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Abstract

Thispaper considers stochagtic linear programming models for pvoduttkmpla’ing where
cost coefficient and RHS term uncertainties arc represented by finite discrete probability
digtribution functions. The sedation of the two-stage fixed recourse problem is
considered, for which a sensitivity-based successive disaggregatkm algorithm is outlined.
Thebounding properties of the aggregate sub-problems areexamined in the rontext of the
disaggregatton algorithm. [llugtrative examples of the two-stage algorithm are presented.

Keywords: production planning, stochastic programming, linear programming,
aggregate models, successive disaggregation algorithm.

1 I ntroduction

Planning involves making optimal decisions about future events based on current
information and future projections. The general problem may be sated asfollows: given a
model of the process (i.e., set of congtraints), knowledge of the current state and future
events, and an objective function which reflects the cost/risk preferences,./?**/ the solution
which minimizes the objective function without violating the congtraints. While current
information may be certain, future events are inevitably stochastic. A simple production
network is shown in Figure 1. Material balance nodes are represented as circles and
processing units as rectangles. Raw materials and intermediates are purchased on the
mar kets subject to prevailing prices, contracts, and availability. Products are sold cm the
mar ket based on demands, prevailing prices, contracts, and production capacity.
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Figure 1. Simple production network with multiple feeds, intermediates, and products, all or part of
which depend on uncertain market conditions gover ning supply; demand, aod pricing.

Uncertainty occursin both the objective function and the congraints. The objective
function includes uncertainty in future costs, prices, and actions. The process model
condtraints can include both endogenous (e.g., yield coefficients) and exogenous (e.g.,
future product demands) stochastic parameters. Failure to account for the uncertainty of
key parameters (e.g., future supplies and demands) in decision problems can lead to non-
optimal and infeasible decisions (e.g., see Birgc, 1993, 1982a, 1992). However,
deterministic optimization approaches to uncertainty are predominant in chemical
engineering today (e.g., Grossmann and Straub, 1991). While considerable theoretical
work has been done in formulation and solution of stochastic optimization problems (see
reviews by Dempster, 1980; Wets, 1989), current methods are practically limited to single-
or two-stage problems due to the computational complexity of including the probability
dimension. A real need exists for improved methods for solving (planning) optimization
problemswith uncertainties. - '

In this paper we consider the two-stage problem with the uncertainties of future
supplies, demands, and prices characterized by finite, discrete probability distribution
functions. In § 2 the production planning mode is presented and in 8§ 3 the two-stage
gochastic linear programming (L P) formulationsaredeveloped. In § 4 we present a small
motivating example to provide some insight into the nature of this problem. In 8 5 we
examine general issuesrdated to the optimality and feasbility of the optimal solution and in
8 6 the solution methods for these problems are reviewed. To overcome the large
dimensionality of the problem and the associated computational expense, we proposein 8 7
a successive disaggregation algorithm for the solution to the two-stage sochasticLP. In §
8 we examine the theoretical bounding properties of the aggregate sub-problems in the
context of the disaggregation algorithm that isoutlined in 8 9. Illugtrative examplesof the
method are included in 8 10. Part | of this paper considers conceptual and theoretical
issues of the proposed method, while the detailed implementation of the algorithm using a




sensitivity-based approach for rcpartitioning is given in "Part IT (Clay and Grossmann,
1994).

2 Problem Statement and Model

We consider the optimization of two-stage stochastic linear planning models. The
stochastic parameters (e.g., costs, demands, and supplies) are characterized by discrete
probability distributions defined over a finite probability space. We formulate the
mathematical problem as a two-stage stochastic linear programming problem with fixed
recourse. In thissection, we describe the production planning model and itsformulation.

In formulating the production planning model we follow the notation of Sahinidis
and Grossmann (1992), adding a stochastic dimension to the problem. We define the
following notation in order to develop the mathematical modeL

Index sets: -

I process, (I = 1,..., Ng).

j chemical; (! = 1...., No).

/ market; (/«!..... Nw).

t time period (stage); (f=1,..., Ny).
Parameters:

afj,, @  lower/upper bounds for purchases of chemical j from market / during stage .
df,, djy  lower/upper bounds for salesof chemical j to market / during stager.

N¢ number of chemicalsin the network.

\'¥ number of markets.

N, number of processes in the network.

Nt number of time periods (stages) considered

Vi upper bound on the inventory of chemical j at staget.

A upper bound on the operating level of process/.

Fiu purchase price of chemical y'in market / during stager.

Yju salesprice of chemical; in market / during staget.

Sy unit operating cost for process [ during staget.

ty material balance coefficients for process i and input chemical’.
VA material balance coefficientsfor processi and output chemicaly.
Variables:

ly; amount of chemical j consumed (input) by processi during staget.
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00, amount of chemicalj produced (output) by protms I"during stager.

z expected cost (min formulation) or profit (max formulation).

Pit amount of chemical] purchased from market / at die‘beginning of stager.
Su amount of chemical y sold to market /at die beginning of stage u

Vij, inventory of chemical y at stager.

W, iterating level of processi during stager.

We formulate the production planning model as a multi-stage stochastic linear
programming (M SLP) problem, although this paper isrestrictedto the solution to the two-
stage model (i.e., Af, = 2 instances). Parameter uncertainties for limitsin supplies (a),
demands (</), arid cost coefficients (T, vy, 8) in fUture stages are characterized by
probability distributions. These distributions can be considered functionsrepresenting our
degree of belief that a parameter takes on a specific value. We seek the action to take at the
current time which minimizes some expected utility function while ensuring feasibility in
the future stages. Using the expected value cost function, the multi-stage L P model for
production planning is as follows.

nun 2= E‘ Pueeens \tI(V - rA)'l'XW (1a)

(Jm\ 2 $m\ J

s.t. /’\«TJIJW Vidt  (Ib)
O™ voWi : Vl\y,r (l C)
W’\W’> Vi.t (1d)
H+f:.0 f:.f +§Pm=" +§s» Y/ (le)
V/IrSVj VW (If)
af™Pfizan Vy/r (1g)

df £SyEd” Vy/r (Ih)
10, VoW, 20 Vi, jlt, (1i)

where 0 isthe stochastic parameter vector which can include cost coefficients and supply /
demand limits (i.e., RHS terms). '

The objective function (la) isthe minimization of the expected cost, determined by
the costs for purchases and operations minus the net sales revenues. The conversion
material balances for each processi are given by (Ib-c); constraint (1d) determines the
maximum capacity for each process. The overall material balances for each chemical
speciesj are given by (le); congraint (1) representsan upper limit for the inventory of




chemical;. The purchasng and saleslimitsare given by (Ig) and (Ih), respectively. The
non-negativity congraintsare given in (li).

Several observations on the structure and nature of MSLP (1) follow. When
uncertaintiesexist in the future stage parametersthen the activities of all future stages are
stochagtic variables. We generally (although not necessarily) assume that the current
parameters are known with certainty. Thedecision cycleis such that asthe future unfolds
we expect ta reoptimize the problem according to previous actions and parameter
realizations. This leads to arecourseformulation, explicitly accounting for our expected
iroptimizatkm im future stoges in sccordance with past decisions parameser realizations. By
fixing the process yield coefficient vectors, fly and i>4 the stochastic parameters exist
grictly as RHS or objective function terms. Hence the transtion matrices are fixed,
implying a fixed recour seproblem.

3 Two-stage Stochastic LP Modd

In this work we consider the solution of the two-stage planning problem with
sochagtic cost coefficientsand RHS terms. For the two-stage case (i.e., Nt » 2) planning
problem (1) can be formulated asthe fixed recour sestochastic L P given by (2) (see § 5 for
discussion of adding slacks). We will refer to this formulation since the notation is more
concise, and we areredtricting our attention to the solution of the two-stage problem in this

paper.

mn ZAJA+EACAH) @)
st.  AX :bx

Bx +Ax, =b

0sx, syun Vr=1...7\

where 0, isthe stochagtic parameter vector defined on the probability space (0y7,P), and
by(0,) and c,(0,) are stochagtic linear functions. The triple (0,7,P) defining the
probability space is composed of the (non-empty) event space (0), the G-fiedd in 0 (J),
and the probability measureon J (P).

Applyingthecertainty equivalenttransformation (GET) to problem (2) (seeDantzig,
1987) yields the determinigtic equivalent problem asfollows:




(PO) min - z=clX-¥" paCleX ok o (3a)

kmK

st idx, =\ (3)
Bx, + Ax, =*hk VkeK (30)
0<x <U, | (3d)
0sx, <U, Vkek, (39)

whereAT denctesthe set of possible stage-2 eventsdefined on thefinite, discrete probability
gpace (G,f,P). Notethat problem (PO) isan exact approximation to problem (2) for the
case of discreteprobabilities. 1n general itsdrawbadk isrhat itssize grows exponentially
and henceft may becometoo largeto be solved explicitly. Asan example, aproblem with
20 uncertain parameterswith 6 (independent) discretevaluesfor each parameter would give
riseto 6* $3.7 -10° events.

4 Motivating Example

In order to provide some insight into the nature of problem (2), we consder a
amplified planning problem with uncertain demands. Example problem (EX1) isatwo-
dage stochagtic LP with fixed recourse. The objective, z, is the sum of stage-1
production, JC,, and the expected value of combined stage-2 production (dencted by y, and
V,). Theproduction levels are represented as continuous non-negative real variables with
cost coefficientsequal to 1. Stage-2 product 1 and 2 demands are denoted by d, and dj,
respectively. The demand uncertainties are represented by discrete probability
digributions. Each demand hasthreeindependent stateswith corresponding probabilities.
The discrete probability space is given by the union of the demand 1 and 2 independent
gpaces, with joint probability denoted by p,. The stage-2 sSochagtic parameer vector is
denoted as 0, ={d,," }. Theproblem can be formulated asafixed recourse sochastic LP
asfollows: '

mn Z=N +EMNyi) (EXD
st. y,£34-di

y, 2—d, +3d,

N+, ~%Sd+d,

x 20

»nao,

where N «{1,152}, p,={0.2,0.6,0.2},
N ={1,1572}, py ={0.1,0.7,0.2},




Py =Dy’ Paj»
e, yeR, yeR.

There are numerous possible approaches to solving problem (EX1). A common
practice isto usethe mean values (in place of the probabilistic expansion) of the stochastic
parameters. This aggregate (mean-value) model approach isequivalent to usng ones best
guess as to the value of the demands, an intuitively appealing approach. However,
solution to the mean-value problem gives T «9.15 and ~ « 3-05, an infeasible solution to
the original problem (EX1). Theinfeasbility can be seen by subgtituting the point (4 = 2,
A2 =2) intothecondraint set to givethefollowing results:

»234,-d,=4
%26, +3d, =4

W+ —% Sd+dy =4
x,=3.05.

Thefirg two congraintsimply that vy, +y, £ 8, while thethird and fourth congraintsimply
that y, +y, £7.0S. Hence, x4 =3.05 is an infeasible solution for this particular future
outcome. Similarly, examplescan be readily congtructed which show that the mean-value
solution is non-optimal (or both non-optimal and infeasible) with respect to the original
problem. Thus, thisapproach leaves much to bedesired; and does not in general providea
valid optimal solution to the problem.

Another approach commonly used in indugry is scenario analysis, whereby only a
subset of all possible outcomes are consdered. Aswith the mean-value approach, it is not
difficult to construct examples which show smilar shortcomings when a scenario analysis
solution approach is used. We can conclude in general that any solution to (EX1) which
does not include a completer epresentationof die probabilitiesis subject to be non-optimal
and/or infeasible. This observation is a primary motivation for using the stochastic
programming formulation, predicated on explicitly accounting for the parameter
uncertaintiesviaprobability digribution representations.

Another approach to solving our example problem istoreformulate(EX1) intothe
certainty equivalent problem below denoted (EXICET)- In thisreformulation the stage-2
variables and congraints are expanded over the probability dimension, which in this case
includes nine possible outcomes (i.e., all ij pairs).




o e

min z=x+ zpv(yw +¥2;) ' (EX1cer)

Faixj

st.  yNZSdti-dtj Vi/leixy
Yy2—d,+3d,, Vi/€ixy
Yig+ Yoy~ Sdy+dy, Vyeixy
x20
Yip» Y 20 Vijeix j.

where x e R,
Yig €X'y R Vijeixj.

Here y, and y* arecontinuous stage-2 variables expanded over the discrete probability
gpace. Note that the size of thisLP is 19 variables and 27 inequalities ver sus 3 variables
and 3 inequalitiesfor the case where the problem is determinidtic.

Since the demand uncertainties are represented by discrete finite probability
digributions, thereisnoerror of discretization. Consequently, solving (EXICET) givesthe
exact optimal solution to (EXl) of 1" =10.1 and xf =4, feasible for all nine outcomes.
While this approach is appealing since it is guaranteed to give the exact solution (if a
bounded feasible solution exists), the exponential growth in congraintsand variablesin the
determinigtic equivalent can quickly lead to unmanageably large problems (see Dantzig,
1987). Our proposed solution method is based on solving aggregate models formed by
partitioning the probability space so asto represent the influences on the stage-1 activities
using die smallest possible expansion of variablesand congraints. In 8 10 we consder the
solution to (EX1) via the proposed successive disaggregation algorithm (see "Part IT for
detailed description of the algorithm).

5 Optimality and Feasibility
Optimally

Having presented the small motivating example we now examine in general terms
the optimality and feasibility conditions associated with the stochastic problem. We
examine the optimality conditions for the two-stage case of the stochastic linear program,
based on the certainty equivalent formulation (P0). To smplify the discussion we omit
subscriptsreferringto stage-2 termswhen it is assumed to be apparent The set Krefersto
the stage-2 event space defined on the probability space (Oxf,P). Hence, if 0 is a




discrete space then AT is a direct mapping, and if 0 is continuous then AT is a discrete
approximation thereof. The dua variablesinduced by (PO) arelisted in Table 1.

The (KKT) optimally conditions for (PO) are asfollows,

oL
(statkmarity) s O=c, +i4A* +b2_{£A4-0i'+«i/ (4)
oL r
5 =0=Puu+thdi—PutPa VkeK ®)
X
(complementarity) ofe, =0, O"(J" -Ux)=0 (6a,b)

pL:‘L =0'p l(;|;u—[].’)=0 Viek, (6C4)

where £ is the Lagrange function and a ,0.p,, and py are non-negative dua
variables.

Table 1. Two-stage MSLP certainty equivalent (PO) dua variables.

Constraints Dua Variables Dimension
(3b) A m,x|
(30) | K (MXDxIATI
(3d) 0.>0, n,xl, A xl|
(3¢) Pu>P\n. (/ijXOXIATI, (WjXDXIATI

In solving problem (PO), our primary interest isin finding the best action to take at
thecurrenttime (i.e., §*). Sincethe size(m,) of the stage-1 activity vector (xy) istypically
much less than that of the expanded stage-2 counterpart (see Dantzig, 1987), we might
expect that not each term of stage-2 is Sgnificant with respect to the optimal stage-1 activity
solution. However, inspection of (4) shows that in general thisis not the case, since each
torn of the stage-2 expansion isrepresented in the stationarity condition for x,. Intuitively,
we would expect that while potentialy all stage-2 influences may be relevant (to die stage-1
solution), they do not dl act completely independently. This concept is the cornerstone for
the aggregation / disaggregation solution method, whereby the goal isto combine stage-2
influences in such a manner as to reflect the net influence on stage-1 with the minimum
expansion over the stage-2 probability space.




Feasibility

Strictly speaking, the recour se formulation (PO) of the stochastic plahning problem
(1) requires feasbility for all activitiesfor any optimal solution. That is, if any congraint is
violated, then the problem isinfeasble. Thisisparticularly relevant for selecting the stage-
1 activities, sincein general we wish to avoid any action which is anticipated to lead to
some operational infeasbility in the future. This restriction may in some instances be
viewed astooinflexible. Imagine a futureevent with an e>ktreme|y small probability which
is forcing the stage-1 activity to move from what would otherwise be a better optimum
point Thereare several waysto addressthis Stuation.

Before solving the certainty equivalent problem (PO) we can include dacksin the
stochastic congtraints. Introducing dack variables has the following results: (O inequality
constraints are replaced with equality constraints, (ii) (numerical) feasibility of the
stochastic constraints can be insured for all events, and (Hi) penalties for feasbility
violations can be added to the objective function. Since a probability can be assigned to
each realization of the stochastic parameter vector (i.e«, each event), we can measure the
probability of feasible operation. Assigning pénaltiesto the feasbility dack activitiesin the
objective function is similar to the " discrepancy cost*® approach suggested by Dempster
(1965). Using Dempster's approach one assigns a cost to the violation of any of the
condraint conditions. In the production planning context, one example would be to add a
dack for producing less than the minimum demand for a product, and then penalizing this
dack based on the cost of purchasng this makeup product on the outside market.
Conversdy, omitting penalty functions and (feasibility) dacks enfor ces grict feagbility for
all projected future outcomes. The formulation we use for problem (PO) is applicable with
or without the addition of slacks to insure numerical feasbility for all parameter
realizations. '

Ancther approach istoredax therequirement of absolute feasbility for all outcomes
and instead formulate the problem as a chance-congtrained programming problem (Charncs
and Cooper, 1959; Thompson, Cooper and Charncs, 1963; Taha, 1987 pp. 802-804).
Thisformulation requiresthe congtraints to be met within a predefined probability limit.
For example, one might requirethat the congraintsare met at least 95 per cent of thetime,
according to the cumulative probability disribution functions specifying the uncertainties of
the system. A mgor drawback to this formulation is the introduction of nonlinearitiesin
the congtraints semming from the digtribution functions which are in general nonlinear
functions. The recourse formulation can be viewed as a sub-set of the chance-constrained
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formulation, when the congraints are required to be met 100 per cent of the time. One
could even formulate dierecour se problem with a congraint on the probability of feasible
solution by accounting for (probability-weighted) congraint violations, although doing so
might necessitate introducing integer variables.

6 Review of Solution Methods

The study of the theory and solution of the multi-stage stochastic LP (MSLP) has
paralleed the development of deterministic LP methods. Early referencesincluded seminal
work on the formulation and problem gructure (Dantzig, 1955,1963; Madansky, 1963;
Rosen, 1963; Dempster, 1965; Wets, 1966), but left questions concer ning the solution to
the general problem largely unanswered. Since the certainty equivalent LP (PO), expanded
to multi-stage as needed, isintractably largefor all but the smallest problems (see Dantzig,
1987 for discussion of exponential expansion), current solution methods use Benders-
based decomposition strategies (Van Slyke and Wets, 1969; Benders, 1962; Geoffrion,
1972). See Dantzig (1987) or Birge (1982b) for a discussion of the general multi-stage
stochastic LP formulations. Comprehensive reviews of theory and solution practices are
provided in the collections edited by Dempster (1980) and Ermoliev and Wets (1988). Of
particular interest to our proposed disaggregation algorithm, isthe review by Rogerset al.
(1991) of methods based on the use of aggregate models.

Sourred in part by the expansion in computing power, recent progress has been
made in solving the two-stage linear and mixed-integer stochastic programming problem
using Benders-based schemes (see e.g., Dantzig and Glynn, 1989; Infanger, 1991; Wets,
1983, 1989; Gassmann, 1990; Bicnstock and Shapiro, 1985). Key extensions over
previous methodsinclude the utilization of paralld computersto solve the independent sub-
problems resulting from Benders decomposition (Dantzig, 1987), and using importance
sampling methods to bypass the exhaustive computations corresponding to the full
probability model. However, exact representations of the problem are typically precluded
by realistic expansion limits on current computing platforms. Since the recourse
formulation is exponential in nature, we anticipate that approximation algorithms will
continue to berequired even as massvely paralld computers become commonplace.

Extension to multi-stage problems via nested decomposition methods is
conceptually graightforward. The multi-stage problem however remainsintractable due to
computational expense, arisng from the nested dructure of the problem and resultant
exponential growth in the number of sub-problems (see Dantzig, 1987; Gassmann, 1990;
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L ouveaux, 1986; Birge, 1982b; Dempster, 1980). While afew specialized problems have
been addressed (see Dantzig, 1987; Beale et al, 1980; Bicnstock and Shapiro, 1985;
Karreman, 1963), general multi-stage linear problemsremain computationally intractable.
Multi-stage solution methods generally rely on-nested decomposition strategies which
involve solving series of two-stage sub-problems (Gassmann, 1990; Birge, 1982b;
Ermoliev and Wets, 1988). Hence, advances in the solution to two-stage models are
applicable toward improving multi-stage solution methods.

7 Aggregate Modd Definition

At the cotter of the proposed solution method for die stochastic LP (PO) is the
aggregate model. Conceptually, an aggregate model is defined by a partitioning of the
probability space along with the partition-normalized meansfor the stochastic parameters
(i.e., RHS terms and cost coefficients). Thus, when a single partition isused to define the
probability space, the solution to the aggregate model is simply the mean-value solution to
the stochastic LP. A precise mathematical definition is now provided, followed by a
discussion of the theoretical propertiesrelevant to the successive disaggregation algorithm.

The following notation will be used in defining the aggregate model and in the
subsequent discussion of its properties. Additionally, any para_meter or variable with a
"bar" (e.g., T) refersto either the mean value taken over the appropriate probability space
(or sub-space) or to terms associated with the aggregate model solution. Werestrict our
definition and discussion to the two-stage case.

Index sets:
k€K st of stage-2 events; Ny =\K\.
geQ st of digaint partitions K, whose union comprises the entire stage-2 event space

K; Ny =0{<[X].
Paramae's and variables
I\~ stage-1primal LP row RHS, b € R™.
by stage-2 primal LP row RHS expanded over event space, by € R™.
p? stage-2 primal LP aggregate row RHS expanded over partition space, 6" €ST™.
Cj stage-1 primal LP cost, ¢, €9P.
Cok stage-2 primal L P cost expanded over event space, Cyx €91"*.
Tyt stage-2 primal L P aggregate cost expanded over partition space, T, € 9P.

Pok stage-2 probability of discrete event k €K, p, e R
P, stage-2 probability of aggregate event q€Q, py, £ R-
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I, stage-1primal LPactivity, x, € R™.

Xy stage-2 primal L P activity expanded over event space, x" €91"*.

XA stage-2 primal L P aggregate activity expanded over partition space defined with
respect to partitioning C. x"eX*™,

z primal L P objective function to be minimized, z € 9t\

2 primal aggregate L P obj ective function to be minimized defined with respect to
partitioning Q, ?, cSt’.

$ stochagtic parameter vector, 0e9t"*

With the notation preliminaries aside, and using the fixed recour se formulation as
per problem (PO) wedefinethe aggregate model for a given set of partitions G asfollows:

(PA) min "t f a+Xp~cljCj, (7a)
st.  AX, =I\ (7b)

Bx+Ax, =h, VgeQ (70)

0sx, sU, (7d)

0<x,, <U, VgeQ, (7e)

where par> £ £/>2t 20 % CAT, ®
UK =K, )

bz. 2 Pauba /pz. 00)

beX,
&, = sz.cu " (1)

The optimality conditions for (PA) are smilar to those presented above for the
deterministic equivalent problem (PO), except that the expansion now takes place over
partitions g e Q as opposed to events ksK. Notethat |£|g|E£|Ar| when all partitions are
required to be non-empty. Furthermore, it isassumed that no zer o-probability events are
included in AT, and hence p,>0 VgeQ.

The feasibility properties of the aggregate problem (PA) are essentially the same as
those for the deterministic equivalent problem (PO), within the context of the aggregate
model. That is, the fixed recour seformulation isretained in (PA), requiring the stage-1
decision to be feasible for all stage-2 (aggregate) outcomes. Problem (PA) isformed asa
linear combination of the congtraints and obj ective function termsfrom (PO), and as such is
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ardaxation of the full-space problem (see proof of Theorem 1 later in paper). Hence, a
feasible solution to problem (PA) is not necessarily feasible for problem (PO), and
particular care must be taken when acting upon the aggr egate solution to ensure feagbility
for (PO). Thereader may refer to Appendix A for further discussion on' the feasibility of
problem (PA) solution with respect to problem (PO).

8 Aggregate Modde Bounding Properties

Depending on the gructure of the stochastic L P, the aggregate model has bounding
properties which are of special interest with respect to the successive disaggregation
solution method In this section we consider three cases of fixed recour se two-stage
stochastic LP's and the bounding properties provided by the corresponding aggregate
models. Rogerset al. (1991) discuss aggregate model bounding properties, and include an
extensivelist of related r eferences.

Stochastic production planning models can be delineated accor ding to die sour ces of
uncertainty in the model. The bounding properties correspond to the convexity or
concavity of therecour se sub-problem, which depends on the types of uncertain parameters
in themodd. A summary of the three cases, along with the key bounding characterigticsis
presented in Table 2. We now consder the bounding propertiesfor each caseindividually.

Table2. Two-stage MSLP aggregate modd bounding characteristics.

MSLP RHS Cost Recourse Bounding
case terms coefficients problem property
1 gochadtic fixed convex *
2 fixed sochadtic concave 27z *
3 sochastic stochagtic convex/concave none

Case 1: Fixed Costs / Stochastic RHS

The convexity of case-1 problem instances follows directly from the definition of
(PA), which can beviewed asa gandard L P known to be convex. Weareinterested in the
bounding properties of (PA) with respect to the exact solution obtained from (PO).
Furthermore, we are concerned with the behavior of the bounds as (PA) is successively

disaggregated (or aggregated).

Lemma 1. Consder problems (Sl) and (S2) defined as follows:
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min z4$(x) (Sh)

st. hy(x)=0 VkeK
xZ0O,
and min  Z-#Xx) 8%

st. X®A(*)-O VA i
x20,

where a, >0, fix) isconvex, and A»(x) islinear. Then z* £2" provided that (SI) is
bounded.

Proof (S1) and (S2) can be written, respectively, as.
nan zf(x):xeF (Sla)
mnz =f(x):xeF". (S2a)

Assumethat z¥ <z'\ Then isfollowsthat F'cF. Then 3 i such that A(JE) =0
V* €AT and |4¢,<a* (X)#0: ?eQ. Since a, >0, thisisacontradiction, and hence
FCF*. and Z AV*. /[ Q.E.D.

Theorem 1. Given any partitioning Q which conformsto (9) in (PA), then zzzqQ,
where z* and Z  denote optimal solutionsto (case-1) problems (PO) and (PA),
respectively.

Proof Multiplying the stage-2 congtraints of (PO) by pa, summing over keK; and
dividing by the partition probabilities, p , , yields.

min - Ze = ¢x + £Xft*c,' >2» (S)
s.t. J4X, s/
Bx,+4 Y, puxa/psy =B, VgeQ
hak,
x20
x, 20 Viek,

where by, = anbu/l’z.-
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From Lemma 1, weknow that z*£ V.

tx1 %.f* 211 A»/Paf, (12)
which then yidlds:
Y26 wt pdi (13)

which can be used toreplacethe objective function in (-S). Similarly, x* * 0 : K€K, can
bereplacedby z* £0 : $€Q, yielding problem (PA). Subgtituting the x* terms for the
X" terms congtitutes a weakening ofthe(f’) bounds via further application of Lemma 1.
Consequently, Vo £Z8 and hence 22 Zz. 11 Q.E.D.

Corollary 1. For case-1 problems z* £z” , where partitioning CL:H@Q., |=i+1is

formed by disaggregating (2,.

Proof The pnx>f follows directly by normalizing the partition probabilities and leapplying
Lemma 1 over the appropriate partition subspace. Thus, any disaggregated partition isa
sub-problem whose contribution to the objective mus be greater than or equal to that of the
aggregate over the same subspace. //Q.ED.

Therefore, for case-1 problem instances disaggregation will increase or leave
unchanged the value of the objection function. And, successive disaggregation must
monotonically increase thelower bound on the objective, z, such that:

0 S 1S2 £7] =2\ (14)
Case 2: Stochastic Costs / Fixed RHS

When the cost coefficients are stochastic and the RHS terms fixed (i.e., case-2
problems), the recourse function is concave. An analysis smilar in spirit to that above
leads to the result that disaggregation monotonically decreases the upper bound (given by
the solution to the aggregate problem) on the objective, z. However, an alternative and in
this case preferable analysisisto show that thecase-1 and case-2 problems are Sructurally
similar, and that case-2 problems can be converted through dual transformation to case-1
problems.
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To smplify the discussion, consider a canonical representation of the stochastic LP
dated asfollows:

min c'x: AxZb, x*O0. (15)
Taking (IS) astheprimal problem, thedual isformulated as:

max b'n : ATKEC. **0, (16)
which can berewritten as:

min -b'n : -A'™xZ-cs KZO. (17)

Thus (17) representsa stochastic program with uncertain cost coefficients. Problems (15)
and (17) giveidentical values for the objective function (given a finite feasible solution to
each). Therefore, case-1 and case-2 problems can be considered interchangeable via the
dual transformation.

Corollary 2. For case-2 problems "2\

Proof Consder (1S) with fixed RHS terms and uncertain cost coefficients. The dual is
given by (16) or equivalently (17), which has uncertain RHS terms and fixed cost
coefficients. From case-1 problem analysis (Theorem 1) we know that -z* £-z*, and
hence £* * ». //[QJE.D.

Corollary 3. For case-2 problems 2 =z £.£2" £7" £.82,.

Proof The proof follows that of Corollary 1 in light of Corollary 2 as applied to the case-2
problem. //Q.E.D.

Case 3: Stochastic Costs and RHS

For the general case when both cost coefficients.and RHS terms are stochastic, no
bound on (PO) isprovided by the solution to the aggregate model.(PA). Hence, we cannot
use the aggregate model as a bound for case-3 problems. We can however, use the
sensitivity information associated with the aggregate solution, as well as the upper bound
provided by applying the aggregate optimal stage-1 activity vector in the full-space problem
(asdiscussed in "Part IT).
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9 Solution Method Outline:

A high-level flowchart of the proposed successive disaggrcgation algorithm is
shown in Figure 2. We present this overview in order to convey the basic concepts behind
the solution method The reader may refer to "Part IF (day and Grossmann, 1994) for a

detailed discussion of the proposed algorithm along with computational results on test
problems.

AGGREGATE FEASIBILITY AND
MODEL OPTIMALITY CHECK

| Define probability space.

I“'1 - ‘ 291] *
Partition event space. | Feasibility Subproblem
r : Solve (PO) using aggregatel
stage-1 activities.
Formulate and solve
“aggregate LP (PA).
duals
Y —
Analyze aggregate LP
solution sengitivities and -
disaggrcgation choices. Optimality Subproblcra 1
Solve (PO) using stage *
activities from above

Iy =2, +25,X,

5

Figure 2. Overview of the two-stage successive disaggrcgation algorithm for non-concave objective,
based on certainty equivalent problem (PO) and aggregate problem (PA).

The algorithm can be viewed as three basic steps: () problem definition, (W)
aggregate model formulation, solution, and rcpartitioning analysis, and (Hi) feasibility and
optimality check. In step 1 the problem is defined by specifying the planning model
constraints and objective along with all relevant parameter probability distribution
information. Step It is centered around the aggregate model definition, solution, and
analysis. The aggregate model (defined in 8 7) isformed by a probability-weighted linear
combination of variables and/or constraints. These combinations are dependent upon the
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partitioning of the event space and the corresponding partition probabilities. For every
partitioning defined, the resultant aggregate model is solved to optimality yielding an
approximation of the optimal stage-1 activity vector, as well as the dual (sensitivity)
information for the stage-2 partition-aggregated variables and/or congtraints. Analysis of
the sengitivitiesis used to deter mine whether further disaggregaliori of the event spaceis
needed, and if soto project thebest* repartitioning.

Step i is the feasibility and optimality check which provides the solution to the
complete stage-2 activities (and duals). Tosimplify the discussicm of step Wi, consider the
casewherethe costsare fixed and the RHS termsare stochagtic. In thiscase, the solution
of the aggregate model is a lower bound on (PO). Furthermore, the lower bound
monotonically increases with successively disaggregated partitiohings The stage-2
activitiesmay be needed either for further analysisor aspart of the solution to a multi-sage
problem using a nested decomposition strategy (e.g., see Gassmann, 1990 or Birge,
1982h).

Sarting with (PA) defined over a single partition, its solution X[ is tested for
feagbility in (PO), smply by solving the stage-2 component of (PO) using the additional
condraint x, * Xj*. Congdering X, a fixed input to (PO) allows usto solve for the stage-2
component of the problem via a collection of (summed) independent (and relatively small)
LP sub-problems. If any one of these sub-problems is infeasible, the most violating
(indexed by largest negative dack) congraints are identified, and the corresponding event
kA €EKM cK @ x, =x*is used to generate a feasibility "aut" in (PA). Such a cut is
smply a reflection of the x, condraint and feasibility space with respect to the stage-2
solution X In the amplest case, a cut can be defined asthe (PA) augmenting congraint
St corresponding to the infeasible event k™ € KM ¢cK @ x, = J* such that:

Ax; =b, - Bx, V* = k™ 6 KM cK,
0sx;sU, VeeC ="at" =.

Initially, the solution to (PA) isrepeatedly tested for (x,) feasibility, adding cuts until (PA)
maintains (x,) feasbility with respect to (PO), assuming a feasible solution xy exists for
(PO). Ifonedoesnat exist, (PO) isinfeasble and must bereformulated to produce a valid
solution. In "Part IT a feasbility cut will be described which does not require the
evaluation of all the stage-2 L P sub-problems.
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Oncetheinitial cycle of generating the (PA) feasibility cutsiscomplete, the stage-1
activities found by solving the aggregate model are tested for optimality in (PO). The
feasibility sub-problem provides a proposed stage-2 solution, which isin turn used as a
fixed input to solve for the stage-1 component of (PO), which we denote as the optimality
sub-problem. Summing the stage-1 and -2 contributionsto the obj ective from dietwo sub-
problems gives an upper bound on (PO) as well as the optimal stage-1 solution for this
counter problem. The upper bound and stage-1 (counter-) solution can then be tested for
proximity tothelower bound and trial Sage-1 (aggregate) solution, respectively.

A variant of die proposed method is to skip the evaluation of the upper bound
which requir esthe solution of \K\ sub-problems ((PO) with fixed stage-1 activities). In this
case feasibility cuts are generated with a special formulation as proposed in Tart IT to
avoid the solution of the \K\ sub-problems. Similarly, a special formulation can be
developed to evaluate the upper bound.

10 Illlustrative Examples

In this section we present two relatively smple examples which convey the basic
approach of the successive repartitioning algorithm. The specific details of the algorithm
can be found in "Pan IT of this paper (Clay and Grossmann, 1994). Thefirst exampleis
problem (EX1), defined with stochastic RHS terms and fixed costs and introduced in § 4.
This problem demongtrates the response of the algorithm when the aggregate solution is
infeasble in theoriginal problem (PO). The second exampleisa problem with stochastic
costs and fixed RHS terms. The example demonstrates the method applied to case-2
problems.

Example 1 Revisited

In 8§ 4 problem (EX1) was solved using the mean-value approximation (i.e., usng
formulation (PA) with a single partition including all events) to give V = z,=9.15 and
Xj =3.05. Solving (PO) (see Figure 2) with the added congraint (or fixed input) x, =3.05
gives an infeasible solution, indicating the mean value solution is infeasible. From the
solution to thefeasbility sub-problem we can identify the most violating congtraint, which
we then use as a feasibility "aut*® augmenting the congtraints of (PA) for all future
solutions. We note that the cut variables reflect the congraint and feasibility space for the
most limiting event (corresponding to the most violating congtraint). Furthermore, the cut
variables do not appear in the objective function, and hence only serve to bound the JC
feasible spacein (PA). In this case the most restricting event is when both demands are
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maximal, corresponding to 17=(3,3). We create a feasibility cut for this event, thus
enforcing subsequent solutions to (PA) to be feasible with respect to that constraint,
assuming afeasible solution doesexist Thefeasibility cut isgiven by congraints

y24
»24

Nt —-xs4.

Again solving (PA), using a single partition plus the feasibility cut, gives z,=10.1 and
X, =4. Solving (P0) with fixed x, =4 gives a stage-2 activity solution, Xj*. Solving
(PO) with fixed x, to check for optimality gives a feasible solution with z, =10.1 and
*| =4. Hence the objective function gap is 0.0, and the solution is complete (with both
feagbility and optimality guaranteed). We have found the optimal solution by expanding
over only one of nine events, and including onefeasibility cut

Example 2

The second examiple (EX2) isa fixed recour se stochastic L P with fixed RHSsand
sochasgtic costs (i.e., case-2 problem). We'solveit using the dual transformed modd (i.e.,
converting the problem to case-1 dructure). Problem (EX2) certainty equivalent can be
formulated asthe following primal LP.

min z=X,+ £/ty(cEfjavicEyX2p) (EX2)
ijmixj

st. X, +2x"+3x£,£d, Viyeixy
X, + & + Ixljj £di Vi €1X]
x, SO
x\,x ;20 Viyeixy,

where N ={1,2,3}, pi ={0.5,0.4,0.1},

A ={1,2,100}, pi ={0.1,0.4,0.5},

Py; = Pu* Paj

x, R,

x, €R', x3, el VIy'ETX] .

Here x*- and x” are continuous stage-2 variables (vector elements 1 and 2, respectively)
expanded over the discrete probability space defined by crossing independent spaces
indexed by Tandy.
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The solution to (EX2) via the proposed algorithm (see Figure 2) garts by forming
the expected-value problem (PA) using a single partition (i.e., 1QI=1). The resultant
aggregate problem (PA) isthen dual transormed per § 8 to give:

rm_/\_xf*’/\’**'/\) (EXZPAduaI)
St. -1* " -283, 2=¢, =~1
2 -m2-ph, VgeQ
3%, =273, 2 =P, 7}, VqeQ
x5, %, 20 _ VgegQ.
where x5, eXR, n, eR VgeQ.

We assume here that we use the variant.of.the algorithm. that does not require
evaluation of the upper bound (and hence we do not solvethe IX1 UP sub-problems). With
Ifil= 1, solution to (EX2pAduii) gives -1* =-1.6 and j£=0. Solving (PO) with j» =0
gives afeasble solution with -z, =-1.426. Sensitivity andrepartitioninganalysis usng
the (PA) solution (see "Part 11") suggests splitting along probability dimension 2 between
events 2/3 (seeFigure 3) to maximize theincreasein the lower bound -Z\ Repeating the
(PA) senditivity analysis, repartitioning, dual transformation, and solution sequence until
no further improvements in the lower bound are projected leads to exact solution
(-y* sszy=-z") at six partitions (see Figures 3 and 4). Changing the sign of the
objective values gives the correct (PO) value, and shows how the case-2 primal problem
aggregate solution monotonically decreases with increased disaggregation. However,
solving the dual transformed problem is preferable since the solution method provides both
an upper and lower bound to check conver gence.




J0I=1 101=1 /Q/=3

g '21
[ T | | [5(4 6{514
J J J

- 2% (PA)

z (negaied)
s
aal

-1.55 = ——— -7»(P0)
-1.60 =
1.65 L L) | L) 1 ]

0 12 3 4 5 6 17

Figure 4. Aggregate bounds following disaggregation sequence for problem (EX2). Objective values
negated to correspond todual formulation of (PA). Nq«Igl.

Conclusions

In thispaper we have presented general conceptual and theor etical issuesthat arise
in the two-stage linear programming problem for production planning. In particular, it has
been shown how aggr egate models of fixed recour se stochastic (production planning) L Fs
provide approximate solutions and serve as the basis for a sensitivity-based successive
disaggregation algorithm. Bounding properties have been established for particular
problem structures to guide disaggregation of the aggregate probability space, using

-23-




sengitivity analysis of the aggregate solutions along with repartitioning projection analyss.
In "Part IT of this paper, we present the detailed two-stage successive disaggregation
algorithm along with computational results and example problems.
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Appendix A |
Feasibility of Two-stage Aggregate Stochastic LP

As shown in Theorem 1 problem (PA) isformed as a linear combination of the
congtraints and objective function terms from (PO), and as such isarelaxation of the full-
space problem. Feasibility is of course strictly related to the constraints. It is perhaps
easiest tovisualize rhiscongraint relaxation in the context of a smple example problem.

Consder the following example problem:
min z«s2x,+" X, (Al

s.t. X, +X2Jk£ft.u VkeK
0sx
0sx, €2 Vkek,

whee n={1 3},
Pu={0.50.5}.

L etting die partitioning Q contain a single aggregate event gives.

by =2,

which leads to the aggregate problem optimal solution asfollows:
XrO;*N ., =2; 1=2.

However, when X, =0 is subgtituted back into (Al) the constraints are violated since:
22xy)2(,=3)

isclearly infeasible.

This congraint relaxation is shown in Figure A.l, indicating that the aggregate
model constraint space (i.e., feasible region) will always (for all problems) be larger than
that of the deterministic equivalent problem. The line passing through points GG is the
upper bound for die stage-2 activity. lines BF and AD represent die constraints for events
1 and 2, respectively, of (PO). line CE representsthe aggregated congraint for (PA). The
stage-1 activity for (PO) islimited by the feasible region for event 2 (defined by DAG),
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which is mote restrictive than the feasible region for event 1 (defined by DFBCX3J). The
optimal valuefor the (PO) sub-problems (i.e., expanded constndnts) are pointsF and A for
events 1 and 2, respectively, leading to a solution value of 3. Theoptimal value for (PA) is
point C, leading to a solution value of 2, which is however infeasible for (PO).

Figure A.l. Feasibleregions for the deterministic equivalent (PO) and aggregate model (PA) problems
for example problem (Al). '
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