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Abstract

This paper presents a general overview of the global optimization algorithm by Quesada

and Grossmann (1993a) for solving NLP problems involving linear fractional and

bilinear terms, and it explores the use of alternative bounding approximations. These

are applied in the global optimization of problems arising in different engineering

areas and for which different relaxations are proposed depending on the mathematical

structure of the models. These relaxations include linear and nonlinear

underestimator problems. Reformulations that generate additional estimator

functions are also employed. Examples from structural design, batch processes,

portfolio investment and layout design are presented.
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Introduction

One of the difficulties in the application of continuous nonlinear optimization

techniques to engineering design problems is that one is often confronted with the

following dilemma. One can either apply fairly efficient gradient based techniques (e.g.

SQP or reduced gradient algorithms) or else one can apply direct or random heuristic

search procedures (e.g. complex method or simulated annealing). The problem is that

the former methods may only produce rigorous results when certain convexity

conditions hold, while the latter may in principle produce improved solutions but at a

computational expense that is unacceptably high. Also, if the nonlinear programming

(NLP) problem at hand is known to be nonconvex the first alternative is generally

inconsistent with the goal of finding a global optimum. While the second alternative

may offer greater hope to globally optimize a design, the heuristic nature of these

methods may produce results that are in fact worse than the ones obtained by a local

search technique. Despite these difficulties, rigorous deterministic methods for

nonconvex NLP models have been developed, especially over the last five years (see

Horst (1990) for a recent review). In this way it Is increasingly possible to find global

optimum solutions with reasonable computational expense . The specific structure of

design problems is also being identified and better understood given the increased

trend towards the use of equation based modeling systems.

The objective of this paper is to first present an overview of the global

optimization algorithm proposed by Quesada and Grossmann (1993a) for solving

nonconvex NLP problems that have the special structure that they involve linear

fractional and bilinear terms. These problems can be represented in general as follows:

mingo
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As shown above, the objective function and the constraints generally involve linear

fractional and bilinear terms corresponding to the two summation terms, while the



last term htfx, y, z) is assumed to correspond to a convex function. These type of

problems arise very often in engineering and management applications (see Floudas

and Pardalos, 1990). The difficulty involved in solving these NLP optimization

problems is that a straightforward application of common local search methods is

generally not rigorous. Not only can a conventional NLP algorithm produce local

solutions that are suboptimal, but the method may even fail to converge to a feasible

solution due to the nonconvexities of the constraints.

A major objective of this paper is to explore the possibility of using alternative

bounding approximations for deriving valid relaxations. Different relaxations are

proposed depending on the mathematical structure of the model to be solved. Linear

and/or nonlinear estimators functions as the ones considered in Qucsada and

Grossmann (1993a, 1993b) are included. In some cases, additional approximating

functions are obtained through reformulating and linearizing the original models.

These constraints, that are redundant for the original nonconvex problem, can often

help to obtain a tight convex relaxation.

Another objective of this paper is to consider the application of the proposed

methods to problems from a variety of areas. The first includes a layout design model.

In this model a fixed layout configuration is given and the dimensions of the different

units are to be optimized. A portfolio investment model is also considered and in this

case, the percentage to be invested in each security is optimized to minimize the total

variance. Also, a model for the design of truss structures is presented. The objective in

this case is to minimize the total weight of the structure. Finally, two models for batch

process design are considered where the size of the equipment has to be selected.

Numerical results are reported for all these problems.

Algorithm Outline

The major steps in the global optimization algorithm by guesada and Grossmann

(1993a) for NLP problems involving linear fractional and bilinear terms are as follows:

Step 0. Initialization step.

(a) Set the upper bound to f* = «, the tolerances e and y are selected.

(b) Bounds over the variables involved in the nonconvex terms are obtained. For

this purpose specific subproblems can be solved or a relaxation of the original problem

is used. Update the upper bound f* •



(c) Define space fto as a valid relaxation of the feasible region in the space of the

nonconvex variables. The branch and bound search will be conducted over HQ. The list

F is initially defined as the region QQ.

(d) Construct a convex underestimator problem (CUJ by replacing the nonconvex

terms in the original problem with additional variables and introducing valid convex

approximations of these nonconvex terms. Constraints that are valid but were not

present in the original problem because they were redundant can be included to tighten

the convex relaxation.

Step 1. Convex underestimator problem.

(a) Solve problem CUL over the relaxed feasible region Cl0. The solution

corresponds to a valid lower bound (P-) of the global optimum. The actual objective

function is evaluated if this is a feasible solution; otherwise the original problem is

solved using the convex solution as the initial point Update the upper bound.

(b) If (f* - fH < £ f* stop and the global solution correspond to f\

Step 2. Partition.

From the list F consider a subregion ft, (generally the region with the smallest f*

is selected) and divide it into two new subregions ftj+i and Qj+2 which are added to the

list F and subregion Qj is deleted from F.

Step 3. Bounding.

(a) Solve problem CUL for the two new subregions.

(b) If the solutions are feasible evaluate the actual objective function. Otherwise the

original nonconvex problem can be solved according to a given criterion.

Step 4. Convergence.

Delete from list F any subregion with (f* - fH £ e f* . If list F is empty then stop

and the global optimum is f*; otherwise go to step 2.

Remarks

The global optimization algorithm described in the previous section uses a spatial

branch and bound procedure (steps 2 to 4). As many of the branch and bound methods,

the algorithm consists of a set of branching rules, and upper bounding and lower

bounding procedures.



The branching rules include the node selection rule, the branching variable

selection and the level at which the variable is branched on. A simple branching

strategy has been followed in this work. The node with the smallest lower bound is the

node selected to branch on and two new nodes are generated using constraints of the

type,

(1)

Different strategies can be used to do the branching. These include generating

more than two nodes from a parent node, using different type of branching constraints

or different node selection rules. For the latter, some type of degradation function

similar to the one used in branch and bound for MILP problems can be used.

Additional criteria used in branch and bound algorithms for MILP problems

can be extrapolated to the global optimization case. These include the fixing of

variables, tightening of bounds, range reduction, etc. (see Sahinidis, 1993). One main

difference between the branch and bound for binary variables and the spatial branch

and bound search used here, is the fact that it might be necessaiy to branch more than

once on the same variable. When in the selection rule there is more than one variable

within a small range it is often useful to branch on a variable that has not been used

previously even though it may not be the first candidate.

Information of the convex underestimator problem can be employed to select

the branching variables. At this point only the difference between the convex solution

and the actual value of the functions is used. It is also possible to consider dual

information, second order information or to generate small selection subproblems

(Swaney, 1990).

With respect to the upper bound there are two cases. The first one is when the

feasible region of the original problem is convex. In this case the evaluation of the

original objective function at the solution of the convex underestimator problem often

provides a good upper bound. For the case of a nonconvex feasible region it is

sometimes necessaiy to obtain an upper bound through a different procedure since the

solution of the convex underestimator problems might be infeasible for the original

problem. In some particular cases it may be better to use a specialized heuristic to

obtain a good upper bound. In general, however, it may be necessary to solve the

original nonconvex problem to generate an upper bound. As pointed out in Quesada and



Grossmann (1993a, 1993b) the solution of the convex underestimator problem provides
a good initial point to the nonconvex problem.

Our previous work has mainly concentrated on the generation of tight convex

relaxations that allow for an efficient lower bounding of the global optimum. The

major motivation has been to reduce the effort in the spatial branch and bound search.

The use of additional convex relaxations that are somewhat different from the ones

used in Quesada and Grossmann (1993a) is explored for the models presented in this

paper.

To be able to obtain a tight convex relaxation it is necessary to obtain a good

approximation of the convex envelope of the nonconvex function. The linear and

nonlinear estimators functions used in Quesada and Grossmann (1993a) correspond to

the convex envelope over the boundaries defined by lower and upper bounds of the

nonconvex variables. These bounds are a relaxation of the actual feasible region. It is

often the case, however, that they do not yield a tight convex relaxation of the feasible

region (see Fig. 1). The use of projections such as the ones described in Quesada and

Grossmann (1993a, 1993b) help to obtain tighter relaxations of the feasible region.

Moreover, reformulation and generation of additional constraints can also improve

the approximation of the convex envelope over a tighter feasible region. To illustrate

these points consider the linear constrained feasible region in Figure 1.

t -

Figure 1. Linear constrained feasible region and relaxations.



Lower and upper bounds over the variables x and y can be obtained through
heuristics or the solution of LP subproblems. In this particular case, the best possible
bounds are given by xL, xu, y1* and y". Now, consider the linear under and over estimators
for the bilinear term, xy, used in Quesada and Grossmann (1993a 1993b),

(2)

Equations (2) and (3) correspond to the convex and concave envelopes of the
bilinear tenn over the relaxation of the feasible region defined by the lower and upper
bounds of the variables. As pointed out in Quesada and Grossmann (1993a, 1993b)
these estimators have the property of matching the actual function at the boundaries.
However, these equations do not always provide tight bounds since the relaxation of the
actual feasible region can be very loose. Consider, the value of the bilinear term over
the boundary defined by the first constraint x + aiy = blt that is given by;

xysfoi-atfjysbiy-a^2 (4)

This is a concave term and better approximations of it can be obtained by

reformulating the problem. Take that particular inequality, bi -x - aiy £ 0, and

multiply it by the valid bound constraint x - xL £ 0, obtaining.

- x2 (5)

The above is a concave overestimator and therefore a valid convex constraint

that can be included in the formulation. It is also tighter since it provides an exact

approximation of the bilinear term over the linear constraint. In the case that the

valid bound constraint xu - x £ 0, is used to generate additional constraints, the

following equation is obtained

-b1(xu-x)-x2 + xl*x + a1x
ily<aixjr (6)

This is a concave underestimator and the concave term, -x2, has to be linearized
over the bounds, xL and xu. This corresponds to the approach followed by Sherali and
Alameddine (1992). With this reformulation-linearization a linear underestimation of
the bilinear term over that particular boundary is obtained. In fact this is the best
approximation of the bilinear term in this boundary since it projects in a concave form
(4) and the approximation is a linear estimator that matches the actual function at the
extreme points A and B. Equation (6) corresponds to the convex underestimator



envelope of the bilinear term in that boundary and helps to generate a tighter convex

approximation.

In the case of constraints like the second one in Fig. 1, x + a2y £ b2, the bilinear

term behaves in a convex form. Convex quadratic underestimators that match the

function in the boundary and tighter linear overestimators can be obtained.

The introduction of these additional constraints yields a tighter convex

underestimator problem. However, there is a trade-off since the size of the

underestimator problems can become substantially large. Nevertheless, the use of

projections or some particular mathematical structures can be employed to identify the

most relevant additional constraints so as to avoid generating a large number of

constraints. In the following applications different types of relaxations are used which

include linear and/or nonlinear constraints.

Layout Design

In this example a floor layout is given in which the distribution of the rooms is known.

The dimensions of the rooms are to be optimized to minimize the total cost that is a

function of the area of the rooms.

Dinnin

Kitchen

groom

Living

-yr

y

room

Bathroom

Storage

Bedroom

Bedroom

1

2
y«

x2

Figure 2. Layout for example 1.

Example 1

Consider the layout given in Fig. 2. Here the two bedrooms have the same length. The

storage room and the bathroom have also the same length. The complete formulation is

given by; »
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min f = 2 ( x ^ + x&J + xiY2 + *2yt + *ay4 + X4jr6 + X4y7 + 0.5

yT = y 1 + y 2

yT=y6 + y7

XT= X! + X2 4- X3 + X4

The objective function consists of minimizing the total cost as a function of the

area of the rooms. The fifth and sixth constraints ensure that some hall space is left for

the doors. Bounds over the dimensions of the rooms are given. The feasible region is

linear and the nonconvexities are involved in the objective function. The bilinear

terms can be linearized (w,j = xy,) and the linear underestimators used in (2) and (3) are

included.

j + yJ
Lx4 - xf-yf (7)

wr xty £ x^yj + yJ
uxi - x^y/* (8)

Only underestimators are considered because the bilinear terms are only

present in the objective function with a positive coefficient. The nonlinear estimators

are not used since there are no bounds over the individual bilinear terms (see Quesada

and Grossmann, 1993a). The linear underestimates problem is solved and a solution of

f1- =130 is obtained. The approximations are exact and this solution corresponds to the

global solution with Xi=3, x2=5, x3=2, X4=4, yi=5, y2=3, y3=3, y4=2, y5=3, y6=4 and y7=4.

Example 2

A second layout example is considered using a similar configuration (see Fig. 3). In this

case the dimensions of the bathroom are allowed to change independently.

Constraints over the aspect ratio and the size of the rooms are included. The objective

function contains an additional term that accounts for the perimeter of the layout. The

complete formulation is the following.



minf= 10x,yi

+ 1.

st yT=yi+y2

Figures. Layout for example 2

3jr3+ 1.5x7y7+ 1.

+ xT

X2+X3 + X7

X 3

This new problem has a nonconvex objective function and nonlinear

constraints. The data for the ratio constants (a,, b,) and the area lower bounds (d,) are

given in Table 1. The nonconvex terms in the objective function are linearized and

linear estimators are introduced. The nonlinear constraints over the area can be

written in a convex form as.
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Room

a.

b,

d<

1

1.25
1.5

16

2

1/3

1/2

40

3 1 4
1/1.5 1.25
1/1.25 1.5

10 20

5

1

1.25
4

6

1

1.25
4

7

1.25
1.5

20

8

1.25
1.5

20

Table. Data for the second layout example.

Additional convex nonlinear approximations can be generated. These

nonlinear constraints are obtained using the aspect ratio constraints. Consider

equation

(10)

multiplying by the constraint yt £0 and linearizing, yields

y (11)

which is a convex constraint. In the same form the other ratio constraints can be

multiplied by x, £ 0 to obtain the following constraints;

a1xl
2-w1<0 (12)

In this form a convex nonlinear underestimator is obtained by introducing

equations (7), (8), (9). (11) and (12) in model NLPuvrc a n d linearizing the bilinear terms.

The convex nonlinear underestimator problems has a solution of i1* = 440.6. This

solution is feasible and has an actual objective function of f = 440.99. Since the

difference is e = 0.07% it is considered as the global optimal solution.

Optimal Design of Structures

An application in civil engineering is the design of a truss structure (Grossmann et al.f
1992). It is assumed that a truss consists of a given number of bars, m, with a fixed

location and that are subject to a number of different loading conditions (see Fig. 4).

The objective is to determine the cross section areas of the bars to minimize the weight

of the truss structure. The NLP formulation is the following,

a) Objective function, minimize the total weight

11



m

f= Z Pi^i^i (13)

b) Equilibrium equations
m

S b i k s i J = PJk for j=l . . .L,k=l . . .n (14)

c) Compatibility equations

v,j for i= l . . .mj= l . . .L (15)

d) Hooke's law
E,

for i=l...mJ=l...L (16)

e) Stress equations
E.
-jĵ VysOy for i=l...mJ=l...L (17)

0 Bounds

(18)

Sy" (20)

V y ^ V y ^ V y " (21)

0<a1
L<a1<a1

u (22)

where n is the number of degrees of freedom. L the number of loading conditions. The

parameters are the following; Xf is the length of bar i. Et is the modulus of elasticity of

bar i. pt is the density of bar i, PJk is the kth component of load at condition j. blk is the

direction cosine relating force in bar i with degree of freedom k. The variables are a(J the

stress of bar i for condition j, at the cross section area of bar i, stJ the force in bar i for

condition j, vy the elongation of bar i for condition j and dJk the displacement at degree

of freedom k for condition j.

The objective function of this model is linear and the nonconvex terms in the

form of bilinearities are involved in Hooke's law equations (16).

Example 3

This example consists of the truss illustrated in Fig. 4. The modulus of elasticity is

lxlO7 psi, the density is 0.1 lb/in3 and the maximum stress is 20,000 psi in

compression or tension. The remaining data is given in Table 2.

12



Bar

b«

bQ

1

-0.89443

-0.44721

111.8034

2

-0.95783

-0.28735

104.4031

3

-0.99504

-0.0995

100.4988

4

-0.99504

0.09950

100.4988

5

-O.95783

0.28735

104.4031

-2 £ dJk <, 2, -200,000 <> Sy £ 200,000, -0.22 £ v,j £ 0.22,0 £ a1 £ 10, -20,000 £ o,j £ 20,000

Table 2. Data for example 3.

Figure 4. Structure/or example 3.

The bilinear terms are linearized by Wy = Vy at and linear over and

underestimators are included. In this case it is possible to exploit further the

mathematical structure of this problem. Additional constraints are generated using

the stress equations (17),

Multiplying by at £ 0 yields.

that can be linearized with Zy = c,j a, to obtain

E,

(17)

(23)

(24)

Linear over and underestimators are also included for zy » ay 34. The resulting LP

model includes the estimators for z^, w,j and the equations (24). The solution of this

problem is P* = 147.5 lb and the approximations are exact corresponding to the global

solution with a= (7.102,0,0,0,6.525). If the additional equation (24) with the

corresponding linear estimators is not generated the lower bound yields f* = 144.0 lb

which represents a 2.3 % gap from the global optimum. When the original nonconvex

13



problem is solved with MINOS 5.2 providing zero values as an initial point no feasible
solution is obtained.

Example 4

Consider the truss shown in Fig. 5. The modulus of elasticity is lxlO7 psi, the density 0.1

lb/in3 and the maximum stress is 25,000 psi in compression or tension. The remaining

data are given in Table 3.

Bar

b,,

b Q

b o

bM

b f i

be

tv
b e

1

1

0

0

0

0

0

0

0

360

2 !

-1

0

0

0

1

0

0

0

360

3

0

0

1

0

0

0

0

0

360

4

0

0

-1

0

0

0

1

0

360

5

0

0

0

-1

0

0

0

0

360

6

0

0

0

0

0

0

0

-1

360

1 •>
0

0

.7071

-.7071

0

0

0

0

509.1

1 *
-.7071

-.7071

0

0

0

0

0

0

509.1

9

-.7071

.7071

0

0

0

0

.7071

-.7071

509.1

10

0

0

-.7071

-.7071

.7071

.7071

0

0

509.1

10, -250,000£Sij£250,000. -1.273SVyS 1.273, 0£a , £ 10, -25,000 £ a,, £ 25,000

Table 3. Data for example 4.

The same reformulation than in example 3 is used. The LP solution is f1- = 1,584

lb and it corresponds to the global solution with a = (8.0.8,4,0,0,5.657.5.657,5.657,0). It

is important to notice that in both examples the reformulated LP converges in one

iteration. The non reformulated LP has a solution of f* = 1,373 lb that is still 15% under

the global optimum.

> f
100,000 lbs

> f
100,000 lbs

Figure 5. Structure for example 4.
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Portfolio Investment

A set of securities, i, is available for investing. The investment has to be done achieving

a target mean annual return according to the mean annual returns on the individual

securities, ni|. The total variance of the investment has to be minimized. By defining Xi

as the fraction to be invested for each security i, the optimization problem can be

expressed as:

min f

target (NPL,)

In this case the bilinear terms in the objective function are linearized

introducing variables wu and the linear estimators. The quadratic terms X42 remain in

the convex underestimator problem when the variance coefficient, vu, is positive. The

upper bounds on the investment fractions, xt, can in some cases be tightened according

to the following equation

X4 £ min [1, target/mi]

Example 5

(25)

The data for this example are given in Table 4. The initial lower bound is fL= 5.22 and

corresponds to an actual objective function of f = 5.429. Since the difference is greater

than the tolerance, e, a branch and bound search is conducted. After 7 nodes the global

optimal of f =5.429 is obtained with x=*(0.143,0.143, 0.714, 0.0).

v,,
vQ

v o

V*

m,

t 1
4

3

-1

0

8

2

3

6

1

0

9

3

-1

1

10

0

12

1 4

0

0

0

0

7
target = 11

Table 4. Data for example 5.

15



Batch ProcessDesign

Consider the design and production planning of a multiproduct batch plant with one

unit per stage (see Fig. 6).

Figure 6. Multiple stages batch process.

The objective is to maximize the profit given by the income from the sales of the

products minus the investment cost Lower bounds are specified for the demands of the

products and the investment cost is assumed to be given by a linear cost function. Since

the sizes of the vessels and the number of batches are assumed to be continuous, this

gives rise to the following NLP model:

max P=

S.t 1-1...N. j=... (NLPp)

n,

where nt and B, are the number and size of the batches for product i, and Vj is the size of

the equipment at stage j. The first inequality is the capacity constraint in terms of the

size factors Sy. the second is the horizon constraint in terms of the cycle times for each

product Ti and the total time H, and the last inequality is the specification of lower

bounds for the demands QiL. Note that the objective function is nonconvex as it

involves bilinear terms, while the constraints are convex.

Example 6

The data for this example are given in Table 5. A maximum size of 5000 L is specified

for the units in each stage.

16



Product

A

B

C

D

T,

(hrs)

16

12

13.6

18.4

Pi

($/Kg)

15

13

14

17

aL

(Kg)

80000

50000

50000

25000

1

2

4

3

4

Sa(L/kg)

1 2 |
3

6

2

3

3

4

3

5

4

:8,000hrs

Table 5. Data far Example 5

When a standard local search algorithm (MINOS 5.2) is used for solving this

NLPp problem the predicted optimum profit is $8,043.800/yr and the corresponding

batch sizes and their number are shown in Table 6.

Product

B,

A 1 B 1 C 1 D
1250 833.33 1000 1250

79.15 60 50 289.87

Table 6. Suboptimal solution Cor example 5

Since the formulation in (NLPp) is nonconvex there is no guarantee that this

solution is the global optimum. This problem can be reformulated by replacing the

nonconvex terms in the objective function by underestimator functions to generate a

valid NLP underestimator problem with the following constraints;

(26)

(27)

The underestimator functions require the solution of LP subproblems to obtain

tight bounds on the variables, and yield a convex NLP problem with 8 additional

constraints.

The optimal profit predicted by the nonlinear underestimator problem is

$8,128,100/yr with the variables given in Table 7. When the objective function of the

original problem (NLPP) is evaluated for this feasible point the same value of the

objective function is obtained proving that it corresponds to the global optimal

solution. It is interesting to note that both the local and global solutions had the

maximum equipment sizes. The only difference was in the number of batches produced

for products A and D.

17



Product

Bi

ni

A B C 1 D
1250 833.33 1000 1250

389.5 60 50 20

Table 7. Global optimum solution for example S

Alternative Model for Batch Process

The next example corresponds to an alternative formulation of the batch process

design problem considered in the previous section. A process with one line per stage is

also considered operating with single product campaigns. All the products require the

same sequence of processing stages. The sizes of the equipment VJt and the output of the

products, Qi, are optimized to minimize the cos t Removing the number of batches n4 as

variables the NLP formulation becomes;

for

(NLPB)

The first set of constraints corresponds to the volume requirements for each

unit with respect to all the products. The second constraint states that the total time of

production has to be smaller that the allocated time H. The third constraint represents

a raw material limitation. Bounds over the volumes, VJt and the production levels. Qi,

are given. Note that the nonconvexities appear in the time constraint in the form of a

sum of linear fractions. Nonlinear underestimator of these terms are included and

have the following form;

(28)

(29)

18



It is necessary to have bounds over the batch sizes Bt. These are given by the

following valid relaxations of the original constraints in NLPB.

(30)

(31)

Exflmple 7

This example involves 5 products and 6 stages, and the corresponding data are given in

Table 8. The following additional linear constraints are imposed;

(32)

(33)Qc+Qb^Qe

Product

QL

Qu

d,

P.
TLI

A

200.000

300.000

0.8

0.1

8.31

B 1
120.000

180.000

0.7

0.15

6.8

c 1
180.000

200.000

0.6

0.15

11.9

» 1
130.000

160.000

0.4

02

3.5

E

100.000

150.000

0.5

0.2

4.2

a, = 2,5: VjL = 3,000 It Vju - 6,000 It F=550,000

Tables. Data for batch design example 6.

The initial lower bound is $* = - 74,4480 and it corresponds to an infeasible

solution of NLPB. The original nonconvex problem is solved to generate an upper bound

using the solution of the underestimator problems as the initial point. In this form an

upper bound of f = -73,270 is generated. It is necessary to perform a branch and bound

and after 7 nodes the initial upper bound is proven to be globally optimal with tolerance

e= 0.01. The global solution has V = (5737, 3600, 3776, 4983, 4430, 4014).

Conclusions

This paper has presented a general overview of the global optimization algorithm by

Quesada and Grossmann (1993a) and outlined several alternative bounding

approximations which can be applied in layout design, truss structures, portfolio

investment and batch process design. As has been shown the use of some of these
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alternatives approximations can sometimes tighten the relaxations so that the
solution of only one convex programming problem is required.
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