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‘ ABSTRACT

The quality of design knowledge asystem has substantially influencesits performance; good quality
design knowledge is atrue asset. Often, the terms knowledge, its quality, and how it is measured,

are left vague enough to accommodate severa interpretations. Thispaper articul atestwo defi niti ons
of knowledge and their associated measures. A detailed example of knowledge evaluation using
the measures is described. The example demonstrates the value of knowledge quality eval uation.
Thisvaueisan addition to the methodol ogi cal function that eval uation provides. Finally, thepaper
briefly discusses the scope of the measures and their rel ationships.

1 INTRODUCTION

Design knowledge exists in many ways and qualities: It may be referred to as being accurate,
perfect, plausible, approximate, cheap, expensive, implicit, explicit, opaque, etc. Sources of good
quality design knowledge are limited; they mostly exist in the minds of expert designers, while
a small portion is documented in the literature. In order to identify which knowledge is good,
one must have the ability to evaluate knowledge quality. The topic of knowledge evaluation
raises several prerequisite issues. First, what do we mean by design knowledge? Second, how is
something in general being evaluated or measured? This question may seem unimportant, but in
fact, itis central to the discussion since it deals with the concepts of measure and value.

A measure of design knowledge quality can serve severa functions. The first and most genera
functionis practical: Theidentification of good design knowledge for use by designers or inclusion
in computer systems. The second functionis methodological: The evaluation of prototype design
systems devel oped in research and determination of theirrelativemerit Thisevaluation is essential
for providing feedback on research progress and for supporting the refinement of ideas (Cohen Iand
Howe, 1989). When evaluating design systems that learn, this function becomes mandatory.” A
third function is manifest when complex design systems with several modules that solve similar
problem compete on resources. |In this situation, knowledge quality measures can identify which

moduletoinvoke. Inthis study, weconcentrateon the second function: theevaluation of knowledge
embedded in design support systems.

The subject of this study belongs to alarger set of methodol ogical and practical issues of evaluation.
As we see later, the evaluation of knowledge quality is tightly coupled with the evaluation of
intelligent systems. The state of evaluating such systems was documented by Green and Keyes

'In fat, ressarch on leamning provides s'g_ifiaant ingght on the messLremant of knowledge Snce the evauation
of learning progressrequires the evauation of knowledge acouired.
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(1987). They described the rductance of syssem developersto verify and validate their products.
The lack of effort spent on evaluating software systems in general, and expert systems specifically
is also discussed by Adeiman (1991) and Cohen and Howe (1989). The latter also demonstrated
the benefits from evaluation to research and the necessary steps needed to allow evaluation to be
performed.

If evaluation of systems is addressed in studies, it is often performed in an ad hoc manner.
To illustrate, Zuse and Bollmann (1987) discussed the chaotic state of measures in software
engineering. Most of the software measures appearing in the literature do not conform to the
notions of measurement theory (Stevens, 1946). The argument is not that one measure is better
than the other, but that a true measure must have certain properties. First, there must be two
systems, observed and formal, where a system is a mathematical entity consisting of a set of
objects A, relations on A, and a binary operation on A. For example, an observed syssem may
contain the set of physical objects, the relation " hcavier-than,” and the operation of assembling
two objects. Theformal system can consist of the set of positivereal numbers, thereation " larger-
than/® and the addition operator. Second, theremust be a function from the observed to the formal
system that preserves the relations and operation, called homomorphism. In the above example,
a mapping that assgns each object its weight is a homomor phism. This allows for a meaningful
assgnment of values to the weight of physical objects. Most measures of software systems do not
have these properties, although all should have according to Zuse and Bollmann. Similarly, one
may argue that measures that evaluate knowledge should have these properties.

The preceding discussion assumed that evaluation is quantitative, which usually is perceived as
the only " good" evaluation possible. Nevertheless, often such evaluation isimpossible to execute
and sometimesit isinappropriate. 1n these cases, combined qualitative and quantitative evaluation
methods are appropriate (Kaplan and Duchon, 1988). The quantitative measures must be designed
to have the properties of measures, however, the qualitative methods cannot have these properties.

Thispaper proposes four techniques for evaluating knowledge: gructural qualitative and quantita-
tive, and functional qualitative and quantitative. 1t contrags their advantages, disadvantages, and
appropriateness for different purposes. The paper illustrates them in the evaluation of an experi-
mental design system. It doesnot deal with the debate whether machinescan haveknowledgeor be
intelligent (Searle, 1980; Dreyfus, 1979); and whether knowledgein a system can be" objectively**
evaluated in any way.’

This paper attemptsto raise theissues and focus the attention on the methodological and practical
implications of the evaluation of knowledge, thereby motivating further researchin thisdirection.
Such research may extend the use of congtructs from continental philosophy in the evaluation of
knowledge, hence, address some of the deficiencies in knowledge evaluation briefly pointed later.

Theremainder of thispaper isorganized asfollows. Section 2 providestwodefinitionsof knowledge
and briefly discusses them in the context of design. Section 3 describes four evaluation measures
of knowledge. Section 4 describes the design syssem BRIDGER that is used to demondgrate the
evaluation measures. Section 5 provides a detailed example of measuring the bridge design
knowledge that BRIDGER has. The extent of the evaluation allows the appreciation of the many
concerns affecting the selection and application of different evaluation measures of knowledge.
Section 6 concludes the paper.

T hiscomment disagr eeswith Gainesand Shaw (1989) r eferenceto" objectiveknowledge” astheknowledgearrived
by consensus among experts; such knowledgeis subjectively created within a constructivist viewpoint. Furthermore,
although most empiricists will claim that a measure as described befor e can beobjective, they will thereby ignorethe
fact that the mapping from the observed to theformal system is theory-laden and subjective.
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2 WHAT IS (DESIGN) KNOWLEDGE?

In defining knowledge it must be understood that the definition dictates the type of evaluation
measure that can be applied or that may best apply. Many studies on know|edge-baseq systems
avoid the question of what knowledgeis by discussing knowledger epresentation. Implicitly, these
studies define knowledge as whatever is represented, henceforth termed the structural definition.

Knowledge is therefore a gatic entity; it may include facts, axioms, derivations, causal relations,
mathematical models, etc.

The gructural definitionisin contrast to Hatfunctional definition which states that knowledge has
apurpose and it is defned as what a system has that allows it to attain goals. Knowledge cannot
be observed directly, but indirectly through observing the " inteligent” behavior of a system.

Doyle (1988) termed these definitions as: (1) explicit knowledge which iswhat isrepresented; and
(Zrimplicitknowledge which is what can be deduced from explicit knowledge. Doyle argued that
adopting the explicit definition has several limitations: (1) it cannot explain actlons that are not
logical, default or nonmonotonic reasoning; (2) it cannot explain some pwchologlcal phenomena;

and (3) it cannot handle inconsistencies that naturally arise, for example, in knowledge generated
from several experts.

2.1 Structural Definition

The gructural definition has several appealing properties. Themain oneisknowledge sharing (and
trading), If knowledgeis what isrepresented, then knowledgecan be abgracted from the system
using it and shared with ancther reasoning mechanism. Two " quantities' of knowledge could be
added to yield a larger knowledge base, or knowledge could be trandferred between knowledge
systems (Neches et al., 1991). A knowledgeinterface format (KSF) is developed to facilitate this
trander (Genesereth and Fikes, 1990). Anocther appealing property of the sructural definition
Is that it facilitates easy evaluation performed by smply inspecting the declarative sructure of
knowledge. Thisis much cheaper than executing behavior assessment experiments.

The gructura definition detaches knowledge from its method of acquisition and use, although
often, theactof acquisition determinesthe meaning ofknowledge. This may cause difficulties. For
example, in order for systems with different uncertainty management mechanism to cooper atethey
mugt establish an interface between them wher e uncertainty values aretrandated via afractionally
linear function (Kreinovich and Kumar, 1991). If trandation is not performed, the ability to use
the knowledge decr eases (e.g., the decr ease of diagnosis performancein MY CIN when the method
of probability calculation is changed (Shordiffe, 1976)). This suggests that one cannot generate
and " plug" knowledge that was derived by some mechanism into an expert syssem and expect it
to function properly. Note however, that the sructuralisgs may not worry about this since ther
definition of knowledge does not include the functionality of knowledge.

2.2 Functional Definition

Newell (1982) opposed the sructural view of knowledge. He argued that " knowledge is a distinct
notion, with its own part to play in the nature of intelligence,” independent of representation. In
order to defineknowledge, Newell defined the " principle of rationality: If an agent has knowledge
that one of its actions will lead to one of its goals, then the agent will select that action." This
principle gover nsthe use of knowledge for makingthe appropriate actions. Knowledgeistherefore
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defined as " whatever can be ascribed to an agent, such that its behavior can be computed accor ding
to the principle of ratlonallty [..] Knowledgeis a competence-like notion, being a potential for
generating action;" ® therefore, knowledge should be evaluated functionally. Therelation between
knowledge and representation isclear. Fird, " representations exist at the symbol level/* Second,

" knowledge ser ves as the specification of what a symbol structure should be able to do." *

23 Design Knowledge

Design knowledge can be defined as knowledge in general, except that it is about design. Since
the nature of design processes and knowledge is orthogonal to the question of its evaluation, we
will refer to design as a process mapping from requirements or needsto adescription of an artifact.
In the gructural definition, design knowledge may include facts about physical sciences; facts
about modeling techniques of, and experiental heuristics about, artifacts, and information about
how artifacts may be sructured, how do they behave, and how they may be built. At this level,
knowledge may be abstracted from itsrepresentation; thereneed not be any commitment to specific
representational formalism.

In the functional definition, design knowledgeis what can be ascribed to a design agent, such that
its design behavior can be computed according to the principle of rationality. This means that
knowledge can be described in terms of its operation to satisfy the goals of the design system. If
a system cannot use a piece of information in its reasoning, then, the system does not have this
knowledge.

Wearguethat theultimatepur poseof design knowledgeistoact, reason, and cr eate artifacts, design
knowledge as an entity separated from use has no sgnificant meaning and usefulness. Wetherefore
favor thefunctional definition of design knowledge. Nevertheless, we do not, and probably cannot,
resolve which definition of design knowledgeis better or correct, we mer ely providethe definitions
and contrag their evaluation.

Resear cher s on design have used both definitions and in variousways. Balkany, Birmingham, and
Tommelein (1991) provided the description of several design systems at the knowledge-level. As
such, they favor the functional view of knowledge being separ ated from implementation issues and
geared toward functionality.

Bijl (1987) presented a view against conceptualizing the information within computers as knowl-
edge, a satement indirectly in favor of die functional view (or even in line with continental
philosophy). On the other hand, he described a system called MOLE asresting on the foundation
of compr ehensbility of design knowledge (p. 12). InMOLE, theinternal representation isdesigned
to be meaningful and to convey the functionality of the syssem—this correspondsto the sructural
view of design knowledge.

Brown and Spillance (1991) discussed knowledge compilation as a process that modifies the
dructure of design congtraints. They view the quality of the modificationsin the functional sense
and evaluate them by performancetests.

Coyne, Rosenman, Radford, Balachandran, and Gero (1991) said that "in knowledge-based sys-

3See Fetzer (1990, p. 127-130) for acriticon thisdefinition. |n addition to this criticism, continental philosophy
has significantly different ideas about the natur e of knowledge, itsinter pretation, and under standing (M ueller-Vblimer,
1985). Seealso (Mallery et al., 1986), for areview of hermeneutics related to computer under standing.

“Theview of knowledgeas a specification for its structural description was used, for example, by L evesque (1984)
for building knowledger epresentation that can support certain functions, and by Kyburg (1988) to draw conclusions
on how uncertainties should berepresented to support decision making.
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terns, the knowledge must be able to be made explicit in such away that it can be ingpected and
understood independently of the way it is controlled.” Therefore, they view knowledge in the
dructural sense.

Wher eas resear chers adopting the symbolic paradigm of design can subscribe to ether definitions
of knowledge, the studies employing neural networksin design must subscribe to the functional
definition since theinternal gructure of a neural network does not reveal its knowledge content

3 EVALUATION MEASURES

Theevaluation of knowledgedependson itsdefinition. Two measures, qualitative and quantitative,
are proposed as supplying complementary information for interpretation and validation (Kaplan
and Duchon, 1988).

There can be other measures of knowledge, for example, cost or smplicity. The cost of knowledge
can measur e the time and memory resour ces needed to manage it and the cost of using it to obtain
performance. Simplicity can measure syntactic properties of knowledge sructure or the trace of
its execution. We view these and potentially other measures as secondary, provided that they are
not exponential functions of any of the problem characterigtics, otherwise, they would become
dominant in the evaluation process.

3.1 Structural Measure

The process of structural evaluation is smilar toa" brain surgery.” Knowledgeis measured based
on itsinternal sructure. Since a crucial agpect of knowledge is its use in performance tasks, the
gructural measure will probably involveprojecting how theknowledge will perform while solving
problems. This however will be hard without considering the mechanisms that manipulate that
knowledge.

In the case of logic, knowledge can be gructurally assessed according toits truth value. Inrule-
based systems (albeit without uncertainties) knowledge can be verified to be free of redundancy,
conflicts, circularity, and incompleteness (Nazareth, 1989). This measure, however, is not useful
for evaluating design knowledge which has all the above properties, but yet, used by humans
_effectively to generate designs. The qualitative and the quantitative variants of this measure are
discussed next

Qualitativemeasure. Thismeasure can betraced to the assumption that humans can under sand
knowledge embedded in systems in a declarative form. It is based on past practice with small
systems having smpleknowledger epresentation such astraditional productionrules. However, in
large and complex systems, it is hardly possible to undersand what is therole of a small piece of
knowledge and envision its potential run-timeinteractions with additional knowledge. Therefore,
whilethe ability to inspect declar ative knowledge can facilitate debugging, maintenance, and even
education, it isdifficult to support the application of this measure.

A different approach to support these concer ns builds upon advanced mechanism that manipulate
the knowledge, thereby transforming the evaluation from gructural to functional. For example,
GUIDONZ uses the knowledge of NEOMYCIN to teach students (dancey, 1988) without letting the
gudent look at the low level knowledge representation.
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In machine learning, the comprehensibility of knowledge generated is described as an important
measure by some researchers (Michalski, 1986). Note, however, that this measure has evolved
from research on concept learning where the structure of knowledge is sufficiently simple and the
task is a single-step classification that is easy to comprehend and evaluate. Furthermore, it is easy
to predict the knowledge performance from its structure.

The execution of this measure requires domain knowledge. It is not clear how to quantify it or
otherwise how to use it to compare between different knowledge contents.”

Quanitativemeasure. This measure quantifies the structure of knowledge. Viewing knowledge
as information allows such quantification (Boulton and Wallace, 1973). A heuristic measure for
assessing thequality of aclassification, which isrelevant to the exampl e described later, is proposed
by Gluck and Corter (1985). A generalized form of this measure, called knowledge utility (KU) is
used in the example (Section 4)

This measure is easy to apply, but requires a knowledge representation formalism that can be
quantified. Compared to the qualitative structural measure, it is even less clear what is the relation
between this measure and the design performance of a system.

3.2 Functional Measure

This measure evaluates knowledge based on its performance in various tasks. Adelman (1991)
discussed three types of performance evaluation: (1) experiments which are suited for the early
stages of system development and generate fully reproducibleresults; (2) quas experimentswhich
are for the operational stage of systems and consists of fully controlled artificia studies; and (3)
case studies which are opportunistic and wholly unconstrained The first two are quantitative
measures and the latter is aqualitative measure.

In the context of statistical decision theory, (and with several other assumptions,) one can quantify
the value of knowledge. Skyrms (1990) defined knowledge as something that allows making
informed decisions; he then used this definition to evaluate knowledge content Such an evaluation
is possible due to the simple nature of the knowledge involved: asingle piece of evidence.

Cohen and Howe (1989) discussed the evaluation of large artificial intelligence systems. They
suggested several performance experiments that can be used for this purpose. One of the systems
they discussed is DOMINIC, a system for the routine design of mechanical devices (Howe et al.,
1986). They shown how performance evaluations guided their research through three generations
of the system. The qualitative and the quantitative variants of this measure are discussed next.

Qualitative measure. This measure can be viewed as performing protocol analysis (Ericsson
and Simon, 1980) on the system for evaluating itsknowledge. The system is used to solve avariety
of problems, and its problem-solving behavior is coded and analyzed. The anaysis uses language
different than that implementing the knowledge internally. Domain knowledge can further enhance
the evaluation of the behavior and therefore, the knowledge evaluation.

Thisis one of the important techniques for evaluating systems (Cohen and Howe, 1989). Itis often
used in design research. The problem is that often, very few examples with very limited scope are

°In fact, this measure is related to hermeneutics and as such subjected to the debates about, and variations of, it
(Malleryetal.,1986).




provided and usually without substantial analysis.

Quantitativemeasure. Thismeasureis based on the performance of a system over many prob-
lems that span the range of problems the knowledge of the system is expected to solve* The
performance of the system is compared with the solutions generated by human experts or norma-
tivetheoriessuch asdecision theory. The solutionscan be also evaluated based on shared gandards
such asdesign codes. The latter isused in the example discussed later (Section 4).

For example, Gaines (1989) used a functional quantitative measure to evaluate theinitial sate of
knowledge of alearning program. The initial knowledge serves as a base-line for the learner and
the amount of data necessary to generate a predetermined fixed performance level measures the
quality of theinitial knowledge.

In general, themeasurement of perfor mance of systems and their comparison is not sraightforward.
An example from performance evaluation of learning programs is discussed by Kononenko and
Bratko (1991). One of the causesfor thisdifficulty, they mention, isthat thetypes of answersfrom
different programs are not exactly the same.

Sincethismeasure summarizestheresultsin gatigtics, it tendsto hide some details of the system's
behavior. Many controlled studies are needed to uncover behavior patterns that can be identified
(although only qualitatively) by the qualitative functional measure.

4 BRIDGER

I norder to groundthedifferent evaluation measuresand their tradeoffsit isnecessary todemondrate
them in an evaluation of an existing system. The following section, describes the evaluation of
design knowledge accumulated within a design system BRIDGER, a system developed to explore
the potential of knowledge acquisition techniques for building design assstant for the preliminary
design of cable-stayed bridges.

The section garts by describing the bridge domain and then reviewsthe system's ar chitecture and
operation. Sincethepurposeof thispaper istofocuson knowledgeevaluation and not on BRIDGER,
only the necessary partsrequired for the demonstration are described.®

I n essence, this section provides datapoint for motivating knowledge evaluation and exploringthe
properties of different measures. Assuch, thispaper can be perceived as adetailed case sudy (i.e.,
Adelman's (1991) third category of experiments discussed before). Therefore, it is a qualitative
evaluation of the concept of knowledge measures discussed in this paper and it is a functional
evaluation sinceit discusses the " functionality” that these measures can provide.

4.1 Domain of Cable-Stayed Bridges

Figure 1 describes the main components and dimensions of a cable-stayed bridge. A cable-stayed
bridge is composed of a supergructure and a subgtructure. The supergructure is composed of a
deck, towers, and staysthat areattached tothetower sand support thedeck. Thefigureshows some
of the properties which are used to describe a cable-stayed bridge; additional propertiesinclude:
SPAN-N, the number of spans of the bridge; DECK-A, DECK-MI, TOWER-A and TOWER-MI,

®Sec (Reich, 1991a; Reich, 1991b; Reich, 1992) for further details.
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the cross-sectional areas and moment of inertia of the deck and the tower, respectively; DECK-M,
the material of the deck; and STAY-A, the cross-sectional area of the stays.

In a design scenario the requirements are expressed as a set of specification property-value pairs
(e.g., therequired length of the bridge). Design is then executed by making design choices as
assgnments of design-description property-value pairs (e.g., SPAN-M=500ft., STAY-N=20).

STAY-SPD
CROSS-Ucrni”gIM gUi

LENGTH: total hrid«i gt

Figure 1. Bridge description

A rough illustration of the complexity of the domain can be conveyed by the number of properties
used to describe various agpects of the problem: 9 propertiesdescribe a specification; 30 properties

describeadesign, 15 propertiesdescribetheanalysisresults, and 4 propertiesdescribetheevaluation
of a bridge.

4.2 BRIDGER'S Architecture

BRIDGER'S ar chitecture, shown in Figure 2, consists of two main systems. synthesis and redesign.
The synthesis system isresponsible for synthesizing several candidates from a given specification.
Synthesis knowledge is generated by learning from existing designs and from successful design
examplesthat are selected by theuser. Sincetheknowledgecreatedisheurigticby nature, candidate
designs are usually inadequate in some aspects. Theredesign system resolves this problem.

Candidatedesigns are tranderred to a module that analyzes them and submits them to aredesign
module, |fnecessary Theredesign moduleisresponsiblefor modifyingdesigns after their analysis.
On receiving the analysisresults, thismoduleretrieves the best design modification for the bridge,
The usr can override the redesign modifications and supply explanations that enhance redesign
knowledge. Theresults of theredesign system are acceptable designs. The designer evaluates the
results and can submit a subsat of them to the synthesis system for further training.

ECOBWEB is the learning system that implements the synthesis system. It acquires synthess
knowledge and usesit to synthesize new bridges. ECOBWEB representsknowledgein aclassfication
hierarchy. It has several operators that build the classfication from examples. Learning and
synthesis progress by using one-step look-ahead search in the space of classification hierarchies
directed by an evaluation function to select the best operator.

The evaluation function, called category utility (CU)q evaluates a classfication of a set of designs
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Figure 2. BRIDGER's ar chitecture

into mutually-exclusive classes C\, C2,e.., C, by:
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where C" isaclass, A, = Vy is a property-value pair, P(x) is the probability of JC, and n is the
number of classes. The firs term in die numerator measures the expected number of property-
value pairs that can be guessed correctly by using the classfication. The second term measures
the same quantity without using the classes. Thus, the category utility measures the expected
increase of property-value pairs that can be guessed above the guess based on frequency alone.
The measurement is normalized with respect to the number of classes. The higher isthe value of
CUj, the better the quality of the classfication is.

BRIDGER has avariety of synthess strategies, ranging from case-based to prototype-based design
and from extensional to intentional strategies. To smplify the discusson we use the smplest
drategy: an extensional case-based srategy. In thisapproach, BRIDGER retrieves apre-deter mined
number of candidate designs from the classfication hierarchy. The candidates are complete
descriptions of previoudy designed bridges. BRIDGER then adaptsthese candidates tofit the new
specification by performing various scaling oper ations.

5 EXAMPLE

Thissection describesadetailed evaluation of BRIDGER'sdesign knowledgeasit developsthrough
learning. Four hierarchies, K\, Ki* Ki, and £4, were generated. Hierarchy K\ was generated from
a st of original 96 bridge examples. Hierarchy K2 was generated from the 96 examples after ther
analysis and redesign. Thereforeit contains higher quality examples. HierarchiesK$ and K* were
generated from 144 and 192 good quality examples, respectively.

Our "unit" of knowledge will be a training example for ECOBWEB! An additional example

"Here, we can see the theory-laden nature of evaluation: considering an example as a unit of knowledge is natural
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modifies knowledge and the subsequent performance. In the terminology of measurement theory,
therelation on knowledgewill be" better-than," and the binary operation is appending-hierar chies®
Since hierarchy K\ is equal to K in terms of the number of examples, we cannot treat them as
distinct according to the selected unit of knowledge.  On the other hand, K\ is built of lower
guality examples and cannot be compared meaningfully with £3 or AT; Nevertheless, for reference
purposes we included its evaluation as well.

5.1 Structural Measure

The gructural content of knowledge was measured in two ways. quantitative and qualitative. The
gualitativemeasur e attemptsto " undersand” the knowledge generated from adomain per spective;

and the quantitative measure is based on the evaluation function employed by ECOBWEB for
assessing classfications.

Qualitative measure. Figure 3 shows the K% synthes's hierarchy generated from 96 examples
of bridges. The classes are described with some of their properties. Some properties are shown
in bold font; these are the characterigtic properties. Intuitively, characteristic property values of a
class are those property values that are very common in the class and rarely appear in the other
classes of the same level. The figure also shows the name of each class and in parenthess the
number of bridges used to generate it

The hierarchy is subdivided into two large subclasses. class C which contains long bridges (i.e.,
long LENGTH and SPAN-M properties) with many stays, and class B which contains short bridges
with fewer stays. Further subdivisons mainly reflect differences in the LENGTH, CROSS-L,
SPAN-M, SPAN-N, and DECK-M properties. Several patternsemergein the hierarchy. They can
be inter preted using domain knowledge, and may point to some design heuristics. The number of
examples, however, is not sufficient to allow learning to discover strong patterns, any explanation
should cautioudy be accepted.

For example, class B containsonly bridgeswith steel decksand class C contains44% concrete-deck
bridges, in addition, the average main span of class B is shorter than that of class C. These trends
point to a preferencefor usng concretefor longer bridges and stedl for shorter bridges. Thefirstis
correct, but thesecondisnot/ A closelook at the subclasses of C showsthat H and |, which contain
only stedl bridges, have longer average main span than the two other classes, containing mainly
concrete-deck bridges. Therefore, the preferences stated beforeno longer apply. The conclusion is
that the average main span value of C isonly acommon value of the class but does not necessarily
provide a good characterization of the class.

Thisexampledemongtrates the subjectiveand impr ecisenatur eof thequalitative gructura measure.
Itisnot clear which aspectsin theclassdescription areimportant and how they should beinter preted.
It isnot clear how thevalue of the measureisto be defined. Isit by acarefully controlled statistical
gudy in which different experts rate the knowledge? Is it by counting " interesting" statements

to ECOBWEB, but may not make sense for other systems.

T he operator appending-hierar chies can bedefined as taking onehierarchy and trainingit by the examples used to
generate the second hierarchy. Thisisan order dependent procedurethat causes a violation of acommutative property
of measures. .

°See Tfcble 3.3 in (Podolny and Scalzi, 1986) showing lower bids for concrete bridges as opposed to steel bridges

for several recent long bridges. Also see Figure 3.8 of that reference showing that conerete is preferred to stedl for
short spans.
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Figure 3: K; synthesis knowledge base

made about the hierarchy?*

Observing the content as the hierarchy grows can potentially explain some of the design behavior
revealed by the other measures. Figure 4 illustrates the growth pattern of the synthesis hierarchy.
It reflects the organization of knowledge rather than its content Initially, the hierarchy is "flat,”
consisting of the root node and its leaves. When additional information is accumulated, a second
level gtarts to grow. Approximately twice the number of examplesisrequired to form that second
level. This pattern of growth continues later.

The design performance (i.e., quality and time) is not expected to improve continuously, but rather
in stages. Toillustrate (see Figure 4), assume that a design isinitiated with hierarchy (a) and that
the best candidateis class C,. If BRIDGER is asked to synthesize n candidates, it will consider all
the sons of Q and output the n best matches to the new specification. After additional training,
hierarchy (b) is generated and used for the same design; synthesis progresses from C; to C4, and
finally, to C$. Now, synthesis chooses the best n sons of class CU as candidate designs. The sons
of CU form a more homogeneous class than the sons of Q, but this has required doubling the
number of training examples. Additional training leads to the generation of of hierarchy (c). If
synthesis progresses through the path Q, C7, C10, and Cu, then candidates are generated from the
sons of C10 (ft out of the 6, assuming than n < 6). If the path ends at class C9, the candidates
are generated from the sons of C7 (ft out of the 20, assuming than n > 2). The first case will
demonstrate an overall performance improvement, but the second will show similar performance

Hermeneutics will reject theidea of quantifying this" measure’ arguing that the qualitativeknowledgeevaluation
should maintain its present nature and be elaborated further as thetext proceeds.
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Figure 4: Qualitative description of hierarchy growth

quality and degraded time performance to that demonstrated by hierarchy (b). These differences

suggest that learning is not continuous, although it may seem so when performance is averaged
over many Ccases.

Summary of qualitative structural measure.

This measure is subjective and incomplete (i.e., no value is assigned to the measure). The eval-
uation can provide insight about the behavior of knowledge in design; mainly, since the internal
mechanisms of the systems are known. However, in general, the internal mechanisms of a system

are unknown or too complex and it may be hard to extrapolate the functionality of knowledge from
this measure.

Quantitativemeasure. Thequantity of knowledge can be defined by ameasure, called knowledge
utility (KU), that calculates the increase in the number of propertiesthat can be predicted for agiven
specification when using the hierarchy, relative to the number of properties that can be predicted
by using values' frequency. The category utility function (CU) calculates the same item for a
classification, not for ahierarchy. Applying CU recursively, starting from theroot of the hierarchy,
yields the desired utility measure;

knowledge - utility (class): 2

if classisaleaf class, return 0.0;

else, return  CUxn+ J2 W *) * knowledge-utility (son).

kesomsof class

After the calculation, the value is normalized by the number of properties describing artifacts.

When experience grows, the design knowledge emerging inthe hierarchy is expectedto convergeto
better knowledge as shown in Figure 5(a). Starting from an arbitrary value influenced by the set of
initial designs, the scope of knowledge increases as additional designs are learned. In principle, the
larger scope allows for the generation of more designs, however, since new properties or property:
value pairs have little association with previous property-value pairs, the quality of the generation
will bepoor. Thisinitial growth of scope may reducethequality of theexisting knowledge. Asmore

designs are learned, knowledge is accumulated on many possible combinations of property-value
pairs and the utility increases.

Figure 5(b) shows the knowledge utility as afunction of the examples learned by BRIDGER for the
domain of cable-stayed bridges. The value of about 0.1 reached after learning 192 examples sug-
gests that approximately 8 out of the 58 properties describing designs can be predicted accurately.
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Figure 5: Improvement of design knowledge

This may seem to be arather disappointing result since it is difficult to envision that a knowledge
with such alow utility can be helpful in synthesis. It should be remembered, though, that knowl-
edge utility calculates the utility abovefrequency prediction, and it averagesthis calculation over
the complete classfication, including its insggnificant parts.

Summary of quantitativestructural measure.

Thismeasureis abgracted from the mechanismsthat manipulate knowledge althoughiit still relies
on CU which certainly governsthe system's behavior. The bad value assigned to this measurein
the evaluation isin contrast to the good performancereported later, this discrepancy demondrates
the difficulty in formulating good quantitative structural measures that can be used to predict
performance.

52 Functional Measure

This measure evaluates knowledge in synthesis activities performed on 48 test specifications (see
(Reich, 1991a) for details). The four knowledge hierarchies, K\g Ky, £3, and AT, were used to
synthesize 4 new candidates for each specification. The 192 (48 x 4) synthesized bridges were
used in the qualitative and quantitative functional evaluations.

Qualitativemeasure. Ingtead of analyzing the complete trace of synthes's, we focus the evalua-
tion on oneimportant synthesis step: theretrieval of candidatedesigns. Table 1 showsthe number
of different existing designs retrieved, and the names of the designs most commonly used. The
number of timeseach existing design was used in the generation of candidates, out of the 192 new
candidates, is given below each name. The small number of designsretrieved reflects an internal
tendency that char acterizestheknowledge. In light of thediscussion on Figure4, itisnot surprisng
that the gructure of the hierarchy can lead to such behavior at the early stages of learning.

The difference in the number of designs retrieved suggests a synthess pattern smilar to that
presented in Figure 4. In particular, the synthess pattern emerging from the K\ and the K%
hierarchiesis probably smilar to the path Q, C7, Cg, and C9. Such a path forcestheretrieval of
designs from classes of designs higher in the hierarchy. Since alarge classis used as a sour ce of
existing designs, the selection would usually favor a small number of 'strong' matches. |f the path
isfrom Q> to Cu, the selection would be from smaller and different groups of classes, leading to
theretrieval of alarger number of distinct designs. Thisisthe case when K3 and £4 are used.
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Table 1: Summary of retrieved designs

Knowledge | # of different designsretrieved
designs # of times retrieved (out of the 192)
K\ 12 E1I0 El12 E49 E60
45 45 45 45
K, 8 E46 E55 E78 E91
43 43 43 43
Ks 19 E2 E1I0 E& E88 EI19 E22

16 16 16 6 12 12

624 E26 EZJE  E49 Ei15 EIII

12 12 12 2 12 9

Ka 19 ES0 E144 E192 E3 E159 E162 E168 E135
25 25 25 15 13 13 13 13

Figure 6 shows the four designs most often used when synthesizing with the K, hierarchy. These
designs arelisted in Table 1. Thetwo designson theright are scaled down by a factor of two. All
four designs are two-span bridges with average main span (224 m). Therange of spans is large,
allowing the retrieval of designs that are relevant to a new specification therefore do not require
sgnificant scaling.

'lrldur
Candida* no. 1. ftntfytf JCmdidf, wo 2

m@m_

Figure 6: Functional assessment of Kz

Figure 7 shows the 12 designs most often used when synthesizing with the K$ hierarchy. Most
of them are three-pan bridges. The average length of the main span is 179 m. A surprisng
observation isthat most of the bridges have a small number of stays. Thisfact and the observation
that almost no three-gpan bridges were used by the K% hierarchy point to the existence of a
shadowing phenomenon. Certain bridges are not retrieved since they reside on hierarchy branches
that arerardy visited. But once these branches become accessible, their leaves gart being used as
candidates.

Figure 8 shows the 8 designs most often used when synthesizing with the K* hierarchy. Thereis
a better balance between two- and three-span bridges, and more variation in the number of stays.
The length of the main span of these designs is longer than before (345 m) and its variability is
dightly less then that observed for the Kt hierarchy. The increasing average length helps design
lar ge bridges without compromising the design of bridges with small spans.

Summary of qualitativefunctional measure.

Thismeasurecan be used to predict thequantitative measur e by generalizing over behavior patterns.
It can alsobeused to confirm thequalitativestructura measure. A moredetailed qualitativemeasure
can point toimportant issuesthat need to be addressed in improvingthe system, for example, should
the shadowing effect discussed befor e and confirmed her e be handled? how should the measure be
guantified, by the number of designsretrieved, ther quality, ther variety?, etc..
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Figure 8. Functional assessment of A4

Quantitative measure. This measure evaluates the design performance of BRIDOER while de-
signing candidates for the 48 test specifications. Since the power of BRIDGER's synthesis process
comes from two sources. (1) theretrieval of designs closely reated tothe new specification; and
(2) the adaptation of candidates with scaling values; testing must address both.

Theretrieval processis evaluated by the amount of scaling of themain span of theretrieved design
needed to satisfy the new specification; it measures how closeis theretrieved design to fulfilling
the dimensional specification. The candidate adaptation process cannot be tested independently.
The combination of the two processes is tested by measuring the quality of candidate designs.
The quality of adesign is a weighted summation of the congraints that a design violates (Reich,
1991a). In theterminology of measurement theory, the hierar chies arethe observed system and the
scaling or quality values (i.e., thereal numbers) aretheformal syssem. The homomorphism maps
hierarchiesto values.

The specifications used in the testing have consderable influence on the results. Specifications
can reflect the average specification of the bridges designed thus far or be far from these average.
Traditional expert systems will fail to perform on specifications that do not reflect their experience
or range of operation, a phenomena called brittleness. The experiment also evaluates this aspect

Table 2 provides the statistics of the scaling needed to adapt the candidates to the specifications
of the 48 test problems and the quality of the designs synthesized The columns denoted by
total provide the average of these measures. The columns denoted by lower, average, and upper,
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provide the results for three groups of specifications corresponding to far-lower-than, smilar-to,
or higher-than, the average specification of existing bridges. These groupsroughly divide the set
intothreeequal parts.

Table 2: Scaling and Quality statistics of candidates
Knowledge Scaling ~ Quiality

A MANOVA (Hays, 1988) analysis was performed to assess the gatistical significance of the differ-
ences in the performancelevelsobserved. Thetotal scaling values satisfy: /A K3 >o0.0i K4:;* where
the >0.0 indicates that K% and K3 are greater than K4 with gatistical sgnificance at thep < 0.01
level and that the differ ence between K, and £3 wasnot statistically significant Therefore, themore
knowledge BRIDGER has, the morerelevant are theretrieved candidates. The improvement is not
a smooth function, but occursin steps as predicted by the gructural qualitative measure. Thetotal
quality values satisfy: K, >0.00 KM"K*; therefore the more knowledge BRIDGER has, the better the
quality of candidates it generates. Similar results were observed for the lower, average, and upper
ranges. In addition, the group of specification influences the results. The scaling values satisfy:
lower <0.0i average <o.0i upper, whereas the quality values satisfy: lower, average <o0.0i upper.
This confirms aknown engineering heurigtic sating that it isrelatively easy to design artifacts that
are amilar to past experience or dightly scaled down and harder if designs are to be scaled up.
Since designs are generated for every specification, BRIDGER does not exhibit a brittle behavior}?

In terms of measurement theory, the fact that some measures were not different in a satistically
ggnificant manner suggests that the mapping between the observed and the formal system is
inadequate since the differences in the hierarchies (e.g., different number of examples) were
not mapped into different measures of performance. Onereason for thisinadequacy results from
assuming that per for mance (and the value of knowledge) isproportional tothe size of die hierar chies
or the number of examples used to generate the hierarchies. The known power low of practice
governing learning (Newell and Rosenbloom, 1981) suggests that performance (and the value of
knowledge) varies as a power function of the number of examples.

Another MANOVA analysis was run with this model. The results of the scaling remained as be-
fore, but, the results of the quality were more conclusive: K2 >0.0 K$ >0.0i K4 and lower <o.oi
average <o0.0i upper. This exercise further demondrates. (1) the carein hypothesizing a perfor-
mance measure and testing it; and (2) thedifficulty in creating accur ate quantitative measures.

1 As mentioned before, theresultsof K\ arenot analyzed, If, however, weintroduced*! intotheanalysis, the results
of the scaling would be the same, but those of thequality would change to no gatistically significant differences. This
is dueto the large variability in the quality of bridges designed with K\. This example demonstrates the importance of
executing a careful statistical evaluation.

120f course, if we gtart introducing new propertiesinto bridge descriptions, BRIDGER would have to adjust to them.
However, this is not expected to be difficult
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SATstr ™M™ oT S Xmaesre it dpadson theth ry ar on the
specification of the mapping between the observed and the formal systems used to cregte it.
S or estrnusYbeacknowledged that satistical results are also subjectlve By summarizing ?
sySper for mancein statistics, this measuretendsto hide detailed information tiiat can be usefu

in under ganding the system behavior; nevertheless, additional detailed tests can be performed that
reveal mor e performance char acterigtics.

6 DISCUSSION AND SUMMARY

Two definitions of knowledge have been offered, each leading to two types of qu” ty measures
The four measures were demondrated in the evaluation of the design system BRIDOER. The
demongration has several limitations. For example, the 48 test specifications wher e not gener ajed
r Sdomly and some of the measures were only partially executed. 1n essence, this demondration
is a single case sudy advocating for the benefits from an ability to assess the value of knowleqge
Nevertheless, thedemondration conveys several important aspects of knowledge evaluation. Firg,
none of the measures alone provides a complete insight of knowledge quality; rather, the measures
complement each other. Second, the type of measure defined or model posited (e.g., knowledge
utility or power law of practice) has a significant impact on the success of the evaluatign. Often,
fiSg gSmodelsis a sgnificant research problem. Third, the design of data collection exper-

iments, whether qualitative or quantitative, can lead to interesting observations (e.g., thedivision
of the specification set into three groups).

Table3summarizes* ediscussion.The* «fl/ir s:rucﬂanlmeasuremsub]ecuvemdmmpm
Its userequires having substantial domain expertise. It can potentlally predlct the design behavior
ofadesign system. It will beuseful in systemswith manageable sizeknowledge, otherwiseit will be
hard to execute. The quantitativestructural measureis precise but detached from the mechanisms
that manipulate knowledge. It may predict the system design performance if it is based on some
of the system's mechanisms. Its execution requires the development of a formalism that will
allow quantifying knowledge, this formalism will usually be system dependent The qualitative
functional measure can predict the quantitative measure and confirm the sructural measure. Itis
important for revealing subtleissuesin the behavior of adesign system that need to-be addressetl m
futuredevelopment The quantitativefunctional measureisprecise but also subjective. I naddition,
it loses details duetoitstendency to summarize performance by statistics.

Although we favor the functional definition of knowledge, this paper does not attempt to defend
this position. However, the paper argues firmly that the definition adopted and the measure used
should be consistent that is, the sructural (functional) evaluation should be used for assessing
the quality of knowledge if the structural (functional) definition of knowledge is adopted. In fact
beside this congstency, it is optional and useful to exercise all the four measures. Each of them
has some value and feedback to provide and they all complement one ancther.

Table4 summarizes the different measures accor ding to the terminology of measurement theory. A
question mark denotes an unspecified entry. Thetwo qualitative measures areincomplete sincethe
mapping between knowledgeto textual information is not quantifiable. The quantitative measures
arecompletebut arenot fully articulated. For example, thefunctional quantitative measureemploys
addition asthebinary operation, but does not specify what exactly ismeasured by thereal numbers.
For instance, to satisfy the addition operation in the example, the knowledge unit should reflect
the logarithm of the number of examples and the measure should evaluate the logarithm of the
performance. Therefore, we argue that not one of the measuresis, or could be, " objective.
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Table 3: Measures of design knowledge

Structural Functional
Qualitative Quantitative Qualitative Quantitative
11 Type subjective subjective subjective supbjective
imprecise precise imprecise precise
coarse coarse detailed coarse
2 | Require domain precise expert decisions, performance
expertise formalism test cases metrics
3 { Maybe partialy predict  partialy predict predict quantify
used to performance performance performance performance
4| Apply on simple everything everything everything
representation,  subject including ubject
manageable size torow 2 "black boxes- torow 2
knowledge
5| Summarized textual quantitative textual + quantitative  concise quantitative
by information data information data

Table4: Observed and formal systems

Observed Formal
Structural Functional
Qualitative Quantitative Qualitative Quantitative
St knowledge text positivereal  text+ positivereal
hierarchies numbers numbers numbers
Relation better-than  ? > ? >
Operation __appending  ? + 7 +

Future work includes completing several important taks® Thefirst task is the collection of data
on evaluations of additional (design) systems. These cases might be generalizable, thus, used to
develop a methodology for the evaluation of (design) knowledge. Another task deals with the
formation of guidelinesfor system development that will facilitate appropriate evaluation. Finally,
resear ch should addresstheevaluation of knowledgeembedded in adesign setting (i.e., cooper ation
between a human designer and its design assistant), thereby leading to models that reflect actual
design settings.
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