
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Shape Optimization of Navier-Stokes Flows with
Application to Optimal Design of

Artificial Heart Components

Omar Ghattas, Beichang He, James F. Antaki

EDRC 12-67-95



SHAPE OPTIMIZATION OF NAVIER-STOKES FLOWS
WITH APPLICATION TO OPTIMAL DESIGN

OF ARTIFICIAL HEART COMPONENTS l

Omar Ghattas Beichang He
Computational Mechanics Laboratory

Department of Civil and Environmental Engineering
Carnegie Mellon University

Pittsburgh, PA 15213
{oghattas,bhe}@cs.emu.edu

James F. Antaki
Artificial Heart Program
Department of Surgery

University of Pittsburgh Medical Center
Pittsburgh, PA 15213

ant akiQpitt surg. nb • upmc. edu

Abstract

We consider the problem of shape optimization of systems governed by the station-
ary incompressible Navier-Stokes equations under flow and geometric constraints. Our
motivation stems from the problem of optimal design of artificial heart components. An
continuation-SQP algorithm is developed to efficiently couple Newton-based optimiza-
tion and flow solution. The main feature of the algorithm is to decompose the opti-
mization problem into a sequence of subproblems characterized by increasing Reynolds
numbers, and then apply continuation schemes on the design field, Hessian matrix, La-
grange multipliers, and flowfield. As an application we consider the optimum design of
the shape of a two dimensional tube—a simplification of a blood flow cannula that is a
component of an artificial heart. Representative numerical results show a factor of four
improvement in efficiency over a standard SQP algorithm.

1. Introduction

The shape optimization problem is to minimize or maximize, through variation of a domain
boundary or portion thereof, an objective function, subject to constraints imposed by a
boundary value problem as well as other physical and geometrical conditions. It arises
in a variety of engineering applications. An example is the optimum design of systems
governed by viscous, incompressible flows. Conventional trial-and-error design methods often
prove to be time-consuming, expensive, and ineffective in addressing such design problems.
Advances in computational fluid dynamics (CFD), numerical optimization methods, and high
performance computing have made it possible for us to envision computer-based systems that
will automate the design of such systems. The challenges to the development of such systems
are manifold:
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• design variables that effectively parameterize complex geometries must be identified,

• appropriate objective functions and constraints must be derived to account for the
desired functionality,

• efficient numerical methods for optimization, flow simulation, and their coupling must
be developed, and

• these methods must be translated into parallel algorithms and mapped onto high per-
formance computers.

Most of the existing literature relevant to shape optimization of fluid flows is in the
context of aerodynamics [1] [3] [4] [11] [13] [14] [16]. Aerospace and aeronautical engineering
often deal with high Reynolds number flows, where viscous effects are typically important
only within a thin layer near the boundary. Thus viscosity is ignored in most aerodynamic
shape optimization work, and fluid flow is modeled with the full potential or Euler equations.
Recent work has included the viscous effects with the thin-layer Navier-Stokes equations [5].
However, there are many applications in which an inviscid assumption is not warranted,
and the full Navier-Stokes equations have to be used. Some published work exists in this
direction. Pironneau derives first-order optimality conditions for the minimum-drag problem
[15]. Numerical solution of the nonlinear algebraic equations derived from these first-order
conditions is later attempted, but a number of approximations are introduced due to the
limited computing power of the 1970s [8]. Another application and extension of this work is
[2], where the optimum profile of a channel or duct is sought based on continuum sensitivity
analysis and a simple optimization algorithm.

In this study we consider the problem of shape optimization of systems governed by the
stationary incompressible Navier-Stokes equations under flow and geometry constraints. Our
interest in this work is motivated by the desire to optimize the design of an artificial heart
device, specifically a complete blood pump and its connecting conduits. Due to the difficulty
of solving a large nonlinear optimization problem and parameterizing the complex geometry,
we first concentrate on a problem that has been simplified with respect to geometry and
dimensionality. In this paper we discuss shape optimization of a two dimensional tube repre-
senting the inflow cannula of a circulatory assist device. Several different objective functions
are proposed to indirectly and directly model blood damage. Despite the simplifications
made, this problem retains many of the features and the same mathematical structure as the
general problem, thus allowing us to develop insight into solution properties, sensitivity of
the optimum to various problem data, influence of different objective functions, performance
of algorithms, etc. Furthermore, the design of an artificial heart cannula has proven to be a
challenge in the past due to the complex flow characteristics and the sparse theoretical and
experimental results available.

We discretize the Navier-Stokes equations by Galerkin finite elements; the resulting sys-
tem of nonlinear algebraic equations is solved by a Newton-continuation method. First
order design sensitivities are computed analytically after discretization. The nonlinearly-
constrained optimization problem is solved by a sequential quadratic programming (SQP)
method that requires only gradients of the objective and constraints. A continuation-SQP
algorithm is introduced to improve convergence and efficiency of the optimization process.
The main feature of this algorithm is to decompose the optimization problem into a sequence
of subproblems characterized by increasing Reynolds numbers. Continuation schemes on the



design field, Lagrangian Hessian matrix, Lagrange multipliers, and flowfield are then applied.
Several problems of finding the optimal shape of a two dimensional tube to minimize a model
of blood damage are solved.

The rest of the paper is organized as follows. Section 2 establishes the governing flow
equations and objective functions of interest, and formulates the shape optimization problem.
Section 3 reviews discrete sensitivity analysis and optimization of nonlinear systems. Section
4 introduces an efficient algorithm to couple the SQP optimizer and the flow solver through a
continuation scheme. Section 5 specializes the optimization method to the problem of optimal
design of a two dimensional tube, and Section 6 presents some representative numerical
results. We conclude with some remarks in Section 7.

2. Mathematical Formulation

Stationary, incompressible, Newtonian fluid flow in a domain Q, is governed by the Navier-
Stokes equations, i.e. the conservation of momentum equation

p ( v - V ) v - V . c r = g, (1)

the constitutive law
(2)

and the conservation of mass equation

V . v = 0, (3)

where v is the fluid velocity, a the stress tensor, p the pressure, g the body force, p the fluid
density, and /i the dynamic viscosity. A Newtonian constitutive law is the simplest model of
blood, with \i taken to be an approximate asymptotic value (4.0 cps).

The following local and global functions are proposed to model blood damage; they are
relevant to other applications as well. They may be introduced as objective or constraint
functions.

• The rate of energy dissipation due to viscosity:

$ = lp(Vv + Vv r ) : (Vv + VvT) (4)

• Maximum shear stress, e.g. in two dimensions:

rm*v = \ 11 xx —— J + o\y (5)

• Magnitude of vorticity:
u> = |V x v| (6)

• Integral of the dissipation function over flow domain, both unsealed and scaled by area
or volume of the domain:

Jn



• Integral of maximum shear stress, both unsealed and scaled:

Tmaxdil, f = -T-— (8)-L
• Integral of vorticity magnitude, both unsealed and scaled:

LJ = I u dQ,, Q = (9)

The critical micro flow criteria for the design of artificial heart components are (1) minimizing
blood damage (hemolysis) and (2) avoiding blood clotting (thrombosis). It is well known
that blood damage is directly related to high shear stresses and exposure times experienced
by blood cells. In addition, the existence of regions of recirculation and stagnation have
been demonstrated to bear strong correlation to the onset of clotting and to the deposition
of blood elements within prosthetic devices. The above functions involving vorticity and
dissipation are reasonable mechanisms for reducing recirculation and thus thrombosis, while
the shear stress functions are directly related to hemolysis of blood.

We may choose any convex combination of the six global functions in Equations (7)-(9) as
our objective function. In addition, limits on allowable values of the local functions (4)-(6)
may be introduced as inequality constraints. Conditions which ensure a valid shape and limit
the size of the shape have to be introduced as geometric constraints. We will discuss such
geometric constraints in Section 5 in the context of a two dimensional tube. An appropriate
statement of a continuous problem arising in the optimum design of an artificial heart device
might be, for example, to minimize the integral of dissipation $ in (7), subject to geometry
and physics constraints, including equalities in the form of the Navier-Stokes equations (1),
(2), and (3), and inequalities induced by demanding that the local maximum shear stress
(5) not exceed an allowable value throughout the domain. The aspect of the design that we
have under our control is its boundary (or part of it). Thus, this problem is one of shape
optimization.

3. Numerical Optimization

The shape optimization problem described in the previous section cannot be solved in closed
form; thus, we seek a numerical solution. By discretizing the flow domain and approximating
the field variables with finite elements, the discrete form of the governing flow equations as
well as the global functions (7)-(9) can be expressed as the sum of integrals over each
element. On the other hand, the local functions (4)-(6) are defined pointwise; thus, it is
appropriate to define them at element centroids. A finite number of design variables results
from a suitable parameterization of the shape. The resulting optimization problem can then
be stated as finding, from the space of shapes spanned by the shape parameterization, the
one that minimizes the objective while satisfying the constraints. The problem can thus be
transformed into a nonlinear programming problem (NLP).

The approach taken to solve the NLP is to eliminate the governing state equations (the
discrete Navier-Stokes equations) and state variables (velocities and pressures) at each design
iteration by solving them for the current shape. The values of the state variables are then



used to evaluate the objective function. The implicit function theorem is invoked to find
gradients of objective and constraint functions. In the future we will consider methods that
retain the state equations as equality constraints, thereby obviating the need for flow solution
at each iteration [14]. An SQP method is used to solve the optimization problem. It makes
use of a quasi-Newton, in particular a BFGS, approximation to the reduced Hessian; thus,
only first derivatives of the objective and constraints with respect to design variables are
required.

We begin with the weak form of the Navier Stokes equations,

Find v € H1 (ft) and p € L2 (ft) such that:

a(v, w) + 6(p, w) + c(v, v,w) = 0 for all w € H1 (ft), (10)

&(g,v) = 0 for all q € L2(ft),

where
a(v, w) = / | (Vv + VvT) : (Vw + VwT) dft, (11)

&(p,w)= - / p V - w d f t , (12)
Jn

and
c(v,v,w)= / pw(v> V)vdft. (13)

Jn
Here, H1 (ft) is the Sobolev subspace of all functions having one square integrable derivative
over ft and that satisfy the homogeneous essential boundary conditions, and L2 (ft) is the
space of functions that are square integrable over ft.

Upon introduction of the finite element approximations v^ and ph, i.e.

1=1 i=l

we obtain the discrete problem corresponding to Galerkin's method,

Find Vfc £ Vh and ph 6 Vh such that

a(vji, wfc) + 6(p/l, wfc) + c(v^, vfci wfc) = 0 for all w^ € V*,

and
b{q,vh) = 0 for all q €Vh,

where the finite element spaces Vh and Vh for velocity and pressure,

Vh = span {<£!,...,</>„*}, Pfc = span{xi,...,Xnp}, (16)

are subspaces of the infinite dimensional spaces in (10), i.e. Vh C Hx(ft) and Vh C L2(Q).
The discrete problem (15) is a set of nonlinear coupled algebraic equations, consisting of the
nv discrete conservation of momentum equations,

nv nP nv

'£ia(<l>i,4>t)vi + '52Kxj,<l>t)Pj+ E c(<f>h<t>r,(j>e)viVr = 0 ^ = l , . . . , n v , (17)
t=l j= l t,r=l
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and the np discrete conservation of mass equations,

(\m,<fc>.- = 0 m = l , . . . ,7i». (18)

See, for example, [9] for details on finite element approximation of Navier-Stokes flows.

Let us represent the discrete momentum equations (17) as hv = 0 and the discrete mass
equations (18) as hp = 0, and let us define vectors of unknown nodal quantities by letting
v 6 9ftnV represent the fluid nodal velocities and p 6 5fnP the fluid nodal pressures. We refer
to the combined vector u where,

as the state variable vector, and its elements as the state variables, and the combined equa-
tions h = 0 where

as the state equations, and h as the state equation residual.

Next we outline the computation of gradients of the objective and constraints with respect
to design variables, i.e. the design sensitivity analysis problem. Here, we have chosen to
discretize first, and then differentiate, as opposed to the reverse. Certainly, the reverse is
possible, e.g. [15], and under certain conditions the two approaches yield identical gradients.

Symbolically, if the design variables are represented by TT, the discrete form of any of the
scalar functions of (4)-(9) can be written in the general form

« = ¥(u(ir),ir), (19)

where the dependence of $ on TT is both implicit through the dependence of u on TT, as well
as explicit. Thus, the gradient of $ with respect to the design variables TT is given by

DlZ ~ 8W ̂  dTT On' [ U j

The Jacobian of the state variables u with respect to the design variables TT can be found by
differentiating the state equations h(u(?r), TT) = 0 with respect to TT and solving the resulting
system

* L * i = - * L (21)

for du/dir. Using the chain rule and the above results, and representing the Jacobian of h
with respect to u as the matrix J, we obtain

_ dxdv_ _ dxdh T<w_
Dw ~ 8* dx

where x represents the mesh coordinates. Depending on whether the product

„,
is formed first, the sensitivity analysis method is known as either direct or adjoint1.

1 Of course, J is not inverted; is solved for the appropriate righthand side vector.
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The Jacobian of x with respect to TT is known as the design velocity field, and depends
on the mesh generation process. For general geometries and meshes, the design velocity field
may be computed by an elastic analogy.2 However, here we optimize geometries that are
meshable in closed form, and thus we compute the design velocity field analytically.

4. Continuation-SQP algorithm

SQP is generally regarded as the most efficient general method for solution of nonlinearly-
constrained smooth optimization problems [12]. It can be viewed as a Newton method
for solving the first order optimality conditions of the nonlinear optimization problem (e.g.
[7]). It works by solving a sequence of linearly-constrained quadratic optimization problems,
in which the objective is a quadratic approximation of the Lagrangian function, and the
constraints are linear approximations of the nonlinear constraint set. In this work, a quasi-
Newton approximation is used for the Hessian matrix of the Lagrangian function, thereby
avoiding the need to compute second derivative information. For the purposes of this paper,
we simply think of each iteration of SQP as a procedure for advancing values of the design
variables, given values of the objective functions and its gradient, and the constraint functions
and their Jacobian matrix. The design variables are updated in this manner until an optimum
is reached.

The most straightforward SQP algorithm for solving the discretized Navier-Stokes shape
optimization problem couples the optimizer and flow solver in such a way that the former
drives the latter by feeding it with shape parameters, while the latter serves the former by
providing it with values of the objective function and constraints, and their design sensitiv-
ities. Thus, Algorithm 1 shown in Figure 1 results. For clarity of presentation, we restrict
ourselves to the case in which constraints only consist of discrete state equations. The ob-
jective is denoted by \P. A simple Newton-continuation method is used to globalize the flow
solver: the flow is converged for a low Reynolds number problem; the Reynolds number is
increased; the flow solver is initiated with the solution from the previous Reynolds number
problem; and the loop is repeated until the target Reynolds number is reached. We refer
to this algorithm as a "black-box" method, in the sense that flow solver and optimizer are
completely distinct, and they couple in the least possible way during optimization. For each
shape, the flow is solved fully for the target Reynolds number. We use the term "black-box"
despite the fact that analytical gradients are used, in order to contrast this approach with
the one that closely integrates flow solver and optimizer. For mildly nonlinear problems, the
black-box approach may be sufficient. However, for highly nonlinear problems characterized
by large Reynolds numbers, the black-box method is inefficient and may not even converge.
Several measures can be taken to improve it.

First, a continuation scheme on Reynolds number may be adopted within the optimiza-
tion. Suppose we want to optimize a fluid flow of a certain Reynolds number, Re. Instead of
treating it as a single optimization problem, as is done in Algorithm 1, we decompose it into
m optimization subproblems, corresponding to a sequence of increasing Reynolds numbers.

2That is, the movement of the mesh due to a movement of the boundary is computed by treating the
domain as an elastic medium; the fluid mesh may double as the solid mesh. The derivative of the domain
mesh points with respect to the boundary mesh points is then easily obtained by differentiating the discrete
solid equilibrium equations.



Begin. )

initialize design variables TTI and set j = 1.

Solve a flow problem of Reynolds number Re.

Input includes TTJ. Output $j and

Perform one SQP iteration. Input

tfj and (DV/Dw)j. Output TT J+1 .

Figure 1: Algorithm 1.

For instance, if we let the Reynolds numbers increase by an equal increment ARe = Re/m,
then the ith subproblem is to solve the optimization problem under a flow of Reynolds num-
ber i ARe (1 < i < m). We use the optimum shape TT^"1) of the (t - l)th subproblem
as an initial guess for TT^ of the ith subproblem. This simple continuation on Re within
optimization plays a role similar to the continuation, also on Re, in the solution of Navier-
Stokes equations. Since this process generates better initial guesses for the NLP, it will tend
to improve the chances of convergence, as well as the speed with which it will occur.

Second, we use the BFGS approximation of the Lagrangian Hessian matrix H "̂""1' and
Lagrange multipliers Â 1""1^ provided by the (i — l)th subproblem as starting points for
H^ and A^, respectively, of the ith subproblem. Since our SQP algorithm builds a quasi-
Newton approximation to the Lagrangian Hessian, and since the continuation scheme solves
a sequence of related problems, it is reasonable to expect that H^""1) possesses useful infor-
mation for the i-th subproblem. A similar argument applies to the Lagrange multipliers. If
we can provide good initial approximations not only to the shape parameters but also to the
Hessian matrix and Lagrange multipliers, the number of optimization iterations should be
significantly reduced.

Third, we establish good approximations for the state variables at each iteration beyond
the first of each subproblem. A series of flow problems corresponding to a sequence of related
shapes must be solved when the i-th subproblem is solved with SQP. From one shape to the
next, the shape variables change from those of the previous shape by an amount ATT. The
state variable shape Jacobian matrix du/dir has been computed at the previous shape, if we
use the direct differentiation, as opposed to the adjoint, method. A first order approximation
of the change in the state variables due to a change in the design variables can be found by
multiplying the state variable shape Jacobian matrix by the design variable change vector.



Thus, for each new shape given by
TTW + ATTW, (23)

we initiate the flow solution with

( 0 ( | | ) l 0 ( 0 , ( 2 4 )

where uW is the vector of converged state variables corresponding to the shape TTW. By in-
troducing an improved approximation for the flowfield using existing sensitivity information,
we reduce the number of required iterations significantly. This device has been proposed in
[18] in the context of nonlinear elastic problems.

The continuation-SQP algorithm is summarized in Figure 2. Compared with Algorithm 1,
Algorithm 2 more tightly couples the optimizer with the flow solver. Flow solution is carried
out only to the Reynolds number associated with the current subproblem, and good initial
approximations are generated for shape parameters, state variables, Lagrange multipliers,
and the Hessian matrix, using available information. We expect a significant improvement
in performance, especially for highly nonlinear problems.

5. Optimal Design of a 2D Tube

We consider a two dimensional tube, shown in Figure 3a, with a corresponding mesh in
Figure 3b, in which fluid enters horizontally from the left, undergoes a 90° bend, and exits
downward in the vertical direction. This is a simplified model for a blood flow cannula of
an artificial heart device. It is assumed that the tube has a uniform section with a width or
diameter d. The problem is to design the shape of the middle axis of the tube, such that a
combination of the objective functions in Equations (7)-(9) is minimized subject to certain
geometric constraints. In this paper, the examples solved do not include the flow constraints
requiring that the local functions (4)-(6) not exceed certain allowable values everywhere in
the flow domain. The shape of the middle axis is a function r(9) in the polar coordinate
system, and it can be represented by a cosine series

p-i

r(9) = Y, ricos(2i0), 9 6 [0°,90°]. (25)
i=0

The coefficients r2-, i = 0 , . . . , P - 1 are thus our design variables.

The middle axis r(9) is subject to one of the following end constraints:

• both positions of entrance and exit are fixed, specifically, r(90°) = 71 and r(0°) = 72;

• the entrance is fixed while the exit position is allowed to vary within a given range,
i.e., r(90°) = 71 and 7^ < r(0°) < 7?;

• the entrance position is allowed to vary within a given range while the exit is fixed,
i.e., -y[ < r(90°) < 7? and r(0°) = 72;

• both positions of entrance and exit are allowed to vary within given ranges, namely,
7i < r(90°) < 7? and 72 < r(0°) < 7?-



( Begin. )

1
Initialize ^°\ H'0 ' , A<°\ and u<0>.
Set i = 1, j: = i,
and

Set H<0 = H i - 1 ' , A}0 = A l ' - "

1
Solve a flow problem of Reynolds number
ReW. Input includes *•£' and uj^. Output
y^0, (D9/Dn)^\ u|°, and (Du/Dn)^.

i
Perform on SQP optimization. Input
*}*>, Hf, A}'), fW and [D*/Dwf.
Output flrVO l t H ^ i (/]d A (/]x .

= A g p and uW = «{•>.

Figure 2: Algorithm 2.

These conditions impose linear constraints on the design variables, since

f fr(0°) = r(90°) = (26)
i = 0

In addition, design variables have to satisfy certain conditions to ensure a valid shape;
otherwise, invalid shapes such as the one shown in Figure 3c may arise (as it actually did).
Since we deal only with a discretized geometric model of the tube, shape constraints need
only be imposed at K distinct points (r(0t-),0t-), i = I,...,/*', uniformly spaced along the
middle axis of the tube. First, r(0) must be non-negative:

r(0 t)>O, » = 1 , . . . ,* \

Second, the shape cannot penetrate into itself:

(x - so,,-)2 + (y - aw)2 > \d2

(27)

(28)
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0 1 2 3 4 5 6 7 8

Figure 3: 2D tube: (a) geometry, (b) computational mesh, (c) invalid shape.

1 + (y - yo,i+i)2 > 7d
2 (29)

Here, (xoti, t/o,t) is the Cartesian coordinate of the z-th node along the middle axis of the
tube; (x, y) is the coordinate of the intersection point of the two lines perpendicular to each
other and passing through (xo,t, 2/o,t) and (xo,;+i, 2/o,t+i)- The values of (x,y) and (xo,t, 2/o,t)
are computed with the following formulae:

x = A r /A , y = Ay/A

oj - 3/0,1+1) + z

:Ot- = r(0i) cos 0{ , ?/o,t =

r _ r'(0i) cos0i - r(0i) sin0i

'^ " [(dr(9i)/d0)* + r(0i)*]1'2

(30)

(31)
(32)
(33)
(34)

(35)

(36)

(37)

We have developed a code that couples optimization and flow solution based on Algo-
rithms 1 and 2 of Section 4. The flow solver employs triangular Taylor-Hood elements, i.e., a
piecewise quadratic approximation of the velocity field and a piecewise linear approximation
of the pressure field are made. The Taylor-Hood element is known to be stable in the sense
of Babuska-Brezzi, and produces errors of order h3 for velocity and h2 for pressure [9]. A
banded LU factorization routine from the LAPACK library [6] is used to solve the linear
systems that arise at each step of Newton's method. Analytical gradients of the objective
functions are computed using the direct sensitivity analysis method indicated in Equation
22 and the formulae derived in [10], while the gradients of the constraints can be obtained
from Equations (26)-(37).



6. Numerical Results

In this section we present some representative numerical results. Specifically, we compare
the performance of Algorithms 1 and 2 of Section 4, as well as the influence of the initial
shape, number of design variables, end constraints on the tube, Reynolds number, and choice
of objective function, on the resulting optimal shape. Unless otherwise stated, the following
data apply to all cases: the Reynolds number, estimated based on the average flow velocity
at the entrance and a tube diameter of d = 1, is 1000; both entrance and exit are fixed
at r = 5.1; the objective function is the integral of the dissipation function $; the number
of design variables, i.e. the number of terms in the series (25), is taken to be 14; and the
termination criterion is that the Euclidean norm of the projected gradient (i.e. the Kuhn-
Tucker optimality condition, KTO) is less than 5 x 10"9. The computations are performed
on a Digital 3000-400 (Alpha) workstation equipped with 128Mb of memory.

Table 1 compares the performance of Algorithms 1 and 2 of Section 4, along with an algo-

Table 1; Algorithm comparison.
Comparison

Items
Algorithm 1
Algorithm 2-
Algorithm 2
1 flow soln

Optm
iter
46
68
50
—

LU
fact
6,455
2,622
1,350
100

CPU (in
clock ticks)
3,335,313
1,595,781
866,870
55,058

Elapsed time
(in seconds)

61,054
29,534
15,067

923

rithm named 2- that is intermediate between the two. Algorithm 2- improves on Algorithm
1 by extending continuation on Reynolds number to the optimization level, as in Algorithm
2, but does not include any of the other features. The table compares the total number of
optimization iterations, the total number of LU factorizations of the Jacobian of the state
equations with respect to the state variables, CPU time, and total elapsed time. The cost of
a single flow solution at the optimum is also included for comparative purposes. The number
of LU factorizations is a good measure of state variable-scalability, since for high Reynolds
numbers, flow solution and hence LU factorization will dominate the other computations
(computing the objective and constraint gradients, finding a basis for the null space of the
constraints, performing the quasi-Newton updates, and solving the reduced Hessian system).
Both algorithms were initiated from the same shape, which is depicted in Figure 5a.

Algorithm 2 is seen to be about half an order of magnitude more efficient than Algorithm
1. This is due to the continuation features described in Section 4. Furthermore, we see
that the total cost of solving the optimization problem is about 16 times more expensive
than performing a flow simulation, a factor about equal to the number of design variables
(which is 14). We remark that a direct search method, i.e. a method that does not exploit
derivative/curvature information and instead relies on some form of explicit or implicit "enu-
meration" of the design space, cannot possibly be competitive with an SQP-based method
for this class of problem. The reason is that 16 samples of 14-dimensional space are unlikely
to yield any useful information for such methods, which typically require a large number (rel-
ative to the dimension of the space) of function evaluations to identify the region surrounding
a minimizer.

Table 2 shows the numbers of optimization iterations and LU factorizations taken by
the two continuation algorithms for successive values of Re. The results show the improved
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convergence due to initiating the Hessian matrix and Lagrange multipliers with values from
the previous Reynolds number problem, i.e. reductions from 15 to 7, 16 to 11, and 16
to 11 in the number of optimization iterations for second, third, and fourth subproblems,
respectively. Furthermore, Table 2 shows the effect of using sensitivity information to improve
the initial guess of the flowfield, namely Equation 24. The resulting reduction in number of
LU factorizations is significant.

Table 2: Breakdown of optimization iterations and LU factorizations for suc-
cessive Re.

Re

250
500
750
1000

Algorithm 2-
Optm

iter
21
15
16
16

LU
fact
131
667
836
988

Algorithm 2
Optm

iter
21
7
11
11

LU
fact
119
98

574
559

Table 3 shows the effect of initial shape on the optimum. The optimizer is initiated with
two quite different shapes. The shape of Case I is depicted in Figure 4a, while that of Case II is
shown in Figure 5a. Table 3 lists initial and optimum values of the design variables, objective
function, and optimality condition. Clearly both initial shapes are far from optimum as well
as from each other, as evidenced visually and by the values of their optimality condition.
However the optimal dissipation agrees to eight digits, and the optimal values of the design
variables agree to four. The optimal shapes shown in Figure 4b and Figure 5b for Case I

Table 3: Effects of initial shapes on optimum.

Items
T\

Ti

TZ

U
T*>

re
r7

r*

no
m
7*12

r i 3

r i 4

KTO

Case I
Initial
5.4000
-1.500
0.6000
0.3000
-0.1000
0.0100
-0.0050
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
43.889

1.668D+5

Optimum
5.1065820
0.0837369
0.0249086
-0.0337325
-0.0094676
-0.0171818
-0.0069715
-0.0107487
-0.0051330
-0.0080299
-0.0047271
-0.0073294
-0.0051915
-0.0067146
10.958633
1.649D-9

Case II
Initial

5.6109985
0.0000000
-0.7800000
0.0000000
0.2400000
0.0000000
-0.1100000
0.0000000
0.0600000
0.0000000
-0.0300000
0.0000000
0.0200000
0.0000000
33.321813
5.181D-I-4

Optimum
5.1065841
0.0837377
0.0249068
-0.0337311
-0.0094694
-0.0171821
-0.0069711
-0.0107495
-0.0051324
-0.0080313
-0.0047273
-0.0073294
-0.0051907
-0.0067144
10.958633
4.002D-9

and Case II, respectively, are indistinguishable from each other. Although it is unlikely that
convexity of the optimization problem can be proven, we have always obtained the same
optimal shape regardless of the starting shape, for our particular choice of shape variables.
Similar results are observed for other choices of objectives function, suggesting uniqueness
of the minimum obtained.

Figure 4 demonstrates the dependence of the optimum shape on the number of design
variables chosen. Figure 4b shows the 14-variable optimal shape and corresponding stream-
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lines. Figure 4c depicts the optimal shape and its streamlines found with 7 design variables.
The objective function values for optimum shapes with 14 and 7 design variables are, re-
spectively, 10.96 and 11.21. We see that the optimum shapes obtained with 14 and 7 design
variables are not substantially different. This suggests an additional improvement in effi-
ciency that can be realized when hierarchical families of design variables are used. Namely,
one may solve a shape optimization problem with a small number of shape variables, increase
the number of design variables, re-solve the optimization problem initiated by the smaller
problem's Lagrange multipliers, Hessian approximation, and design variables, and repeat.

Figure 5 illustrates the influence of the end constraints on the optimal shape and stream-
lines. The two sets of end constraints considered are: 1) both entrance and exit are fixed at
r = 5.1; 2) the entrance is allowed to vary within a range 4.0 < r(90°) < 7.0 while exit is
fixed at r(0°) = 5.1. We see that by freeing the position of the entrance, the optimum favors
a tighter radius at the inflow. This can be explained as follows. The objective function is an
integral (of the dissipation function) over the flow domain. Both greater values of dissipation
as well as larger domain areas serve to increase this function. By reducing the radius at the
entrance, the area and thus objective function are reduced, all else being equal. Reducing the
radius, however, increases the dissipation, for the flow must change direction over a smaller
distance. Thus, the optimum entrance radius does not assume its lower bound, and the
optimizer strikes the best balance between these conflicting goals. The optimum objective
function value for the free-fixed case is expected to be smaller than that of the fixed-fixed
case, because the former is less constrained than the latter. We obtain exactly this result,
with an optimum ¥ of 10.72 (free-fixed) and 10.96 (fixed-fixed).

Figure 6 compares the optimal shapes obtained under Reynolds numbers of 100, 300,
and 1000. Here, the integral of the magnitude of vorticity u is the objective function. The
entrance is allowed to vary within a range 4.0 < r(90°) < 7.0, and the exit is fixed at
r(0°) = 5.1. The figure shows that for Re = 100, the optimum shape is characterized by
a relatively straight region in the interior connected to sharply curving entrance and exit
segments. This is a manifestation of the behavior observed in the previous paragraph. The
optimizer biases the design towards one with smaller area. The smallest area is achieved by
a straight line between entrance and exit. The rapid change in entrance and exit curvature
of the tube necessary to realize this is deleterious for the objective. Therefore, the ends
are rounded to smooth the flow passage. However, as the Reynolds number increases, the
additional vorticity induced by the rounded ends more than offsets the decrease in area
achieved by the straight segment. The optimizer thus increases the curvature of the middle
segment and decreases that of the ends. This is observed for Re=300 and 1000. Optimal
values of the objective $ increase with Re as expected; the corresponding optima for Reynolds
numbers of 100, 300, and 1000 are 0.09533, 0.8867, and 10.96, respectively.

Figure 7 shows the effect of choice of objective function on the optimal shape. The
entrance is allowed to vary within a range 4 < r(90°) < 7, and the exit is fixed at r(0°) = 5.1.
The group of functions 4>, r and cJ tends to give one set of optimal shapes similar to each
other, while the other group of objectives $, f and u leads to another set of optimum shapes,
also similar to each other but quite different from the first group. Again, the first group of
objectives invokes the optimizer's preference for smaller areas; thus, the tightening of the
entrance radius of curvature Figures 7a-c. On the other hand, the second group's objectives
functions are scaled by the area of the domain; thus, the optimizer is free to concentrate
on minimizing the objective at hand (dissipation, vorticity, or shear stress) without area
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penalty. Figures 7d-f show the result: a larger radius of curvature at the exit.

7. Conclusions And Future Work

We have considered the problem of shape optimization of systems governed by the incom-
pressible Navier-Stokes equations. In particular, we have considered objective functions
motivated by design of artificial heart components. These functions are directly and indi-
rectly related to blood damage, and include the rate of mechanical energy dissipation due to
viscosity, the magnitude of vorticity, and the maximum shear stress.

We have introduced a continuation-SQP algorithm that promotes the Reynolds number
continuation strategy of the solver to the optimizer. In addition to the design variables,
simple continuation is conducted on the quasi-Newton approximation of the Hessian matrix
of the Lagrangian function, as well as on the Lagrange multipliers. Numerical experiments
have been conducted on a problem of finding the optimal shape of a blood transport conduit.
The results indicate that this algorithm reduces by a factor of four the time consumed by
a standard SQP algorithm, which is already an efficient method relative to gradient-only or
direct search methods.

At present, our algorithm has been applied to two-dimensional problems possessing sim-
ple geometry. Work is underway to extend its applicability to complex three-dimensional
geometries, including a full ventricular assist artificial heart device. The major challenges
for such problems are those related to geometry (how to automatically parameterize com-
plex shapes, how to ensure shape validity), to the large-scale nature of the problem, and
to the incorporation of non-Newtonian constitutive laws to better describe blood flow, as
well as more precise blood damage models to be used as objective functions. At present,
the geometric issues have been addressed in an ad hoc fashion, i.e. tailored to the specific
geometry at hand (our continuation-SQP algorithm on the other hand is completely gen-
eral). A promising approach to automate the geometric aspects of shape optimization for
arbitrary geometries is the skeletal method of [17]. With regard to the difficulties induced
by the large number of design and state variables inherent in three dimensions, a framework
for addressing these problems is contained within the parallel reduced SQP method of [14].
We intend to incorporate aspects of these approaches into our continuation-SQP algorithm.

Though our work has been limited to two dimensions, our results indicate that improve-
ments in optimization algorithms and computing power make it feasible to find optimal
shapes of systems governed by incompressible Navier-Stokes equations in several hours on
a desktop workstation, for simple geometries and flow regimes of interest in biomechanics.
With the aid of parallel supercomputers, we anticipate optimizing complex three-dimensional
flows of medical interest in the near future.
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Figure 4: Initial and optimum shapes: (a) Initial, (b) optimum with 14 design
variables, (c) optimum with 7 design variables.
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Figure 5: Initial and optimum shapes: (a) Initial, (b) optimum with entrance
and exit fixed at r = 5.1, (c) optimum with entrance 4 < r(0°) < 5 and exit
r(90°) = 5.1.
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Figure 6: Optimal shapes for different Re: (a) 100, (b) 300, (c) 1000.

3
(c)

5 5.7

4.9

4

3

2

3
(a)

5 5.69 0
(b)

5 5.69 0
(c)

5 5.69

3
(d)

5 5.69 0 3
(e)

5 5.69 0 3
(f)

Figure 7: Optimum shapes for different objective functions: (a) $, (b) r, (c)
57, (d) $, (e) r, (f) Q.
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