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ABSTRACT

Current methods of measuring dissimilarity betueen spectra
using linear predictor coefficients or cepstral coefficients are
shoun to be deficient in many wuays. In particglar we shouw that
certain types of degradation in speech data can significantly affect
these barameters making them essentially usé!ess for compariscn of
spectra. Two types of degradstion namely, the quantization noise of
waveform encoding-(ADPCH) and additive band-limited Gaussian noise,
are considered for iilustration. For these two cases tHe linear
predictor coefficients do not represent the true envelope of the
short time spectrum. Earlier studies reported large values of
distance between ADPCH and original data. Those values are largely
due to differences in the spectral dynamic range. By using a neu
measure proposed in this paper, We show that the true differences in
spectral envelopes of ADPCHM and original! data are insigqificant. This
result also explains to some e#tent the good recognition capability
of Harpy continuous speech recognition system for ADPCHM data even for
the lowest bit rate. Based on this new measure ue arrive aﬁ the
conclusion that the effect of additive noise on parametric extraction

is more severe than quantization noise.

-



1. INTRODUCTION

Parameters representing sﬁoothed spectral characteristics of
- short segments of speech are often used as features in several speech
processing systems [1]. Envelope of short time spectrum represents
the shape of the vocal tract during the analysis period and'temporal
variation of the envelope is supposed t; contain speech and speaker
informétion. Several parameter sets are' avaiiab!e to describe the
envelope characteristics of short time spectrum. Autocorrelation
coefficienfs, ‘which are the Fourier coefficients of short time
spectrum, are the basic parameter set from wuhich most of the other
parameters are derived. Inverse Fourier transform of truncated
autocorrélgtion_coefficien? series gives the autocorrelation smoothed
spectrum, A more accurate estimation of spectral envefope,;
especially at its peaks, is through linear prediction coefficients
(LPC) which are derived from autocorrelation coefficients by solving
é set' of normal equations [2]. The physical basis of LP (Linear
Prediction) smoothing is that it gives the frequency response of the
beét all pole model for voca! tract system. Other wuseful parameters
are cepstral coefficients, reflection coefficients, area coefficients
and formants, all of uwhich caﬁ be related to LPC or autocorreiation
coefficients [2]. .

The -main problem in pattern recognition in speech involves

“matching the test spectrum with a reference spectrum using a suitable



distance measure. The reasons for the choice of smoothed spectrum
for comparison are: (1) Fewer parameters are needed to describe the
spectral behavior compared to the actual waveform or its spectral
‘values, resulting in large data reduction and saving in computation
time. (2) The smoothed spectrum contains most of the information
needed to desrcibe the speech signal as evidenced by the perceptual
studies in analysis-synthesis telephonu.

Several possibilities exist for matching the ‘spectra (31.
Distance measures directliy on the parameter sets have not yielded
good results in speaker and speech recognition studies [4], [5]. But
high scores were reported [4] in a speaker identification test uwhile
using a root mean square {rﬁs) Euclidean distance measure betueen
test and reference log spectra from LP analysis. This is refered to
as an rms log spectral measure. Atal [B] has shoun for a sbeaker
verification test that wueighted Euclidean distance measure based on
cepstral coefficients resulted in the highest scores. among several
parameter sets, The unueighted Euclidean distance baséd on cepstral
coefficients is referred to as a cepstral distance measure. Magill
{71 and Itakura [8) have proposed the ratio of LP residual energies
for comparing reference and test data. Itakura {8) has shoun that
fogarithm of the ratio of LP residuals {log likelihood ratio)
resulted in high recognition scores in a word recognition experiment,
Gray and Markel [3) proposed a cosh measure uwhich is obtained by

averaging two nonsymmetrical likelihood ratios, This new measure
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possesses the desirable symmetry property of a distance measure
al though the individual " log likelihood ratios do not.
Interrelationship% between the different measures uere studied and it
‘uas'fognd that cepstral measure and cosh measure satiéfg the general
criteria useful for measures of distance in speech procesing [3).

The ;athemaﬁical distance measures proposed -so far have been
found -to shou no éorrespondence with the perceptual data [3].
Perceptual experiments did not shou a uniqué‘ value for a distance
measuré that corresponds to a barely perceptible change in formant
freguency over a range of formants and frequencies. But a relation
betueen distance measure and perceptual changes would help in fixing
threshold value for the distance to determine significant changes in
data. The conclusion of OGray and Marke! sutdy on distance measures
is that "until perceptua} experiments or speech recognition tasks,
for examﬁle, shou some other distance measure to be more meaningful
for speech processing, the rms log spectral distance makes the best
reference point for comparision. It can be physically interpreted;
it is analytically tractable, easily and efficiently computed (using
the cepstral measure), and relatable to several other wnidely used
measures of distance.”

1t is interesting to note that the starting point for atl the
distance measures propo;ed so far is the LP smoothed spectrum. It is
implicitly assumed that any changes in the .original spectrum are

reflected faithfully in the LP spectrum as well. Several changes in



the original speech spectrum may occur as a result of different
sources of lvariabi[itg in speech input, but these changes may not
produce perceptually different sounds. Houever, the variability in
‘the original spectrum may produce targe variation in the perceptually
significaht features of smoothed spectrum as a result of the
transformation involved in generating the smoothed spectrum. The
veruy fact that several distance measures are interrelated and all aim
at comparing the smoothed log spectra, shous tsat they have no direct
relation to the differences present in the actual spectra.

In this paper ne shall investigate how the actual differences
in the original spectra are reflected in various distance measures,
especially in the most commonig used LP distance proposed by Itakura
[81. We shall discuss the inadequacy of the measure particularly
uhile comparing an original speech data with its distorted version.
We shali consider two types of distortions for illustration:
quantization noise of waveform encoding schemes and additive band-
limited Gaussian noise. A more practical approach for comparing such

data is proposed.



I1. DISCUSSION OF THE PROBLEM

In this section ué shall discuss the following problem:
Suppose we have tuo sﬁectra whose envelopes are.to be compared.
What is a suitable measure for comparison? How good are the smootihed
spectra obtained by Iinear prediction analgsis or cepstrum analysis
for such a comparison?
IrBefore we discuss these qpestions let us consider a feu exmples
to explain the problen. Consider the case of comparison of tuwo

spectra having the same spectral envelope but differing in their

absolute values (not on log scale) by a constant (K)., That is if P ().
1

= P(W) then P (W) = P( )+K. Or, the tuwo spectra may have similar
2

envelopes but thég differ in their average slopes f{again not on log
scalel. - A slightly moré complex case could be one in which the
spectral envelopes may differ in slopes only in certain freduencg
ranges. Such changes in envelopes may occur due to several
‘distortions the speech signal undergoes before actual processing for
parameter or feature extraction. As for example, small amounts of
quantization noise of uave%orm encoded speech or additive background
noise generally produce insignificant changes in the spectral
envelope. As another example, the response characteristics of the
antialiasing filter are superimposed on the speech spectrum thus

contributing to changes in its envelope. There are saveral other



sources such as the frequency response of input transducer, telephone
distortions etc. which alter the shape of the spectrum.

It is evident that basicaflg there are tuwo types of spectral
*distortions: additive and multiplicative. In the cése- of additive
uncorrelated noise the spectral envelope of noisy speech will be sum
of épectral envelopes of speech and noise. If the signal to noise
ratio (SNR)} is high, then the spectral envelope of speech is
practically unaffected by the noise. In th; case of superimposed
frequency responses of filter or. transducer characteristics, the
spectral envelope of the distorted speech is a multiplication of thé
freéuencg response and the spectal envelope of the undistorted
speech. Nheﬁ ue consider log spectrum, the envelope is altered with
the addition of-noisg spectrum to the original even though the SNR is
high. The reason for this is that the spectral dynamic range is
significantig altered with the additive term in the spectrunm. On
the ofher hand, in the case of multiplicative spectrél distortion,
the smoothed log spectrum fs just an addition of the smoothed log
. spectra of the fregquency response of the transducer and the envelope
of‘ the original spectrum. In the latter case it 1s possible to
subtract the superimposed log frequency response to obtain the
original smoothed spectrum. Such a éimple scheme does not work for
additive noise distortion.

The implication of the above discussién in the +two familiar
- methods of spectral smoothing viz., cepstrum and |inear prediction,

Hill be considered nou.



a) Cepstrum Analysis
Let

P {w) = Spectrum of speech segment

N (u)

Spectrum of noise

! lcin)} = Cepstral coefficients
|

! (R{n)}

|

!
Then, wusing Fourier series expansion of power spectrum and the
!

Autocorrelation coefficients

definition of capstrum we get

oQ .
P() + N() =R + ) R cos(kw) (1}
) k=1 .
- and co
c(B) +5cik) coslkw} = In [ P(d + Nlw) ]

k=1 )
A - !n [R(B) + R{k) cos(kw)] {2}

Cepstrally smoothed spectrum [3] is obtained by finding the frequency
regponse of the truncated series in the summation on the LHS of (2).
It is obvious that the cepstral coefficients and hence the resgiting
smoothed spectrum are.stronglg dependent on N{w) through R{n). The
important point is that the dynamic range of P{w) is reduced
affecting' th; envelope of log spectrum and hence cepstrum. The
effect of noise is also sometimes reflected as spurious peaks or Hide
banauidth formants in the smoothed spectrum. Fig. 1 shous cepstra!]g
smoothed spectra for a voiced speech segment and for additive and
multiplicative tupes of spectral distortions in the segment. The
freﬁuencg response used for generating the multiplicative distorted

speech is given in Fig. 2.



b) LP Analysis

Similar effects can be observed in LP smoothed spectrum also as
shoun by the following analysis. The approximate spectrumlskn] in LP
analysis s der}ved by minimizing the integrated ratic of the
‘original P{w) and the approximate spectrum [21. That Is 3(wl

minimizes the function

' 1 P (w)
E w —emeem = dow (3)
2 n P (w :

_-“ 1
subjected to the condition

™ v

jP(m) dew = j'ﬁ(w} dw %)
~Tr -T

-
. 1 P{w) + N(w)
E ™ e ) e duw (5)
2n P (w})
-7

éubjected to the condition

w .

. | IIP(WI + N{w)] dw = fP('-OJ dw {6)
=~ -

for speech corrupted with additive noise. Fig. 3 illustrates the

effect of the two types of distortion considered in Fig. 1 on LP

smoothed spectrum. It is clear that additive noise reduces the
dynamic range and widens the banduwidth of some formants. Formant

estimation® from multiplicative type spectral distortion is not

L P
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significantiy affected unless thé superimposed frequency response
filters out certain freguency components.

The best way to illustrate the effect of addiive naise on LP
*smoothing is by considering smoothed spectra cbtainéd by computing
LPCs for autocorrelation coefficient sets which differ only in the
value of the zeroth coefficient R(8). Fig. & shows that as RI(B) is
increa;ed the dynamic range of the spectrum is reduced and the
formgnt banduidths are increased. The higher ;ormants do not appear
in the LP spectrum when R(B) is increased, ulthough they are present
in the actual spectrum since only R(B) is altered.

While comparing spectra in a speech processing system the
reference features are collected on a reasonably clean data uhereas
the test data may be subjected to various types of distortions. It
is not possible to collect and store referencés for distorted speech,
especialig for additive noise type of distortion. This is because the
source of variability is not knoun in advance. Normalization for
mgltiplicative type of distortion i{ike transducer or filter frequency
response can be made. But for additive type of distortion one may
end up in comparing LP spectra {a) and (d) in Fig. 4 and conclude
that they are significantiy different although the envelope

information is unaffected in their actual spectra.

The above discussion suggests that a different approach for

comparing speech spectrum envelopes is reeded in order to overcome

the difficulties indicated. The problem arises mainly because the

S
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comparison is made on envelopes derived from the original spectra
through transformations which do not preserve ali the features of the
original envelope. We shall develop a method in the following
‘section uhich brings the two spectra to the_ same Iével of dynamic
range before comparing them. MWe shall use-this method to show that
iql most ;ases jhe large distance measured between original and
d{storted speech spectra for additive noise distortion is mainly due
t; differences in their dynamic ranges and not.due to differences in
a

their spectra; shapes [18). The result is illustrated for

quantization and additive white noise distortions.

111. PROPOSED METHOO

Since our objective is to compare shapes of spectral envelopes,
it is important +to determine the parameters that fepresent the
envelope information. Autocorrelation coefficients are the
coefficients of Fourier series gxpansion of-pouer spectrum, in which
the zeroth eocefficient merely determines the average value of’the
spectrum, All the other coefficients determine the shape of the
spectrum. In LP smoothing the influence of the zeroth autocorrelation
coefficient'is aignificant, as shoun in Fig. 4,making comparison of
smoo thed spectra difficult.

To overcome this difficulty we pEopcse the following scheme for
comparison of two spectra. It consists of modifying one

autocorrelation set relative to the other before using a smoothing
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technique. Let R (1)) and R (i)}, 1=8,1,2,..1 be the
1 2

autocorrelation sets of the original and distorted speech

respectively., In order to keep the effect of the zeroth coefficient

same in both cases, we multiply the coefficients R (i}, i=1,2,...M by
1

a constant K which is determined by minimizing the error function
f
!

. ! 1]
M 2
E= S tKr (i) -r (017, (7)
1 2
i=1

. dE/dK = B yields
"

:E:|~ fi} r (1)
1 2

QT . (8)

hhere‘r {(i)=R (i)/R (8) and r (i)=R (i}/R (B}.
1 1 1 2 2 2

The modified autocorreiation set consists of R (8}, KR (1},
1 "1

KR (2}....KR (M) and let us denote this set as (R{il}, i=8,1,...M.
1 1 :

Notice that the spectral shape nill not be altered due to this

"
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modification. The LP smoothed spectra for R (i) and R{i) will
1

however be different. It appears logical to compare the smoothed

spectra derived from R(i) and R (i} wusing any of the standard
2

distance measures [3]. 1f the spectral envelopes of the tuo spectra
are same, any distance measure operated on the LP spectra shogld
yield zero value,

For illustration ué shal! use the log liéelihood ratic measure
proposed by [takura [8] for comparing the smoothed spectra. This
measure is computationally more efficient than the rms log spectral
measure ‘and it has been effectiveiy used in problems of speech
Eecognition (8, speaker recbgnition (11}, and variable frame rate

synthests [12], although from statistical considerations the measure

Wwas found to be unsatisfactory [13}. Let {r(i)}, {r (i)] and {r (i)}
; 1 2

be the normalized autocorrelation coefficients and f{a(i)}! {al{i}} and
{a2(i)} be the Ilinear prediction coefficients corresponding to

{R{i)}, R (i)} and (R (i)} respectively. The measure developed by
1 2

Itakura for autocorrelation method of linear prediction to evaluate

the dissimilarity betueen ériginal and test segments is given by [18]

T T
d = In { AYA /BYB ) (3)

where the vectors A and B are the augmented LPC vectors of the

original and test segments respectively, i.e.,
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A= (1, all), ai2), ... a(M))
and

B= (1, b(l), bf2}, ... b)),

"V is the autocorrelation matrix of the test segment. To take into
account the length of the speech segment it is.preferable to consider

as distance measure

D=N . d (18)
eff
uhere N denotes the effective fength of the segment in samples.
eff '
1f the segment is muitiplied by a Hamming window, N = B,3375N
: eff

uhere N is the actual number of speech samples in the segment. For a

rectangular window N = N.
' eff

An efficient method of obtaining d is by computing the log

likelihood ratio from the residual energies § and o as follous [31.
dein (&/4) ©{11)

where
n
T .
S = AVA - E r n)r (n), (12)

a x

t=-t
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H
T

o = BYB = E r(n)r{n). (13)
: b X

i=-M

tr (n)} is the normalized autocorrefation sequence of the test data
» .

and {r (n}}] and r (n)} are the autocorrelation sequences of {a(i)}
a b

and {b(i)] respectively,
In the illustrations to follow we shall compute two distances

D and 0 for each frame of speech data, given by

1 2
D =N . In { Syaty) (14)
1 eff .
and
D =N . in (5/0) ) {15)
2 eff .
uwhere
5 L ' '
- r (n) r (n) s - (1.e)
! EE: al 2
j=-H
M .
o - r (n) r (n) . (17)
l Z az 2 )
i=-M
M
82_- rn)r N, (18)
a 2
j==N

and



15

e n)),  Ar {n}} and Ir {n)} are autocorrelations of the LPCs
a al a2

{ali}), {al(i)} and {a2(i)} respectively, defined earlier. The

distance D is a measure of dissimilarity betuween original and
’ 1

distorted speech segments and the distance O is a measure of
: 2

dissimilarifg betueen the same segments after the modification of the
autocorrelation coefficients suggested in equations (7) and (8).

In most cases of additive type of distortion the normalized
autocorrelation coefficients .of the distorted segments are usually
smallgr than the corresponding coefficients of the original data.
Therefpre in most cases the parameter K defined in Equation (8) is
jess thaﬁ unity. But for some segments of speech the value of K may
be greater than unity while comparing with their distorted versions.
This happens generaly for segments having significant high frequency
ehefgg. In such cases K is forced to be unity, i.e., no modification
ufll be done for the autocorrelation coefficients of the original
data. The value of.K may also exceed unity wuhile comparing two
segments corresponding to different sounds as in a speech recogniticn

experiment. In such a case the roles of R (i) and R (i} are to be
1 2

reverséd in (8) so that we get a value of K less than unity. - Also,
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the values of R (i), i=1,2,...1 are to be multiplied with the newu K.
2

In other words R (i) will be modified with respect to R (1).
2 1

It may be tempting to carry out the modificatioa aluays on one
set of autocorrelation irrespective of the value of K, but for K>l
the modification results in increasing spectral spread or dynamic
range of the smoothed envelope. This is not desirable for tuo
reasons, F{rstly. increasing dynamic range ;esults in an unstable
all-pole filter, Secondly, even small differences in formant
frequencies and bandwidths yieid large values of distance |

While comparing spectra for different sounds, it 1is preferable

to adopt two-way modification of the autocorrelation sets. This is

done as follous. First the value of K is computed as

M
r Y e ()
12
Pel
K = commmmemmee e . (28)
ﬂ .
2
Z r)
1
-l -

If this K is less than or equal to one, then {R (i)) is modified as
1

R {(8), KR (i}, KR (2),... KR (M}. If this K is greater than one,
1 1 01 1 ' '

then a neu value of K is computed as
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M
Z r £ e (1)
1 2
i=l -
e S ' (21)
M
_— 2
?_ ro (i)
2
i=l

The new ¥ uill be less than one. Therefore, the set (R (i}l} is
-2

modified as R (B), KR (1), KR (2),...KR (M) and compared with the set
2 2 2 2

R (i)}. This two way modification assures the stability of the
1 ,

modified all-pole filter and also the tuo spectra being compared are
brought to the same lower level of dunamic range irrespective of the
order in which they are considered for computing K. it is {o be noted that

for K<O no modificalion should be done because lhe spectral shape will be cha(\ged.

1¥. GENERATION OF DISTORTED SPEECH

A. Quantization Noise

As an lillustration of the application of the proposed method
for comparing spectra, e consider tuo types of distortions in
speech: quantization noise of an adaptive differential pulse code
modulation (ADPCH) and additive uwhite Gaussian noise.. In order to
compare our results with those obtained by Sambur and Jayant [18], we
use their method for generating ADPCM speech. The scheme, shoun in

Fig. 5, uses a foruward adaptive quantization and time invariant first



order predictor. The optimum quantization step Aoﬂls
the variance for a block of N input samples

quantization of every neu block. The following equations

differential coding:

X = Input error samples
n

E = Prediction error samples
n

X = {luantized input speech samples
nq

E = (Quantized error samples
ng
F = Sampling frequency (kHz)

B = Number of bits per sample’

. I = Bit rate {kilobits per sec} = F.B

" SONR = Slgnal to quanttzatlon error ratio

/Z(x-x

E =X-A X
n n 1 (n-1l)g

X =AX + E.
nq 1 (n-1g “"l

vX
A ey = Kopt Z(x - A xn_ln (N—ll}

n=2 N

uﬁere A = B.875 and X for different values of

1 opt

Table 1. The value of N uas chosen to be B4.

183

computed from

updated for

define the

given in
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TABLE 1. Design values of K for different values of B [18]

opt
B 23 & 5 6
K .996 B.586 8.335 B.225 8.128
opt '

B. Additive White Noise

Sequences of independent Gaussian noise samples, band-limited

to about 4 kHz, are added to speech samples X to produce data uith
' n

additive noise distortion. The signal to additive noise ratio {SANR)

le given by

Ny 2 |

2 .
SANR = E { X /{T.N }] (22}
n T

n=1 ’ ‘
uwhere N is the tota! number of sampies in the input for a given
: T
utterance. The variance o> of the noise sequence is varied to

produce speech data with different signal to noise ratios. The SANR
values for the test utterance chosen in this study are 18, 14.6,
19.2, 22.5 and 27.8 dB corresponding to SONR values of ADPCH data for

B =2,3,4,5 and b6 respectively.



Y. COMPARISON OF ORIGINAL AND DISTORTED SPEECH DATA

The sentence "D0 ANY PAPERS CITE NILSSON" spoken by ; male
- speaker into a close speaking microphone was used asAspeech data in
this study. The signal wWas prefiltered (85-4588 Hz) and sampled at
18 kHz. The samples were stored as 9 bit numbers. Distorted speech
was generated using the methods described in Sec.lV., Frame by frame
analysis was performed to compare the nrigiﬁai and the distorted
speech data. The number of samples per frame was chosen to be 288
corresponding to 28 msec of speech segment. The data was multiplied
uitﬁ a Hamming window and was passed through a pre-emphasis filter

-1
(1-8.82z ) before computing the autocorrelation coefficlients. The

coefficients of a 14 pole all-pole filter were obtained by solving

the autocorretation normal equations [2]. The distances D and D
1 2

defined in (14) and (15) as measures of dissimilarity betueen
original and distor ted speech data were computed for all the 73

frames in the test sentence. The value of N inD and D 1is 88.

eff 1 2
It is important to note the main difference in the nature of
the tuwo types of distoftions. Although the signal to noise ratio
(SNR) for the complete utterance is same in both cases, the SNR for
individual frames are different as sghown in Fige. 6 and 7. The
shapes of SNR contours are same for different bit rates of ADPCH data

and also for different total SNR of additive noise degradation.
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However, the variation in SNR for quantization noise is much smaller
than t%e variation for additive noise. The variation itself 1is due
to different values of signall energy in different frames. This
. information together uith the spectral distribution of noise in.each
frame should be considered while interpreting the measure of
diséimilaritg due to distortion.

The LP distance contours measuring the dissimilarity betueen
original and distorted speech are shown ia Figs, 8 and 3 for
quantization noise and additive noise respectively for different
values of SNR. As expected (18], the distances are uidely fluctuating
over the utterance and they are larger for lower SONR or SANR. In
general, the distances for additive white noise are Iargeh than for

guantization. But, as discussed eariier, O does not refiect the

1
true differences in the spectral envelopes, and therefore any
conclusions based on it such as the effect of the nature of

distortion or bit rate may not be appropriate. The distance (D)
: : 2

contours, obtained after modifying the autocorrelation coefficients
of the original data, are shoun in Figs. 18 and 11, It is very
interesting to note that the targe distances in Fig. 8 for ADPCH data
are reduced to very low values even for the Ilouest hit rate (28
kBits/sec). The values are uniformly low for all frames and bit
rates indicating that ADPCM coding produces negligible changes in ths

spectral shape. On the other hand the modified distances for
|
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additive noise, although significantly reduced from those in Fig. 9,
are consistently much larger than for ADPCM data. Moreover, the

values of D are not very much reduced even uhen the GANR is

2
increased from 18 dB to 27dB.

The effect of modification of autocorrelation coefficients on
the spectral shape is illustrated in Figs. 12 to 15 for two frames
(5th and 11th} for 2 bit ADPCM and for 18 dB additive white noise
distortion. It is clear that the large distances in Figs. 8 and 9
for-both types of distortion are due to changes in the dynamic range
produced by fhe distortion. In case of quantization noise the
deviation is ‘mainlg in the high frequency region, whereas for
additive noise the deviation is present throughout the spectrum.
After the modification, the original spectrum is brought to the same

level Es_the distorted one in ADPCM case and hence the distance 0 is
2

very small. In case of additive noise, even after the mcdificatioﬁ.
there exists significant differences between the spectra especially
in the banduidths of formants. The spectra for the 5th frame (Fig.
13) shouws an interesting boint that the best comparison with
distorted spectrum fs by @ near horizontal line obtained after
modification of the original data. This brings out the important
differences betueen the two types of distortion under consideration,
The quantization noise affects mainiy in the.lou SNR regions of the

spectrum uwhereas the additive noise atfects the entire spectrum; The
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formant peaks are relatively unaffected in ADPCH data, except
probably in the high frequency region. 0On the other hand, for
additive noise case, the formant peaks are altered both in location
and wWidth and also several spur ious peaks appear fn the smoothed
spgctrum. For some frames .in Fig. 3 t%ere appears to be large
di#tance between ADPCM and original data even after modification;
Tée reason for this is due to large deviation of the modified
séectrum in the high frequency region as sha;n in Fig. 16 for the
lith frame of° 3 bit ADPCM. Such occurrences are few .and isolated,
and one way to overcome -‘the problem is to demphasize the high
- frequency region in thé distance metric.

The tota! distance for the uhole sentence for different cases
in Figs. 9 to 12 are computed and plotted in Fig. 17. Although the
total distances are significantly reduced in bofh cases of distortion
after modification, the reduction is- more striking for ADPCHM data.
*he‘reduced distances are an indication of the true differences in
the spectfal envelopes. The somewhat large values of reduced
distances for ‘3 bit and 4 bit ADPCH are due to the isolated peaks in
Fig. 9 as explained earlier. It is again evident from Fig. 17 that
ADPCHM coding has smaller effect on the spectral envelope even for the
fouest bit rate whereas additive uhite noise has significant effect
on the spectral envelope even for an SANR of 27 dB. Thus the general
conc!uéion reached by Sambur and Jayant, (181 that the wuhite noise

degradation is more severe than quantization noise degradation, is
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still valid, although the distance measure (D )} used by them does not
1

bring out the +true differences in the nature of distortion. The

measure D is not sensitive to important spectral properties of
. 1

speech sounds such as formant peaks and their banduidths, as reported
I

»
in [18]. The modified measure (B ) is more sensitive to changes in
{ . .

2

.

sbectral envelope and should be conasidered for comparing spectra.
| .

The same general conclusions on the effect of these two types of

distortion are also reported by Gibsen (14] from a theoretical study

of LP analysis of distorted speech,
In order to verify that the true differences in spectral

. envelopes are retained in the distance measure even after the

modification of the autocorrelation coefficients, wue computed the

distances D and D betueen adjacent frames for the original and

1 2
distorted speech data as showun in Figs. 18 to 21. Large differences
in the spectral envelopes betueen adjacent frames are raflected in

the measure D as well, although its values are a little smaller,
2

indicating that D is a wuseful measure of spectral differences.
2

There is houwever a possibility that the dynamic range is not properily
compensated in some cases because aluays only the first
autocorrelation set is modified relative to the second. It is more

abpropriate to use the two way modification suggested in Sec. III,

“ -
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since the spectra being compared here are for different sounds. When

this is done the D contours obtained are as shown in Figs., 22 and 23

3
for the tuwo types of distortion. Most of the spectral differences
are preserved as before. The lower absolute values for low bit ADPCH
pomp;red to 5 bit ADPCH or originall data indicate the effect of
spect}al.dgnamic range even after modification,
Normalizéd linear prediction error (qrﬂ is another paranmeter
which is used to study the behavior of spectral shape [2]. It is

defined as : ' ™M ‘
=14+ > alk) rik) (23)
w=

M
where {alk})} and {ritk)}] are the LPCs and the normalized
autocorrelation coefficients Eespectivelg. Figs. 24 and 25 shou the
plets of nr1contour for the distorted and original data. For ADPCH
data the ﬂrq contour has the same shape as that for the eriginal
even after modification. For additivé noise, on the other hand, the
contours are veru much different from the one for original data even
for the case of SANR=ZZ2.5 dB. TMoreover the modification of the
autocorrelation coefficients of the original data increased the error
as expected, and the modified values are nearly one for several
frames of data. This is due to the fact that the modified spectrum
is nearly flat, i.e., all other autocorrelation coefficients are
negiigible compared to R(8). Despite this the distances are reduced

as shown in Fig. 18, because the Iafge distances (D } in Fig. 39 are
' 1

not a measure of differences in spectral enveiope but are mainly a

measure of differences in spectral dynamic range.

L T
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Comparison of absolute values of the normalized error may not
always give an indication of differences in spectral envelopes
either, as can be seen from the expression for ﬂv}in terms of the

)

+zeroth coefficient ©(B) of cepstrum and the signal energy R(B) [21.

", = exe (£} / R(@) ' (24)
where , -
_ | ™ .
T(B) = — In [ 2 R{k) cos{wk}] dw (25}
ZT; K=0 ]

Values of ) can be altered by R(B) even though the spectral
™ :

envélope determined by R{l1), R(2), ... R{M} remain unchanged.

Y1. CONCLUSIONS

- We have shoun that comparison of spectra by distance measures
based on LP smoothing do ?ot yield the true differences in the
spectral enve|opes, This is because the LPCs | are altered
significantly by changes in the zeroth autocorrelation coefficient
alone which does not carry the spectral envelope information. The
large values of distances obtained in studies using the LP distance
measures are mostly due to differences in the dynamic range of the
spectrum. We have demonstrated this fact by showing that the large
values of LP distance between the original and distorted data are
reduced to very small values uwhen the spectra are brought to a common
teve! of dynamic range by altering R(8) élone. QuantatiQe assessment

of degradation using the modified distance measure shou thét the

Py
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spectral envelope is much less susceptible to quantization noise
distortion than to additive noise distortion. The same general
conclusions were obtained by Gibson [14] through theoretical studies
and by Sambur and Jayant {18] through experimentai studies of LP
analysis of distorted speech. Houever, the threshold levels of
significant differences used in ([18] are not valid for the neu
measur; proposed in this paper. The main result of our study is that
ADPCH coding does not affect the spectral enveiope significantlg.even
for the lowest bit rate case. In contrast, even small quantity of
additive wuhite noise seems %o effect the spectral shape. These
‘results are valid from a perceptual angie aiso. 1t has been observed
{3] that there is little correlation betueen distance measures and
perceptual cﬁanges in formants which is obvious from the resutts
repor ted inrthis pape?.

in several applicatiohs such as voiced/unvoiced/silence
classification [151, varible frame rate vocoding {16) etc., the

distange measure D may be more appropriate than 0] which is

2 1
currently being used. The conclusion on ADPCM data expiain to some
. extenf the high recognition scores obtained for the distorted data in

a speech recognition experiment [13].
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