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ABSTRACT
The quality of design knowledge a system has substantially influences its performance; good quality
design knowledge is a true asset. Often, the terms knowledge, its quality, and how it is measured,
are left vague enough to accommodate several interpretations. This paper articulates two definitions
of knowledge and their associated measures. A detailed example of knowledge evaluation using
the measures is described. The example demonstrates the value of knowledge quality evaluation.
This value is an addition to the methodological function that evaluation provides. Finally, the paper
briefly discusses the scope of the measures and their relationships.

1 INTRODUCTION

Design knowledge exists in many ways and qualities: It may be referred to as being accurate,
perfect, plausible, approximate, cheap, expensive, implicit, explicit, opaque, etc. Sources of good
quality design knowledge are limited; they mostly exist in the minds of expert designers, while
a small portion is documented in the literature. In order to identify which knowledge is good,
one must have the ability to evaluate knowledge quality. The topic of knowledge evaluation
raises several prerequisite issues. First, what do we mean by design knowledge? Second, how is
something in general being evaluated or measured? This question may seem unimportant, but in
fact, it is central to the discussion since it deals with the concepts of measure and value.

A measure of design knowledge quality can serve several functions. The first and most general
function is practical: The identification of good design knowledge for use by designers or inclusion
in computer systems. The second function is methodological: The evaluation of prototype design
systems developed in research and determination of their relative merit This evaluation is essential
for providing feedback on research progress and for supporting the refinement of ideas (Cohen and
Howe, 1989). When evaluating design systems that learn, this function becomes mandatory. A
third function is manifest when complex design systems with several modules that solve similar
problem compete on resources. In this situation, knowledge quality measures can identify which
module to invoke. In this study, we concentrate on the second function: the evaluation of knowledge
embedded in design support systems.

The subject of this study belongs to a larger set of methodological and practical issues of evaluation.
As we see later, the evaluation of knowledge quality is tightly coupled with the evaluation of
intelligent systems. The state of evaluating such systems was documented by Green and Keyes

'In fact, research on learning provides significant insight on the measurement of knowledge since the evaluation
of learning progress requires the evaluation of knowledge acquired.
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(1987). They described the reluctance of system developers to verify and validate their products.
The lack of effort spent on evaluating software systems in general, and expert systems specifically
is also discussed by Adelman (1991) and Cohen and Howe (1989). The latter also demonstrated
the benefits from evaluation to research and the necessary steps needed to allow evaluation to be
performed.

If evaluation of systems is addressed in studies, it is often performed in an ad hoc manner.
To illustrate, Zuse and Bollmann (1987) discussed the chaotic state of measures in software
engineering. Most of the software measures appearing in the literature do not conform to the
notions of measurement theory (Stevens, 1946). The argument is not that one measure is better
than the other, but that a true measure must have certain properties. First, there must be two
systems, observed and formal, where a system is a mathematical entity consisting of a set of
objects A, relations on A, and a binary operation on A. For example, an observed system may
contain the set of physical objects, the relation "hcavier-than," and the operation of assembling
two objects. The formal system can consist of the set of positive real numbers, the relation "larger-
than/9 and the addition operator. Second, there must be a function from the observed to the formal
system that preserves the relations and operation, called homomorphism. In the above example,
a mapping that assigns each object its weight is a homomorphism. This allows for a meaningful
assignment of values to the weight of physical objects. Most measures of software systems do not
have these properties, although all should have according to Zuse and Bollmann. Similarly, one
may argue that measures that evaluate knowledge should have these properties.

The preceding discussion assumed that evaluation is quantitative, which usually is perceived as
the only "good'' evaluation possible. Nevertheless, often such evaluation is impossible to execute
and sometimes it is inappropriate. In these cases, combined qualitative and quantitative evaluation
methods are appropriate (Kaplan and Duchon, 1988). The quantitative measures must be designed
to have the properties of measures; however, the qualitative methods cannot have these properties.

This paper proposes four techniques for evaluating knowledge: structural qualitative and quantita-
tive, and functional qualitative and quantitative. It contrasts their advantages, disadvantages, and
appropriateness for different purposes. The paper illustrates them in the evaluation of an experi-
mental design system. It does not deal with the debate whether machines can have knowledge or be
intelligent (Searle, 1980; Dreyfus, 1979); and whether knowledge in a system can be "objectively**
evaluated in any way.2

This paper attempts to raise the issues and focus the attention on the methodological and practical
implications of the evaluation of knowledge, thereby motivating further research in this direction.
Such research may extend the use of constructs from continental philosophy in the evaluation of
knowledge, hence, address some of the deficiencies in knowledge evaluation briefly pointed later.

The remainder of this paper is organized as follows. Section 2 provides two definitions of knowledge
and briefly discusses them in the context of design. Section 3 describes four evaluation measures
of knowledge. Section 4 describes the design system BRIDGER that is used to demonstrate the
evaluation measures. Section 5 provides a detailed example of measuring the bridge design
knowledge that BRIDGER has. The extent of the evaluation allows the appreciation of the many
concerns affecting the selection and application of different evaluation measures of knowledge.
Section 6 concludes the paper.

2This comment disagrees with Gaines and Shaw (1989) reference to "objective knowledge" as the knowledge arrived
by consensus among experts; such knowledge is subjectively created within a constructivist viewpoint. Furthermore,
although most empiricists will claim that a measure as described before can be objective, they will thereby ignore the
fact that the mapping from the observed to the formal system is theory-laden and subjective.



2 WHAT IS (DESIGN) KNOWLEDGE?

In defining knowledge it must be understood that the definition dictates the type of evaluation
measure that can be applied or that may best apply. Many studies on knowledge-based systems
avoid the question of what knowledge is by discussing knowledge representation. Implicitly, these
studies define knowledge as whatever is represented, henceforth termed the structural definition.
Knowledge is therefore a static entity; it may include facts, axioms, derivations, causal relations,
mathematical models, etc.
The structural definition is in contrast to Hat functional definition which states that knowledge has
a purpose and it is denned as what a system has that allows it to attain goals. Knowledge cannot
be observed directly, but indirectly through observing the "intelligent" behavior of a system.
Doyle (1988) termed these definitions as: (1) explicit knowledge which is what is represented; and
(21\ implicit knowledge which is what can be deduced from explicit knowledge. Doyle argued that
adopting the explicit definition has several limitations: (1) it cannot explain actions that are not
logical, default or nonmonotonic reasoning; (2) it cannot explain some psychological phenomena;
and (3) it cannot handle inconsistencies that naturally arise, for example, in knowledge generated
from several experts.

2.1 Structural Definition

The structural definition has several appealing properties. The main one is knowledge sharing (and
trading) If knowledge is what is represented, then knowledge can be abstracted from the system
using it and shared with another reasoning mechanism. Two "quantities" of knowledge could be
added to yield a larger knowledge base, or knowledge could be transferred between knowledge
systems (Neches et al., 1991). A knowledge interface format (KSF) is developed to facilitate this
transfer (Genesereth and Fikes, 1990). Another appealing property of the structural definition
is that it facilitates easy evaluation performed by simply inspecting the declarative structure of
knowledge. This is much cheaper than executing behavior assessment experiments.

The structural definition detaches knowledge from its method of acquisition and use, although
often, theactof acquisition determines the meaning ofknowledge. This may cause difficulties. For
example, in order for systems with different uncertainty management mechanism to cooperate they
must establish an interface between them where uncertainty values are translated via a fractionally
linear function (Kreinovich and Kumar, 1991). If translation is not performed, the ability to use
the knowledge decreases (e.g., the decrease of diagnosis performance in MYCIN when the method
of probability calculation is changed (Shordiffe, 1976)). This suggests that one cannot generate
and "plug" knowledge that was derived by some mechanism into an expert system and expect it
to function properly. Note however, that the structuralists may not worry about this since their
definition of knowledge does not include the functionality of knowledge.

2.2 Functional Definition

Newell (1982) opposed the structural view of knowledge. He argued that "knowledge is a distinct
notion, with its own part to play in the nature of intelligence," independent of representation. In
order to define knowledge, Newell defined the "principle of rationality: If an agent has knowledge
that one of its actions will lead to one of its goals, then the agent will select that action." This
principle governs the use of knowledge for making the appropriate actions. Knowledge is therefore



defined as "whatever can be ascribed to an agent, such that its behavior can be computed according
to the principle of rationality. [...] Knowledge is a competence-like notion, being a potential for
generating action;"3 therefore, knowledge should be evaluated functionally. The relation between
knowledge and representation is clear. First, "representations exist at the symbol level/' Second,
"knowledge serves as the specification of what a symbol structure should be able to do."4

23 Design Knowledge

Design knowledge can be defined as knowledge in general, except that it is about design. Since
the nature of design processes and knowledge is orthogonal to the question of its evaluation, we
will refer to design as a process mapping from requirements or needs to a description of an artifact.
In the structural definition, design knowledge may include facts about physical sciences; facts
about modeling techniques of, and experiental heuristics about, artifacts; and information about
how artifacts may be structured, how do they behave, and how they may be built. At this level,
knowledge may be abstracted from its representation; there need not be any commitment to specific
representational formalism.

In the functional definition, design knowledge is what can be ascribed to a design agent, such that
its design behavior can be computed according to the principle of rationality. This means that
knowledge can be described in terms of its operation to satisfy the goals of the design system. If
a system cannot use a piece of information in its reasoning, then, the system does not have this
knowledge.

We argue that the ultimate purpose of design knowledge is to act, reason, and create artifacts; design
knowledge as an entity separated from use has no significant meaning and usefulness. We therefore
favor the functional definition of design knowledge. Nevertheless, we do not, and probably cannot,
resolve which definition of design knowledge is better or correct, we merely provide the definitions
and contrast their evaluation.

Researchers on design have used both definitions and in various ways. Balkany, Birmingham, and
Tommelein (1991) provided the description of several design systems at the knowledge-level. As
such, they favor the functional view of knowledge being separated from implementation issues and
geared toward functionality.

Bijl (1987) presented a view against conceptualizing the information within computers as knowl-
edge, a statement indirectly in favor of die functional view (or even in line with continental
philosophy). On the other hand, he described a system called MOLE as resting on the foundation
of comprehensibility of design knowledge (p. 12). In MOLE, the internal representation is designed
to be meaningful and to convey the functionality of the system—this corresponds to the structural
view of design knowledge.

Brown and Spillance (1991) discussed knowledge compilation as a process that modifies the
structure of design constraints. They view the quality of the modifications in the functional sense
and evaluate them by performance tests.

Coyne, Rosenman, Radford, Balachandran, and Gero (1991) said that "in knowledge-based sys-
3 See Fetzer (1990, p. 127-130) for a critic on this definition. In addition to this criticism, continental philosophy

has significantly different ideas about the nature of knowledge, its interpretation, and understanding (Mueller-Vbllmer,
1985). See also (Mallery et al., 1986), for a review of hermeneutics related to computer understanding.

4The view of knowledge as a specification for its structural description was used, for example, by Levesque (1984)
for building knowledge representation that can support certain functions; and by Kyburg (1988) to draw conclusions
on how uncertainties should be represented to support decision making.



terns, the knowledge must be able to be made explicit in such a way that it can be inspected and
understood independently of the way it is controlled." Therefore, they view knowledge in the
structural sense.

Whereas researchers adopting the symbolic paradigm of design can subscribe to either definitions
of knowledge, the studies employing neural networks in design must subscribe to the functional
definition since the internal structure of a neural network does not reveal its knowledge content

3 EVALUATION MEASURES

The evaluation of knowledge depends on its definition. Two measures, qualitative and quantitative,
are proposed as supplying complementary information for interpretation and validation (Kaplan
and Duchon, 1988).

There can be other measures of knowledge, for example, cost or simplicity. The cost of knowledge
can measure the time and memory resources needed to manage it and the cost of using it to obtain
performance. Simplicity can measure syntactic properties of knowledge structure or the trace of
its execution. We view these and potentially other measures as secondary, provided that they are
not exponential functions of any of the problem characteristics; otherwise, they would become
dominant in the evaluation process.

3.1 Structural Measure

The process of structural evaluation is similar to a "brain surgery." Knowledge is measured based
on its internal structure. Since a crucial aspect of knowledge is its use in performance tasks, the
structural measure will probably involve projecting how the knowledge will perform while solving
problems. This however will be hard without considering the mechanisms that manipulate that
knowledge.

In the case of logic, knowledge can be structurally assessed according to its truth value. In rule-
based systems (albeit without uncertainties) knowledge can be verified to be free of redundancy,
conflicts, circularity, and incompleteness (Nazareth, 1989). This measure, however, is not useful
for evaluating design knowledge which has all the above properties, but yet, used by humans
effectively to generate designs. The qualitative and the quantitative variants of this measure are
discussed next

Qualitative measure. This measure can be traced to the assumption that humans can understand
knowledge embedded in systems in a declarative form. It is based on past practice with small
systems having simple knowledge representation such as traditional production rules. However, in
large and complex systems, it is hardly possible to understand what is the role of a small piece of
knowledge and envision its potential run-time interactions with additional knowledge. Therefore,
while the ability to inspect declarative knowledge can facilitate debugging, maintenance, and even
education, it is difficult to support the application of this measure.

A different approach to support these concerns builds upon advanced mechanism that manipulate
the knowledge, thereby transforming the evaluation from structural to functional. For example,
GUIDON2 uses the knowledge of NEOMYCIN to teach students (dancey, 1988) without letting the
student look at the low level knowledge representation.



In machine learning, the comprehensibility of knowledge generated is described as an important
measure by some researchers (Michalski, 1986). Note, however, that this measure has evolved
from research on concept learning where the structure of knowledge is sufficiently simple and the
task is a single-step classification that is easy to comprehend and evaluate. Furthermore, it is easy
to predict the knowledge performance from its structure.

The execution of this measure requires domain knowledge. It is not clear how to quantify it or
otherwise how to use it to compare between different knowledge contents.5

Quanitative measure. This measure quantifies the structure of knowledge. Viewing knowledge
as information allows such quantification (Boulton and Wallace, 1973). A heuristic measure for
assessing the quality of a classification, which is relevant to the example described later, is proposed
by Gluck and Corter (1985). A generalized form of this measure, called knowledge utility (KU) is
used in the example (Section 4)

This measure is easy to apply, but requires a knowledge representation formalism that can be
quantified. Compared to the qualitative structural measure, it is even less clear what is the relation
between this measure and the design performance of a system.

3.2 Functional Measure

This measure evaluates knowledge based on its performance in various tasks. Adelman (1991)
discussed three types of performance evaluation: (1) experiments which are suited for the early
stages of system development and generate fully reproducible results; (2) quasi experiments which
are for the operational stage of systems and consists of fully controlled artificial studies; and (3)
case studies which are opportunistic and wholly unconstrained The first two are quantitative
measures and the latter is a qualitative measure.

In the context of statistical decision theory, (and with several other assumptions,) one can quantify
the value of knowledge. Skyrms (1990) defined knowledge as something that allows making
informed decisions; he then used this definition to evaluate knowledge content Such an evaluation
is possible due to the simple nature of the knowledge involved: a single piece of evidence.

Cohen and Howe (1989) discussed the evaluation of large artificial intelligence systems. They
suggested several performance experiments that can be used for this purpose. One of the systems
they discussed is DOMINIC, a system for the routine design of mechanical devices (Howe et al.,
1986). They shown how performance evaluations guided their research through three generations
of the system. The qualitative and the quantitative variants of this measure are discussed next.

Qualitative measure. This measure can be viewed as performing protocol analysis (Ericsson
and Simon, 1980) on the system for evaluating its knowledge. The system is used to solve a variety
of problems, and its problem-solving behavior is coded and analyzed. The analysis uses language
different than that implementing the knowledge internally. Domain knowledge can further enhance
the evaluation of the behavior and therefore, the knowledge evaluation.

This is one of the important techniques for evaluating systems (Cohen and Howe, 1989). It is often
used in design research. The problem is that often, very few examples with very limited scope are

sIn fact, this measure is related to hermeneutics and as such subjected to the debates about, and variations of, it
(Malleryetal.,1986).



provided and usually without substantial analysis.

Quantitative measure. This measure is based on the performance of a system over many prob-
lems that span the range of problems the knowledge of the system is expected to solve* The
performance of the system is compared with the solutions generated by human experts or norma-
tive theories such as decision theory. The solutions can be also evaluated based on shared standards
such as design codes. The latter is used in the example discussed later (Section 4).

For example, Gaines (1989) used a functional quantitative measure to evaluate the initial state of
knowledge of a learning program. The initial knowledge serves as a base-line for the learner and
the amount of data necessary to generate a predetermined fixed performance level measures the
quality of the initial knowledge.

In general, the measurement of performance of systems and their comparison is not straightforward.
An example from performance evaluation of learning programs is discussed by Kononenko and
Bratko (1991). One of the causes for this difficulty, they mention, is that the types of answers from
different programs are not exactly the same.

Since this measure summarizes the results in statistics, it tends to hide some details of the system's
behavior. Many controlled studies are needed to uncover behavior patterns that can be identified
(although only qualitatively) by the qualitative functional measure.

4 BRIDGER

In order to ground the different evaluation measures and their tradeoffs it is necessary to demonstrate
them in an evaluation of an existing system. The following section, describes the evaluation of
design knowledge accumulated within a design system BRIDGER, a system developed to explore
the potential of knowledge acquisition techniques for building design assistant for the preliminary
design of cable-stayed bridges.

The section starts by describing the bridge domain and then reviews the system's architecture and
operation. Since the purpose of this paper is to focus on knowledge evaluation and not on BRIDGER,
only the necessary parts required for the demonstration are described.6

In essence, this section provides data point for motivating knowledge evaluation and exploring the
properties of different measures. As such, this paper can be perceived as a detailed case study (i.e.,
Adelman's (1991) third category of experiments discussed before). Therefore, it is a qualitative
evaluation of the concept of knowledge measures discussed in this paper and it is a functional
evaluation since it discusses the "functionality" that these measures can provide.

4.1 Domain of Cable-Stayed Bridges

Figure 1 describes the main components and dimensions of a cable-stayed bridge. A cable-stayed
bridge is composed of a superstructure and a substructure. The superstructure is composed of a
deck, towers, and stays that are attached to the towers and support the deck. The figure shows some
of the properties which are used to describe a cable-stayed bridge; additional properties include:
SPAN-N, the number of spans of the bridge; DECK-A, DECK-MI, TOWER-A and TOWER-MI,

6Sec (Reich, 1991a; Reich, 1991b; Reich, 1992) for further details.



the cross-sectional areas and moment of inertia of the deck and the tower, respectively; DECK-M,
the material of the deck; and STAY-A, the cross-sectional area of the stays.

In a design scenario the requirements are expressed as a set of specification property-value pairs
(e.g., the required length of the bridge). Design is then executed by making design choices as
assignments of design-description property-value pairs (e.g., SPAN-M=500ft., STAY-N=20).

SPAN4 kt aids

STAY-SPD
CROSS-Ucrni^glMgUi

LENGTH: total hrid«i

Figure 1: Bridge description

A rough illustration of the complexity of the domain can be conveyed by the number of properties
used to describe various aspects of the problem: 9 properties describe a specification; 30 properties
describe a design, 15 properties describe the analysis results, and 4 properties describe the evaluation
of a bridge.

4.2 BRIDGER'S Architecture

BRIDGER'S architecture, shown in Figure 2, consists of two main systems: synthesis and redesign.
The synthesis system is responsible for synthesizing several candidates from a given specification.
Synthesis knowledge is generated by learning from existing designs and from successful design
examples that are selected by the user. Since the knowledge created is heuristic by nature, candidate
designs are usually inadequate in some aspects. The redesign system resolves this problem.

Candidate designs are transferred to a module that analyzes them and submits them to a redesign
module, if necessary. The redesign module is responsible for modifying designs after their analysis.
On receiving the analysis results, this module retrieves the best design modification for the bridge,
The user can override the redesign modifications and supply explanations that enhance redesign
knowledge. The results of the redesign system are acceptable designs. The designer evaluates the
results and can submit a subset of them to the synthesis system for further training.

ECOBWEB is the learning system that implements the synthesis system. It acquires synthesis
knowledge and uses it to synthesize new bridges. ECOBWEB represents knowledge in a classification
hierarchy. It has several operators that build the classification from examples. Learning and
synthesis progress by using one-step look-ahead search in the space of classification hierarchies
directed by an evaluation function to select the best operator.

The evaluation function, called category utility (CU)9 evaluates a classification of a set of designs
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Figure 2: BRlDGER's architecture

into mutually-exclusive classes C\, C2,•.., C, by:

cu = n
where C^ is a class, A, = Vy is a property-value pair, P(x) is the probability of JC, and n is the
number of classes. The first term in die numerator measures the expected number of property-
value pairs that can be guessed correctly by using the classification. The second term measures
the same quantity without using the classes. Thus, the category utility measures the expected
increase of property-value pairs that can be guessed above the guess based on frequency alone.
The measurement is normalized with respect to the number of classes. The higher is the value of
CUy the better the quality of the classification is.

BRIDGER has a variety of synthesis strategies, ranging from case-based to prototype-based design
and from extensional to intentional strategies. To simplify the discussion we use the simplest
strategy: an extensional case-based strategy. In this approach, BRIDGER retrieves a pre-determined
number of candidate designs from the classification hierarchy. The candidates are complete
descriptions of previously designed bridges. BRIDGER then adapts these candidates to fit the new
specification by performing various scaling operations.

5 EXAMPLE

This section describes a detailed evaluation of BRIDGER's design knowledge as it develops through
learning. Four hierarchies, K\y Ki* Ki, and £4, were generated. Hierarchy K\ was generated from
a set of original 96 bridge examples. Hierarchy K2 was generated from the 96 examples after their
analysis and redesign. Therefore it contains higher quality examples. Hierarchies K$ and K* were
generated from 144 and 192 good quality examples, respectively.

Our "unit" of knowledge will be a training example for ECOBWEB.7 An additional example

7 Here, we can see the theory-laden nature of evaluation: considering an example as a unit of knowledge is natural



modifies knowledge and the subsequent performance. In the terminology of measurement theory,
the relation on knowledge will be "better-than," and the binary operation is appending-hierarchies.8

Since hierarchy K\ is equal to K2 in terms of the number of examples, we cannot treat them as
distinct according to the selected unit of knowledge. On the other hand, K\ is built of lower
quality examples and cannot be compared meaningfully with £3 or AT4; Nevertheless, for reference
purposes we included its evaluation as well.

5.1 Structural Measure

The structural content of knowledge was measured in two ways: quantitative and qualitative. The
qualitative measure attempts to "understand" the knowledge generated from a domain perspective;
and the quantitative measure is based on the evaluation function employed by ECOBWEB for
assessing classifications.

Qualitative measure. Figure 3 shows the K% synthesis hierarchy generated from 96 examples
of bridges. The classes are described with some of their properties. Some properties are shown
in bold font; these are the characteristic properties. Intuitively, characteristic property values of a
class are those property values that are very common in the class and rarely appear in the other
classes of the same level. The figure also shows the name of each class and in parenthesis the
number of bridges used to generate it

The hierarchy is subdivided into two large subclasses: class C which contains long bridges (i.e.,
long LENGTH and SPAN-M properties) with many stays, and class B which contains short bridges
with fewer stays. Further subdivisions mainly reflect differences in the LENGTH, CROSS-L,
SPAN-M, SPAN-N, and DECK-M properties. Several patterns emerge in the hierarchy. They can
be interpreted using domain knowledge, and may point to some design heuristics. The number of
examples, however, is not sufficient to allow learning to discover strong patterns; any explanation
should cautiously be accepted.

For example, class B contains only bridges with steel decks and class C contains 44% concrete-deck
bridges; in addition, the average main span of class B is shorter than that of class C. These trends
point to a preference for using concrete for longer bridges and steel for shorter bridges. The first is
correct, but the second is not/ A close look at the subclasses of C shows that H and I, which contain
only steel bridges, have longer average main span than the two other classes, containing mainly
concrete-deck bridges. Therefore, the preferences stated before no longer apply. The conclusion is
that the average main span value of C is only a common value of the class but does not necessarily
provide a good characterization of the class.

This example demonstrates the subjective and imprecise nature of the qualitative structural measure.
It is not clear which aspects in the class description are important and how they should be interpreted.
It is not clear how the value of the measure is to be defined. Is it by a carefully controlled statistical
study in which different experts rate the knowledge? Is it by counting "interesting" statements

to ECOBWEB, but may not make sense for other systems.
8The operator appending-hierarchies can be defined as taking one hierarchy and training it by the examples used to

generate the second hierarchy. This is an order dependent procedure that causes a violation of a commutative property
of measures.

9See Tfcble 3.3 in (Podolny and Scalzi, 1986) showing lower bids for concrete bridges as opposed to steel bridges
for several recent long bridges. Also see Figure 3.8 of that reference showing that concrete is preferred to steel for
short spans.
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Figure 3: K2 synthesis knowledge base

made about the hierarchy?10

Observing the content as the hierarchy grows can potentially explain some of the design behavior
revealed by the other measures. Figure 4 illustrates the growth pattern of the synthesis hierarchy.
It reflects the organization of knowledge rather than its content Initially, the hierarchy is "flat,"
consisting of the root node and its leaves. When additional information is accumulated, a second
level starts to grow. Approximately twice the number of examples is required to form that second
level. This pattern of growth continues later.

The design performance (i.e., quality and time) is not expected to improve continuously, but rather
in stages. To illustrate (see Figure 4), assume that a design is initiated with hierarchy (a) and that
the best candidate is class C2. If BRIDGER is asked to synthesize n candidates, it will consider all
the sons of Q and output the n best matches to the new specification. After additional training,
hierarchy (b) is generated and used for the same design; synthesis progresses from C3 to C4, and
finally, to C$. Now, synthesis chooses the best n sons of class CU as candidate designs. The sons
of CU form a more homogeneous class than the sons of Q, but this has required doubling the
number of training examples. Additional training leads to the generation of of hierarchy (c). If
synthesis progresses through the path Q, C7, C10, and Cu, then candidates are generated from the
sons of C10 (ft out of the 6, assuming than n < 6). If the path ends at class C9, the candidates
are generated from the sons of C7 (ft out of the 20, assuming than n > 2). The first case will
demonstrate an overall performance improvement, but the second will show similar performance

10Hermeneutics will reject the idea of quantifying this "measure" arguing that the qualitative knowledge evaluation
should maintain its present nature and be elaborated further as the text proceeds.
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Figure 4: Qualitative description of hierarchy growth

quality and degraded time performance to that demonstrated by hierarchy (b). These differences
suggest that learning is not continuous, although it may seem so when performance is averaged
over many cases.

Summary of qualitative structural measure.
This measure is subjective and incomplete (i.e., no value is assigned to the measure). The eval-
uation can provide insight about the behavior of knowledge in design; mainly, since the internal
mechanisms of the systems are known. However, in general, the internal mechanisms of a system
are unknown or too complex and it may be hard to extrapolate the functionality of knowledge from
this measure.

Quantitative measure. The quantity of knowledge can be defined by a measure, called knowledge
utility (KU), that calculates the increase in the number of properties that can be predicted for a given
specification when using the hierarchy, relative to the number of properties that can be predicted
by using values' frequency. The category utility function (CU) calculates the same item for a
classification, not for a hierarchy. Applying CU recursively, starting from the root of the hierarchy,
yields the desired utility measure:

knowledge - utility (class): (2)
if class is a leaf class, return 0.0;
else, return CUxn+ J2 W * ) x knowledge-utility (son).

kesomsof class

After the calculation, the value is normalized by the number of properties describing artifacts.

When experience grows, the design knowledge emerging in the hierarchy is expected to converge to
better knowledge as shown in Figure 5(a). Starting from an arbitrary value influenced by the set of
initial designs, the scope of knowledge increases as additional designs are learned. In principle, the
larger scope allows for the generation of more designs; however, since new properties or property:
value pairs have little association with previous property-value pairs, the quality of the generation
will be poor. This initial growth of scope may reduce the quality of the existing knowledge. As more
designs are learned, knowledge is accumulated on many possible combinations of property-value
pairs and the utility increases.

Figure 5(b) shows the knowledge utility as a function of the examples learned by BRIDGER for the
domain of cable-stayed bridges. The value of about 0.1 reached after learning 192 examples sug-
gests that approximately 8 out of the 58 properties describing designs can be predicted accurately.
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Figure 5: Improvement of design knowledge

This may seem to be a rather disappointing result since it is difficult to envision that a knowledge
with such a low utility can be helpful in synthesis. It should be remembered, though, that knowl-
edge utility calculates the utility above frequency prediction, and it averages this calculation over
the complete classification, including its insignificant parts.

Summary of quantitative structural measure.
This measure is abstracted from the mechanisms that manipulate knowledge although it still relies
on CU which certainly governs the system's behavior. The bad value assigned to this measure in
the evaluation is in contrast to the good performance reported later, this discrepancy demonstrates
the difficulty in formulating good quantitative structural measures that can be used to predict
performance.

52 Functional Measure

This measure evaluates knowledge in synthesis activities performed on 48 test specifications (see
(Reich, 1991a) for details). The four knowledge hierarchies, K\9 K2, £3, and AT4, were used to
synthesize 4 new candidates for each specification. The 192 (48 x 4) synthesized bridges were
used in the qualitative and quantitative functional evaluations.

Qualitative measure. Instead of analyzing the complete trace of synthesis, we focus the evalua-
tion on one important synthesis step: the retrieval of candidate designs. Table 1 shows the number
of different existing designs retrieved, and the names of the designs most commonly used. The
number of times each existing design was used in the generation of candidates, out of the 192 new
candidates, is given below each name. The small number of designs retrieved reflects an internal
tendency that characterizes the knowledge. In light of the discussion on Figure 4, it is not surprising
that the structure of the hierarchy can lead to such behavior at the early stages of learning.

The difference in the number of designs retrieved suggests a synthesis pattern similar to that
presented in Figure 4. In particular, the synthesis pattern emerging from the K\ and the K%
hierarchies is probably similar to the path Q, C7, Cg, and C9. Such a path forces the retrieval of
designs from classes of designs higher in the hierarchy. Since a large class is used as a source of
existing designs, the selection would usually favor a small number of 'strong' matches. If the path
is from Q> to Cu, the selection would be from smaller and different groups of classes, leading to
the retrieval of a larger number of distinct designs. This is the case when K3 and £4 are used.
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K2
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designs
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1: Summary of retrieved designs

E10
45
E46
43
E2
16
624
12
E80
25

#
E12
45
E55
43
E10
16
E26
12
E144
25

designs retrieved
of times retrieved (out of the 192)
E49
45
E78
43
E&
16
£2£
12
E192
25

E60
45
E91
43
E88
16
E49
12
E3
15

E19
12
E115
12
E159
13

E22
12
E l l l
9
E162 E168 E135
13 13 13

Figure 6 shows the four designs most often used when synthesizing with the K2 hierarchy. These
designs are listed in Table 1. The two designs on the right are scaled down by a factor of two. All
four designs are two-span bridges with average main span (224 m). The range of spans is large,
allowing the retrieval of designs that are relevant to a new specification therefore do not require
significant scaling.

Candida* no. 1 ftntfytf Cmdldf wo. 2

ft*
Figure 6: Functional assessment of Kz

Figure 7 shows the 12 designs most often used when synthesizing with the K$ hierarchy. Most
of them are three-span bridges. The average length of the main span is 179 m. A surprising
observation is that most of the bridges have a small number of stays. This fact and the observation
that almost no three-span bridges were used by the K% hierarchy point to the existence of a
shadowing phenomenon. Certain bridges are not retrieved since they reside on hierarchy branches
that are rarely visited. But once these branches become accessible, their leaves start being used as
candidates.

Figure 8 shows the 8 designs most often used when synthesizing with the K* hierarchy. There is
a better balance between two- and three-span bridges, and more variation in the number of stays.
The length of the main span of these designs is longer than before (345 m) and its variability is
slightly less then that observed for the Kt hierarchy. The increasing average length helps design
large bridges without compromising the design of bridges with small spans.

Summary of qualitative functional measure.
This measure can be used to predict the quantitative measure by generalizing over behavior patterns.
It can also be used to confirm the qualitative structural measure. A more detailed qualitative measure
can point to important issues that need to be addressed in improving the system, for example, should
the shadowing effect discussed before and confirmed here be handled? how should the measure be
quantified, by the number of designs retrieved, their quality, their variety?, etc..
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Figure 8: Functional assessment of A4

Quantitative measure. This measure evaluates the design performance of BRIDOER while de-
signing candidates for the 48 test specifications. Since the power of BRlDGER's synthesis process
comes from two sources: (1) the retrieval of designs closely related to the new specification; and
(2) the adaptation of candidates with scaling values; testing must address both.

The retrieval process is evaluated by the amount of scaling of the main span of the retrieved design
needed to satisfy the new specification; it measures how close is the retrieved design to fulfilling
the dimensional specification. The candidate adaptation process cannot be tested independently.
The combination of the two processes is tested by measuring the quality of candidate designs.
The quality of a design is a weighted summation of the constraints that a design violates (Reich,
1991a). In the terminology of measurement theory, the hierarchies are the observed system and the
scaling or quality values (i.e., the real numbers) are the formal system. The homomorphism maps
hierarchies to values.

The specifications used in the testing have considerable influence on the results. Specifications
can reflect the average specification of the bridges designed thus far or be far from these average.
Traditional expert systems will fail to perform on specifications that do not reflect their experience
or range of operation, a phenomena called brittleness. The experiment also evaluates this aspect

Table 2 provides the statistics of the scaling needed to adapt the candidates to the specifications
of the 48 test problems and the quality of the designs synthesized The columns denoted by
total provide the average of these measures. The columns denoted by lower, average, and upper,
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provide the results for three groups of specifications corresponding to far-lower-than, similar-to,
or higher-than, the average specification of existing bridges. These groups roughly divide the set
into three equal parts.

Table 2: Scaling and Quality statistics of candidates
Knowledge

K2

lower a
Scaling

1.25
0.97
0.97
0.88

338 555
250 4.08
253 357
132 2.85

total
33X74
2.154
2.092
1325

lower avi
Quality

118831
0.34
057
0.41

erage
35.6335.63 62.22
4.61 325.81
255 5.67
0.73 3.06

total
278.36
50.19
2.89

A MANOVA (Hays, 1988) analysis was performed to assess the statistical significance of the differ-
ences in the performance levels observed. The total scaling values satisfy: /^ K3 >o.oi K4;11 where
the >o.oi indicates that K% and K3 are greater than K4 with statistical significance at the p < 0.01
level and that the difference between K2 and £3 was not statistically significant Therefore, the more
knowledge BRIDGER has, the more relevant are the retrieved candidates. The improvement is not
a smooth function, but occurs in steps as predicted by the structural qualitative measure. The total
quality values satisfy: K2 >o.oi K^K*; therefore the more knowledge BRIDGER has, the better the
quality of candidates it generates. Similar results were observed for the lower, average, and upper
ranges. In addition, the group of specification influences the results. The scaling values satisfy:
lower <o.oi average <o.oi upper, whereas the quality values satisfy: lower, average <o.oi upper.
This confirms a known engineering heuristic stating that it is relatively easy to design artifacts that
are similar to past experience or slightly scaled down and harder if designs are to be scaled up.
Since designs are generated for every specification, BRIDGER does not exhibit a brittle behavior}2

In terms of measurement theory, the fact that some measures were not different in a statistically
significant manner suggests that the mapping between the observed and the formal system is
inadequate since the differences in the hierarchies (e.g., different number of examples) were
not mapped into different measures of performance. One reason for this inadequacy results from
assuming that performance (and the value of knowledge) is proportional to the size of die hierarchies
or the number of examples used to generate the hierarchies. The known power low of practice
governing learning (Newell and Rosenbloom, 1981) suggests that performance (and the value of
knowledge) varies as a power function of the number of examples.

Another MANOVA analysis was run with this model. The results of the scaling remained as be-
fore, but, the results of the quality were more conclusive: K2 >o.oi K$ >o.oi K4 and lower <o.oi
average <o.oi upper. This exercise further demonstrates: (1) the care in hypothesizing a perfor-
mance measure and testing it; and (2) the difficulty in creating accurate quantitative measures.

11 As mentioned before, the results of K\ are not analyzed, If, however, we introduced*! into the analysis, the results
of the scaling would be the same, but those of the quality would change to no statistically significant differences. This
is due to the large variability in the quality of bridges designed with K\. This example demonstrates the importance of
executing a careful statistical evaluation.

12Of course, if we start introducing new properties into bridge descriptions, BRIDGER would have to adjust to them.
However, this is not expected to be difficult
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S ^ T s t r ^ ^ o T S X measures, but it depends on the tĥ ry or on the
specification of the mapping between the observed and the formal systems used to create it.
S o r e s t rnusYbe acknowledged that statistical results are also subjective. By summarizing a
sySperformance in statistics, this measure tends to hide detailed information tiiat can be usefu
in understanding the system behavior; nevertheless, additional detailed tests can be performed that
reveal more performance characteristics.

6 DISCUSSION AND SUMMARY

Two definitions of knowledge have been offered, each leading to two types of qu^ty measures
The four measures were demonstrated in the evaluation of the design system BRIDOER. The
demonstration has several limitations. For example, the 48 test specifications where not generated
rSdomly and some of the measures were only partially executed. In essence, this demonstration
is a single case study advocating for the benefits from an ability to assess the value of knowledge
Nevertheless, the demonstration conveys several important aspects of knowledge evaluation. First,
none of the measures alone provides a complete insight of knowledge quality; rather, the measures
complement each other. Second, the type of measure defined or model posited (e.g., knowledge
utility or power law of practice) has a significant impact on the success of the evaluation. Often,
fiSg g S m o d e l s is a significant research problem. Third, the design of data collection exper-
iments, whether qualitative or quantitative, can lead to interesting observations (e.g., the division
of the specification set into three groups).

Table3summarizes*ediscussion.The*«fl/i^^
Its use requires having substantial domain expertise. It can potentially predict the design behavior
ofadesign system. It will be useful in systems with manageable size knowledge, otherwise it will be
hard to execute. The quantitative structural measure is precise but detached from the mechanisms
that manipulate knowledge. It may predict the system design performance if it is based on some
of the system's mechanisms. Its execution requires the development of a formalism that will
allow quantifying knowledge, this formalism will usually be system dependent The qualitative
functional measure can predict the quantitative measure and confirm the structural measure. It is
important for revealing subtle issues in the behavior of a design system that need to be addressed m
future development The quantitative functional measure is precise but also subjective. Inaddition,
it loses details due to its tendency to summarize performance by statistics.
Although we favor the functional definition of knowledge, this paper does not attempt to defend
this position. However, the paper argues firmly that the definition adopted and the measure used
should be consistent that is, the structural (functional) evaluation should be used for assessing
the quality of knowledge if the structural (functional) definition of knowledge is adopted. In fact
beside this consistency, it is optional and useful to exercise all the four measures. Each of them
has some value and feedback to provide and they all complement one another.
Table 4 summarizes the different measures according to the terminology of measurement theory. A
question mark denotes an unspecified entry. The two qualitative measures are incomplete since the
mapping between knowledge to textual information is not quantifiable. The quantitative measures
are complete but are not fully articulated. For example, the functional quantitative measure employs
addition as the binary operation, but does not specify what exactly is measured by the real numbers.
For instance, to satisfy the addition operation in the example, the knowledge unit should reflect
the logarithm of the number of examples and the measure should evaluate the logarithm of the
performance. Therefore, we argue that not one of the measures is, or could be, "objective.
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4

5

Type

Require

Maybe
used to
Apply on

Summarized
by

Table 3: Measures of design knowledge
Structural

Qualitative
subjective
imprecise
coarse
domain
expertise
partially predict
performance
simple
representation,
manageable size
knowledge
textual
information

Quantitative
subjective
precise
coarse
precise
formalism
partially predict
performance
everything
subject
to row 2

quantitative
data

Functional
Qualitative
subjective
imprecise
detailed
expert decisions,
test cases
predict
performance
everything
including
''black boxes-

textual + quantitative
information

Quantitative
subjective
precise
coarse
performance
metrics
quantify
performance
everything
subject
to row 2

concise quantitative
data

Table 4: Observed and formal systems

Set

Relation
Operation

Observed

knowledge
hierarchies
better-than
appending

Formal
Structural

Qualitative Quantitative
text positive real

numbers
? >
? +

Functional
Qualitative
text+
numbers
?
7

Quantitative
positive real
numbers
>
+

Future work includes completing several important tasks* The first task is the collection of data
on evaluations of additional (design) systems. These cases might be generalizable, thus, used to
develop a methodology for the evaluation of (design) knowledge. Another task deals with the
formation of guidelines for system development that will facilitate appropriate evaluation. Finally,
research should address the evaluation of knowledge embedded in a design setting (i.e., cooperation
between a human designer and its design assistant), thereby leading to models that reflect actual
design settings.
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