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Abgract

Theresearch described inthis paper is motivated by the complexity surrounding the devel opment
of decision support systems (DSSs) for collaborative design processes. If one realizes that each
design agent engaged in acollaborative design process may have aunique theory of product be-
havior, adistinct language of communication, ami a specific model of decision making, the com-
plexity of building aDSS for such adesign processis obvious. Inthis paper, we propose that ma-
chinelearning is probably the only feasible approach to build aDSS for certain classes of collabo-
rative design problems. We discuss high-level requirements for such a DSS and then propose a
conceptual solution to build such aDSS based on a machine learning approach.

1 Introduction

New approaches (which go under different names, such as concurrent engineering, simultaneous
engineering, and collaborative engineering) have been proposed to improve product devel opment
processes by bringing relevant considerations as early as possible into die product development
process. In most of these approaches, collaborative design is central to the research.

Collaborative design isadesign process which encompasses multiple design agentswho: 1) view
the design product from different perspectives; 2) concurrently engage in decision making about
the design product; and 3) are concerned with different design objectives. Each design perspec-
tive may be based on aunique theory of product behavior, adistinct |anguage of communication,
and a specific model of decision making with respect to the objectives of that perspective.

Computational environmentsthat are being built to support collaborative design processes need
toanswer animportant question: towhat degreewill the environment support collabor ative deci-
sion makingprocesses? To build aunifying theory or amodel from first principlesto support col-
laborative design processes seems infeasible when faced with heterogeneous, complex knowl-
edge resources and incompatible communication languages across design perspectives.

As an aternative, we propose the use of machinelearning approachesto devel op empirical mod-
elsof product behaviors, whichmay then beused to support decision making processesin collabo-
rative design. Such empirical models may be built from a representative collection of product
designs. These product designs may be historical design cases that embody important design ex-
pertise or could be generated by using perspective-specific design tools (i.e., simulation, knowl-
edge-based, and analytic tools) to describe a collection of important design concepts. By devel-
oping empirical models for each design perspective, one may obtain amodel of die design space.
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Such amodel may be utilized for exploration of design alternatives within aperspective and with
respect to its objectives. By providing interaction links among the empirical models, one may
buud acomposite model of product behavior for usein collaborative design. Such amodel would
allow decisions within a perspective to impact decisions across all perspectives.

In Section 2 wediscusstherequirementsfor aDSS for early stages of collaborative design. Then,
in Section 3 we propose aconceptual solution for amachinelearning-based DSS that meetsthese
requirements. In Section 4 we summarize the contents of this paper.

2 Requirements for a Decision Support System for Early Collaborative Design

Many research papers on computational support for collaborative design fail to identify require-
ments for which these systems are developed. However, identification of these requirementsis
important for analyzing the tradeoffs for the alternative approaches to building these support sys-
tems. Wefirst provide acompilation of requirementsfor support systemsfor collaborativedesign
from anumber of sources[Beggs92, Finger 93, Hill 91, Kahaner 93, Prasad 93]. Then, weidenti-
fy in detail the requirements that are specific to DSSs for early collaborative design. We focus
ontheoperational requirementsfor aDSS for collaborative design. Thismeansthat organization-
al, cultural, sociological, and other issues are not covered, though equally important.

2.1 General Requirementsfor Decision Support Systems for Collaborative Design
2.1.1 Requirements Arising from the Multiplicity of Design Agents

Multiplicity of Perspectives. Fundamental to the operations of a DSS in collaborative design
isacapability to support decision making of multiple agents viewing the product from different
perspectives.

Concurrency. A DSS needsto allow design agents to engage intheir respective decision making
processes in parallel while communicating the decisions across all interested perspectives.

Common Understanding. A DSS needs to provide away for design agents to become aware
of how their decisions affect the decision making processes in other perspectives. Finding means
for this "expanded understanding” of a design problem for all design agents is a hard task to
achieve without introducing information overload.

Availability of Information. Collaborative designimplies sharing of information among the de-
signagents. Relevant information needsto be availablein atimely manner. A special case of the
requirement is a support for information abstraction: detailed design records need to be used in
the early design stages by abstracting relevant information from the minute details.

2.1.2 Requirement Arising from the Early Stages of Decision Making

Management of Risk and Uncertainty. In early design stages, design information is often in-
complete. Hence, aDSS needsto handle partial informationinamanner which allowstheevalua-
tion of uncertainties and risks associated with proposed decisions. Failure to handle situations
where partial datais available means inability to act in realistic design situations.

2.1.3 Requirements Arising from the Nature of Design Process

Management of Change. A DSS needsto take into account that the technological advances and
changes in environmental influences and regulations may all affect the decision making pro-
cesses. Depending on the dynamics of these changes and sensitivities of the product developer
to these changes, different approaches for building a DSS may be more or less suitable.

Integration. A DSS that operates independently of the rest of the information management sys-
tem of aproduct devel oper may proveto be beneficial. However, only throughtheoverall integra-
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tion of the information management resources can all the benefits of the DSS be realized: 1) re-
sponsiveness to market demands; 2) shorter time to market; and 3) increase in productivity.

Generation and Evaluation of Design Alternativest A DSS needsto provide servicesto ade-
sign agent for generation and eval uation of design alternatives from the agent's perspective. This
requirement translatesinthe needto support generative and eval uative inferencesin adesign pro-
cess. (For adiscussion of relevance of this requirement see [Hemming 93] and [lvezic 92].)

Design History Captureand Reuse. A DSS needsto allow for recording, communicating, and
sharing relevant information across the perspectives. Past designs (both successes and failures)
need to be used to prevent the recurrence of the same design errors and to identify good designs.

22 Specific Requirements for Decision Support Systems for Collaborative Design

The following requirements apply specificaly to a DSS for early stages of collaborative design.
Atthesametime, weidentify theelementsof (he decision problem that appearintheeaiiy collabo-
rative design. Webelievethat aDSS needsto recognize these categories of elementsin theearly
collaborativedesign process. To illustrate these requirements, we describethem foraDSSfor the
collaborative design of industrial prefabricated buildings.

22.1 Context: Collaborative Design of Industrial Prefabricated Buildings

Suppose that acompany isinvolved in manufacturing, assembly, and marketing of prefabricated
industrial buildings. At least three design perspectives may be identified: structural design,
manufacturing design, and construction planning. Support of decision making in early stages of
design and within these design perspectives is the overall goal in developing aDSS. Decision
makers (henceforth, design agents) in each of these perspectives are concerned with objectives
specific to their perspectives; for example, the structural designer is concerned with structural
safety and the manufacturing engineer with cost-efficiency of the manufacturing process. Each
design agent deal swith decisionsthat traditionally belong to his or her perspectlve the structural
designer selectsthe geometry and material for the structural components and the construction en-
gineer selects equipment to be used for assembly of the product. Inaddition, adesign agent needs
to consider the external actionsin hisor her decision making process. For example, the structural
designer needs to consider designloads. The overall design objectives (e.g., cost-efficiency of
the project) are traditionally amatter of concern of the project manager. Figure 1 showsthe per-
spectives of the three design agents and of the manager with the elements of the design problem
classified into three classes: 1) design decisions; 2) external actions; and 3) design objectives.

222 Reguirements

Evaluation of Decision Making. Interpretation of design objectives is very much context-de-
pendent and subjective. Hence, there hasto exist ameasure of design performance as abasis for
design evaluation. These measures of design performances (henceforth, design performances)
are simply agreed-upon and are conventional measures of some aspects of design that carry in-
formation relevant to some objective. For example, the strength of a designed component is a
conventional measure applied to obtain ameasure of structural safety. Design performances are
showninFigure2. Withtheintroduction of this decision element, four inferences need to be sup-
ported in solving a design problem (also shown in Figure 2 and illustrated with arrows).

Constraintson Design Decisions. Thelast typeof element inthe decisionmodel isthe compati-
bility constraint. These elements identify constraints that are consequences of technological or
regulatory restrictions imposed on valid ranges of design decisions. For example, there exist
constraints on the geometry of structural components that can be feasibly manufactured. Figure
2 shows these decision elements and the inference that needs to be supported.
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Figure 1 — Elements of the Design Decision Problem (Initial Version)

Natural Design Inferences. Decision support protocol provided by the DSS needs to dlow a
natural process of decision making within each perspective and the whole project. This require-
ment tranglates into a need to support different design protocols with as few constraints on the
actual decision process as possible.

Communication of Design Decisions. Each design agent needsto be awarehow hisorher design
decisions affect design objectives across perspectives. For example, the structural designer needs
to be aware how decisions about the geometry of structural components influence cost-efficiency
of manufacturing which, in turn, affects the overall cost-efficiency objective. To thisend, each
design agent needs to be able to communicate decisions across perspectives to other agents.

Effective Consider ation of Global Objectives. Simultaneous consideration of objectives across
the perspectives and the overall project must be supported.

Negotiation of the Decision Process. Sinceitislikely that conflicts inthe interpretations of ob-
jectives will arise, negotiation of the decision process must be supported between design agents
and the manager as well as among design agents.

3 A Machine Learning-Based Decision Support System for Collaborative Design

The intent of our approach is to build empirical models of design product behaviors with respect
to each perspective in the collaborative design process. Each model will estimate the perfor-
mances of the design product from aspecific perspective and will haveinteractionlinks with other
perspective modelsto alow for propagati on of influences of decision making across perspectives.
Inthecourse of the design process, design agents and the project manager will interact with these
models to search the design space for good designs conditional on external actions and perfor-
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Figure 2 — Elements of the Design Decision Problem (Final Version)

mance constraints. (See [lvezic 92] for related ideas based on using machine learning for engi-
neering design synthesis and [Y erramareddy 93] for a similar approach.)

31 Key Decisionsfor Conceptual Design of a DSS

Neural Network Learning Approach. Thisisour principal approach to building the empirical
models of design product behavior. We have selected this approach because of the capability of
neural netwoik learning methods to approximate any functional relationship, itsproven capability
to leam empirical models through inductive learning, and its capability to support a number of
uncertainty management approaches (i.e., probability, fuzzy logic). The shortcoming of the ap-
proach—Ilimited representational capabilities—we believeisnot aserious defect for the support
of decision making in early design stages where compact representations (i.e., nominal, ordinal,
and continuous variables) are desirable for the inference process.
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Praobabilistic framework. In order to manage uncertainty and to alow for evaluation of risks
associated with decision making, a probabilistic framework and inference mechanism were se-
lected. Thebenefit of thischoiceisthat the probabilistic approachiswell supported by theoretical
statistical and machine learning research, it provides formalized interpretation of the notion of
behavior (i.e., causality), and itintegrates well with our choice of machine learning approach—
neural network learning. The shortcoming of this choice — its substantial demand for data on
whichitderivesitspower—may behandledintwo ways: 1) by requiring sufficient dataresources
to be generated or gathered in design perspectives; and 2) by incorporating prior knowledge about
the design perspective in the probabilistic model.

Integrated I nformation M anagement As can be seen from the requirements, aDSS needsto
have close linksto other parts of the design information system. This decision—to design and
implement a DSS and the rest of the information management system in an integral manner—
we believe to be very important for the usefulness and usability of the DSS in the collaborative
environment In spite of the increase of costs in this approach as compared to the independent
development of a DSS and the rest of information management system, the evidence from the cur-
rent practice indicates that aholistic approach is in the long run more beneficial [Stark 92].

3.2 Overview of Functionality and Implementation Techniques

Weillustrate the basic functionalities and implementation techniques enabling these functionali-
tiesinthe context of using the DSS for early design of prefabricated buildings. The DSS consists
of anumber of DSS modul es, each modul e encompassing the empirical model for the correspond-
ing perspective and the utility functionsto allow for communication of the design agent with other
design agents and the project manager. Assume that afour member team (including a structural
designer, amanufacturing designer, a construction engineer and the project manager) is assigned
atask to estimate val ue ranges for key decisions for anew project and the expected cost and time
to complete theproject The DSS providesthe following functionalities to support the collabora-
tive design decision process: '

Input of Design Specificationsand Decisions. A specific value or adesired range may be speci-
fied for any decision element both intheinitial design specification stage and during the design
decision process. For example, the structural designer may specify constraints on the geometry
of structural components and on the component strengths (reflecting, say, code provisions).

Request for Relevant Out-of-Perspective Decisions. At any point intime adesign agent may
make arequest for the state of decisions from perspectives that affect that agent's decision process.
For example, amanufacturing designer may make a request for decisions about the geometry of
the structural components as these decisions are rel evant to the cost of the manufacturing process.

Test for Feasibility of Design Decisions. At any point the empirical model may be invoked by
the design agent to perform atest for feasibility of design state. Taking the current constraints on
the val ue ranges of decision elements (as specified by the agent) and the relevant out-of -perspec-
tive decisions, the empirical model estimates the probability distributions over the ranges of its
decision elements. Inthe case when the probability over the allowed range of adecision element
isestimated to be zero, the agent is warned of a possible infeasible collection of design decisions.
For example, the empirical model corresponding to the structural design may estimate the proba-
bility of the user-specified range of material coststo be zero. Inthat case the structural design
agent must understand that the combination of decisions about the geometry of the components,
thematerial forthe components, and constraints onthe rangesfor material costs, are contradictory
totherelati onships among these decisions embodied inthe design cases used for building thisem-
pirical model. Estimates of theseprobability distributionsis achieved by using Monte Carlo simu-
lation techniques and by sampling the inputs to the neural network from the allowed ranges.
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Prediction of Decision Element Values. As adirect support for the decision making process,
a DSS module provides prediction capability for the corresponding design perspective. Predic-
tions for the values of al decision elements are available for any combination of current design
decisions. Forexample, inthe structural design perspective, given the constraints on the geome-
try, material, and o>stsof the material, the st m ~ral DSS module may predict the expected values,
variances and other relevant statistics for the values of external loading that conform to these
constraints. Hence, the agent may take the predicted values as an advice.

Sensitivity Analysisof Performances. An agent may find the sensitivities of performances with
respect to specific decisions. For example, the structural agent may need to know how sensitive
manufacturing costs areto decisions about the geometry of the components. The neural network-
based empirical model allows these sensitivities to be computed through experimentation.

Specification of Overall Objectives. The project manager interacts with the DSS and the rest
of the project team by imposing the overall project objectives on the decision process. While a
design agent translates an objective within a perspective into one or more design performances
within that per spective, the project manager deal swith the overall objectivesby interpreting them
interms of design performances across one or moreperspectives. Forexample, the structural de-
signer translates the cost-efficiency of material into aconstraint on the cost of materials and the
manager interprets the overall cost-efficiency objective in terms of constraints on the material
cost, manufacturing cost, and assembly cost. :

Negotiation of the Decision Process. The negotiation process is supported by the weights
associated with design performances (as supplied by the project manager) and sensitivities of the
design performances with respect to different design decisions.

33 Attributes of the Machine Learning Approach for DSS vs. General Requirements

The general requirements for aDSS for early collaborative design are addressed by attributes of
all three aspects of the conceptual solution: neural network learning, probabilistic framework, and
integrated information management. Neural network machine learning approaches result in dis-
tributed and modular computational systems. Common understanding using these approaches
isobtainable at no extracost asthese approaches basetheir inferences on the syntactic, not seman-
tic content of the information. The capability of the integrated modular neural network-based
systemsto communi cate among themsel ves over interaction links allows for the building of aDSS
system in which the effects of decisions are readily available to all agents.

The probabilistic framework allowsfor the handling of uncertainty and risk related to the decision
process. Management of change is addressed by: 1) the machine learning approach through its
adaptability and capability to generalize and predict based on alimited amount of training cases,
2) the probabilistic framework in which estimates of confidence in the predicted values can be
made; and 3) the integrated system to gather or generate design cases from which adaptation of
thelearning systemtakesplace. Theintegrated design case generation system allowsforthe verti-
cal integration within design perspectives and, consequently, the capability for abstraction of rele-
vant design information.

4  Summary

Building decision support systems for collaborative design processes is a highly complex task.
Machinelearning approaches have apotential to manage this complexity and effectively support
building of these DSSs.

Inthispaper, wefirst discussed the operational requirementsfor suchaDSS. Thegeneral require-
ments for acollaborative design support system included support for different perspectives, con-
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currency, common understanding, information availability, management of risk and uncertainty,
management of change, vertical integration, generation and evaluation of design aternatives, and
design history capture and reuse. The requirements specific to DSSs for early collaborative de-
signincluded support for evaluation of decision making, constraints on design decisions, natural
designinferences, communication of design decisions, consideration of global objectives, and ne-
gotiation of decision process.

Wethen discussed how these requirements might be met by amachinelearning-based approach.
Inthe proposed approach empirical model sof designproduct are built foreach design perspective
involvedinthe collaborative design process. Theseempirical modelsform the basisfor decision
support within each design perspective as they represent searchable models of design space. By
providing communication links among the empirical models across design perspectives, aDSS
for collaborative designiscreated. Thesecommunicationlinks alow the effects of decision mak-
ing within each perspective to be propagated to all other perspectives. Powerful functiondities
arepossibleinthe proposed DSSmodel: early testsfor feasibility of design decisions, prediction
of deciston element values, sensitivity analysis of performances, and negotiation support.
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