linesearch function.
The GRG approach performs reasonably well for small, mostly linear problems, because only a
few Newton iterations are required to converge with moderate steps in the Z space (control profile
space).

Infeasible Path
In this approach, the algorithm is given in [26] which converges both the integration and opti-

mization simultaneously. This algorithm has been proved to have a desirable one-step superlinear
convergence property. The main challenge in this approach ]& the evaluation of the Lagrange
multipliers (A) for the state equation. At a Kuhn-Tucker point, the Lagrange multipliers can be
approximated by,

A = - ( l ^ V c ) " 1 } ' 7 ^ (39)

Unfortunately, using COLDAE, the matrix (YTVc)~l is not readily available. As a result, a new
linesearch algorithm must be investigated, instead of the Augmented Lagrange f 7] function used
in feasible path. Han [16] showed that using the exact penalty function ( $(x) + /j||c(a;)||i ) as
the linesearch merit function, the SQP converges to a local optimizer from poor starting points.
However, the penalty value (/z) has to satisfy the inequality,

/* > Plloo (40)

Biegler [25] showed that a different penalty parameter can be used instead of p. to obtain the
same global convergence property, without individual multipliers explicitly calculated. Here /.i' is
defined by (41).

/*' > \\Tc\/\\c\U (41)

In addition, as shown in [26], the term |Arc| can be obtained easily by the factorized matrices from
COLDAE. The exact penalty function method is usually slower [7] to converge than with other
linesearch functions, so to accelerate convergence, we use a watchdog technique [11] that allows
intermediate increases in the merit function but requires a reduction in the exact penalty every q
steps (in our study q = 2).

4 Examples

In this section, we consider common problems that can be formulated into a DAE optimization
problem. The Kuhn-Tucker errors for all examples are 10~6, and all CPU times were obtained on
a DECstation 5000. For feasible path integration, the equation tolerances are 10~8. Except where
indicated, all problems use a uniform element mesh.



4^1 Polymerization Problem

This example is ^n optimal control problem for a batch chain addition polymerization. Chain
addition polymerization is one of the most common polymerization processes where polymers are
formed by addition of one monomer unit at a time. The details of the model and the kinetic data
are given in the appendix.

In this study, we consider the minimum reaction time for the polystyrene (PS) reactor as our
objective; temperature (T(-)) and initial initiator concentration (/) are control variables and final
monomer conversion and number average chain length are specified. Many investigations [12, 24]
have been done to obtain the result analytically and numerically using the maximum principle.
However, most of them face difficulties with control constraints, such as temperature limits.

500
0.2 0.5 0.8

normalized time

76 78 K0 82 K4

Initial Initiator (• 1000 paoUl)

Figure 3: Optimal control profiles and final times for PS polymerization problem. The numbers
right to the Figure (a) are the initial initiator concentration (gmol/1).

Table 1: Computational statistics for batch PS polymerization problem.

Initiator cone.
(gmol/1)
.00820
.00806
.00800
.00790
.00780

Number
feasible

39
40
35
39
30

of SQP iterations
infeasible

21
29
26
29
29

CPU
feasible

26
27
20
22
20

time (s)
infeasible

12
16
14
17
16

Objective (min)
function

627
607
598
583
566

The computational results are reported in Table 1 for both feasible and infeasible path ap-
proaches. The optimal initial initiator concentration is at the lower bounds for every case.

4.2 Van der Pol oscillator problem

This problem is formulated in [15]. The model is described by,

s.t. : yx = (1 - y%)yi - y2 + u

(42)
(43)
(44)

i n
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Figure 4: Optimal control state profiles for unconstrained Van der Pol oscillator problem.

Table 2: Computational statistics for unconstrained Van der Pol oscillator problem.

Number of
collocation pt.

3
3

Number of
elements

00 
00

Number of SQP
iterations

39
20

CPU time
(s)

36.5
15.7

Objective
function
2.8710
2.8695

Approach

feasible path
infeasible path

= V
y(0) = [0.0 1.0 0.0]r

«(0 € (-0.3 1.0)

(45)

(46)

(47)

As expected, the infeasible path approach performs much better for both Van der Pol (Figure 4
and Table 2) and PS polymerization examples (Figure 3 and Table 1). Therefore, for the rest of
the examples, the infeasible path approach will be employed.

We also modify the problem by adding the following path constraint, by which the problem
changes to index 2 instead of index 1, whenever (48) is active.

y > -0.4 (48)

Using the fixed-mesh formulation, the constraint is easily added to the NLP as inequality con-
straints. As expected, the computational time for both bounded and unbounded problems are
almost the same. Results are reported in Table 3 and Figure 5. These results are also compared
with the solution obtained with an IVP approach by Vassiliadis [28].

4.3 Parameter Estimation Problem

This problem is a BVP problem taken from {9]. The system involves two differential equations
and one unknown parameter. The state profiles are initialized to 1.0 and the unknown parameter
(p =r ?r) is set to 2.0. The model of this example can be found in section 2 (9-10), with r set to 60,
and the boundary conditions are

yi(0) = 0 ; yi( l) = O (49)

The objective of this problem is to estimate the values for the parameter equal to w given true
values corrupted with random noise (N(0,a)) at data points 0,0.1,..,1.0. The results agree very



Figure 5: Optimal control and state profiles for Van der Pol oscillator problem with path constraints.

Table 3: Computational statistics for Van der Pol oscillator problem with and without path con-
straints.

Number of
collocation pt.

3
3
4
3
3

Vassiliadis [28]
3
3
4
3
3

Number of
elements

6
8
8
9
10

6
8
8
9
10

Number of SQP
iterations

20
20
28
28
21

23
20
21
24
20

CPU time

(•)
13.4
15.7
25.5
30.9
30.0

12.8
15.5
26.0
27.9
28.0

Vassiliadis [28]

y\ bound

no
no
no
no
no
no
yes
yes
yes
yes
yes
yes

Objective(min)
function
2.8735
2.8695
2.8670
2.8684
2.8680
2.8681
2.9834
2.9549
2.9537
2.9540
2.9552
2.95539

12



well with the true value as shown in Figure 6. Note also that the IVP problems require slightly
more effort due to problem conditioning. This difference increases with increasing r.

Figure 6: Optimal control and state profiles for Parameter estimation problem.

Table 4: Computational statistics for Parameter estimation problem.

Number of
collocation pt.

3
4
3
4
3
4

4 $
4 $
4 $

Number of
elements

10
10
10
10
10
10
10
10
10

Number of
iterations

8
9
9
9
8
9
8
10
14

CPU time
(s)
0.9
1.2
1.0
1.2
0.8
1.2
1.5
1.9
2.3

a

0.05
0.05
0.10
0.10
0.00
0.00
0.00
0.05
0.10

w

3.14140
3.14195
3.14121
3.14230
3.14159
3.14159
3.14159
3.14159
3.14157

($ using IVP formulation (14-15))

4.4 Zeolite Distribution Problem

As previously described in the introduction, many problems in chemical engineering are naturally
two-point boundary value problems. This last example deals with finding an optimal distribution of
zeolite in a matrix of silica-alumina. The reaction system involved in this problem is the triangular
reaction network, as shown in Table 7.

Both zeolite and the matrix catalyze all three reactions, but the rates of reaction are not equal.
Zeolite is highly active and gives a better selectivity compared to the matrix, however, it also has
higher resistance to diffusion. The purpose of the problem is to find an optimal distribution profile
to maximize the selectivity for B as proposed in [20]. Further details of the model and data are



given in the appendix.

Figure 7: Schematic of Triangular reaction.

Table 5: Computational statistics for Zeolite distribution example.

Cases

base
1
2
3

Number of
collocation pt.

3
3
3
3

Number of
.elements

6
6
6
6

Number of
iterations

21
18
16
14

CPU time

• ( • ) .''.
17.6
17.8
14.3
16.5

Objective (max)
function
0.6507
0.6629
0.6692
0.6470

0.25

I 0.I5H

I
3

0 05 -

o-Jo-ooo—ooor-
0 0.2 0.4 0.6 0.8

Normalized Distance

Figure 8: Optimal Zeolite profiles for base case.

The problem is solved using 6 elements and 3 collocation points. As shown in Figure 8, the
optimal profiles are "dilute surface" distributions with most of the zeolite concentrated at the
surface, and the results compare very well with the literature [20].

5 Nested Bilevel Framework

We consider the following DAE optimization problem with 2 differential equations, tha,t represent
equations of motion. This "car" problem has the objective to minimize the time for an object to
cover the distance of 300 m and start and stop at zero velocity with a speed limit at 10 mfs. This
problem has an analytical solution given in [19].

S.t.

min tj

z\ = u
Z*i = Z\

z(0) = [O.OC

(50)

(51)

(52)

(53)

14



z(ff) = [0.0 300.0]r

u(t) e [-2.0 l.o]
(54)

(55)

Table 6: Computational statistics for Car problem

Number of
collocation

3
3
3
4
3

Number of
finite elements

3
6
7
10
3

Number of SQP
iterations

8
10
11
9
10

CPU time
(s)
2.6
6.2
9.2
15.2
1.9

Mesh

uniform
uniform
uniform
uniform
optimal

Objective (min)
function

39.04
37.89
37.68
37.62
37.50

>~O0

0 10 20 30 40 0 10 20 30 40

Time (s) Time <s)

Figure 9: Optimal acceleration profiles for 6-uniform (a) and 3-optimal (b) meshes for car problem.

The results are obtained by using 6-uniform and 3-optimally spaced (from analytical solution)
elements and are given in Figure 9 and Table 6. Here, the objective from the optimal mesh is
always better, even when it is compared to 10-uniform elements. In addition, the uniform case
required much more computation time than the optimal case. Note that the result for the optimal
mesh problem is identical to the analytical solution.

5.1 Element Placement and Error Control

As seen in the example above, element placement plays a crucial role on the final result and
efficiency of the method, and the optimal placement has significant impact on both the solution
and the computational time. The more elements the problem has, the more time-consuming it
will be. In addition, in order to estimate and bound the discretized and roundoff errors, a wide
spectrum of element placement constraints can be used, ranging from highly nonlinear constraints,
based on the residual at noncollocation points, to simple ad hoc bounds on elements. An extensive
review of these constraints can be found in [23]. In this study, we incorporate the following relation,

(56)

where h{

IMOU
||f(<nc)

is step size,
ls approximated local error, and
is the norm of the residual at non-collocation point



as proposed in Russell [23]. Next we enforce constraint (56) without the 0(hk+l) term by bounding
the residual for each equation, including algebraic equations, at non-collocation points as,

& = 2t(*nc)-/t(*nc) (57)

where (£,)/ is an interpolated residual for equation / at element i. As we include the error control
constraints, the NLP problem is then as follows (NLP2) :

min $(zi,Zij,yij,Uij,pJii,tf) (58)

s. t. : Discretized DAE model:

ij,yij,Uij,p,tf) = 0 (59)

ij.yij.Uij.pJjj^O (60)

for i = 1 , . . . , ne; j = 1 , . . . , ncol

side condition:
Gkizi.Zi.yij.u^pJf) < 0 (62)

for k = 1 , . . . , 7 i6

bounds:

zL < z^ <zu (63)

yL < yij < yu (64)
uL<Uij < uu ) (65)

pL<p<pU (66)

tL<tj<tu (67)

for i = 1 , . . .,ne; j = 1, . . .,ncol

element placement constraint:

- e < & = zi(tnc) - hiF{zi, zi, yij, ut1. /;, tf) < c (68)

where i is the element,
j is the collocation point, and
hi: is the element length of.the element i

5-2 Formulation

After the discretization and the addition of the element placement constraints, the problem (DAE1)
is transformed into a nonlinear programming problem (NLP2). Problem (NLP2) can then be solved
with any large scale NLP solver as in [27]. However, element placement constraints (57) make the
problem very nonlinear and sensitive to initialization. Even in simple cases, where the DAE model
is linear and has no discontinuity in the control profile, the NLP is still difficult to solve.

To overcome this difficulty, we will propose a new framework that will accommodate the element
placement with bilevel programming. The motivation for the framework comes from the fact that



element^.placpmept constraints do not influence the determination of the optimal control profile
directly. In particular, if the control is differentiate throughout the horizon, the element placement
role is only to ensure accuracy of the profiles. This task can be posed as a bilevel mathematical
program with the outer problem determining the finite element lengths and the fixed-mesh (inner)
problem determining the control and state variables once the element sizes are fixed. The outer
problem (NLP3) can be written as:

min
hi

s.t. Hi hi = I
hi€[hL,hu)

-{-error control contraints

(69)

(70)

(71)

(72)

where ti*,zVy%iy and A* are implicit functions of the /i«'s defined by the inner (or fbced-mesh)
problem (NLP1). While the inner(fixed-mesh) problem was addressed in previous sections, many
aspects of the outer problem still need to be addressed. In particular, gradients for (NLP3) need
to be computed using the solution of (NLP1).

In this preliminary study, we use a finite difference scheme to obtain the gradients for the outer
problem (NLP3), i.e., perturb the element sizes and then re-solve the inner problem (NLP1) again.
Future work will deal with an approach based on NLP sensitivities. With a finite difference scheme,
we present small examples to illustrate the inner-outer problem framework.

Car Problem

In this section, we will solve the car problem again but with the bilevel approach. The main
challenge here is to see whether the outer problem can detect the discontinuous points in acceler-
ation. The starting profiles used are a constant acceleration at 0.5 m/s2 and all state profiles are
initialized to zero. All cases listed in Table 7 converged to the analytic solutions. In contrast, the
algorithm used in [19] which simultaneously solved the optimal control and mesh selection failed to
converge from this starting point. Note that the CPU times reported are not excessive considering
the inefficient finite difference and feasible path inner problem implementation.

Velocity (m/s)

25

20-

15-

Acceleraaon (m/jt)

10-

without

speed limit

with speed limit

o on—a - - 2

3
0 10 20 30 40 0 10 20 30 40

Time (s) Time (s)

Figure 10: Optimal acceleration and velocity profiles.

We also re-solved the polymer reactor example in section 4 using the inner-outer problem
formulation. But in this case, the element lengths do not change and optimization for the outer
problem converges in one iteration, because the optimal control profiled are continuous and the
errors in the integration are well within the tolerance.



Table 7: Computational statistics for Cat4 problem using nested strategy with feasible path

Number of
collocation

3
3
3
3

Number of
finite elements

2
3
3
4

Number of
iter. (outer)

5
4
5
6

CPU time
(s)

14.5
31.1
51.4
61.3

Speed limit
at 10 unit/s

no
no
yes
yes

Objective
function

30.00
30.00
37.50
37.50

There are numerous efforts to solve the bilevel optimization problem, particularly in economics
and planning. Kolstad and Lasdon [18] proposed a method for extracting derivative information
for the-outer problem based on the Kuhn-Tucker conditions on the inner problem. Their properties
fpUow from Fiacco [14] and require assumptions that the solution of the inner problem is unique,
the gradients of the active constraints are not degenerate, and the complementary condition holds.
Consequently, the derivatives of the outer problem cap be obtained as,

*
= VhxL + VxxLVhx

di\-
dhy

= 0

VxcVhx = 0

Vhx* = 0

(73)

(74)

(75)

where L is the Lagrange function
x are the state and control variables
x* are components of x at bounds
c are the active constraints
h are the element lengths

A range and null space decomposition can also be utilized (73-75) to make this approach less
expensive ( as shown in [29]) and this follows from,

= 0

ZTVrxLZ (2TVXXLY)
0 VrCTY

(7G)

(77)

(78)

Although this method is very promising, an efficient sensitivity algorithm still needs to be applied
to the inner problem.

As seen in the car problem, the performance of the method depends heavily on the size of the
problem, i.e. the number of the elements. At the present time, there is no automatic procedure for
the selection of the elements. Most of the strategies are based on qualitative knowledge concerning
the problems or heuristics in addition to the trial and error procedure.

Therefore, the next step for a complete method is to develop a systematic element addition
procedure based on adaptive element addition in [27]. With this goal, our inner-outer strategy
looks promising, because the decoupling of the profile variables and the element sizes gives us a
straightforward way to find the influence of the elements. Still, an extensive study of this issue is
required.



6 Conclusion

Through an implementation of COLDAE, an efficient TPBVP solver, we have developed and com-
pared feasible and infeasible path approaches for the fixed-mesh problem, using reduced Hessian
SQP. To obtain the Y space move, the algorithm employs a stable decomposition scheme, based on
multiple shooting to solve the linear system resulting from the collocation equations, and therefore,
instabilities associated with poor problem initializations of (DAE1) are avoided. Also included
is a specialized line search procedure that does not require the explicit calculation of Lagrange
multipliers. Furthermore, the efficiency of the algorithm is further enhanced by applying the new
QP solver, QPKWIK. Several approaches have been introduced for modifying the SQP algorithm.
Most of them fall into two classes: feasible and infeasible path approaches. For relatively simple
to moderate size models, the feasible and infeasibie path approaches require almost identical CPU
times. On the other hand, the infeasible path approach outperforms the feasible path counterpart
for large and more nonlinear examples.

In the last section, we also proposed a general solution framework for the DAE optimization
problem by using the idea of bilevel optimization. This process decouples the problem into two
levels: the inner and outer problems, and can result in a more robust algorithm. Furthermore,
we showed that our algorithm can be utilized as an inner problem solver of the bilevel DAE
optimization framework. A preliminary study indicates significant increases in robustness with a
reasonable CPU time, even with a finite difference approximation for the derivative evaluation in
the outer problem.

Even though the results for the problems, solved using this framework, are very encouraging,
the success of the framework critically depends on the outer problem performance, in particular,
the outer problem gradient evaluation. This will be the focus of a future study.
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A Model Descriptions

A.I Model description for PS Polymerization problem

Here, we make the following assumptions that

1. quasi-steady approximation for radical species can be used,

2. and the density of the reactor content is constant.

The details of the derivation and kinetic data are given in [24]. Based on the above assumptions
and mechanism, a mass balance for the monomer (m), the initiator (i), and the first moment of
polymer (£) can be written as,

mintj (79)

s.t. : m = 1.16 * 109 * (2//)1/2exp -21620/#I\l - c)l'2(l - m)/g(m) (80)

c = 1.58 * 1015 * exp -30800/#T(l - c) (81)

£ = 1.09 * 1014 * / * exp -30800/i?T(l - c) (82)



Table 8: Parameter values used in the Zeolite distribution example.

Parameters

fcaz
Ram

hz
kbm

kcz
Rcm

DA,
DAm

DBz

DBm

Units

*lO3cm3/mol/s
*103 cm3/mol/s

*1025-x

• lOV"1

*102 cm3/mol/s
*lO2cm3/mol/s

*10~5 cm2/s
*10-5cm2/s
*10~4cm2/s
*10~4cm2/s

Base Cases

10"
1
8
1
3
8
1

103
1

103

case numbers
1

8.2
1

6.6
1
3
7
1

102.4
1

102.4

2
6.4

1
5.2
1
3
6
1

101.8
1

101.8

3
4.6

1
3.8
1
3
5
1

101.2
1

101.2

m(tt) = 0.5; £{tf) = 0.005

g(kt/kto) = 1.0 0 < m < 0.3
= 1.522 - 1.818m 0.3 < m < 0.8

A.2 Model description for Zeolite distribution problem

With flat plate geometry as used in [20], the model of problem can be stated as,

s.t. :•• DArd
2A/dx2 = kcrA + kaTA2

DBrd2B/dx2 = kbrB - kaTA2

j * = .05

(83)
(84)

(85)

(86)

(87)

(88)

(89)

(90)

The kinetic and transport parameters are the weighted average of the zeolite and silica-alumina,
for example

DAr = uDAz + (1 - u)DAmkar - ukaz + (1 - u)kam

The boundary conditions are given by

^A(O) = ^fl(O) = 0

and at the surface

A(R) = 1.6 *10smo//cm3

B(R) = 0 mol/cm?

(91)

(92)
(93)



References

[1] Ascher, U.M., R.M. Mattheij, and R.D. Russell, Numerical Solution of Boundary Value Prob-
lems for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ (1988)

[2] Ascher, U.M. and L.R. Petzold, "Projected Implicit Runge-Kutta for Differential Algebraic
Equations" SUM J. Num. Anal., 28, 4, p. 1097 (1991)

[3] Ascher, U.M., H. Qin and S. Reich, Stabilization ofDAE's and Invariant Manifolds, University
of British Columbia Technical Report 92-17 (1992)

[4] Ascher, U.M., and R.J. Spiteri, Collocation Software for Boundary Value Differential-Algebraic
Equations, University of British Columbia Technical Report 92-18 (1992)

[5] Bader, G., U.M.Ascher, "A New Basis Implementation for A Mixed Order Boundary Value
ODE Solver", SIAM J. Sci. CompuL, 8(4) , 483 (1987)

[6] Balakrishna S., Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA (1992)

[7] Biegler, L.T. and J.E. Cuthrell, "Improved Infeasible Path Optimization for Sequential Mod-
ular Simulators II The Optimization Algorithm.", Comput. Chem. Engng. , 9, 295 (1985)

[8] Biegler, L.T.,J. Nocedal, and C. Schmid, "A Reduced Hessian Method for Large Scale Con-
strained Optimization", SIAM J. Opt, to appear.

[9] Bock, H. G., "Recent Advances in Parameter Identification Techniques for O.D.E.", Numer-
ical Treatment of Inverse Problem in Differential and Integral Equation, Heidelberg, Federal
Republic of Germany (1983)

[10] de Boor, C, A Pmctical Guide to Splines, Applied Math. Science V.27, Springer, NY (1978)

[11] Chamberlain, R.M., "Some Examples of Cycling in Variable Metric Methods for Constrained
Minimization", Math.Prog., 16 (3) 78 (1979)

[12] Chen, S. and W Jeng, "Minimum End Time Policies for Batch wise Radical Chain Polymer-
izatioir, Chem Eng.Sci., 33, 735 (1978)

[13] Chung, Y., Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA (1991)

[14] Fiacco, A.V., "Sensitivity Analysis for Nonlinear Programming Using Penalty Meth-
ods"JIath.Prog., 10, 287 (1976)

[15] Gritsis, D., Ph.D. Dissertation, University of London, London, U.K. (1990)

[16] Han, S.P., "A Globally convergent Method for Nonlinear Programming", J. Optim. Theory
Applies., 22(3), 297 (1977)

[17] Hindmarch, A.C., ODEPACK, A Systematized Collection of ODE Solvers, in Scientific Com-
puting, R.S. Stepleman et a!, (eds.), North-Holland, Amsterdam, (1983)

[18] Kolstad, CD. and L.S. Lasdon, "Derivative Evaluation and Computational Experience with
Large Bilevel Mathematical Programs", J. of Optimization Theory and Applications, 65, 485
(1990)

[19] Logsdon, J. S., Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA (1990)

91



[20] Martin, G.R., C.W.White III and D.B. Dadyburjor, "Design of Zeolite/Silica-Alumina, Cata-
lysts for Triangular Cracking Reactions", Journal of Catalysis, 106, 116 (1987)

[21] Pantelides, C.C., "The Consistent Initialization of Differential-Algebraic Systems", SIAM
J.Sci.Stdt. Comput, 9(2), 213 (1988)

[22] Pontryagin, L.S., V. Boltyanskii, R. Gamkrelidge and E. Mishchenko, The Mathematical The-
ory of Optimal Processes, Interscience Publishers Inc., New York (1962)

[23] Russell. R.D. and J. Christiansen, "Adaptive Mesh Selection Strategies foj* Solving Boundary
Value Problems", SIAM J. Numer. Anal., 15(1), 59 (1978)

[24] Sacks, M.E., S. Lee and J.A. Biesenberger, "Optimal PoDcy for Batch, Chain Addition Poly-
merization", Chem Eng.Sci., 27, 2281 (1972)

[25] Schmid, C. and L.T. Biegler, "Quadratic Programming Methods for Tailored Reduced Hessian
SQP'\ submitted to Comput. Chem. Engng. (1993)

[26] Schmid, C, P. Tanartkit and L.T. Biegler, Simultaneous Flowsheet Optimization Using Tai-
lored Reduced Hessian SQP, presented at AIChE Annual Meeting (1993)

[27] Vasantharajan, S., Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA (1989)

[28] Vassiliadis, V., Ph.D. Dissertation, University of London, London, UK.(1993)

[29] Wolbert, D., X. Joulia, B. Koehret, and L.T. Biegler, "Optimal Flowsheet Sensitivity in a.
Sensitivity Oriented Environment", Comput. Chem. Engng., 17, S117-122 (1993)


