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ABSTRACT 

Current methods of measuring d i s s i m i l a r i t y between spectra 

u s i n g l i n e a r p r e d i c t o r c o e f f i c i e n t s or cepstral c o e f f i c i e n t s are 

shown to be d e f i c i e n t in many ways. In p a r t i c u l a r we show tha t 

c e r t a i n types of degradat ion in speech data can s i g n i f i c a n t l y a f f e c t 

these parameters making them e s s e n t i a l l y useless for comparison of 

s p e c t r a . Two types of degradation namely, the quant i za t ion noise of 

waveform encoding (ADPCfl) and addi t ive band- l imi ted Gaussian no ise , 

a r e considered for i l l u s t r a t i o n . For these two cases the l i n e a r 

p r e d i c t o r c o e f f i c i e n t s do not represent the true envelope of the 

s h o r t time spectrum. E a r l i e r studies reported large values of 

d i s t a n c e between ADPCfl and o r i g i n a l data. Those values are l a r g e l y 

due to d i f f e r e n c e s in the spectral dynamic range. By using a new 

measure proposed in t h i s paper, we show that the true d i f f e r e n c e s in 

s p e c t r a l envelopes of ADPCH and or ig ina l data are i n s i g n i f i c a n t . This 

r e s u l t a lso exp la ins to some extent the good recogni t ion c a p a b i l i t y 

of Harpy continuous speech recogni t ion system for ADPCtl data even for 

the lowest b i t r a t e . Based on th is new measure we a r r i v e a t the 

c o n c l u s i o n that the e f f e c t of add i t i ve noise on parametric e x t r a c t i o n 

i s more severe than q u a n t i z a t i o n noise. 



I . INTRODUCTION 

Parameters represent ing smoothed spectral c h a r a c t e r i s t i c s of 

* shor t segments of speech are of ten used as features in several speech 

processing systems [13. Envelope of short time spectrum represen ts 

the shape of the vocal t r a c t during the analysis per iod and temporal 

v a r i a t i o n of the envelope is supposed to contain speech and speaker 

i n f o r m a t i o n . Several parameter sets are a v a i l a b l e to descr ibe the 

envelope c h a r a c t e r i s t i c s of short time spectrum. A u t o c o r r e l a t i o n 

c o e f f i c i e n t s , which are the Fourier c o e f f i c i e n t s of short t ime 

spectrum, are the basic parameter set from which most of the o ther 

parameters are d e r i v e d . Inverse Fourier transform of t runca ted 

a u t o c o r r e l a t i o n c o e f f i c i e n t ser ies gives the a u t o c o r r e l a t i o n smoothed 

spectrum. A more accurate est imat ion of spect ra l envelope, 

e s p e c i a l l y a t i t s peaks, is through l inear p r e d i c t i o n c o e f f i c i e n t s 

(LPC) which are der ived from autocorre la t ion c o e f f i c i e n t s by s o l v i n g 

a set of normal equations [23. The physical basis of LP (L inear 

P r e d i c t i o n ) smoothing is that i t gives the frequency response of the 

best a l l pole model for vocal t rac t system. Other useful parameters 

a r e c e p s t r a l c o e f f i c i e n t s , r e f l e c t i o n c o e f f i c i e n t s , area c o e f f i c i e n t s 

and formants, a l l of which can be r e l a t e d to LPC or a u t o c o r r e l a t i o n 

c o e f f i c i e n t s [23. 

The main problem in pat tern recogni t ion in speech invo lves 

matching the t e s t spectrum with a reference spectrum using a s u i t a b l e 
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d i s t a n c e measure. The reasons for the choice of smoothed spectrum 

fo r comparison a re : (1) Fewer parameters are needed to descr ibe the 

s p e c t r a l behavior compared to the actual waveform or i t s s p e c t r a l 

v a l u e s , r e s u l t i n g in large data reduct ion and saving in computation 

t i m e . (2) The smoothed spectrum contains most of the in format ion 

needed to desrc ibe the speech signal as evidenced by the perceptua l 

s t u d i e s in a n a l y s i s - s y n t h e s i s telephony. 

Severa l p o s s i b i l i t i e s ex is t for matching the spectra [3] • 

D i s t a n c e measures d i r e c t l y on the parameter sets have not y i e l d e d 

good r e s u l t s in speaker and speech recogni t ion studies [ 4 ] f [53. But 

h i g h scores were reported [43 in a speaker i d e n t i f i c a t i o n t e s t w h i l e 

u s i n g a roo t mean square (rms) Euclidean distance measure between 

t e s t and r e f e r e n c e log spectra from LP ana lys is . This is r e f e r e d to 

as an rms log spectra l measure. Atal [S3 has shown for a speaker 

v e r i f i c a t i o n t e s t that weighted Euclidean distance measure based on 

c e p s t r a l c o e f f i c i e n t s r e s u l t e d in the highest scores among severa l 

parameter s e t s . The unweighted Euclidean distance based on c e p s t r a l 

c o e f f i c i e n t s is r e f e r r e d to as a cepstral distance measure. Magi I I 

[73 and 1 takura [83 have proposed the r a t i o of LP res idua l energ ies 

f o r comparing re ference and test data . I takura [83 has shown t h a t 

l o g a r i t h m of the r a t i o of LP res idua ls ( log I i ke l ihood r a t io) 

r e s u l t e d in h igh recogn i t ion scores in a word recogn i t ion exper iment . 

Gray and Market [33 proposed a cosh measure which is obta ined by 

a v e r a g i n g two nonsymmetrical l i ke l ihood r a t i o s . This new measure 

* i 
t 
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possesses the des i rab le symmetry property of a d is tance measure 

a l though the ind iv idua l log l ike l ihood r a t i o s do n o t . 

I n t e r r e l a t i o n s h i p s between the d i f f e r e n t measures were s tudied and i t 

was found tha t cepst ra l measure and cosh measure s a t i s f y the general 

c r i t e r i a use fu l for measures of distance in speech procesing [33. 

The mathematical distance measures proposed so fa r have been 

found to show no correspondence with the perceptual data [33 . 

Pe rcep tua l experiments did not show a unique value for a d i s t a n c e 

measure t h a t corresponds to a barely percept ib le change in formant 

f requency over a range of formants and frequencies. But a r e l a t i o n 

between d i s t a n c e measure and perceptual changes would help in f i x i n g 

t h r e s h o l d va lue for the distance to determine s i g n i f i c a n t changes in 

d a t a . The conclusion of Gray and Market sutdy on d is tance measures 

i s t h a t " u n t i l perceptual experiments or speech r e c o g n i t i o n t a s k s , 

f o r example, show some other distance measure to be more meaningful 

fo r speech processing, the rms log spectral distance makes the best 

r e f e r e n c e p o i n t for comparision. I t can be phys ica l l y i n t e r p r e t e d ; 

i t i s a n a l y t i c a l l y t r a c t a b l e , e a s i l y and e f f i c i e n t l y computed (using 

the c e p s t r a l measure), and r e l a t a b l e to several other w ide ly used 

measures of d i s t a n c e . " 

I t i s i n t e r e s t i n g to note that the s t a r t i n g point for a l l the 

d i s t a n c e measures proposed so far is the LP smoothed spectrum. I t i s 

i m p l i c i t l y assumed that any changes in the o r i g i n a l spectrum a r e 

r e f l e c t e d f a i t h f u l l y in the LP spectrum as w e l l . Several changes in 



the o r i g i n a l speech spectrum may occur as a r e s u l t of d i f f e r e n t 

sources of v a r i a b i l i t y in speech input , but these changes may not 

produce p e r c e p t u a l l y d i f f e r e n t sounds. However, the v a r i a b i l i t y in 

% the o r i g i n a l spectrum may produce large v a r i a t i o n in the p e r c e p t u a l l y 

s i g n i f i c a n t fea tures of smoothed spectrum as a r e s u l t of the 

t r a n s f o r m a t i o n involved in generat ing the smoothed spectrum. The 

v e r y f a c t tha t several distance measures are i n t e r r e l a t e d and a l l aim 

a t comparing the smoothed log spectra, shows that they have no d i r e c t 

r e l a t i o n to the d i f f e r e n c e s present in the actual spectra . 

I n t h i s paper we shal l invest igate how the actual d i f f e r e n c e s 

i n the o r i g i n a l spectra are r e f l e c t e d in various distance measures, 

e s p e c i a l l y in the most commonly used LP distance proposed by I t akura 

[ 8 3 . Ue sha l l discuss the inadequacy of the measure p a r t i c u l a r l y 

w h i l e comparing an o r i g i n a l speech data wi th i t s d i s t o r t e d v e r s i o n . 

Ue s h a l l consider two types of d i s t o r t i o n s for i l l u s t r a t i o n : 

q u a n t i z a t i o n noise of waveform encoding schemes and a d d i t i v e band-

l i m i t e d Gaussian no ise . A more p r a c t i c a l approach for comparing such 

d a t a i s proposed. 
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I I . DISCUSSION OF THE PROBLEM 

I n t h i s sec t ion we shal l discuss the fo l lowing problem: 

Suppose we have two spectra whose envelopes are to be compared. 

What is a s u i t a b l e measure for comparison? How good are the smoothed 

s p e c t r a obta ined by l inear predict ion analys is or cepstrum a n a l y s i s 

f o r such a comparison? 

Before we discuss these questions le t us consider a few exmples 

to e x p l a i n the problem. Consider the case of comparison of two 

s p e c t r a having the same spectral envelope but d i f f e r i n g in t h e i r 

a b s o l u t e values (not on log scale) by a constant (K) • That is i f P ( OD) 

1 

« P(tf) then P (w) - P( )+K. Or, the two spectra may have s i m i l a r 
2 

enve lopes but they d i f f e r in the i r average slopes (again not on log 

s c a l e ) . A s l i g h t l y more complex case could be one in which the 

s p e c t r a l envelopes may d i f f e r in slopes only in c e r t a i n frequency 

r a n g e s . Such changes in envelopes may occur due to severa l 

d i s t o r t i o n s the speech signal undergoes before actual processing for 

parameter or f e a t u r e e x t r a c t i o n . As for example, small amounts of 

q u a n t i z a t i o n noise of waveform encoded speech or a d d i t i v e background 

n o i s e g e n e r a l l y produce ins ign i f i can t changes in the s p e c t r a l 

e n v e l o p e . As another example, the response c h a r a c t e r i s t i c s of the 

a n t i a l i a s i n g f i l t e r are superimposed on the speech spectrum thus 

c o n t r i b u t i n g to changes in i t s envelope. There are several o ther 

* if 



sources such as the frequency response of input transducer, te lephone 

d i s t o r t i o n s e t c . which a l t e r the shape of the spectrum. 

I t is ev ident that b a s i c a l l y there are two types of s p e c t r a l 

d i s t o r t i o n s : a d d i t i v e and m u l t i p l i c a t i v e . In the case of a d d i t i v e 

u n c o r r e l a t e d noise the spectral envelope of noisy speech w i l l be sum 

of s p e c t r a l envelopes of speech and noise. I f the s ignal to no ise 

r a t i o (SNR) is h i g h , then the spectral envelope of speech i s 

p r a c t i c a l l y una f fec ted by the noise. In the case of superimposed 

f requency responses of f i l t e r or transducer c h a r a c t e r i s t i c s , the 

s p e c t r a l envelope of the d i s t o r t e d speech is a m u l t i p l i c a t i o n of the 

f requency response and the spectal envelope of the u n d i s t o r t e d 

speech. Ulhen we consider log spectrum, the envelope is a l t e r e d w i t h 

the a d d i t i o n of noisy spectrum to the o r i g i n a l even though the SNR is 

h i g h . The reason for t h i s is that the spectral dynamic range is 

s i g n i f i c a n t l y a l t e r e d wi th the add i t i ve term in the spectrum. On 

the o ther hand, in the case of m u l t i p l i c a t i v e spectra l d i s t o r t i o n , 

the smoothed log spectrum is just an add i t ion of the smoothed log 

s p e c t r a of the frequency response of the transducer and the envelope 

of the o r i g i n a l spectrum. In the l a t t e r case i t is p o s s i b l e to 

s u b t r a c t the superimposed log frequency response to o b t a i n the 

o r i g i n a l smoothed spectrum. Such a simple scheme does not nork for 

a d d i t i v e noise d i s t o r t i o n . 

The i m p l i c a t i o n of the above discussion in the two f a m i l i a r 

methods of spec t ra l smoothing v i z . , cepstrum and l inear p r e d i c t i o n , 

w i l l be considered now. 
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a) Cepstrum Ana lys is 
Let 

P (CO) m Spectrum of speech segment 

N(fcO) = Spectrum of noise 

/ l c ( n ) ) » Cepstral c o e f f i c i e n t s 

I {R(n)J « Au tocor re la t ion c o e f f i c i e n t s 

Tf ien. using Four ie r ser ies expansion of power spectrum and the 

d e f i n i t i o n of capstrum we get 
C O 

P( ) + N( ) « R(B) + ^ R ( k ) cos(kco) (1) 
k = 1 

and oo 

c (0 ) + £ c ( k ) cos(kco) « In [ P(c4 + N(o>) 3 

- In tR(8) + R(k) c o s ( k o ) 3 (2) 

C e p s t r a l ly smoothed spectrum [93 is obtained by f i n d i n g the frequency 

response of the truncated ser ies in the summation on the LHS of ( 2 ) . 

I t i s obvious tha t the cepstra l c o e f f i c i e n t s and hence the r e s u l t i n g 

smoothed spectrum are strongly dependent on N(^) through R ( n ) . The 

impor tant po in t is that the dynamic range of P(co) is reduced 

a f f e c t i n g the envelope of log spectrum and hence cepstrum. The 

e f f e c t of noise is a lso sometimes r e f l e c t e d as spurious peaks or wide 

bandwidth formants in the smoothed spectrum. F i g . 1 shows c e p s t r a l ly 

smoothed spectra for a voiced speech segment and for a d d i t i v e and 

m u l t i p l i c a t i v e types of spectral d i s t o r t i o n s in the segment. The 

f requency response used for generat ing the m u l t i p l i c a t i v e d i s t o r t e d 
speech is g iven in F i g . 2 . 
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1 f P (w) 

2 n J P ( u * 
dco (3) 

p ( u * 
—TT 

s u b j e c t e d to the c o n d i t i o n 

,-tr 

JPM dco - J P(u) d u (4) 
—TT - A 

f o r u n d i s t o r t e d speech, and i t minimizes the funct ion 

1 
E -

- T T 

f P M + NUo) 
d w ( 5 ) 

P(«) 
s u b j e c t e d to the c o n d i t i o n 

P M du» ( 6 ) Jtf>(w) + N M ] d u - jf 

f o r speech cor rupted w i th add i t i ve noise. F i g . 3 i l l u s t r a t e s the 

e f f e c t of the two types of d i s t o r t i o n considered in F i g . 1 on LP 

smoothed spectrum. I t is c lear that a d d i t i v e noise reduces the 

dynamic range and widens the bandwidth of some formants. Formant 

e s t i m a t i o n * from m u l t i p l i c a t i v e type spectral d i s t o r t i o n i s not 

b) LP A n a l y s i s 

S i m i l a r e f f e c t s can be observed in LP smoothed spectrum a lso as 

shown by the f o l l o w i n g ana lys is . The approximate spectrum P M in LP 

a n a l y s i s is der ived by minimizing the in tegrated r a t i o of the 

o r i g i n a l P(co) and the approximate spectrum 123. That is P(̂ ) 

min imizes the func t ion 



s i g n i f i c a n t l y a f f e c t e d unless the superimposed frequency response 

f i l t e r s out c e r t a i n frequency components. 

The best way to i l l u s t r a t e the e f f e c t of add i ive noise on LP 

* smoothing is by considering smoothed spectra obtained by computing 

LPCs f o r a u t o c o r r e l a t i o n c o e f f i c i e n t sets which d i f f e r only in the 

v a l u e of the ze ro th c o e f f i c i e n t R(B) . F i g . 4 shows that as R(8) is 

i n c r e a s e d the dynamic range of the spectrum is reduced and the 

formant bandwidths are increased. The higher formants do not appear 

i n the LP spectrum when R(B) is increased, o I though they are present 

i n the a c t u a l spectrum since only R(8) is a l t e r e d . 

Whi le comparing spectra in a speech processing system the 

r e f e r e n c e f e a t u r e s are co l l ec ted on a reasonably c lean data whereas 

the t e s t data may be subjected to various types of d i s t o r t i o n s . I t 

i s not p o s s i b l e to c o l l e c t and store references for d i s t o r t e d speech, 

e s p e c i a l l y for a d d i t i v e noise type of d i s t o r t i o n . This is because the 

source of v a r i a b i l i t y is not known in advance. Norma l i za t ion for 

m u l t i p l i c a t i v e type of d i s t o r t i o n l i ke transducer or f i l t e r frequency 

response can be made. But for add i t i ve type of d i s t o r t i o n one may 

end up in comparing LP spectra (a) and (d) in F i g . 4 and conclude 

t h a t they are s i g n i f i c a n t l y d i f f e r e n t although the envelope 

i n f o r m a t i o n is unaf fected in the i r actual spectra . 

The above discussion suggests that a d i f f e r e n t approach for 

comparing speech spectrum envelopes is needed in order to overcome 

the d i f f i c u l t i e s ind ica ted . The problem ar ises mainly because the 
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comparison is made on envelopes derived from the o r i g i n a l spect ra 

through t ransformat ions which do not preserve a l l the f e a t u r e s of the 

o r i g i n a l envelope. Ue shal l develop a method in the f o l l o w i n g 

s e c t i o n which br ings the two spectra to the same level of dynamic 

range be fo re comparing them. Ue shall use t h i s method to show tha t 

i n most cases the large distance measured between o r i g i n a l and 

d i s t o r t e d speech spectra for add i t ive noise d i s t o r t i o n is mainly due 
i 

t o d i f f e r e n c e s in t h e i r dynamic ranges and not due to d i f f e r e n c e s in 
! 

t h e i r s p e c t r a ! shapes tlB3. x The resu l t is i l l u s t r a t e d fo r 

q u a n t i z a t i o n and a d d i t i v e white noise d i s t o r t i o n s . 

I I I . .PROPOSED METHOD 

S ince our o b j e c t i v e is to compare shapes of spect ra l envelopes, 

i t i s important to determine the parameters that represent the 

enve lope in fo rmat ion . Autocorre lat ion c o e f f i c i e n t s are the 

c o e f f i c i e n t s of Four ie r se r ies expansion of power spectrum, in which 

the z e r o t h e o e f f i c i e n t merely determines the average va lue of the 

spectrum. A l l the other c o e f f i c i e n t s determine the shape of the 

spectrum. I n LP smoothing the influence of the zeroth a u t o c o r r e l a t i o n 

c o e f f i c i e n t is s i g n i f i c a n t as shown in F i g . 4 ; making comparison of 

smoothed spect ra d i f f i c u l t . 

To overcome t h i s d i f f i c u l t y we propose the fo l lowing scheme f o r 

comparison of two spect ra . I t consists of modifying one 

a u t o c o r r e l a t i o n set r e l a t i v e to the other before using a smoothing 

t 
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t e c h n i q u e . Let (R ( i ) J and {R ( i ) } , 1 = 8 , 1 , 2 , . . M be the 

1 2 

a u t o c o r r e l a t i o n sets of the o r i g i n a l and d i s t o r t e d speech 

r e s p e c t i v e l y . In order to keep the e f f e c t of the zeroth c o e f f i c i e n t 

same i n both cases, we m u l t i p l y the c o e f f i c i e n t s R ( i ) , i = l , 2 , . . . M by 
1 

a cons tan t K which is determined by minimizing the e r ror func t ion 

- r (5)3 • (7) - X~ [ K r ( i ) 

i -1 

dE/dK = 8 y i e l d s 

II 
r ( i ) r ( i ) 

1 2 
i -1 

(8) 
n 

> r ( i ) 
1 

i -1 

where r ( i ) = R ( i ) / R (8) and r ( i ) - R ( i ) / R ( 8 ) . 
1 1 1 2 2 2 

The m o d i f i e d a u t o c o r r e l a t i o n set consists of R ( 8 ) , KR ( 1 ) , 
1 1 

KR ( 2 ) , . . . K R (M) and le t us denote th is set as ( R ( i ) ) , i = 8 , l , . . . H . 
1 1 

N o t i c e t h a t the spectra l shape w i l l not be a l t e r e d due to t h i s 
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m o d i f i c a t i o n . The LP smoothed spectra for R ( i ) and R ( i ) w i l l 

1 

however be d i f f e r e n t . I t appears logical to compare the smoothed 

s p e c t r a der ived from R ( i ) and R ( i ) using any of the standard 

2 

d i s t a n c e measures [33. I f the spectral envelopes of the two spect ra 

a r e same, any d istance measure operated on the LP spectra should 

y i e l d zero v a l u e . 

For i l l u s t r a t i o n we shal l use the log l i k e l i h o o d r a t i o measure 

proposed by I takura [S3 for comparing the smoothed spectra . Th is 

measure is computat ional ly more e f f i c i e n t than the rms log s p e c t r a l 

measure and i t has been e f f e c t i v e l y used in problems of speech 

r e c o g n i t i o n [83, speaker recogni t ion [113, and v a r i a b l e frame r a t e 

s y n t h e s i s [123, al though from s t a t i s t i c a l considerat ions the measure 

was found to be unsa t i s fac to ry [133. Let ( r ( i ) } , Ir ( i ) l and {r ( i ) l 
1 2 

be the normal ized a u t o c o r r e l a t i o n c o e f f i c i e n t s and ( a ( i ) } ( a i d ) } and 
{ a 2 ( i ) ) be the l inear p r e d i c t i o n c o e f f i c i e n t s corresponding to 

I R ( i ) } , IR ( i ) ) and {R ( i ) } r e s p e c t i v e l y . The measure developed by 
1 2 

I t a k u r a for a u t o c o r r e l a t i o n method of l inear p r e d i c t i o n to e v a l u a t e 

the d i s s i m i l a r i t y between o r i g i n a l and test segments is given by [183 

T T 
d « In ( AYA /BVB ) (9) 

where the vec tors A and B are the augmented LPC vectors of the 

o r i g i n a l and t e s t segments r e s p e c t i v e l y , i . e . , 
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A = ( 1 , a ( l ) t a ( 2 ) , . . . a(M)) 

and 

B - ( 1 , b ( l ) , b ( 2 ) , . . . b ( t l ) ) . 

V is the a u t o c o r r e l a t i o n matrix of the test segment. To take i n t o 

account the length of the speech segment i t i s . p r e f e r a b I e to consider 

as d i s t a n c e measure 

D - N . d (18) 
e f f 

where N denotes the e f f e c t i v e length of the segment in samples, 
e f f 

I f the segment is m u l t i p l i e d by a Hamming window, N - 8 .3975N 

e f f 

where N is the actua l number of speech samples in the segment. For a 

r e c t a n g u l a r window N - N. 

e f f 

An e f f i c i e n t method of obtaining d is by computing the tog 

l i k e l i h o o d r a t i o from the residual energies S and oC as fo l lows [ 3 1 . 
d - In ( S/oC ) (11) 

where 

h 

S . AYA - y r (n) r (n) , (12) 
— a x 

i—n 
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and 

where 

D - N . I n ( S z / o t j ) (15) 
2 e f f 

H 
S. - • V " r (n) r (n) , (16) 

Z - al 2 
1 — M 

V — r (n) r (n) , (17) 
Z _ a2 2 

i—M 

11 
S , - r (n) r (n) , (18) 

a 2 
1—n 

and 

M 
T _ 

oC « BYB - \ r (n) r (n) . (13) 
b x 

i = - n 

(r (n) J is the normalized au tocor re la t ion sequence of the tes t da ta 
x 

and (r ( n ) l and r (n)) are the au tocor re la t ion sequences of ( a ( i ) ) 
a b 

and ( b ( i ) } r e s p e c t i v e l y . 

I n the i l l u s t r a t i o n s to f o l I o n we shal l compute two d is tances 

D and D for each frame of speech data , given by 
1 2 

D - N . In ( W<*\) (14) 
1 e f f 
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o ^ x x oq . (19) 

ir ( n ) J , ir (n ) l and ir (n)) are autocorre la t ions of the LPCs 
a a l a2 

{ a ( i ) l , l a l f i ) } and ( a 2 ( i ) l r espec t ive ly , def ined e a r l i e r . The 

d i s t a n c e D is a measure of d i s s i m i l a r i t y between o r i g i n a l and 
1 

d i s t o r t e d speech segments and the distance D is a measure of 

2 

d i s s i m i l a r i t y between the same segments a f t e r the m o d i f i c a t i o n of the 

a u t o c o r r e l a t i o n c o e f f i c i e n t s suggested in equations (7) and ( 8 ) . 

I n most cases of a d d i t i v e type of d i s t o r t i o n the normal ized 

a u t o c o r r e l a t i o n c o e f f i c i e n t s of the d is to r ted segments are u s u a l l y 

s m a l l e r than the corresponding c o e f f i c i e n t s of the o r i g i n a l d a t a . 

T h e r e f p r e in most cases the parameter K def ined in Equation (8) i s 

less than u n i t y . But for some segments of speech the value of K may 

be g r e a t e r than u n i t y whi le comparing with the i r d i s t o r t e d v e r s i o n s . 

T h i s happens generaly for segments having s i g n i f i c a n t high frequency 

energy . I n such cases K is forced to be u n i t y , i . e . , no m o d i f i c a t i o n 

w i l l be done for the au tocor re la t ion c o e f f i c i e n t s of the o r i g i n a l 

d a t a . The value of K may also exceed un i ty whi le comparing two 

segments corresponding to d i f f e r e n t sounds as in a speech r e c o g n i t i o n 

e x p e r i m e n t . I n such a case the ro les of R ( i ) and R ( i ) are to be 
1 2 

r e v e r s e d in (8) so that we get a value of K less than u n i t y . A lso , 
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the va lues of R ( i ) , i = l , 2 , . . . I 1 are to be m u l t i p l i e d wi th the new K. 
2 

I n o t h e r words R ( i ) w i l l be modified with respect to R ( i ) . 

2 1 

I t may be tempting to carry out the modi f ica t ion always on one 

se t of a u t o c o r r e l a t i o n i r respec t ive of the value of K, but for K>1 

the m o d i f i c a t i o n r e s u l t s in increasing spectral spread or dynamic 

range of the smoothed envelope. This is not d e s i r a b l e for two 

r e a s o n s . F i r s t l y , increasing dynamic range r e s u l t s in an unstab le 

a l l - p o l e f i l t e r . Secondly, even small d i f f e r e n c e s in formant 

f r e q u e n c i e s and bandwidths y i e l d large values of d istance 

Whi le comparing spectra for d i f f e r e n t sounds, i t is p r e f e r a b l e 

to adopt two-way modi f ica t ion of the au tocor re la t ion se ts . This is 

done as f o l l o w s . F i r s t the value of K is computed as 

t l 

Z r ( i ) r ( i ) 
1 2 

i « l 

K - . (28) 

r ( i ) 
/ L — 1 

i -1 

I f t h i s K is less than or equal to one, then (R ( i ) J is modi f ied as 
1 

R ( 8 ) , KR ( i ) , KR ( 2 ) , . . . KR ( t l ) . I f th is K is grea ter than one, 
1 1 1 1 

then a new va lue of K is computed as 
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i - i 
K - . (21) 

n 

i -1 

The new K w i l l be less than one. Therefore, the set (R ( i ) J i s 
2 

m o d i f i e d a s R ( 8 ) , KR ( 1 ) , KR ( 2 ) , . . . K R (tt) and compared w i th the set 
2 2 2 2 

{R ( i ) J . This two way modif icat ion assures the s t a b i l i t y of the 
1 

m o d i f i e d a I I - p o I e f i l t e r and also the two spectra being compared a re 

brought to the same lower level of dynamic range i r r e s p e c t i v e of the 

order in which they are considered for computing K. It is to be noted that 

for K<0 no modification should bo done because the spectral shape will be changed. 

IV . GENERATION OF DISTORTED SPEECH 

A. Q u a n t i z a t i o n Noise 

As an i l l u s t r a t i o n of the appl ica t ion of the proposed method 

fo r comparing spect ra , we consider two types of d i s t o r t i o n s in 

speech: q u a n t i z a t i o n noise of an adaptive d i f f e r e n t i a l pulse code 

modula t ion (ADPCfl) and. add i t i ve white Gaussian noise . In order to 

compare our r e s u l t s w i th those obtained by Sambur and Jayant [ 1 0 ] , we 

use t h e i r method for generat ing ADPCfl speech. The scheme, shown in 

F i g . 5 , uses a forward adaptive quant izat ion and time i n v a r i a n t f i r s t > 
• i 

r ( i ) p ( i ) 
1 2 
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o r der p r e d i c t o r . The optimum quant iza t ion step ^ o ? t i s computed from 

the va r iance for a block of N input samples and i t is updated for 

q u a n t i z a t i o n of every new block. The fo l lowing equations d e f i n e the 

d i f f e r e n t i a l coding: 

X • Input e r r o r samples 
n 

E - P r e d i c t i o n e r r o r samples 
n 

X « Quant ized input speech samples 
nq 

E » Quant ized e r r o r samples 
hq 

F - Sampling frequency (kHz) 

B « Number of b i t s per sample 

I - B i t r a t e ( k i l o b i t s per sec) « F.B 

SQNR Signal to q u a n t i z a t i o n error r a t i o 

- 2 _ x /2__i x - x ) 

n n n n nq 

E - X -A X 
n rt 1 ( n - l ) q 

X « A X + E 
nq 1 ( n - l ) q n<* • l/z 

r- • n 

Y ( X - A . X JV (N - l ) 
n = 2 n 1 n - l 

where A • 8 .875 and K for d i f f e r e n t values of B are g iven in 
1 opt 

T a b l e 1 . The value of N was chosen to be 64. 
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TABLE 1 . Design values of K for d i f f e r e n t values of B [18] 
opt 

CD
 ' 2 CO

 

4 5 8 

K 
opt 

0.99B 8.586 8.335 8.225 8.128 

B. A d d i t i v e White Noise 

Sequences of independent Gaussian noise samples, b a n d - l i m i t e d 

to about 4 kHz. are added to speech samples X to produce data w i t h 
n 

a d d i t i v e noise d i s t o r t i o n . The signal to a d d i t i v e noise r a t i o (SANR) 

i s g i v e n by 

SANR - ) [ X / ) ] (22) 
— n T 

' n - l 

where N is the t o t a l number of samples in the input for a g iven 
T 

u t t e r a n c e . The var iance cr^of the noise sequence is v a r i e d to 

produce speech data wi th d i f f e r e n t signal to noise r a t i o s . The SANR 

v a l u e s for the tes t ut terance chosen in t h i s study are 18 , 1 4 . S , 

1 9 . 2 , 2 2 . 5 and 2 7 . 8 dB corresponding to SQNR values of ADPCfl data f o r 

B - 2 , 3 , 4 , 5 and B r e s p e c t i v e l y . 
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V. COMPARISON OF ORIGINAL ANO DISTORTED SPEECH DATA 

The sentence "DO ANY PAPERS CITE NILSSON" spoken by a male 

speaker in to a close speaking microphone was used as speech data in 

t h i s s tudy . The signal was p r e f i l t e r e d (85-4508 Hz) and sampled a t 

18 kHz. The samples were stored as 9 b i t numbers. D i s t o r t e d speech 

was genera ted using the methods described in Sec . IY . Frame by frame 

a n a l y s i s was performed to compare the o r i g i n a l and the d i s t o r t e d 

speech d a t a . The number of samples per frame was chosen to be 288 

cor responding to 28 msec of speech segment. The data was m u l t i p l i e d 

w i t h a Hamming window and was passed through a pre-emphasis f i l t e r 

- 1 

( l - 8 . 9 2 z ) before computing the au tocor re la t ion c o e f f i c i e n t s . The 

c o e f f i c i e n t s of a 14 pole a l l - p o l e f i l t e r were obtained by s o l v i n g 

the a u t o c o r r e l a t i o n normal equations [23. The distances D and D 
1 2 

d e f i n e d in (14) and (15) as measures of d i s s i m i l a r i t y between 

o r i g i n a l and d i s t o r t e d speech data were computed for a l l the 79 

frames in the tes t sentence. The value of N in D and D is 8 8 . 

e f f 1 2 

I t i s important to note the main d i f fe rence in the na ture of 

the two types of d i s t o r t i o n s . Although the signal to noise r a t i o 

(SNR) fo r the complete u t terance is same in both cases, the SNR for 

i n d i v i d u a l frames are d i f f e r e n t as shown in F igs . B and 7 . The 

shapes of SNR contours are same for d i f f e r e n t b i t r a t e s of ADPCM data 

and a l s o for d i f f e r e n t t o t a l SNR of a d d i t i v e noise d e g r a d a t i o n . 
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However, the v a r i a t i o n in SNR for quant izat ion noise is much smal ler 

than the v a r i a t i o n for a d d i t i v e noise. The v a r i a t i o n i t s e l f is due 

to d i f f e r e n t values of signal energy in d i f f e r e n t frames. Th is 

i n f o r m a t i o n together w i th the spectral d i s t r i b u t i o n of noise in each 

frame should be considered whi le in te rpre t ing the measure of 

d i s s i m i l a r i t y due to d i s t o r t i o n . 

The LP distance contours measuring the d i s s i m i l a r i t y between 

o r i g i n a l and d i s t o r t e d speech are shown in F igs . 8 and 9 fo r 

q u a n t i z a t i o n noise and a d d i t i v e noise respec t ive ly for d i f f e r e n t 

v a l u e s of SNR. As expected [ 1 0 ] , the distances are widely f l u c t u a t i n g 

over the u t te rance and they are larger for lower SQNR or SANR. I n 

g e n e r a l , the distances for a d d i t i v e white noise are larger than for 

q u a n t i z a t i o n . But, as discussed e a r l i e r , D does not r e f l e c t the 

1 

t r u e d i f f e r e n c e s in the spectra l envelopes, and t h e r e f o r e any 

conc lus ions based on i t such as the e f f e c t of the nature of 

d i s t o r t i o n or b i t r a t e may not be appropr iate . The d is tance (D ) 

2 
c o n t o u r s , obtained a f t e r modifying the au tocor re la t ion c o e f f i c i e n t s 

of the o r i g i n a l da ta , are shown in F igs . 10 and 1 1 . I t i s very 

i n t e r e s t i n g to note that the large distances in F i g . 8 for ADPCfl da ta 

a r e reduced to very low values even for the lowest b i t r a t e (28 

k B i t s / s e c ) . The values are uniformly low for a l l frames and b i t 

r a t e s i n d i c a t i n g that ADPCJI coding produces n e g l i g i b l e changes in the 

s p e c t r a l shape. On the other hand the modif ied d is tances for 
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a d d i t i v e n o i s e , although s i g n i f i c a n t l y reduced from those in F i g . 9 , 

a r e c o n s i s t e n t l y much larger than for ADPCfl data . Moreover, the 

v a l u e s of D are not very much reduced even when the SANR is 
2 

inc reased from 18 dB to 27dB. 

The e f f e c t of modi f ica t ion of au tocor re la t ion c o e f f i c i e n t s on 

the s p e c t r a l shape is i l l u s t r a t e d in F igs . 12 to 15 for two frames 

( 5 t h and 11th) for 2 b i t ADPCM and for 18 dB a d d i t i v e white noise 

d i s t o r t i o n . I t is c lear that the large distances in F i g s . 8 and 9 

f o r both types of d i s t o r t i o n are due to changes in the dynamic range 

produced by the d i s t o r t i o n . In case of quan t i za t ion noise the 

d e v i a t i o n is mainly in the high frequency reg ion . whereas for 

a d d i t i v e noise the dev ia t ion is present throughout the spectrum. 

A f t e r the m o d i f i c a t i o n , the o r i g i n a l spectrum is brought to the same 

l e v e l as the d i s t o r t e d one in ADPCfl case and hence the d istance D is 

2 

v e r y s m a l l . I n case of a d d i t i v e noise, even a f t e r the m o d i f i c a t i o n , 

t h e r e e x i s t s s i g n i f i c a n t d i f ferences between the spectra e s p e c i a l l y 

i n the bandwidths of formants. The spectra for the 5 t h frame ( F i g . 

13 ) shows an i n t e r e s t i n g point that the best comparison w i t h 

d i s t o r t e d spectrum is by a near hor izonta l l ine obtained a f t e r 

m o d i f i c a t i o n of the o r i g i n a l data. This br ings out the important 

d i f f e r e n c e s between the two types of d i s t o r t i o n under c o n s i d e r a t i o n . 

The q u a n t i z a t i o n noise a f f e c t s mainly in the low SNR regions of the 

spectrum whereas the a d d i t i v e noise a f f e c t s the e n t i r e spectrum. The 
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formant peaks are r e l a t i v e l y unaffected in ADPCM d a t a , except 

p robab ly in the high frequency region. On the other hand, for 

a d d i t i v e noise case, the formant peaks are a l t e r e d both in l o c a t i o n 

and wid th and a lso several spurious peaks appear in the smoothed 

spectrum. For some frames in F i g . 9 there appears to be large 

d i s t a n c e between ADPCM and o r i g i n a l data even a f t e r m o d i f i c a t i o n . 

The reason for t h i s is due to large deviat ion of the modi f ied 

spectrum in the high frequency region as shown in F i g . 16 for the 

1 1 t h frame of* 3 b i t ADPCM. Such occurrences are few and iso la . ted , 

and one way to overcome the problem is to demphasize the h igh 

f requency reg ion in the distance metr ic . 

The t o t a l d is tance for the whole sentence for d i f f e r e n t cases 

i n F i g s . 9 to 12 are computed and p lo t ted in F i g . 17. Although the 

t o t a l d is tances are s i g n i f i c a n t l y reduced in both cases of d i s t o r t i o n 

a f t e r m o d i f i c a t i o n , the reduct ion is more s t r i k i n g for ADPCM d a t a . 

The reduced d is tances are an ind ica t ion of the true d i f f e r e n c e s in 

the s p e c t r a l envelopes. The somewhat large values of reduced 

d i s t a n c e s for 3 b i t and 4 b i t ADPCM are due to the i s o l a t e d peaks in 

F i g . 9 as exp la ined e a r l i e r . I t is again evident from F i g . 17 t h a t 

ADPCM coding has smaller e f f e c t on the spectral envelope even for the 

lowest b i t r a t e whereas a d d i t i v e white noise has s i g n i f i c a n t e f f e c t 

on the spec t ra l envelope even for an SANR of 27 dB. Thus the general 

conc lus ion reached by Sambur and Jayant, [10] that the whi te noise 

d e g r a d a t i o n is more severe than quant izat ion noise degrada t ion , i s 
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s t i l l v a l i d , a l though the distance measure (D ) used by them does not 
1 

b r i n g out the t rue d i f fe rences in the nature of d i s t o r t i o n . The 

measure D is not s e n s i t i v e to important spectral p r o p e r t i e s of 
1 

speech sounds such as formant peaks and t h e i r bandwidths, as r e p o r t e d 
/ 

i n [ 18J . The modi f ied measure (D ) is more sens i t i ve to changes in 
/ • 2 

• I 
s p e c t r a l envelope and should be considered for comparing s p e c t r a . 

I 

The same general conclusions on the e f f e c t of these two types of 

d i s t o r t i o n are a lso reported by Gibson [14] from a t h e o r e t i c a l study 

of LP a n a l y s i s of d i s t o r t e d speech. 

I n order to v e r i f y that the true d i f fe rences in s p e c t r a l 

enve lopes are r e t a i n e d in the distance measure even a f t e r the 

m o d i f i c a t i o n of the au tocor re la t ion c o e f f i c i e n t s , we computed the 

d i s t a n c e s D and D between adjacent frames for the o r i g i n a l and 
1 2 

d i s t o r t e d speech data as shown in F igs . 18 to 2 1 . Large d i f f e r e n c e s 

i n the spec t ra l envelopes between adjacent frames are r e f l e c t e d in 

the measure D as w e l l , although i t s values are a l i t t l e s m a l l e r , 
2 

i n d i c a t i n g tha t D is a useful measure of spectra l d i f f e r e n c e s . 

2 

There is however a p o s s i b i l i t y that the dynamic range is not p r o p e r l y 

compensated in some cases because always only the f i r s t 

a u t o c o r r e l a t i o n set is modif ied r e l a t i v e to the second. I t is more 

a p p r o p r i a t e to use the two way modi f ica t ion suggested in Sec. I l l , 
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s i n c e the spect ra being compared here are for d i f f e r e n t sounds. Uhen 

t h i s i s done the D contours obtained are as shown in F i g s . 22 and 23 

3 

f o r the two types of d i s t o r t i o n . Most of the spectra l d i f f e r e n c e s 

a r e preserved as be fore . The lower absolute values for low b i t ADPCfl 

compared to 5 b i t ADPCM or o r ig ina l data ind icate the e f f e c t of 

s p e c t r a l dynamic range even a f t e r modi f ica t ion . 

Normal ized l i n e a r p red ic t ion error { is another parameter 

which is used to study the behavior of spectral shape [ 2 ] . I t i s 

d e f i n e d as . M 

% 1 + T a ( k ) r ( k ) (23} 

where (a (k ) } and ( r ( k ) } are the LPCs and the normal ized 

a u t o c o r r e l a t i o n c o e f f i c i e n t s respec t ive ly . F igs . 24 and 25 show the 

p l o t s of contour for the d is to r ted and o r i g i n a l data . For ADPCM 

d a t a the ^ contour has the same shape as that for the o r i g i n a l 

even a f t e r m o d i f i c a t i o n . For add i t ive noise, on the other hand, the 1 f 

contours are very much d i f f e r e n t from the one for o r i g i n a l data even 

f o r the case of SANR«22.5 dB. Moreover the m o d i f i c a t i o n of the 

a u t o c o r r e l a t i o n c o e f f i c i e n t s of the o r ig ina l data increased the e r r o r 

as expected, and the modif ied values are near ly one for severa l 

frames of d a t a . This is due to the fact that the modif ied spectrum 

i s n e a r l y f l a t , i . e . , a l l other au tocor re la t ion c o e f f i c i e n t s a re 

n e g l i g i b l e compared to R ( 0 ) . Despite th is the distances are reduced 

as shown in F i g . 18 , because the large distances (D ) in F i g . 9 a r e 
1 

not a measure of d i f f e r e n c e s in spectral envelope but are mainly a 
measure of d i f f e r e n c e s in spectral dynamic range. 

i 
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Comparison of absolute values of the normalized e r r o r may not 

a lways g ive an i n d i c a t i o n of d i f ferences in spectra l envelopes 

e i t h e r , as can be seen from the expression for 'H in terms of the 

x z e r o t h c o e f f i c i e n t c (0 ) of cepstrum and the signal energy R(0) [23 . 

*| « expfcCB)] / R(8) (24) 
M 

where 
, r m 

$ ( 8 ) « In [ l R ( k ) c o s ( o o k ) ] d i * (25) 

Va lues of *] can be a l t e r e d by R(8) even though the s p e c t r a l 
r l 

envelope determined by R ( l ) , R ( 2 ) f . . . R(fl) remain unchanged. 

V I . CONCLUSIONS 

We have shown that comparison of spectra by d is tance measures 

based on LP smoothing do not y i e l d the true d i f f e r e n c e s in the 

s p e c t r a l envelopes. This is because the LPCs are a l t e r e d 

s i g n i f i c a n t l y by changes in the zeroth a u t o c o r r e l a t i o n c o e f f i c i e n t 

a l o n e which does not carry the spectral envelope in format ion . The 

l a r g e values of d is tances obtained in studies using the LP d i s t a n c e 

measures are mostly due to d i f ferences in the dynamic range of the 

spectrum. Ue have demonstrated th is fact by showing that the la rge 

v a l u e s of LP d is tance between the o r i g i n a l and d i s t o r t e d data a r e 

reduced to very small values when the spectra are brought to a common 

l e v e l of dynamic range by a l t e r i n g R(0) alone. Quantat ive assessment 

o f degrada t ion using the modified distance measure show tha t the 



27 

s p e c t r a l envelope is much less suscept ible to q u a n t i z a t i o n noise 

d i s t o r t i o n than to a d d i t i v e noise d i s t o r t i o n . The same general 

conc lus ions were obtained by Gibson [143 through t h e o r e t i c a l s tud ies 

and by Sambur and Jayant [IB] through experimental s tud ies of LP 

a n a l y s i s of d i s t o r t e d speech. However, the threshold l e v e l s of 

s i g n i f i c a n t d i f f e r e n c e s used in [10] are not v a l i d for the new 

measure proposed in t h i s paper. The main r e s u l t of our study is tha t 

ADPCM coding does not a f f e c t the spectral envelope s i g n i f i c a n t l y even 

f o r the lowest b i t r a t e case. In contrast , even small q u a n t i t y of 

a d d i t i v e whi te noise seems to e f f e c t the spectra l shape. These 

r e s u l t s a re v a l i d from a perceptual angle a lso . I t has been observed 

[3] t h a t there is l i t t l e c o r r e l a t i o n between distance measures and 

p e r c e p t u a l changes in formants which is obvious from the r e s u l t s 

r e p o r t e d in t h i s paper. 

I n several app l ica t ions such as vo iced /unvo iced /s i l ence 

c l a s s i f i c a t i o n [151 , v a r i b t e frame r a t e vocoding [16] e t c . , the 

d i s t a n c e measure D may be more appropriate than D which is 

2 1 

c u r r e n t l y being used. The conclusion on ADPCM data e x p l a i n to some 

e x t e n t the high recogn i t ion scores obtained for the d i s t o r t e d data in 
a speech r e c o g n i t i o n experiment [18 ] . 
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FREQUENCY IN kHz 

Example of c e p s t r a l l y smoothed spectra 
(a) und is tor ted data (b) addi t ive spectral d i s t o r t I 
(c) m u l t i p l i c a t i v e spectral d'i9tot1on. 
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FREQUENCY IN kHz 

F i g . 2 Frequency responce of m u l t i p l i c a t i v e spectral d l a t o t l 
• used in F i g . 1 
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FREQUENCY IN kHz 

F i g . 3 LP smoothed spectra for the example in F i g . 1 
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FREQUENCY IN kHz 

F i g . 4a LP smoothed spectra for d i f f e r e n t values of R(0) for a 
voiced segment of speech 
(a) 1.00 R(0) (b) 1.05 R(0) (c) 1.20 R(0) (d) 1.45 R(0) 
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FREQUENCY IN kHz 

F i g . 4b LP smoothed spectra for d i f f e r e n t values of R(0) for a 
. * unvoiced segment of speech 

(a) 1.00 R(0) (b) 1.05 R(0) (c) 1.20 R(0) (d) 1.45 R(0) 
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F i g . 5 Block diagram for generating ADCM data 
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F i g . G SNR contours for ADPCM data 
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F i g . 7 SNR contours for a d d i t i v e noise d i s t o r t i o n 
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F i g . S LP d i s t a n c e (D ) contours for ADPCM dat« 
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F i g . 18 M o d i f i e d LP d istance (D ) contours for ADPCM data 
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F i g . 12 E f f e c t of proposed modif icat ion on LP spectrum of 2 b i t 
ADPCM data - 5 th frame 
(a) o r i g i n a l (b) d is tor ted (c) modi f led o r i q i n a l 
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FREQUENCY IN kHz 

F i g . 13 E f f e c t of proposed modif icat ion on LP spectrum of 
a d d i t i v e noise d i s t o r t i o n data (SANR-1B dB) - 5 th frame 
(a) o r i g i n a l (b) d i s t o r t i o n (c) modified o r i g i n a l 



FREQUENCY.IN kHz 
F i g . 14 E f f e c t of proposed modi f icat ion on LP spectrum of 

2 b i t ADPCM data - 11th frame 
(a) o r i g i n a l (b) d i s t o r t i o n (c) modified o r i g i n a l 



FREQUENCY IN kHz 

E f f e c t of proposed modif icat ion on LP spectrum of 
a d d i t i v e noise d i s t o r t i o n data (SANR-18 dB) - U t h frame 
(a) o r i g i n a l (b) d is tor ted (c) modified o r i g i n a l 
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FREQUENCY IN kHz 
F i g . 1G E f f o c t of proponnd m o d i f i c a t i o n on LP npoctrum of 

3 b i t ADPCM data - 11th frame 
(a) o r i g i n a l (b) d is to r ted (c) modified o r i g i n a l 
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F i g . 17 T o t a l LP d is tance for d i f f e r e n t cases of d i s t o r t e d data 
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F i g . 18 LP d i s t a n c e (D ) betueen adjecent frames for o r i g i n a l 
1 

ADPCfl da ta 
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g. 19 LP d i s t a n c e (D ) between adjecent frames for o r i g i n a l 
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a d d i t i v e noise d i s t o r t i o n data 
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F i g . 28 M o d i f i e d LP d is tance (0 ) between adjecent frames for 
2 

o r i g i n a l and ADPCM data 
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. 21 M o d i f i e d LP distance (D ) betueen adjecent frames for 
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o r i g i n a l and a d d i t i v e noise d i s t o r t i o n data 
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23 LP d i s t a n c e (D ) a f t e r tuo way modi f ica t ion for o r i g i n a 
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and a d d i t i v e noise d i s t o r t i o n data 
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F i g . 24 Normal ized LP e r ro r I \ A ) contour for o r i g i n a l d a t a , ADPCI1 
d a t a and modi f ied o r i g i n a l data (shown by dot ted l i n e ) 
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F i g . 25 Normal ized LP e r ro r ( 1 n ) contour for o r i g i n a l da ta , 
a d d i t i v e noise d i s t o r t e d data and modif ied o r i g i n a l data (shown 

by dot ted I i n e ) 


