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Abstract

This paper considers stochastic linear programming models for pvoduttkmpla^
cost coefficient and RHS term uncertainties arc represented by finite discrete probability
distribution functions. The sedation of the two-stage fixed recourse problem is
considered, for which a sensitivity-based successive disaggregatkm algorithm is outlined.
The bounding properties of the aggregate sub-problems are examined in the rontext of the
disaggregatton algorithm. Illustrative examples of the two-stage algorithm are presented.
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1 Introduction

Planning involves making optimal decisions about future events based on current

information and future projections. The general problem may be stated as follows: given a

model of the process (i.e., set of constraints), knowledge of the current state and future

events, and an objective function which reflects the cost/risk preferences,./?**/ the solution

which minimizes the objective function without violating the constraints. While current

information may be certain, future events are inevitably stochastic. A simple production

network is shown in Figure 1. Material balance nodes are represented as circles and

processing units as rectangles. Raw materials and intermediates are purchased on the

markets subject to prevailing prices, contracts, and availability. Products are sold cm the

market based on demands, prevailing prices, contracts, and production capacity.
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2Emai] address: igOc@andrew.cmu.edu (Internet).



Products

Figure 1. Simple production network with multiple feeds, intermediates, and products, all or part of
which depend on uncertain market conditions governing supply t demand, aod pricing.

Uncertainty occurs in both the objective function and the constraints. The objective

function includes uncertainty in future costs, prices, and actions. The process model

constraints can include both endogenous (e.g., yield coefficients) and exogenous (e.g.,

future product demands) stochastic parameters. Failure to account for the uncertainty of

key parameters (e.g., future supplies and demands) in decision problems can lead to non-

optimal and infeasible decisions (e.g., see Birgc, 1993, 1982a, 1992). However,

deterministic optimization approaches to uncertainty are predominant in chemical

engineering today (e.g., Grossmann and Straub, 1991). While considerable theoretical

work has been done in formulation and solution of stochastic optimization problems (see

reviews by Dempster, 1980; Wets, 1989), current methods are practically limited to single-

or two-stage problems due to the computational complexity of including the probability

dimension. A real need exists for improved methods for solving (planning) optimization

problems with uncertainties.

In this paper we consider the two-stage problem with the uncertainties of future

supplies, demands, and prices characterized by finite, discrete probability distribution

functions. In § 2 the production planning model is presented and in § 3 the two-stage

stochastic linear programming (LP) formulations are developed. In § 4 we present a small

motivating example to provide some insight into the nature of this problem. In § 5 we

examine general issues related to the optimality and feasibility of the optimal solution and in

§ 6 the solution methods for these problems are reviewed. To overcome the large

dimensionality of the problem and the associated computational expense, we propose in § 7

a successive disaggregation algorithm for the solution to the two-stage stochastic LP. In §

8 we examine the theoretical bounding properties of the aggregate sub-problems in the

context of the disaggregation algorithm that is outlined in § 9. Illustrative examples of the

method are included in § 10. Part I of this paper considers conceptual and theoretical

issues of the proposed method, while the detailed implementation of the algorithm using a
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sensitivity-based approach for rcpartitioning is given in "Part IT (Clay and Grossmann,

1994).

2 Problem Statement and Model

We consider the optimization of two-stage stochastic linear planning models. The
stochastic parameters (e.g., costs, demands, and supplies) are characterized by discrete
probability distributions defined over a finite probability space. We formulate the
mathematical problem as a two-stage stochastic linear programming problem with fixed
recourse. In this section, we describe the production planning model and its formulation.

In formulating the production planning model we follow the notation of Sahinidis
and Grossmann (1992), adding a stochastic dimension to the problem. We define the
following notation in order to develop the mathematical modeL

Index sets:
i process; (i = 1,..., NF).
j chemical; (/' = 1,..., Nc).
/ market; ( / « ! NM).
t time period (stage); (f = 1,..., NT).

Parameters:
afju, au

ju lower/upper bounds for purchases of chemical j from market / during stage t.
dfb, dv

jU lower/upper bounds for sales of chemical j to market / during stage r.
Nc number of chemicals in the network.
NM number of markets.
Np number of processes in the network.
NT number of time periods (stages) considered
Vu

jt upper bound on the inventory of chemical j at stage t.
W" upper bound on the operating level of process /.
FjU purchase price of chemical y in market / during stage r.
Yju sales price of chemical; in market / during stage t.
Su unit operating cost for process i during stage t.
ty material balance coefficients for process i and input chemical/.
v^ material balance coefficients for process i and output chemical y.

Variables:
/y, amount of chemical j consumed (input) by process i during stage t.
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00, amount of chemicalj produced (output) by process i during stage r.
z expected cost (min formulation) or profit (max formulation).
Pjlt amount of chemical; purchased from market / at die beginning of stage r.
SjU amount of chemical y sold to market / at die beginning of stage u
Vj, inventory of chemical y at stager.
Wu iterating level of process i during stager.

We formulate the production planning model as a multi-stage stochastic linear
programming (MSLP) problem, although this paper is restricted to the solution to the two-
stage model (i.e., Afr = 2 instances). Parameter uncertainties for limits in supplies (a),
demands (</), arid cost coefficients ( T , y, 8) in future stages are characterized by
probability distributions. These distributions can be considered functions representing our
degree of belief that a parameter takes on a specific value. We seek the action to take at the
current time which minimizes some expected utility function while ensuring feasibility in
the future stages. Using the expected value cost function, the multi-stage LP model for
production planning is as follows.

nun 2 = £*.,». ., \tl( V, - rA)+X W
1*1 (jm\ /«1 $m\ J

s.t. /^«TJijW, ViJ.t (lb)
O^v9Wk Vi\y,r (lc)

W^W? Vi.t (Id)

» Y/,r (le)

V/rSVj Vy\r (If)
af^PfiZa^ Vy,/,r (lg)
dfu£SJlt£d^ Vy,/,r (lh)

where 0 is the stochastic parameter vector which can include cost coefficients and supply /
demand limits (i.e., RHS terms).

The objective function (la) is the minimization of the expected cost, determined by
the costs for purchases and operations minus the net sales revenues. The conversion
material balances for each process i are given by (lb-c); constraint (Id) determines the
maximum capacity for each process. The overall material balances for each chemical
species j are given by (le); constraint (If) represents an upper limit for the inventory of
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chemical;. The purchasing and sales limits are given by (lg) and (lh), respectively. The

non-negativity constraints are given in (li).

Several observations on the structure and nature of MSLP (1) follow. When

uncertainties exist in the future stage parameters then the activities of all future stages are

stochastic variables. We generally (although not necessarily) assume that the current

parameters are known with certainty. The decision cycle is such that as the future unfolds

we expect ta reoptimize the problem according to previous actions and parameter

realizations. This leads to a recourse formulation, explicitly accounting for our expected

iroptimizatkm m future stoge By

fixing the process yield coefficient vectors, ffy and i>#9 the stochastic parameters exist

strictly as RHS or objective function terms. Hence the transition matrices are fixed,

implying a fixed recourse problem.

3 Two-stage Stochastic LP Model

In this work we consider the solution of the two-stage planning problem with

stochastic cost coefficients and RHS terms. For the two-stage case (i.e., NT » 2) planning

problem (1) can be formulated as the fixed recourse stochastic LP given by (2) (see § 5 for

discussion of adding slacks). We will refer to this formulation since the notation is more

concise, and we are restricting our attention to the solution of the two-stage problem in this

paper.

min Z ^ J ^ + E ^ C ^ } (2)

s.t. Alxl = bx

U^ Vr = l 7\

where 02 is the stochastic parameter vector defined on the probability space (0%7,P), and

b2(02) and c2(02) are stochastic linear functions. The triple (0,7,P) defining the

probability space is composed of the (non-empty) event space ( 0 ) , the G-field in 0 ( J ) ,

and the probability measure on J (P).

Applying the certainty equivalent transformation (GET) to problem (2) (see Dantzig,

1987) yields the deterministic equivalent problem as follows:
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(PO) min z~clxl-¥^p2kcltx2k (3a)
kmK

s.t. i4,x, = l\ (3b)
=*hk VkeK (3c)

(3d)
(3e)

where AT denotes the set of possible stage-2 events defined on the finite, discrete probability
space (G,f,P). Note that problem (PO) is an exact approximation to problem (2) for the
case of discrete probabilities. In general its drawback is mat its size grows exponentially
and hence ft may become too large to be solved explicitly. As an example, a problem with
20 uncertain parameters with 6 (independent) discrete values for each parameter would give
rise to 6 * s 3.7 1015 events.

4 Motivating Example

In order to provide some insight into the nature of problem (2), we consider a
simplified planning problem with uncertain demands. Example problem (EX1) is a two-
stage stochastic LP with fixed recourse. The objective, z, is the sum of stage-1
production, JC,, and the expected value of combined stage-2 production (denoted by y, and
v2). The production levels are represented as continuous non-negative real variables with
cost coefficients equal to 1. Stage-2 product 1 and 2 demands are denoted by d, and dj,
respectively. The demand uncertainties are represented by discrete probability
distributions. Each demand has three independent states with corresponding probabilities.
The discrete probability space is given by the union of the demand 1 and 2 independent
spaces, with joint probability denoted by pv. The stage-2 stochastic parameter vector is
denoted as 02 = {d,,^}. The problem can be formulated as a fixed recourse stochastic LP
as follows:

min z-^ + E^+yi) (EX1)
s.t. y,£ 3 4 - d i

where ^ « {1,1.5,2}, pu = {0.2,0.6,0.2},
^ = {1,1.5,2}, p2j = {0.1,0.7,0.2},
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There are numerous possible approaches to solving problem (EX1). A common

practice is to use the mean values (in place of the probabilistic expansion) of the stochastic

parameters. This aggregate (mean-value) model approach is equivalent to using ones best

guess as to the value of the demands, an intuitively appealing approach. However,

solution to the mean-value problem gives T « 9.15 and ^ • 3-05, an infeasible solution to

the original problem (EX1). The infeasibility can be seen by substituting the point (4 = 2,

^2 = 2) into the constraint set to give the following results:

x,=3.05.

The first two constraints imply that yx +y2 £ 8, while the third and fourth constraints imply

that yx + y2 £ 7.OS. Hence, xx = 3.05 is an infeasible solution for this particular future

outcome. Similarly, examples can be readily constructed which show that the mean-value

solution is non-optimal (or both non-optimal and infeasible) with respect to the original

problem. Thus, this approach leaves much to be desired, and does not in general provide a

valid optimal solution to the problem.

Another approach commonly used in industry is scenario analysis, whereby only a

subset of all possible outcomes are considered. As with the mean-value approach, it is not

difficult to construct examples which show similar shortcomings when a scenario analysis

solution approach is used. We can conclude in general that any solution to (EX1) which

does not include a complete representation of die probabilities is subject to be non-optimal

and/or infeasible. This observation is a primary motivation for using the stochastic

programming formulation, predicated on explicitly accounting for the parameter

uncertainties via probability distribution representations.

Another approach to solving our example problem is to reformulate (EX1) into the

certainty equivalent problem below denoted (EXICET)- In this reformulation the stage-2

variables and constraints are expanded over the probability dimension, which in this case

includes nine possible outcomes (i.e., all ij pairs).
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s.t. y^ZSdti-dtj Vi/eixy
Vi/€ixy
Vyeixy

where

Here yw and y^ are continuous stage-2 variables expanded over the discrete probability

space. Note that the size of this LP is 19 variables and 27 inequalities versus 3 variables

and 3 inequalities for the case where the problem is deterministic.

Since the demand uncertainties are represented by discrete finite probability

distributions, there is no error of discretization. Consequently, solving (EXICET) gives the

exact optimal solution to (EX1) of 1 = 10.1 and xf = 4, feasible for all nine outcomes.

While this approach is appealing since it is guaranteed to give the exact solution (if a

bounded feasible solution exists), the exponential growth in constraints and variables in the

deterministic equivalent can quickly lead to unmanageably large problems (see Dantzig,

1987). Our proposed solution method is based on solving aggregate models formed by

partitioning the probability space so as to represent the influences on the stage-1 activities

using die smallest possible expansion of variables and constraints. In § 10 we consider the

solution to (EX1) via the proposed successive disaggregation algorithm (see "Part IT for

detailed description of the algorithm).

5 Optimality and Feasibility

Optimally

Having presented the small motivating example we now examine in general terms

the optimality and feasibility conditions associated with the stochastic problem. We

examine the optimality conditions for the two-stage case of the stochastic linear program,

based on the certainty equivalent formulation (P0). To simplify the discussion we omit

subscripts referring to stage-2 terms when it is assumed to be apparent The set K refers to

the stage-2 event space defined on the probability space (0%f,P). Hence, if 0 is a
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discrete space then AT is a direct mapping, and if 0 is continuous then AT is a discrete

approximation thereof. The dual variables induced by (PO) are listed in Table 1.

The (KKT) optimally conditions for (PO) are as follows,

(statkmarity) ~ s O = c, + i4,rA* + 2 l £ A 4 - 0 i + « i / (4)

(complementarity) o£e, = 0, O^(J^ - UXi) = 0 (6a,b)

LJ (6c4)

where £ is the Lagrange function and aL,ov%pu, and pUk are non-negative dual

variables.

Table 1. Two-stage MSLP certainty equivalent (PO) dual variables.

Constraints

(3b)
(3c)
(3d)
(3e)

Dual Variables

A*
K

oL>ov
Pu>P\n.

Dimension

m,x l

(mjXDxlATl
n , x l , A, x l

(/ijXOxlATl, (WjXDxlATl

In solving problem (PO), our primary interest is in finding the best action to take at
the current time (i.e., JC* ). Since the size (m,) of the stage-1 activity vector (xx) is typically
much less than that of the expanded stage-2 counterpart (see Dantzig, 1987), we might
expect that not each term of stage-2 is significant with respect to the optimal stage-1 activity
solution. However, inspection of (4) shows that in general this is not the case, since each
torn of the stage-2 expansion is represented in the stationarity condition for xx. Intuitively,
we would expect that while potentially all stage-2 influences may be relevant (to die stage-1
solution), they do not all act completely independently. This concept is the cornerstone for
the aggregation / disaggregation solution method, whereby the goal is to combine stage-2
influences in such a manner as to reflect the net influence on stage-1 with the minimum
expansion over the stage-2 probability space.
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Feasibility

Strictly speaking, the recourse formulation (PO) of the stochastic planning problem

(1) requires feasibility for all activities for any optimal solution. That is, if any constraint is

violated, then the problem is infeasible. This is particularly relevant for selecting the stage-

1 activities, since in general we wish to avoid any action which is anticipated to lead to

some operational infeasibility in the future. This restriction may in some instances be

viewed as too inflexible. Imagine a future event with an extremely small probability which

is forcing the stage-1 activity to move from what would otherwise be a better optimum

point There are several ways to address this situation.

Before solving the certainty equivalent problem (PO) we can include slacks in the

stochastic constraints. Introducing slack variables has the following results: (0 inequality

constraints are replaced with equality constraints, (ii) (numerical) feasibility of the

stochastic constraints can be insured for all events, and (Hi) penalties for feasibility

violations can be added to the objective function. Since a probability can be assigned to

each realization of the stochastic parameter vector (i.e«, each event), we can measure the

probability of feasible operation. Assigning penalties to the feasibility slack activities in the

objective function is similar to the "discrepancy cost*9 approach suggested by Dempster

(1965). Using Dempster's approach one assigns a cost to the violation of any of the

constraint conditions. In the production planning context, one example would be to add a

slack for producing less than the minimum demand for a product, and then penalizing this

slack based on the cost of purchasing this makeup product on the outside market.

Conversely, omitting penalty functions and (feasibility) slacks enforces strict feasibility for

all projected future outcomes. The formulation we use for problem (PO) is applicable with

or without the addition of slacks to insure numerical feasibility for all parameter

realizations.

Another approach is to relax the requirement of absolute feasibility for all outcomes

and instead formulate the problem as a chance-constrained programming problem (Charncs

and Cooper, 1959; Thompson, Cooper and Charncs, 1963; Taha, 1987 pp. 802-804).

This formulation requires the constraints to be met within a predefined probability limit.

For example, one might require that the constraints are met at least 95 per cent of the time,

according to the cumulative probability distribution functions specifying the uncertainties of

the system. A major drawback to this formulation is the introduction of nonlinearities in

the constraints stemming from the distribution functions which are in general nonlinear

functions. The recourse formulation can be viewed as a sub-set of the chance-constrained

- 1 0 -



formulation, when the constraints are required to be met 100 per cent of the time. One

could even formulate die recourse problem with a constraint on the probability of feasible

solution by accounting for (probability-weighted) constraint violations, although doing so

might necessitate introducing integer variables.

6 Review of Solution Methods

The study of the theory and solution of the multi-stage stochastic LP (MSLP) has

paralleled the development of deterministic LP methods. Early references included seminal

work on the formulation and problem structure (Dantzig, 1955,1963; Madansky, 1963;

Rosen, 1963; Dempster, 1965; Wets, 1966), but left questions concerning the solution to

the general problem largely unanswered. Since the certainty equivalent LP (P0), expanded

to multi-stage as needed, is intractably large for all but the smallest problems (see Dantzig,

1987 for discussion of exponential expansion), current solution methods use Benders-

based decomposition strategies (Van Slyke and Wets, 1969; Benders, 1962; Geoffrion,

1972). See Dantzig (1987) or Birge (1982b) for a discussion of the general multi-stage

stochastic LP formulations. Comprehensive reviews of theory and solution practices are

provided in the collections edited by Dempster (1980) and Ermoliev and Wets (1988). Of

particular interest to our proposed disaggregation algorithm, is the review by Rogers et al.

(1991) of methods based on the use of aggregate models.

Spurred in part by the expansion in computing power, recent progress has been

made in solving the two-stage linear and mixed-integer stochastic programming problem

using Benders-based schemes (see e.g., Dantzig and Glynn, 1989; Infanger, 1991; Wets,

1983, 1989; Gassmann, 1990; Bicnstock and Shapiro, 1985). Key extensions over

previous methods include the utilization of parallel computers to solve the independent sub-

problems resulting from Benders decomposition (Dantzig, 1987), and using importance

sampling methods to bypass the exhaustive computations corresponding to the full

probability model. However, exact representations of the problem are typically precluded

by realistic expansion limits on current computing platforms. Since the recourse

formulation is exponential in nature, we anticipate that approximation algorithms will

continue to be required even as massively parallel computers become commonplace.

Extension to multi-stage problems via nested decomposition methods is

conceptually straightforward. The multi-stage problem however remains intractable due to

computational expense, arising from the nested structure of the problem and resultant

exponential growth in the number of sub-problems (see Dantzig, 1987; Gassmann, 1990;
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Louveaux, 1986; Birge, 1982b; Dempster, 1980). While a few specialized problems have
been addressed (see Dantzig, 1987; Beale et al, 1980; Bicnstock and Shapiro, 1985;
Karreman, 1963), general multi-stage linear problems remain computationally intractable.
Multi-stage solution methods generally rely on nested decomposition strategies which
involve solving series of two-stage sub-problems (Gassmann, 1990; Birge, 1982b;
Ermoliev and Wets, 1988). Hence, advances in the solution to two-stage models are
applicable toward improving multi-stage solution methods.

7 Aggregate Model Definition

At the cotter of the proposed solution method for die stochastic LP (P0) is the
aggregate model. Conceptually, an aggregate model is defined by a partitioning of the
probability space along with the partition-normalized means for the stochastic parameters
(i.e., RHS terms and cost coefficients). Thus, when a single partition is used to define the
probability space, the solution to the aggregate model is simply the mean-value solution to
the stochastic LP. A precise mathematical definition is now provided, followed by a
discussion of the theoretical properties relevant to the successive disaggregation algorithm.

The following notation will be used in defining the aggregate model and in the
subsequent discussion of its properties. Additionally, any parameter or variable with a
"bar" (e.g., r) refers to either the mean value taken over the appropriate probability space
(or sub-space) or to terms associated with the aggregate model solution. We restrict our
definition and discussion to the two-stage case.

Index sets:
k € K set of stage-2 events; NK = \K\.
qeQ set of disjoint partitions Kq whose union comprises the entire stage-2 event space

Parameters and variables:
l \ s tage-1 primal LP row R H S ,
b u s tage-2 primal L P r o w R H S expanded over event space , b2k

b^ s tage-2 primal LP aggregate row R H S expanded o v e r partition space , 6^ € ST
Cj stage-1 primal LP cost, cv € 9 P .
c2k stage-2 primal LP cost expanded over event space, c2k e 91"*.
c2f stage-2 primal LP aggregate cost expanded over partition space, c2f € 9 P .
p2k stage-2 probability of discrete event k € K, pu e SR1.

stage-2 probability of aggregate event q € Q, p2, € SR1.
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JC, stage-1 primal LP activity, x,
x u stage-2 primal LP activity expanded over event space, x^ € 91"*.
x^ stage-2 primal LP aggregate activity expanded over partition space defined with

respect to partitioning C. x^eX*1.
z primal LP objective function to be minimized, z € 9t\

zc primal aggregate LP objective function to be minimized defined with respect to

partitioning Q, ?0 cSt1.

$ stochastic parameter vector, 0e9tw*.

With the notation preliminaries aside, and using the fixed recourse formulation as

per problem (PO) we define the aggregate model for a given set of partitions G as follows:

(PA) min ^ t f a + Xp^cJjCj, (7a)

s.t. A.X, =l\ (7b)
(7c)
(7d)
(7e)

where p 2 f » £/>2 t
 : ? € f i ; * , CAT,

*•*,

2, 00)

/

The optimality conditions for (PA) are similar to those presented above for the

deterministic equivalent problem (PO), except that the expansion now takes place over

partitions q e Q as opposed to events ksK. Note that l£|g|£|Ar| when all partitions are

required to be non-empty. Furthermore, it is assumed that no zero-probability events are

included in AT, and hence p 2 f > 0 VqeQ.

The feasibility properties of the aggregate problem (PA) are essentially the same as

those for the deterministic equivalent problem (PO), within the context of the aggregate

model. That is, the fixed recourse formulation is retained in (PA), requiring the stage-1

decision to be feasible for all stage-2 (aggregate) outcomes. Problem (PA) is formed as a

linear combination of the constraints and objective function terms from (PO), and as such is
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a relaxation of the full-space problem (see proof of Theorem 1 later in paper). Hence, a

feasible solution to problem (PA) is not necessarily feasible for problem (PO), and

particular care must be taken when acting upon the aggregate solution to ensure feasibility

for (PO). The reader may refer to Appendix A for further discussion on the feasibility of

problem (PA) solution with respect to problem (PO).

8 Aggregate Model Bounding Properties

Depending on the structure of the stochastic LP, the aggregate model has bounding

properties which are of special interest with respect to the successive disaggregation

solution method In this section we consider three cases of fixed recourse two-stage

stochastic LP's and the bounding properties provided by the corresponding aggregate

models. Rogers et al. (1991) discuss aggregate model bounding properties, and include an

extensive list of related references.

Stochastic production planning models can be delineated according to die sources of

uncertainty in the model. The bounding properties correspond to the convexity or

concavity of the recourse sub-problem, which depends on the types of uncertain parameters

in the model. A summary of the three cases, along with the key bounding characteristics is

presented in Table 2. We now consider the bounding properties for each case individually.

MSLP
case

1

2

3

Table 2. Two-stage

RHS
terms

stochastic

fixed

stochastic

MSLP aggregate

Cost
coefficients

fixed

stochastic

stochastic

model bounding characteristics.

Recourse
problem

convex

concave

convex/concave

Bounding
property

?Zz
none

Case 1: Fixed Costs / Stochastic RHS

The convexity of case-1 problem instances follows directly from the definition of

(PA), which can be viewed as a standard LP known to be convex. We are interested in the

bounding properties of (PA) with respect to the exact solution obtained from (PO).

Furthermore, we are concerned with the behavior of the bounds as (PA) is successively

disaggregated (or aggregated).

Lemma 1. Consider problems (SI) and (S2) defined as follows:
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min z-f(x) (SI)
s.t. hk(x) = O VkeK

xZO,

and min z'-f(x) (S2)
s.t. XaA(*)~O V^efi

*€«,

where a4 > 0, fix) is convex, and A»(x) is linear. Then z* £ 2" provided that (SI) is
bounded.

Proof (S1) and (S2) can be written, respectively, as:

nan z-f(x):xeF (Sla)

mnz'=f(x):xeF'. (S2a)

Assume that z* < z ' \ Then is follows that F'cF. Then 3 i such that Ak(Jc) = O
V* € AT and I4€ir< a t ^(x) # 0 : ? e Q. Since ak > 0, this is a contradiction, and hence
F C F*. and z# ^V*. // Q.E.D.

Theorem 1. Given any partitioning Q which conforms to (9) in (PA), then Z'ZZ'Q,

where z* and z'Q denote optimal solutions to (case-1) problems (PO) and (PA),
respectively.

Multiplying the stage-2 constraints of (PO) by p2k, summing over keKt, and
dividing by the partition probabilities, p u , yields:

min zc = c1
rx1 + £Xft*c2

I>2» (S)

s.t. J4,X, S ^

where
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From Lemma 1, we know that z £ VQ.

1 x 1 %f*2ftA»/Paf. (12)

which then yields:

Z £ £ * . (13)

which can be used to replace the objective function in (S). Similarly, x^ ^ 0 : k € Kn can

be replaced by z^ £ 0 : $€ Q, yielding problem (PA). Substituting the x^ terms for the

x^ terms constitutes a weakening of the (P) bounds via further application of Lemma 1.

Consequently, VQ £ ZQ and hence z*Zz*Q. II Q.E.D.

Corollary 1. For case-1 problems z^ £ z ^ , where partitioning CL

formed by disaggregating (2,.

The pnx>f follows directly by normalizing the partition probabilities and leapplying

Lemma 1 over the appropriate partition subspace. Thus, any disaggregated partition is a

sub-problem whose contribution to the objective must be greater than or equal to that of the

aggregate over the same subspace. //Q.ED.

Therefore, for case-1 problem instances disaggregation will increase or leave

unchanged the value of the objection function. And, successive disaggregation must

monotonically increase the lower bound on the objective, z, such that:

l Q i ^ t i L . . £ z l K i = z \ (14)

Case 2: Stochastic Costs / Fixed RHS

When the cost coefficients are stochastic and the RHS terms fixed (i.e., case-2

problems), the recourse function is concave. An analysis similar in spirit to that above

leads to the result that disaggregation monotonically decreases the upper bound (given by

the solution to the aggregate problem) on the objective, z. However, an alternative and in

this case preferable analysis is to show that the case-1 and case-2 problems are structurally

similar, and that case-2 problems can be converted through dual transformation to case-1

problems.
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To simplify the discussion, consider a canonical representation of the stochastic LP

stated as follows:

min cTx: AxZb, x * 0 . (15)

Taking (IS) as the primal problem, the dual is formulated as:

max bTn : ATK£C. * * 0 , (16)

which can be rewritten as:

min -bTn : -ATxZ-c9 KZO. (17)

Thus (17) represents a stochastic program with uncertain cost coefficients. Problems (IS)
and (17) give identical values for the objective function (given a finite feasible solution to
each). Therefore, case-1 and case-2 problems can be considered interchangeable via the
dual transformation.

Corollary 2. For case-2 problems ^^z\

Proof Consider (IS) with fixed RHS terms and uncertain cost coefficients. The dual is
given by (16) or equivalently (17), which has uncertain RHS terms and fixed cost
coefficients. From case-1 problem analysis (Theorem 1) we know that - z ^ £-z*, and
hence £ * * • . //QJE.D.

Corollary 3. For case-2 problems z = z^ £...£ z^ £ z^ £...

Proof The proof follows that of Corollary 1 in light of Corollary 2 as applied to the case-2
problem. //Q.E.D.

Case 3: Stochastic Costs and RHS

For the general case when both cost coefficients and RHS terms are stochastic, no
bound on (PO) is provided by the solution to the aggregate model (PA). Hence, we cannot
use the aggregate model as a bound for case-3 problems. We can however, use the
sensitivity information associated with the aggregate solution, as well as the upper bound
provided by applying the aggregate optimal stage-1 activity vector in the full-space problem
(as discussed in "Part IT).
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9 Solution Method Outline

A high-level flowchart of the proposed successive disaggrcgation algorithm is

shown in Figure 2. We present this overview in order to convey the basic concepts behind

the solution method The reader may refer to "Part IF (day and Grossmann, 1994) for a

detailed discussion of the proposed algorithm along with computational results on test

problems.

AGGREGATE
MODEL

FEASIBILITY AND
OPTIM ALITY CHECK

j Define probability space.

1 ^
Partition event space. |

Formulate and solve
aggregate LP (PA).

duals

i

Feasibility Subproblcm
Solve (PO) using aggregate

stage-1 activities.

Analyze aggregate LP
solution sensitivities and
disaggrcgation choices.

itel

Optimality Subproblcm
Solve (PO) using stage *

activities from above

* 1

Figure 2. Overview of the two-stage successive disaggrcgation algorithm for non-concave objective,
based on certainty equivalent problem (PO) and aggregate problem (PA).

The algorithm can be viewed as three basic steps: (i) problem definition, (w)

aggregate model formulation, solution, and rcpartitioning analysis, and (Hi) feasibility and

optimality check. In step i the problem is defined by specifying the planning model

constraints and objective along with all relevant parameter probability distribution

information. Step it is centered around the aggregate model definition, solution, and

analysis. The aggregate model (defined in § 7) is formed by a probability-weighted linear

combination of variables and/or constraints. These combinations are dependent upon the
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partitioning of the event space and the corresponding partition probabilities. For every

partitioning defined, the resultant aggregate model is solved to optimality yielding an

approximation of the optimal stage-1 activity vector, as well as the dual (sensitivity)

information for the stage-2 partition-aggregated variables and/or constraints. Analysis of

the sensitivities is used to determine whether further disaggregation of the event space is

needed, and if so to project the'best* repartitioning.

Step m is the feasibility and optimality check which provides the solution to the

complete stage-2 activities (and duals). Tosimplify the discussicm of step wi, consider the

case where the costs are fixed and the RHS terms are stochastic. In this case, the solution

of the aggregate model is a lower bound on (PO). Furthermore, the lower bound

monotonically increases with successively disaggregated partitionings. The stage-2

activities may be needed either for further analysis or as part of the solution to a multi-stage

problem using a nested decomposition strategy (e.g., see Gassmann, 1990 or Birge,

1982b).

Starting with (PA) defined over a single partition, its solution x[ is tested for

feasibility in (PO), simply by solving the stage-2 component of (PO) using the additional

constraint x, * xj*. Considering x, a fixed input to (PO) allows us to solve for the stage-2

component of the problem via a collection of (summed) independent (and relatively small)

LP sub-problems. If any one of these sub-problems is infeasible, the most violating

(indexed by largest negative slack) constraints are identified, and the corresponding event

k^ € K^ c K : x, = x,# is used to generate a feasibility "cut" in (PA). Such a cut is

simply a reflection of the x, constraint and feasibility space with respect to the stage-2

solution xlk. In the simplest case, a cut can be defined as the (PA) augmenting constraint

set corresponding to the infeasible event k^ € K^ c K : x, = J* such that:

V* = k^ 6 K^ c K,

"cut" set.

Initially, the solution to (PA) is repeatedly tested for (xx) feasibility, adding cuts until (PA)

maintains (x,) feasibility with respect to (PO), assuming a feasible solution xx exists for

(PO). If one does not exist, (PO) is infeasible and must be reformulated to produce a valid

solution. In "Part IT a feasibility cut will be described which does not require the

evaluation of all the stage-2 LP sub-problems.

-19-



Once the initial cycle of generating the (PA) feasibility cuts is complete, the stage-1

activities found by solving the aggregate model are tested for optimality in (PO). The

feasibility sub-problem provides a proposed stage-2 solution, which is in turn used as a

fixed input to solve for the stage-1 component of (PO), which we denote as the optimality

sub-problem. Summing the stage-1 and -2 contributions to the objective from die two sub-

problems gives an upper bound on (PO) as well as the optimal stage-1 solution for this

counter problem. The upper bound and stage-1 (counter-) solution can then be tested for

proximity to the lower bound and trial stage-1 (aggregate) solution, respectively.

A variant of die proposed method is to skip the evaluation of the upper bound

which requires the solution of \K\ sub-problems ((PO) with fixed stage-1 activities). In this

case feasibility cuts are generated with a special formulation as proposed in Tart IT to

avoid the solution of the \K\ sub-problems. Similarly, a special formulation can be

developed to evaluate the upper bound.

10 Illustrative Examples

In this section we present two relatively simple examples which convey the basic

approach of the successive repartitioning algorithm. The specific details of the algorithm

can be found in "Pan IT of this paper (Clay and Grossmann, 1994). The first example is

problem (EX1), defined with stochastic RHS terms and fixed costs and introduced in § 4.

This problem demonstrates the response of the algorithm when the aggregate solution is

infeasible in the original problem (PO). The second example is a problem with stochastic

costs and fixed RHS terms. The example demonstrates the method applied to case-2

problems.

Example 1 Revisited

In § 4 problem (EX1) was solved using the mean-value approximation (i.e., using

formulation (PA) with a single partition including all events) to give V = zu= 9.15 and

Xj = 3.05. Solving (PO) (see Figure 2) with the added constraint (or fixed input) xx = 3.05

gives an infeasible solution, indicating the mean value solution is infeasible. From the

solution to the feasibility sub-problem we can identify the most violating constraint, which

we then use as a feasibility "cut*9 augmenting the constraints of (PA) for all future

solutions. We note that the cut variables reflect the constraint and feasibility space for the

most limiting event (corresponding to the most violating constraint). Furthermore, the cut

variables do not appear in the objective function, and hence only serve to bound the JC,

feasible space in (PA). In this case the most restricting event is when both demands are
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maximal, corresponding to 17 = (3,3). We create a feasibility cut for this event, thus

enforcing subsequent solutions to (PA) to be feasible with respect to that constraint,

assuming a feasible solution does exist The feasibility cut is given by constraints:

Again solving (PA), using a single partition plus the feasibility cut, gives zu -10.1 and

x, = 4 . Solving (P0) with fixed x, =4 gives a stage-2 activity solution, Xj*. Solving

(PO) with fixed xu to check for optimality gives a feasible solution with zm = 10.1 and

*j = 4. Hence the objective function gap is 0.0, and the solution is complete (with both

feasibility and optimality guaranteed). We have found the optimal solution by expanding

over only one of nine events, and including one feasibility cut

Example 2

The second example (EX2) is a fixed recourse stochastic LP with fixed RHS's and

stochastic costs (i.e., case-2 problem). We solve it using the dual transformed model (i.e.,

converting the problem to case-1 structure). Problem (EX2) certainty equivalent can be

formulated as the following primal LP.

min z = x,+ £/ty(c£fj4vtc£yX2p) (EX2)
ijmixj

s.t. x, + 2x^+3x£,£d, Viyeixy

x, + 3x£tf + Ixljj £ di Vi>' € 1 x j
x, SO

^ J Viyeixy,

where ^ = {1,2,3}, pi = {0.5,0.4,0.1},
^ = {1,2,100}, pi = {0.1,0.4,0.5},

911 Viy € 1 x j .

Here x -̂ and x^ are continuous stage-2 variables (vector elements 1 and 2, respectively)
expanded over the discrete probability space defined by crossing independent spaces
indexed by 1 andy.
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The solution to (EX2) via the proposed algorithm (see Figure 2) starts by forming

the expected-value problem (PA) using a single partition (i.e., IQI= 1). The resultant

aggregate problem (PA) is then dual transformed per § 8 to give:

min - ^ - X P * , ^ , * * ^ ) (EX2P A d u a l)

S.t. - 1 * ^ -

where

We assume here that we use the variant of the algorithm that does not require

evaluation of the upper bound (and hence we do not solve the 1X1 UP sub-problems). With

lfil= 1, solution to (EX2pAduii) gives -I* =-1.6 and j£ = 0 . Solving (PO) with j^ =0

gives a feasible solution with -zUB = -1.426. Sensitivity and repartitioning analysis using

the (PA) solution (see "Part 11") suggests splitting along probability dimension 2 between

events 2/3 (see Figure 3) to maximize the increase in the lower bound - z \ Repeating the

(PA) sensitivity analysis, repartitioning, dual transformation, and solution sequence until

no further improvements in the lower bound are projected leads to exact solution

(-y* SS-ZJJJ =-z") at six partitions (see Figures 3 and 4). Changing the sign of the

objective values gives the correct (PO) value, and shows how the case-2 primal problem

aggregate solution monotonically decreases with increased disaggregation. However,

solving the dual transformed problem is preferable since the solution method provides both

an upper and lower bound to check convergence.
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Figure 3. Disaggregation sequence for problem (EX2). Numbers in boxes indicate the partition index q.
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Figure 4. Aggregate bounds following disaggregation sequence for problem (EX2). Objective values
negated to correspond to dual formulation of (PA). Nq«lgl .

Conclusions

In this paper we have presented general conceptual and theoretical issues that arise

in the two-stage linear programming problem for production planning. In particular, it has

been shown how aggregate models of fixed recourse stochastic (production planning) LFs

provide approximate solutions and serve as the basis for a sensitivity-based successive

disaggregation algorithm. Bounding properties have been established for particular

problem structures to guide disaggregation of the aggregate probability space, using
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sensitivity analysis of the aggregate solutions along with repartitioning projection analysis.

In "Part IT of this paper, we present the detailed two-stage successive disaggregation

algorithm along with computational results and example problems.
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Appendix A
Feasibility of Two-stage Aggregate Stochastic LP

As shown in Theorem 1 problem (PA) is formed as a linear combination of the
constraints and objective function terms from (PO), and as such is a relaxation of the full-
space problem. Feasibility is of course strictly related to the constraints. It is perhaps
easiest to visualize mis constraint relaxation in the context of a simple example problem.

Consider the following example problem:

min z «s 2x, + ̂ xu (Al)

s.t. x, +x2Jk£ftu VkeK

where ^ = { 1 3},
.5 0.5}.

Letting die partitioning Q contain a single aggregate event gives:

which leads to the aggregate problem optimal solution as follows:

Xi-0;*^., =2; 1 = 2.

However, when x, = 0 is substituted back into (Al) the constraints are violated since:

is clearly infeasible.

This constraint relaxation is shown in Figure A.I, indicating that the aggregate
model constraint space (i.e., feasible region) will always (for all problems) be larger than
that of the deterministic equivalent problem. The line passing through points GG is the
upper bound for die stage-2 activity. lines BF and AD represent die constraints for events
1 and 2, respectively, of (PO). l ine CE represents the aggregated constraint for (PA). The
stage-1 activity for (PO) is limited by the feasible region for event 2 (defined by DAG),
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which is mote restrictive than the feasible region for event 1 (defined by DFBCXJ). The

optimal value for the (PO) sub-problems (i.e., expanded constndnts) are points F and A for

events 1 and 2, respectively, leading to a solution value of 3. The optimal value for (PA) is

point C, leading to a solution value of 2, which is however infeasible for (PO).

Figure A.I. Feasible regions for the deterministic equivalent (PO) and aggregate model (PA) problems
for example problem (Al).
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