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ABSTRACT 

Quasi-static wedging of three-point contacts is investigated, 
wherein the concepts of virtual and redundant wedging due to a 
resultant force falling into a friction cone are proposed. We 
consider the fully-started case of a square peg and hole 
consisting of two point-surface contacts and one line-line 
contact. An analysis of the wedging diagram for this highly 
constrained configuration is carried out and compared to the two 
dimensional case. An approximate wedging diagram is 
constructed which shows that wedging of square pegs into 
square holes is more likely than cylindrical pegs and holes of 
similar sizes. 

INTRODUCTION 

Assembly consumes, on average, 50% of a product's in-plant 
cycle time and direct labor. We believe that Flexible Assembly 
Systems (FAS) will be highly cost effective where many styles 
and models of a particular product are required, due to die ease 
of ^programming the machines. The various styles and models 
can be expected to undergo several design changes during the 
life cycle of the equipment. However, a truly flexible assembly 
environment is, at present, difficult to achieve. A more 
thorough understanding of Part Mating Analysis is required to 
be able to program with high repeatability. An example of part 
mating is the well known "peg-in-hole" problem, which is one of 
the most ubiquitous assembly operations. Using a pure 
positional control, the success of peg insertion requires that the 
pan clearance is not smaller than the accuracy and/or the 
repeatability of the manipulators and manufacturing jigs. In 
addition, wear of manufacturing machines and imperfect 
alignment of parts are unavoidable in the manufacturing plant. 
Dimensions of the same component also differ from one part to 
another due to practical constraints such as cost and technical 
shortcomings. The geometrical variations, unfortunately, may 
cause excessive mating forces, which will then lead to the failure 
of the insertion process. 

Assembly robots in the laboratory which use force control 
often operate with inherent instability. When the flexibility of 
the system induces a vibration within the desired closed-loop 

bandwidth, instability will often occur. The implementation of 
high-bandwidth, high-accuracy force control has proven to be 
difficult. This is especially due to the "contact instability" 
problem (Eppinger and Seering, 1987), which occurs when 
contact is made with a rigid environment, such as in the peg 
insertion process. 

Whitney, et. al. (1982) established a strategy for inserting a 
chamfered, round peg into a round hole. This strategy assumes 
that the peg and hole are rigid and that the peg is mounted with 
a compliant structure. A special configuration of this compliant 
structure, Remote Center of Compliance (RCC), gives 
especially good characteristics in supporting the peg. It reduces 
the mating forces and the likelihood of jamming and wedging. In 
this analysis, jamming refers to failure of assembly due to 
improperly aligned forces; wedging refers to improper 
geometrical initial conditions. Caine (1985) analyzed the 
insertion of chamferless right rectangular pegs. In this case, 
there are sets of forces and moments which must be applied to 
the peg to avoid jamming. Strip (1988a) extended Caine's 
approach to include a hybrid force-position strategy using active 
compliance for convex three-dimensional pegs. This strategy 
initially tilted the peg and subsequently moved it in contact with 
the hole. The point of support and the target point were defined 
such that it would simulate human behavior. The target point 
was selected based on the shape of both the peg and the hole as 
well as the point of support on the peg. Strip (1988a) also 
indicated that the reduction of the degrees of freedom leads to an 
easier interpretation of the forces measured. Strip (1988b) also 
invented a passive mechanism for jamming avoidance in three-
dimensional insertion. Wedging conditions were not considered. 

Three-dimensional wedging was studied by Sturges (1988), 
but limited to two opposing contact points. This study also 
extended the jamming diagram of Whitney, et. al. (1982) to the 
three-dimensional case. 

It is essential that both wedging and jamming conditions 
must be observed for successful peg-in-hole assembly. 
Wedging most likely occurs in assembly processes where initial 
errors cannot be measured nor guaranteed by the tolerances 
of mating parts. In this paper, we will investigate conditions for 
wedging in three dimensions and develop a corresponding 
wedging diagram. 



WEDGING DUE TO THREE-POINT CONTACTS 

There are conditions in which wedging may occur among 
multiple point contacts, although there is no wedging at any pair 
of contacts between the peg and hole. In the case of multi-point 
contacts, we classify wedging into three types: two point, 
virtual and redundant. The two-point wedge is described in 
Whitney, et. al. (1982). Virtual wedging of three-point contacts 
occurs when lines connecting the contact points of each pair do 
not fall within the friction cones of both contacts. However, a 
combination of two friction cones may form a resultant force 
which lies within'the third friction cone. Such a wedging 
condition imposes geometric constraints on the forces and the 
contact points. Redundant wedging is created by multiple 
instances of two-point wedges and/or virtual wedges. 

General conditions for planar wedging are shown in Fig. 1 for 
a polynomial shaped boundary of a planar hole. Let Xi (i = 1,2,3) 
be the three contact points on the surface of the hole. Their 
coordinates [ X j ,yj are polynomial in Q with lateral errors, ej = 
[q, cj]. The notation of Faverjon and Ponce (1991) is 
particularly useful in developing the constraints for planar 
wedging. A contact configuration for virtual wedging is a set of 
Qfor which the following inequalities are satisfied: 

( X 4 - X 3 ) 0 X 3 < a (1) 

where X4 = [ X 4 , y 4 ] , the intersection of two friction cones can be 
determined from: 

( X 4 - X 2 ) e X 2 < a (2) 

( X ^ X j j e X j £ a (3) 

where Xi: unnormalized normal to contact point i; a : half 
angle of friction cone; and 8 denotes the angle which associates 
to two corresponding vectors. 

In the case of redundant wedging, a pair of virtual wedges is 
formed with more than one set of contacts. There are three 
possible pairs [i,j] of contacts: [1,2] [1,3] [2,3] . Six 
inequalities bound the wedging region of each pair of contacts as 
follows: 

( X i - X p e X j <; a , (4) 

(Xj-X^eXj < a . (5) 

i= 1,2; j = i+ 1 

Figure 2 shows how to determine the value 82w which 
determines wedging for polygonal contact configurations. Let 6] 
and 9 3 be specified. The contact point 3 is at the origin. The 
following parameters are given according to the geometry of the 
hole. 

d 2 and d 3 x-y coordinate of contact point 1 
dj and d 4 x-y coordinate of contact point 2 

The condition for a virtual wedge exists when point 4 lies 
within friction cone of point 3. That is, the resultant of the two 
forces lying on the edge of the first and second friction cones 
passes through point 3 and therefore lies within the third friction 
cone. 

where I x and I yare trigonometric functions of d 2 , d 3 , Qx and a, 
shown in Appendix I. 

From Fig. 2, the shaded area of the friction cone at point 3 
shows a possible region where reaction forces from three 
contacts (1,2 and 3) are in equilibrium. One boundary of each of 
the three friction cones intersects at point 4 for 8 2 = 8 2 w . Point 4 
is a special condition which helps define the upper and lower 
limits of the wedging space. In general, point 4 does not exist, 
but point 4' and point 4" show the actual limits of virtual and 
redundant wedging. The boundaries of the first and third friction 
cones also intersect at point 4', whereas those of the first and 
second friction cones intersect at point 4". A line 4'-2 connects 
point 4' and 2. Angle yis defined as an angle which the line 4'-2 
makes with the line 2-4. This angle is the lower limit of 8 2 

where the virtual wedging condition is satisfied as 8 2 is rotated 
counter clockwise. Note that every point along the line 4-4* lies 
within the third friction cone. We also define p as an angle 
between the line 4'-2 and the line 2-1. If the angle 8 2 is 
decreased by rotating the cone 2 in the counter clockwise 
direction, a reaction force from the contact point 1 will fall into 
the friction cone of point 2 and two-point wedging occurs. If 
virtual wedging and two-point wedging occur simultaneously, 
we have redundant wedging. Therefore, in order to have only 
virtual wedging, y must be smaller than p. 

The value of 82w is plotted in Fig. 3 as a function of d 4 for 
selected values of 8 j , 82 and dj , d 2 , d 3 . The upper bound 
condition of virtual wedging is determined by adding 2a to 8 2 w . 
Its lower bound condition is obtained by subtracting p from 8 2 w . 
The upper bound and lower bound conditions of redundant 
wedging are (82w - P) and (82w - P -2a), respectively. To 
avoid wedging, 8 2 m u s t lie outside the areas of virtual and 
redundant wedging. 

It should be clear from Fig. 2 that a sufficient condition for 
virtual wedging exists if any two friction cones corresponding to 
two contact points both include the third contact point. 

In this section, we introduced the concepts of virtual and 
redundant wedging in the plane. The extension to three 
dimensions will be described in the following sections. 

FEATURE DEFINITIONS OF A SQUARE PEG 
AND A HOLE 

Figure 4 shows a square peg and hole. All designations 
for bounding edges have been attached. A reference 
frame for the peg is designed with prime (')• The four side 
edges are described by line segments p j ' (i = 1, ..,4). The 
four bottom edges are denoted by line segments Yf (i = 1, 
..,4). O' is the origin of reference coordinates for the peg 
which is attached to the first bottom corner, p j . Let w be 
the width of the peg. The point-coordinates of the four 
corners are 

= [ 0 0 0 1 ] ' (7) 

p 2 = [ 0 w 0 1 ] l (8) 

p 3 = I -w w 0 1 ]' (9) 

p 4 = [ -w 0 0 1 ] l (10) 

For the square hole, the four top inner edges are described 
by line segment o . ( i « l , ...4). The outer edges of the chamfer 
are denoted by line segment & (i = 1, ..,4) and the four chamfer 
comers by line segment 5j (i = 1, ..,4). It is assumed that the 
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inner edges lie normal to line a . O is the origin of reference 
coordinates for the hole which is attached to the first inside 
corner, q r If W is the width of the hole, the point coordinates of 
the four-hole corners will be 

- [ o 0 0 1 ]' (11) 

= [ 0 w 0 1 ] l (12) 

= I - w w 0 1 ]' (13) 

% . ' = [ - w 0 0 1 ]' (14) 

In addition, each chamfer surface is defined a point e; 
in the plane which contain lines otj and e} . 

e l = I CT1 0 ST] 1 r (15) 

e 2 - [ 0 CT1+W ST) 1 ]' (16) 

C 3 = [-CT1-W 0 sn 1 ]' (17) 

C 5 = [ - w -CT1 ST1 1 ]' (18) 

where r\ is the chamfer angle with the horizontal plane. The 
symbols c and s represent trigonometric functions for cosine and 
sine, respectively. 

AN APPROXIMATE MODEL OF WEDGING FOR THE 
ORTHO-CONFIGURATION 

Using the notation for the peg and hole defined in the 
previous section, we will analyze the onset of wedging with 
three contacts. Of the many likely contact configurations which 
are possible after chamfer crossing, the ortho configuration 
(Sturges, 1988) of Fig. 5 is typical of three-point constraints. 
This contact configuration consists of two point-surface contacts 
and a line-line contact. It is always possible to obtain this 
configuration during chamfer contact since there is no possibility 
of planar wedging for the two point contacts. However, as the 
peg advances to cross the chamfer, the resultant of two contacts 
might fall into the friction cone of the third contact (point-
surface). Equations (15)-(18) are shown in the previous 
section for the purpose of completeness of geometrical 
description. The chamfer angle (r|) is involved in the 
determination of a lateral error(e 0) defined in Whitney, et. al. 
(1982). Since, at the onset of wedging for this configuration, the 
peg has already passed the chamfer surface, we will consider the 
contacts made by the geometry of the peg and hole as shown in 
eqs. (7)-(14). The three contacts are pictorially shown in Fig. 5 
which excludes the chamfer surface. We will develop an 
approximate wedging diagram for this case taking the x-z plane 
of the hole as a reference plane and comparing it with the two-
dimensional case of Whitney et. al. (1982). 

For polygonal pegs and holes, contact configurations such as 
line-line can be analytically described by using the Pliicker 
coordinates [N,N 0 ] . N is a directional vector which is not 
necessarily normalized. N 0 is a moment of a line /. P is any 
point on the line /. 

N 0 = P x N. (19) 

The contact states analysis to follow is most conveniendy 
expressed in Plucker coordinates. Let the direction cosines of 
peg line p ' define a unit vector N ' at infinity in frame O': 

N = [Pi Pi P3 0], (20) 

which can be transformed to be a unit vector in frame O of the 
hole by 

N = D N ' , (21) 

where D is the homogeneous transformation matrix which 
relates the location of the peg with respect to the hole: 

D = 

cycty s8c\|/s$-syc9 s0sy + c6cysty x 0 

syc<(> s6s\ps4 + cyc6 c6sys<t>-s6cy y 0 

-sty ctysB ctycB z 0 

0 0 0 1 

(22) 

In the analysis below, we will refer to the elements of D as: 

D = 

d l l d 1 2 d 1 3 
^22 &23 V o 

^ 1 <*32 ^ 3 2o 
0 0 0 1 

(23) 

Contact constraints are readily described by computing the 
mutual moment between two lines (Hunt, 1978). The mutual 
moment of two lines is defined as the distance between the lines 
along their unique common normal multiplied by the sine of the 
angle between them 

dsine = N ^ + f l ^ 

If the Plucker coordinates of /.j and /. 2 are: 

/., = O j B j O j , a 4 a 5 a 6 

'•2 - Pi h h • P4 P5 P6 

then 
N , N 0 2 = a 1 p 4 + a 2 p 5 + a 3 p 6 

N 2 N 0 1 - P,«4 + P 2 «5 + P 3

a 6 

(24) 

(25) 

(26) 

(27) 

(28) 

From eq. (26), if p is any point on the line /., the moment part 
of the Plucker coordinates can be expressed in a matrix form as 

N 0 2 = Ap = ADp' 

where A is an antisymmetric cross-product matrix: 

(29) 

N 0 2 N 
0 P3 -P 2 0 

-Ps 0 p , 0 
P 2 -Pi 0 0 
0 0 0 1 J 

(30) 

At this point, we can use the Plucker coordinates to restate 
the line segments of the peg and hole, p 2 and a 2 , which create 
the line-line Contact at point 2 of the ortho configuration. 

P 2 = (0 0 1 w 0 0) (30) 
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= (0 0 1 0 0 -W) (31) Table 1 Minimum values of \i sufficient for wedging 

These two lines satisfy the line-line contact constraint at 
point 2 when z 3 = 0. By using eqs. (24) and (29), we obtain the 
coordinate of point 2: 

P 2 = D = 
03 03 

0 1 (32) 

From eqs. (21), (22), and (29M31), the coordinate of £ 2

 i n 

the reference frame of the hole is obtained: 

P2 -

<*23 
<*33 

y c d 3 3 - 20(^3 + w d n 
Z o d 1 3 - x 0 0^3 + wd^ 
» o d „ - y o d n + wd^, 

(33) 

Setting d = 0 in eq. (24) and substituting with eqs. (31) and 
(33), yields the contact constraint relation: 

z0(secy-ces\|/s<|>) + (y0-W)c<|>ce + wc<(>c\|/ = 0. (34) 

Figure 5 also shows the geometry for the onset of 
wedging (if there is one) as the second point-surface 
contact (point 1) enters the hole. According to Fig. 5, one 
can see that two point-surface contacts are located at 

- (o y 0 

= (x, 0 1 ) ' 

(35) 

(36) 

We obtain the unknown coordinate of point 1 and point 3 from 
eqs. (9), (22) and (36): 

y 0 = w ( c\j/c6+s6s\j/s4>-svce) (37) 

x 3 = w ( s9cys<t>-cyc4>-SYc6) (38) 

z 3 = w ( c<t>se-s<()) (39) 

Since virtual wedging can exist if any of two friction cones of 
two contacts in Fig. 5 both include the third contact point, a set 
of six relationships between contact points can be found. Table 
1 gives the minimum values for friction coefficient, \l, which 
cause wedging, based on the geometry of Fig. 5 and the analysis 
in Section 3 above. To read the table, consider a row number as 
a friction cone base and a column number as an included contact 
point. A virtual wedge formed by the friction cones at contact 1 
and contact 3 including contact 2 (denoted as VW(],2) and 
VW(3,2)) satisfies relations in row 1 - column 2 and row 3 -
column 2, viz: 

h i 
V[\V 2 + ( x 2 - x 3 ) 2 ' 

|W-y< 

(40) 

(41) 

Friction 

Cone 

Base 

Included Contact Point 

| W - y , 

W - y t 

M 
V [ W 2 + ( X 2 - X 3 ) * 

JfiL 
V [ w 2 + ( x 2 - x 3 ) 2 

Due to a small angle approximation, we assume that the 
normal to all three contacts is perpendicular to the inner surface 
of the hole. The inner surface of the hole at point 3 is parallel to 
one at point 2 but perpendicular to one at point 1. Therefore, 
VW(2,3) and VW(3,2) are the same whereas VW(lf3) and 
VW(2,3) are reciprocal to VW(3,1) and VW(3,2), respectively. 
Replacing inequalities by equalities in eqs. (40) and eq. (41) and 
solving eq. (37) through eq. (41) yield the possible 
configurations for the onset of wedging, which we now develop 
into a wedging diagram. 

Referring to the wedging diagram for two dimensions 
(Whitney et.al, 1982) in Fig. 6, the linear equation of the upper 
and lower boundary is 

e o + S £ o (42) 

where 6 W , a wedging limit angle, is equal to +c/u. 
The parameter s and c represent a slope and clearance ratio 

between the peg and hole, respectively: 

with 

K x 

(W - w) 
W 

angular error 
lateral error 

distance from a rigid support to the peg's tip 
lateral compliance 
angular compliance 

(43) 

(44) 
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A quasi-static analysis, similar to Whitney, et. al. (1982), 
has been carried out relative to the x-axis of the hole for the 
ortho configuration of the peg. The slope and wedging limit 8 W of 
eq. (42) is formed using relations given by eqs. (37) through 
(41) and static balances of forces and moments about a 
compliance center defined in Whitney, et. al. (1982). After doing 
a bit of algebra and dropping high order terms, we find that: 

c0c$cy+n | ^ r ~ c y l 
c8 /. 

c8c$sy+u. (*- cel. 

(45) 

w i t h 

cos 1 

= W^ 

/ - B + V b 2 - 4 A C 
\ 2A I (46) 

+ 2w2c<|>syu 

B - 2w2c<t>2cyu. + 2Wwc<|>(1 - u 2 ) 

C = w2c<(>2(2 - u,2) 

Eqs. (45) and (46) describe an approximate linear model of 
wedging which determines the values of 8 W and s . This linear 
model is valid only if all three angles (8, y ) are small (< 5°). 
In this case, nonlinear terms are infinitesimal when compared 
with linear terms. We still need to know the admissible range of 
lateral error, e 0 , on the axis of interest so that we can construct 
a wedging diagram. In addition, the ratio of Kg /K x in eq. (45) 
appears as a value in the reference frame of the hole and will 
require a transformation from the frame of the peg. 

To find e 0 , let a be the chamfer width. Using the 
homogeneous transformation matrix, D, in eq. (22) and the 
geometry of Fig. 4, the admissible range of lateral error for 
avoiding wedging is: 

£ 0 = a + W/2 - (w/2)(cyc<|> + syc9 - s0cys<|>) (47) 

Similarly, the compliance supporting the peg in Fig. 7 
is transformed to the frame of the hole. 

K x = Kx cyc<|> + Kx (s8cys<|> - syc8) 
K e = Kg cyc$ + (s8cys<)> - syc8) 

+ Ky,( s8sy - cyc8s<t>) (48) 

Compliances of the support are denoted by italic terms. An 
approximate wedging diagram shown in Fig. 8 is obtained by 
making small angle approximations and substituting the 
following parameters into eq. (45) through eq. (48): $=0°; u. = 
1.5, L g « 1 cm; all linear compliances {Kx and Ky) are 1 N/m; all 
angular compliances (K$, Kp and K¥) are 50 N-m/rad.; w « 9 
cm, W=10 cm and 5 = .5 cm. 

The solid lines and dashed lines represent the wedging 
diagram in two dimensions and the approximate three-
dimensional wedging diagram, respectively. The diagram 
considers the effects of three-point contacts. It can be seen that 
the confined area in the latter case is smaller due to smaller 
values of 8 W and s. In addition, when the azimuth rotation of the 
peg, y , increases, the admissible range of the lateral error 
decreases. This means that the wedging space is larger. 
Therefore, when y is small, but non-zero, insertion of square 

pegs into square holes which leads to the ortho configuration is 
shown quantitatively to wedge more readily than that of 
cylindrical pegs and holes of similar support and dimensions. 

CONCLUSION 

Studies of the peg insertion problem have been carried out for 
over a decade. The Remote Center of Compliance (RCC), which 
evolved from the early work, is successful in facilitating peg 
insertions with tight tolerance. However, its capability is limited 
to round pegs and holes with chamfers. It fails to insert 
polygonal, nonsymmetrically-shaped pegs into mating holes. In 
addition, techniques for using active force control for such mating 
processes rely on an assumption of predictable initial error due 
to mating tolerance. 

To obtain a better understanding of this problem, we have 
extended the study of the wedging diagram into three 
dimensions. Possibilities of wedges for fully-started contacts, 
e.g., the ortho configuration between a square peg and hole, 
reveal virtual wedging among three contracts. The wedging 
space is now described by the parameters of contact 
configurations: positions and orientations of the peg relative to 
the hole. Strategies for initially orienting the peg must avoid this 
wedging space. It remains to determine wedging conditions for 
other contact configurations and the constraints between them. 
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APPENDIX I 

Geometric relations involving fixed parameters in Figure 2. 

Points 4 and 4' have coordinate (I x,I y) and(I ' x , r y ) , respectively: 
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where 

d 3 - o \ 

tan a - 5 J - t a n ( a + e,) 

d 3 - d , 

1 -
t a n ( a - ~ ) 

d 3 - d 3 

l a n ^ - a j - t a n C a + e,) 

2 _ t a n C a ^ e j 

t a n ( ^ - a ) 

d 3 = djtanCa + ej) 

After knowing these coordinates, 8 2 w can be determined by 
using the condition of the normal at the contact point 2: 

Fig. 1: Generalized three contact configuration 
with virtual wedging 

8 ^ + tan - i f d , -

= e , w + a - t a n 
d . + I , 

which leads to eq. (6) 

Similarly, we can also obtain the values of p and y as following. 

P = e , w + t a n -

8,„ + a - t a n " ' 

U + d J 

Note that (6^- Y) is the lower bound condition of virtual 
wedging for the three contact forces along the boundary of friction 
cones (also see Fig. 2). 

Two point wedge 
boundary 

-i- L y_M ! 

Kg. 2: Virtual wedging in a polygonal geometry 
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0 
Fig. 3: 6 2 w of virtual and redundant wedging for the contacts in 

Fig. 2: Qx = 20°, 6 3 = 90°, a = 15° and d, = 4.0 cm, 
d 2 = 7.0 cm, d 2 = 8.0 cm 

P i or O' 
(0,y 0 ,0) 

Fig. 5: Ortho configuration at onset of wedging 

Fig. 4: Feature definitions of a square peg and hole Fig. 6: Wedging diagram for two-dimensional peg insertion tasks 
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