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Abstract

This paper deals with the global optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides a valid lower bound to the global optimum. This formulation is then
used within a spatial branch and bound search. The application of this method is considered
in detail for sharp separation systems with single feed and mixed products. Numerical results
are presented on twdve test problems to show that only few nodes are commonly required in
the branch and bound search.



Introduction

A common source of noneonvexities in the synthesis and design of processes, as well as in

flowsheet optimization, are the material flow equations for multiccmponent streams. These

nonconvex equations involve bilinear terms and they arise in the mass balance equations when

the compositions are unknown. There are different equivalent formulations for this type of

networks. One alternative is to formulate the mass balance equations in terms of component

concentrations. In this form bilinear terms are present in the equation* for the mixer units

and the different process units (e.g. sharp separators). A second alternative is to express the

mass balances in terms of flows of individual components. This option has the advantage that

it involves a ^naUmr number of nonlinear equations. However, the modelling of the splitter

units involves bilinear terms that arise due to the condition that the proportions of flows

between components have to be the same for the different streams.

The difficulty with the nonconvexities noted above is that they may give rise to

optimization problems Involving several local optima and numerical singularities that may

produce failure in the NLP algorithms. Recently there have been important efforts in the area

of global optimization. Examples of algorithms are the ones proposed by McCormick (1976).

Floudas and Viswewaran (1990) and Sherali and Alameddine (1992) which can be used to solve

bilinear programming problems like the ones that arise in networks with multicomponent

streams. For a recent review in the area of bilinear programming see Al-Khayyal (1992).

As for previous work in the design and synthesis of multicomponent process networks

Mahalec and Motard (1977) and Nath (1977) developed evolutionary techniques that are based

on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of

separation networks with mixed products in which only sharp separators are considered. A

superstructure of the process network was proposed and modelled in terms of concentrations.

The resulting model is nonconvex and solved with a standard NLP algorithm with no guarantee

of global optimality. Floudas and Aggarwal (1990) solved small pooling and blending problems

and sharp separation networks problems using a strategy based on Benders decomposition. In

this approach only convex subproblems are solved but there is no guarantee of obtaining the

global optimum. Kocis and Grossmann (1989) modelled process networks with

multicomponent streams in terms of the individual component flows. They included a set of

bounding constraints with binaxy variables to approximate the nonconvexities that are present

in splitters with multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp

separation networks with mixed products. They proposed a search procedure that involves the



enumeration of the different separation sequences. The nonconvex equations are dropped and

constraints that are valid for each particular sequence with a set of bounds over the key

components are included to obtain tighter UP relaxations for each configuration. However, the

number of sequences to be examined grows rapidly and there is no guarantee of global

optimality.

In some particular cases the nonconvexities in the mass balances can be avoided

through the introduction of binary variables. One of these cases is when single choice splitters

are present in the flowsheet (Kocis and Grossmann, 1989). Here, it is possible to have a mixed

integer linear formulation for the mass balance equations in terms of the individual component

flows. Another restricted case for which some nonconvexities can be reformulated is when

mixing within the network is only allowed for streams of the same concentration. In this form,

larger network superestructures must be proposed and the concentrations of the streams are

known beforehand. Integer variables are introduced to model the existence of the different

streams (e.g. the mixed integer linear formulation for sharp separation networks by Floudas

and Anastasiadis, 1988).

The objective of this paper is to present an efficient global optimization method that

exploits the particular structure that is present in process networks with multicomponent

streams (e.g. pooling and blending systems, sharp separation networks). First a relation is

established between formulations based on concentrations and individual flows. This is done

following the Reformulation-Linearization technique proposed by Sherali and Alameddine

(1992). As will be shown, a linear relaxation Is obtained that is in the space of the

concentrations and individual flows which can be used in a branch and bound search is to find

the global optimum. Application to the optimal design of sharp separation systems with single

feed and mixed products is considered In detail. Different preprocessing techniques that allow

tightening of the relaxation problem are presented. The performance of the algorithm is

reported on a total of twelve problems.

Modeling with concentrations and individual flows

Consider a process network that consists of splitters, mixers and process units that are

interconnected with multicomponent streams (see Fig. 1). The process iinits that are

considered in this paper are units in which the output flows of the components can be

expressed as a linear relation of the inlet flows (e.g. sharp separators, reactor with^known

conversion). It is possible to formulate the mathematical model of the process network in

terms of the concentrations of the streams. Xjk. Another possibility is to model the network



using flows of individual components. The former has the advantages that it provides a

convenient framework for the evaluation of therxnodynamic properties, and in many cases

bounds can be expressed in a more natural form. A major disadvantage is that many

nonconvex terms (bilinear) are involved in the mass balances for the components. The

individual component flows formulation is often chosen since it gives rise to a larger number of

linear equations and the only nonconvexities are involved in the modelling of the splitters. In

these untis it is necessary to enforce that the components maintain the same concentration in

each of the streams leaving the splitter. These constraints can be expressed as relations

between the different components (Wehe and Westerberg, 1987). One deficiency of this

representation is that since many flows can take values of zero, singularities may arise with

which conventional nonlinear programming methods may have difficulties to converge.

Another alternative is to introduce additional variables that represent split fractions (Kocis and

Grossmann. 1989). This involves a larger number of constraints but tends to yield a

formulation that numerically is better behaved.

Following axe the equations that apply to the mixers, splitters and units using the two

alternative representations:

Mixer

A mixer k consists of a set of Inlet streams, Mk, and an outlet stream k (see Fig.2).

a) Concentrations

The total mass balance for a mixer k is given by:
F*« X F* (1)

t«Mfc

where F1 is the total flow in stream i. The mass balance for each component j is given by the

nonlinear equations.
F^xfc 2 Fixj» for all j (2)

where xf is the concentration of component j in the stream i

b) Individual Jlows

Here it is only necessary to write a mass balance for each component j, given by the
linear equations:

^ 1 for all j (3)

where fj1 is the flow of component j In stream i.

Splitter

A splitter k has an inlet stream k and a set of outlet streams Sk (see Fig. 3).



ql[Concentrations

The equations for a splitter in terms of the concentrations are given by the following

linear equations
I ' P = P * (4)

1 € Sfc

Xj* = x,k for all i 6 Sk a$d j (5)
1 x ^ = 1 " (6)
J

b) Individual flows

The mass balance for each component j is given by
I f^a fA for all j (7)

t€Sfc

Here, it is also necessary to enforce the condition that the streams leaving the splitter

have the same proportions in flow for each component. These relations between components,

which are nonlinear, can be expressed in terms of the inlet stream k and a given component j'

fr
k fj* s fjk fjJ for all i € Ikand j * j1 (8)

A different approach consists of introducing as additional variables the split ratios §f
t

that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear

equations are given by

ff«9fjk for al i i € Ik and j (9)

w i t h O £ ? £ l .

Process units • .*. .

In this paper it will be assumed that the outlet streams, i € Ok, in the process units can

be expressed as linear relations of the inlet streams, i e Ik (see Fig. 4). This is for instance the

case of sharp split separators, separations in which the recovery level is known, or reactors

that have a fixed conversion.

a) Concentrations "

The overall mass balance for process unit k is given by,
I Pa I P (10)

l € l k i € O k

The mass balance for each component j is given by the nonlinear equations;
= Px,4 for all ie Okandj (11)

where Pjr
lk is a constant for process unit k that gives the distribution of component j in the

stream i e Ok coming from streams i1 e Ik. For a separator unit it is required tliat 2 IV* = 1

and £ Pjr
tk a 1. A sharp split separator is one for which IIkl = 1 and IOkl =.2 (top and

i' € lk

bottom streams) and for all the components the constant pjr
ik are either 0 or 1.



b) Individual flows

Only the mas balance for each component is necessary and it is given by:
' forallie Okandj (12)

l#€ Ik

A model in terms of individual flows MF consists of the linear equations (3), (7) and (12)

plus the nonlinear equations (8) or (9). The model in terms of the concentrations, MX, includes

the linear equations (1), (4), (5), (6) and (10) plus the nonlinear equations (2) and (11).

Reformulation and Linearization

In order to avoid the direct use of the nonconvex models MX and MF, there is a relation that

can be established between them using the reformulation and linearization technique for

bilinear programming models proposed by Sherali and Alameddine (1992). This technique can

be applied to the model MX. First, consider the bounds over the variables present in the

bilinear terms (total flow, F1 and concentrations x,')

(13)

(14)

Using the bounds in (13), (14) the following constraints can be generated for the bilinear

terms in (2) and (11),
I L (15)

^ ^ ^ ^ l u ( 1 6 )

F1 *j» £ F*ux,4 + Xj»L F* - F*u XjIL (17)

j ' " (18)

In fact, McConnick (1976) has shown that the constraints in (15)-(18) correspond to the

convex and concave envelopes of the bilinear terms over the given bounds. The formulation is

linearized by the definition of the following variables:

fjl = Px j
i (19)

Tile resulting model which involves equations UK (3). (4). (5), (6). (10). (12) and the

constraints in (15M18) is a linear relaxation of the original nonconvex concentration model,

MX, in which the nonlinear equations (2) and (11) have been replaced by the linear equations

(3) and (12) from the individual flow model. MF. It is possible to generate additional linear

constraints that are redundant to the original nonlinear model, MX, but that can be

nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sherali et



al*. 1992). In particular, consider equation (7) that is the linear component mass balance for

the splitters in model MF. "This linear equation is not present in the linear relaxation of the

concentration model. MX. Take equation (4) and multiply by the valid bound constraint x,k £ 0

to get
£ F*xJ

k = Fk^k (20)

Using equation (5) yields.
£'F**i l»lE*^k (21)

that can be linearized to.

yielding equation (7). Hence, the linear equation for the splitter is valid and it is included. The

nonlinear equations (8) or (9) can also be generated in a similar fashion but their linearizations

are in general redundant (see Appendix A). They are only useful when the formulation 6f the

problem provides non-trivial bounds over certain components in the outlet streams of a

splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that relate the total flow and the individual flows of a stream can

be generated for the splitters. Taking equation (6) and multiply by F1 yields.

= F< (23)

Using the constraints x,1 = x̂ k in equation (23) and linearizing with fj1« F* x,4 yields,

(24)
j

Based on the above it is possible to obtain a reformulated model MR that involves

concentrations, total flows and component flows, and which bounds the solution of the original

problem. The following equations are given for model MR:

a) Objective function. <t>. which is expressed in terms of individual or total flows.

b) Mixer equations, which are expressed in terms of the total and individual component flows.
•.F*« £ F* (1)

t€Mk

If/ forallj (3)
icMfe

6



c) Splitter equations, that are expressed in terms of the individual component flows and the

f^oncditi^ tf̂ nff of the streams

y p-pk (4)
t€Sk

Xj' = Xjk for alii e 3* and J (5)

XxJ<=i (6)

£ If «f f for ail j (7)

d) Process units equations, that are given in terms of the total and individual component flows
(10)

fj«= T p/'f/ foraUie Okandj (12)

e) Relation between the total flow and the individual component flows

j

= £ f/ for all streams (24)

f) Linear estimators, relate the individual component flows with the total flow and

concentrations.

ri £> pi L jqi + v * I* pi . pi L jri L (15)

fji ^F 1 t t ^ 4 ^^! u F l -F l u ^ l u for alii e Sk (16)

f/ <F l t t^ l4-^1 LF i-F ! u^ I L i s k € splitters flT)

fj1 ^F^XJ' + X ^ F - F ' - X J ' " foralljeJ (18)

f) Bounds on flows and concentrations

(13)

(14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)

looser approximations of the nonlinear terms were used. In both cases, the nonconvex problem

(MF) was relaxed to a linear model by dropping the nonlinear equations (8) or (9). Equations

that approximate the difference relation between the components were considered (Kocis and

Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter

between the flowrate of the components and required the introduction of binaiy variables.



method

Model MR can be applied to predict lower bounds to the global optimum in the optimization of

pooling and blending problems and in the synthesis of separation systems. The reason is that

model MR provides a valid relaxation of the original feasible region since the nonlinear

equations (2) and (11) in model MX are not considered, and the valid linear equations (3), (7),

(12) and (15)-(18) are included. The proposed global optimization algorithm relies on the

solution of the relaxed problem MR within a spatial branch and bound enumeration. The

outline of the algorithm is as follows (for a more detailed description of step 4 see Quesada and

Grossmann (1993))

0. Preprocessing (optional)

Determine bounds on the variables involved in the nonconvex terms, that is total flows,

F1, and concentrations, x{. Apply any additional preprocessing specific to the structure of the

problem in order to further bound or flx variables.

1. Lower Bound

Solve model MR over a given subregion (initial subregion is the complete feasible region)

minimizing a convex objective function $. If <t> is linear the model Is an LP.

2. Upper Bound

Any feasible solution to the nonlinear model provides an upper bound. Heuristic

techniques can be employed to obtain good feasible solutions or the original problem, MF. can

be solved using the solution of model MR as a good initial point. If the solution of problem MR

is feasible it provides an upper bound.

3. Convergence

If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper

bound.

4. Branch and Bound

Partition the remaining subregions into a set of disjoint subproblems. Repeat steps 1-3

for each of the new subregions.

Remarks

The preprocessing step plays an important role in the above algorithm. It is during this step

that initial bounds for the variables involved in nonconvex terms are obtained. The quality of

8



these bounds affects the tigthness of the lower bound since they are part of the estimator

equations (15)418). Additionally, these bounds affect the performance of the algorithm because

they define the search space over which the branch and bound procedure may have to be

conducted.

In some cases, as described later in this papier, it is possible to exploit the particular

structure of the process network and generate bounds for the variables without having to solve

any subproblems. Furthermore, during this preprocessing step additional constraints can be

generated for predicting a tighter lower bound of the global optimum can be obtained.

Some of the linear mass balances and the estimator equations are redundant in the

nolinear formulations, MF and MX. These equations become nonredundant in the

reformulated model, MR. and for that reason it is important to write a complete formulation of

the network. However, this model can present some redundancies that can be easily identified

and eliminated to reduce the size of the model. This is the case for the concentration variables

used in the splitters. Model MR uses different sets of concentrations variables for the inlet and

outlet variables of a split unit. In practice, it is only necessary to define the concentration of

the component in the splitter and use the same variables for all the splitter streams. Also,

some redundancies can occur with the total flow variables. These ones are necessary for the

streams in the splitters but they might be redundant and eliminated in the other untis if they

do not appear in other part of the model or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it

corresponds to the global optimal solution. When the solution to the model MR Is not feasible

it is necessary to follow a blanch and bound procedure to search for the global optimum. This

procedure requires a valid upper bound on the global optimum. This can be generated through

heuristics or by solving directly the nonconvex model. For this purpose, the process network

model is formulated in terms of the individual component flows and the nonconvex equations

for the splitters are included. Equation (9) was also used in this work to model the splitters

due to it is better numerical behavior. The solution to the model MR was used for the good

initial point. In many instances, it was not possible to solve these nonlinear problems with

MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is generated. Of the set of open

nodes, these are the nodes that have a lower bound that is e-smaller than the current upper

bound, the node with the smaller upper bound is selected to branch on. The splitter units are

the units that are approximated, and of these, the splitter that has the largest difference

9



between its approximated and actual individual component flows is selected. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter. The branching is done in the selected splitter over the

concentration of the component that has the largest difference.

First, the actual concentrations for the individual component flaws in the LP solution (*)

for the splitters are calculated by,

for all the inlet streams to splitter (26)

The splitter unit m is then selected according to the equation.

N • • , . . : .

c mitt ( ty-z^FH) , (27)

Equation (27) represents the total difference between the LP solution for the flows after

the splitter and the actual value of these flows considering the concentrations before the

splitter. Once the splitter has been selected, the component in that splitter that has the largest

difference. J\ is selected by,

J--aigma^( JL I f/ - z»te F* 11 (28)

The following branching constraints are then used;

(29)

To improve the upper bound it might be necessary to solve additional nonconvex

problems. These can be solved after a given number of nodes using the solution of the node

with the smallest upper bound as the initial point. In this work if there was no significant

change in the lower bound of the new nodes with respect to the lower bound of the parent node

( < 1%) a new nonconvex problem was solved.

Example 1

Consider the following pooling and blending problem by Harveley (1978). Two streams that

have components A and B are mixed in a initial mixer a then go through a splitter to obtain two

streams than can be mixed with an additional stream (see Fig. 5a). Two different products can

be obatined and there are constraints on the concentration of component A in these products.

The objective function consists of niimizing the cost that is given by the total flow of the

streams times the cost coefficients, ct, given in Fig. 5.

10



This problem has two local solutions. One has an objective function 0 = -100 and

consists of only producing product 2. The other local solution, that corresponds to the global

optimum, has an objective of + « -400 and here only product 1 is produced.

Model MR is formulated for this problem and the initial lower bound is 0L = -500. The

nonlinear model. MF, is solved using the solution of model MR as the initial point and an upper

bound of $ s -400 is obtained. Since there is a gap between the bounds of the global solution a

partition is performed. There is only one splitter that needs to be approximated and since there

axe only two components it is irrelevant which one is selected since the composition bounds are

related (eg. xB
L = 1 • x*u). The actual value of the composition of A in the solution of model MR

is used as the branching point (x* = 0.0166) to generate two new subproblexns. The first

subproblcm (xA £ 0.0166) has a lower bound of 4>L = -100 and the second subproblem (x* £

0.0166) has a solution of fa. = -400 (see Fig. Sb). Both of these bounds are greater or equal

than the upper bound, therefore the global solution has been found (xA = 0.01).

The next example is a separation problem taken from Kocis and Grossmann (1987). The

original problem has binary variables in the formulation and they have been fixed to 1 for this

example (see Fig. 6).
*

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream

has 80% of the inlet flow of component B. In the column. 97.5% of the inlet flow of A goes to

the top whereas 95% of the inlet flow of B goes to the bottom stream. Hie total flow to the flash

unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of

each of the two feed streams has to be less than 25. The objective function is given by,

<|> = 52 + 10 F! + 8 F2 + F4 + 4 F5 - 35 PjA- 30 P2
B (30)

The initial lower bound for this problem is 0L = -513.22 and it is infeasible for the

original NLP model. A nonconvex problem is solved using CONOPT with the solution of model

MR as the initial point obtaining an upper bound of <J> = -511.87 and the relative gap is only

0.3%. Again only one splitter is present in the network and a partition can be performed using

the concentration of component A in this splitter. The lower bounds for the new two

subproblexns are fa = -511.87 (xA £ 0.5121) and <t>L = -511.80 (xA > 0.5121). Both solutions are

greater or equal than the upper bound and the global solution has been obtained. In the global

solution Fi = 8 and F2 = 25, and 11% of the inlet flow lo the splitter is directed to the flash.

76% to the column and the rest bypassed to P2.
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Example 3

TIUs example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

>«4Si + 1.5S2 + 4S3 (3D

The initial lower bound is 4>L = 138.18 and the nonconvex problem MP is solved
obtaining a solution of $ = 138.7. The gap between these bounds is less than 0.4 %. The
global optimum for this tolerance is shown in Fig. 8.

Sharp separation networks

In order to illustrate the application of the above algorithm to a specialized case where the
structure can be further exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
specified multicomponent product streams. The components are ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9)). The superestructure consist of N-l separators. Separator i performs the
task of removing component number 1 to number! at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-l
streams, Ft, that go to the separators and K streams, ak. that bypass the network to go to the
products. Each stream F{ is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i, S^

The outlet streams of separator i are the top, T(, and the bottom, Bt. These streams, T,
and Bt. are each split into streams, PTt

k and PB^ respectively, that go to the K products and
into streams, KIV' and.RBf. that are redirected to the other separators. The top stream of
separator i, Tit can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaller flows. KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, B,, can be redirected only to separators i+1 to N-l since it can only

12
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contain components that are separated by these sharp separators. RB/ is the redirected flow
from the bottom stream of separator i to separator i\

Model

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
and total flows has the following form:

min •= Zc t S| (32.1)
N-l K

st. reeo!•» 2u * i * m®k IOZ.ZJ
t»i k*i

LsF|L for all i and j (32.3)
1-1 N-l

Si» F| + £ RB,1 + X Kiy for aU i (32.4)
t'«l !'«*•!

1-1 N-l
Si xsq = flj + £ RBf1 x^j + £ KTr

! xtrj for all i and j (32.5)

S i s ^ + Bi for alii (32.61

for all i and ord(j) < i (32.7)

for aU i and ord(j) > i (32.8)

for all i and ord(j) > i (32.9)

= 0 for all i and ordQ) ^ i (32.10)
t - i K " !

Tf m £RTir + £FTt
k for aU i (32.11)

1*1 k«l
N-l K

Bi s £RB^f + £PBt
k for all i (32.12)

N-l N-l

3^ + 0^ Tor'alt k (32.13)
N-l N-l
£PT,k xt« + £PB,k xbq+ ak z. for all k and j (32.14)
i*l i»l

1 for alii (32.15)
N
Z xb,j = 1 for all i (32.16)
N
I x s , j = l for alii (32.17)

Si, T|t B,. Fi. RT/. RBt*'. PTt
k. PBik. c*. t^ xs,j, xty.
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The parameters Feed, zj, Pk and pkj represent the total feed, composition of the feed,

total flow of product k and component flow of component j in product k, respectively. The

variables xsq, xty and xbg are the concentrations of component j in the inlet stream to separator

1, top of separator 1 and bottom of separator i, respectively.

The objective function (32.1) is a linear function of the inlet flow to the separators.

Equation (32.2) is the total mass balance in the inlet splitter and equation (32.3) is the

component mass balance. Equations (32.4) and (32.5) are the total and component mass

balances for the mixer i before the separator L The material balances for separator i are given

by equations (32.6)* that is the total mass balance for the separator, equations (32.7) and (32.8)

that are the component balances for the top stream and indicate that nothing from components

number 1+1 to N-l is in the top of the separator, and equations (32.9) and (32.10) that are the

component mass balances for the bottom streams. Equations (32.11) and (32.12) are the

overall mass balances for the splitters of the top and bottom streams alter separator 1. The

equations that state that the concentrations of the outlet streams should be the same that the

inlet stream in a splitter have been already substituted. Finally, equations (32.13) and (32.14)

are the overall and component mass balances for the mixer for product k.

Model (32) corresponds to a formulation of the type of model MX where the distribution

coefficients are known and restricted to 0 or 1. Some simplifications have been made to avoid

including many irrelevant variables (e.g. not to define concentrations for the streams that go

the top i to product k). Although, some of the linear constraints in this formulation are

redundant, they can become nonredundant in the linear relaxation as will be shown in

Example 4.

Equations (32.5). (32.7). (32.9) and (32.14) involve nonconvex terms. This model can be

reformulated as in model MR by introducing individual component flows and the linear

equations (15M18) and (7) according to the approach illustrated earlier to obtain a model in the

form of model MR The resulting reformulated model is as follows,
N-l

min <)>f =

s t Feed

fij = F

S, = f

s<j = fi

S c < S i
1*1

N-l

= IF1 +

1 »I

i-1

j+ Z rbt

K

I<

teftKi

Xk

N-l

1 •••i

N-l

I rtrj>
i«t*l

for all i

for alii

for all i
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andj

andj

(33.1)

(33.2)

(33.3)

(33.4)

(33.5)
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Sr-TV+'B, for a l i i (33.6)

tn = sij for all i and ord(j J £ i (33.7)

t f * 0 for all i and ord(j) > i (33.8)

b,jSSSg for all i and ord(j) > i (33.9)

t,j = O for all i and ordfl) £ i (33.10)

T, = sW + lPT4
k for all i (33.11)

1*1 k«l
N-l K

Bi m £RB,if + £PB t
k for all i (33.12)

p* = TFTt
k" + £PB|k + otk for all k (33.13)

>M riti
Pki * 5jt t ,k + Xpb^k + ctk z, for all k and j (33.14)

1*1 K

t« = Z ^ / + Zptijk foraUiandj (33.15)
i'»l k«l

N-l K

b« = Zrbij4' + £pb«k for all i and j (33.16)
l'*t+l k» l

1 for alii (33.17)
I "

for all i (33.18)

for alii (33.19)
l

N
B,s Ib« for alii (33.20)

PTik= Tpt<*k for ali i and k (33.21)
oixi(j)»iJ

N
PB,k= Ipbqk for alii and k (33.22)

i

RT/ = ] D V f o r all i and if < i (33.23)
ord(i)-l

N

for all i and r > i (33.24)= Irb/

Equations (15-18) for t4J, rttJ
l and pttj

k in terms o

and the total flow of its respective stream.

Equations (15-18) for bq, rbq* and pbfj
k in tenns

and the total flow of its respective stream.

Tlt Bt. F4. KTf, RB,1', PT,k. PB^. ak. f,j. xs,jf xt4jf xb,j ^ 0

j k . rt,/. rby1* > 0
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It is not necessary to include equations (15) -(18) for the inlet component flows to the

separator, Sq. since the variables xsy only appear in these equations. Also, the component

flows, S|j9 only appear in mixers and sharp separators units which can be exactly represented in

terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-

(33,16) that are the component mass balances for the splitters of top and bottom streams have

been included accordingly to the reformulation previously presented. Equations (33.19M33.24)

relate the total flow and the individual component flows for the splitter streams.

The proposed Superstructure (Fig. 9) allows to bypass certain amount of the feed to the product

k. Ok, without having to go through the separation network. The amount of the product k that

is not bypassed has to be processed In the separation network and it will be denoted as the

'residual product*. Hence, the total 'residual product kf is given by (Pk - ak) and has the

component flows given by (p^ - ô Zj )(see Fig. 10).

The global optimal solution of model (32) is a network in which all the residual

products1, have at least one component with a zero flow. The reason that it is not optimal to

separate a stream in the network and later to remix it. The same degree of separation can be

achieved using a bypass that does not incur any cost in the objective function.

Consider the second separator in the solution obtained by Floudas (1987) to his second

example (see Fig. 11). For this subnetwork of the complete structure the "upper 'residual

product' has components B and C present. The components are being separated and remixed

again. The same outlet flows can be obtained with a smaller input flow to the separator as it is

shown in Fig. 11. Note that both 'residual products' have components with zero flow.

It should be clear that if there was not a component with zero flow in the 'residual

product1, then there is part of this stream that could have been obtained by just bypassing the

network. This in turn does not incur in any cost, whereas going through the network has a

positive cost. The above condition gives a lower bound for the bypass to each product. This

also corresponds to the largest amount that can be bypassed since all this flows in the residual

flow1 have to be positive. In this form the bypass can be precalculated without affecting the

global optimality of the solution.

The bypass to product k is given by the maximum amount that can be sent to product k

without having a negative flow; that is.

a* = minj t ^4 (34)
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where Zjis the feed composition and pkJ is the flow of component j in product k. The

component flews for residual product1 k, y# are given by.

Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the flow of the key

components in separator i. These bounds are based on the fact that separator i is the only unit

that can perform the task of separating component number i from component nutaber i+1.

They are redundant for the nonlinear formulation (32) but they are relevant for the linear

relaxation in (33). To calculate them, it is necessary to determine in each product what is the

difference between the two key components of separator 1 with respect to the concentrations in

the feed. The lower bounds in separator i* for the flow of the key components in the top

(component Jl) and bottom (component j2) streams are given by:

t|i * I {TWji - zji nitowi J2 nn ) for all i (36)

foralli (37)

where y^ is given by (35). It is important to include both bounds in the relax model (33) since

there is no guarantee that the inlet flow to separator i has the same proportion between the key

components as the feed. It is not known in which part of the sequence separator 1 will be

placed, and it can be after a splitter that is not being approximated correctly.

The bounds in (36) and (37) can be extended to separation of components that are not

adjacent in the feed. Consider component number i and component number i+3. There are

three separators that can perform this task, separators i. i+1 and i+2. Cuts of the following

form can be obtained,

K
t* i + tf! t + t,«a i Z I {Tkt - z, mtaonHH or *3 l~Tl) for all i (38)

ki l \

or i+3 £~]} for all i (39)

Equations as the ones in (38) and (39) can be redundant compared to equations (36)

and (37) and it is possible to detect this before solving the problem.

Relative flowrate constraints
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These constraints are used when the relation between the flowrates of two components

is known. In particular, consider component A in the last column of the network (we Fig. 12).

None of the redirected streams contains component A. Therefore, the relative flowrate of

component A with respect to the other components in the top stream has to be smaller than in

the feed. This relation should remain valid after the top stream is split to the products and

redirected flows.

In the separator previous to the last one, N-2, all the streams do not have component A

except the one coming from the top of the last column. For this one it is already known that

the relative flow of component A with respect to the other components is smaller than in the

feed. This type of analysis can be done for component A and component N in all the columns

yielding th$ following linear constraints for the splitters.

for alii and k

ZAPtijk-ZjPt«Ak^O forj *Aandord(j)<i (40)

zN pb,jk - z, pt*N
k £ 0 for ord(j) * N and ord(j) > i (41)

fora l l iandi '> i

ZArt|jr • Zj rtiA4' ̂  0 f o rJ * A a n d o rdW ^ * W2)
for alii and f < i

O forord(J)*Wandord(j)>i I43J

Boundson concentrationsand total flows

The approximations (15-18) require bounds for the total flows and component

concentrations in the splitters. The lower bound for the total flow of the top and bottom

streams is given by the lower bound of the key components obtained in equations (36) and (37).

For the outlet streams of the splittters, that are the redirected streams and the streams that go

to the products, the lower bound is zero. The upper bound for the total flow of the top and

bottom streams is given by the feed to the network of the components that can be present in

each stream .that is,

t

Tt
u= Z(Feed-Xak)z, for ail i (44)

B|«= ItFeed-IOfcJz, forallj (45)

The upper bound for the streams after the splitter are given by.
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for ail i and i' <

for all i and i'>

for all i and k

for alii and k

i

i

(46)

(47)

(48)

(49)

The lower bounds for the concentrations are zero except for the key components in the

separator for which the lower bounds are given by the lower bound of its flow divided by the

upper bound of the total flow of that stream. The upper bounds in the concentrations are given

by one minus the lower bounds of the other components.

The solution of the linear programming model (33) provides a lower bound to the global

optimum since this model is a valid relaxation of the nonconvex model (32). This lower bound

is obtained by solving the LP model for the residual products' in 135) with the addition of the

valid constraints (36)-(43).

The upper bounds are generated solving mode} (32) in terms of the individual flows for

the residual products'. When additional nonconvex problems are solved to improve the current

upper bound it can happen that very similar initial point are generated. In this case, a new

nonconvex NLP is solved in which bounds over the total inlet flows to the separators (SJ are

included. For this purpose the values of these variables in the LP solution (S4*) are used such

that the current incumbent solution is no longer feasible.

Example 4

Consider the 3 component example proposed by Floudas and Agganval (1990). An equimolar

feed has to be separated into two products as show in Fig. 13. The objective function is given
by

<t> = 0.2395 + 0.00432 S, + 0.7584 + 0.01517 &* (50)

The bypass to products 1 and 2 can be calculated according to equation (34) and the

'residual product1 component flows are obtained through equation (35) (see Fig. 14). The total

bypass to product 1 is a, = 90 and the bypass to product 2 is ct2 = ISO and the feed has a

concentration of zA = 1/3, zQ = 1/3 and Zc = 1/3. In this form the 'residual product1 1 is YIA =

0, YiB = 20 and ylc = 0 and the residual product' 2 is Y2A = 20, Y2B = 0 and Y2C = 20.

Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35)-(36). The key components in separator 1 are component A in the top and

its flow has to be at least 20 and component B in the bottom has to have at least a flow of 20.

In the top stream of the second separator at least 20 units of component B have to be

separated from 20 units of component C in the bottom stream. It is important to note that

after preprocessing the network several suboptimal solutions have been cut off. One of these

suboptimal solutions for this particular data is a parallel configuration of both separators

(there are situations in which a parallel configuration can correspond to the global solution as

will be shown in example 5). In this example the direct or indirect sequence have a lower

objective function. Both of these configurations are local solutions with an objective function

value of 4 » 1.8639 for the direct sequence and 4 = 2.081 for the indirect one. In some

instances, MINOS 5.2 had problems converging even in this small example.

The LP (33) is formulated for this problem, giving a lower bound of (^ = 1.8639. The

approximations are exact and therefore this solution is a feasible solution of model (32) proving

that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.

The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted

that if the linear mass balances for the mixer for product 2 were not considered since they are

redundant for the nonlinear formulation, a lower bound in the relaxed model of <t>L = 1.12 is

obtained, this shows that it is relevant to include all the mass balances in the linear model in

order to tighten the lower bound.

Example 5

In the approach proposed by Wehe and Westerberg (1987) for the case of 3 components only

the direct and indirect sequences are considered and both options can be modelled as LP

problems since no mixing is required for these separation networks. However, this example

shows that parallel configurations can be also globally optimal and that they are not excluded

by the method proposed in this paper. To be able to consider parallel configurations or any

combination of parallel with direct or indirect sequences it is necessary to model a

superstructure in which mixing is allowed (like in the structure used in Fig. 13). Here,

nonconvexities arise in the mass balance equations after the separators.

Consider that an equimolar feed is to be separated into the two different products given

in Fig. 16. The objective function is to minimize the sum of the total flows into the separators.

The same procedure that in the previous example is followed and the bypass can be

precalculated by equation (34). The solution to the model (32) yields <t>L = 12 and since it is a

feasible solution of model (32) it corresponds to the global optimum (see Fig. 16). Note that the

solutions for the direct or indirect sequences have an objective function of <)> =16.
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Branch and Bound

If there is a gap between the lower and upper bound a branch and bound search is performed.

It is only necessary to do the search over the variables involved in the nonconvex terms. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter* In this way. it is necessary to check the approximation for the

concentrations in the splitters of the top and bottom streains of the separator. Equations (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound

search.

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation

network examples 4 to 12. The number of variables is the total number of variables that are

included in the reformulated and relaxed model (33) for that example. The lower bound is the

initial bound that fs obtained by solving model (33) over the entire feasible space. The inital

gap represents the percentage diflerence between the initial lower and upper bounds. When

there is a zero initial gap it means that the first relaxed solution is feasible in the original

problem thereby corresponding to the global solution. The column for nodes gives the total

number of subproblems that where solved before converging to the global solution. A relative

tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after

branching and example 12 for which a tolerance of 0.02 was used. It is important to note that

the initial lower bound is tight and that it corresponds to a good estimation of the global

solution. The largest differences are for example 1 with a 25% of diflerence and for example 12

with a 7% diflerence. The LP time refers to the time used to solve each relaxed model and the

NLP time is the time used for solving a nonconvex model. It is possible to do updates using the

previous LP solution and in this form have a more efficient implementation. The times are in

seconds and the problems were solved on an IBM RS600/530 using GAMS 2.25 (Brooke et al.

(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP

problems. A brief description of the example problems 6 to 12 is given below. It includes the

specific data for the problem, the objective function and the topology of the network that is the

global solution.

Example 6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

<t> = 2.5 S! +3.0 S2 + 1.5 S3 (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is <t>L = 54.25 and an upper bound of 0 = 55.5 is obtained by

solving the nonconvex problem. A partition of the feasible region is performed using the

composition of component D in the bottom stream of separator 1. The first subproblem (x £

0.166) yields a lower bound of 4>L = 55.45 and the second subproblem (x < 0.166) has a solution

of 4>L= 55.8. The latter is greater than the upper bound iand the former is less than 1% of the

global solution (see Fig. 17).

Exajnple7
This example is taken from Floudas (1987). The data for this problem is given in Table 3 and

the linear objective function is given by:

4> = 2.5S1+3.0S2+L2S3 (52)

The initial lower bound is <J>L = 32.7 and it provides a feasible solution to the nonconvex

problem. In this form the global solution (see Fig. 18) is obtained in one iteration. It is

interesting to see that this solution also provides a better objective function for the concave

objective function used by Floudas (1987) ($ = 10.65 versus $ = 13.68 which is 28% higher)

Example 8
Tills four component problem is taken from Wehe and Westerberg (1987). The data for the

products is given in Table 4 and the objective function has the following form:

<t> = 5.0 + 0.5 Si + 4.0 + 0.3 S2 + 6.0 + 0.7 S3 (53)

The first relaxed subproblem has a solution of 0L =26.76 and it is infeasible for the

nonconvex problem. A nonconvex problem is solved using CONOPT with the LP solution as the

initial point. An upper bound of 4> = 26.79 Is obtained corresponding to the global solution (see

Fig. 19) within a 0.1%.

Example 9
This example corresponds to example 1 from Wehe and Westerberg (1987). Table 5 provides

the data for the product flows and the objective function is given by:

<J> = 5.0 + 0.5 Si + 9.0 + 1.0 S2 + 3.0 + 0.4 S3 + 6.0 + 0.6 S4 (54)

A initial lower bound of <t>L = 85.16 is obtained and the upper bound Is $ « 85.65. The

difference is 0,5% and the global solution (see Fig. 20) is obtained in one iteration.
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Example 10
This problem is taken from Floudas (1987) and the data is given in Table 6. The objective

function is given by,

4 « 1.2 Sj + 3.0 Sj + 2.5 S3 + 1.5 S4 (55)

The JrHtuii lower bound is <^ = 156.56 and the upper bound is <J> = 179.08. After 5 nodes

the global solution of $ = 159.48 (see Fig. 21) is obtained.

Example 11
The data for this 6 component problem are given in Table 7 and the objective function has the

following form:

4 »i.5 S, + 3.0 Sj + 2.0 S3 + I.OS4 + 4.0 S5 . (56)

The initial lower bound is 0L = 173 and the upper bound is 4 » 179.11. After five nodes

the global solution is obtained (see Fig. 22).

Example 12

This is a 6 component 4 products problem and the data are given in Table 8. The objective

function is:

$ m 5.0 Si + 3.0 S2 + 2.0 S3 + 2.5 S4 + 4.0 S5 (57)

The initial lower bound is <frL = 362 and the initial upper bound is 0 = 415.6. The global

solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent

streams has been proposed. The basic idea relies on a relaxed LP model that is obtained

through reformulation-linearization techniques that establish a clear relation between the

component flow and the composition models for mass balances. The reformulated model

combines both of these providing tighter lower bounds than other relaxations proposed in the

previous work. The relaxed linear model has been embedded in a branch and bound procedure

to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of

the particular structure of sharp separation networks with single feed and mixed products.

Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model

can be obtained without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter

lower bound.

Twelve examples for both general process networks and for sharp separation networks

have been presented to illustrate the performance of the algorithm. As has been shown, only a

small number of nodes are commonly needed in the branch and bound search to identify the

global or e-global solution. Moreover, in many cases the initial lower bound is either the exact

solution or a very good approximation to the global solution.
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Appendix A. Reformulation-Linearization to obtain the nonlinear

constraints in model MF

The nonlinear equations in model MF. that can be expressed either as (8) or (9), can also be

generated from model MX. For this purpose take the concentration model MX and consider

equation (5),

multiply by the valid bound constraint Xjk £ 0

xfvfm^xf (A.2)
Use equation (5) for component J\

xfxf**xtXfk (A.3)

Multiply by the valid bound constraints Fk > 0 and F1 > 0,

Fkx,kFlXf4 = F*^lFkx^k (A.4)

that it is linearized to yield.

which is precisely equation (8) for the splitters in the individual flow model MF.

Consider again equation (5),

x,k = ^ IA.6)

multiply by the valid bound constraints Fk > 0 and F1 > 0,

F^xfF^F'xj'F1 ' IA.7)

that can be linearized to yield.

Define the split fraction £ to be,

? » £ < A - 9 J

Equation (A.8) can then be expressed as
fjt^tff (A. 10)

which corresponds to equation (9).

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear

approximations in general are also redundant in the linear reformulated model MR. Consider

equation (A. 10), similarly to (15) one of its linear approximations is given by.

If there are no particular restrictions in the splitters, then the bounds for the split

fraction variable are 0 £ £f < 1 and using them in (A. 11) yields.
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The bound for the individual component flow is given by fjk L = x,k L Fk L; also x,k = x,1 and £f -
F1

p£f which leads to,
1 (A. 13)

The estimator (15) for the same conditions (F1 L - 0) is given by

(A. 14)
pkL

Since the factor -pg- ls always less or equal than 1. equation (A. 13) is redundant. A similar

analisis can be performed for the other estimators. Only when more specific bounds over the

split fractions or the individual component flows are known, will these additional estimators be

non redundant.
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Figure 1. Process network with units, splitters and mixers.
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Figure 2. Mixer module

stream k

stream k ^ **"**^streams i e

Figure 3. Splitter module.
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Figure 4. Process unit module.
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Figure 5. Network and branch and bound search for example 1

29



55% A
45% B

50% A
50% B

Figure 6. Network for example 2.
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Figure 8. Optimal network for example 3.
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Figure 9. Superstructure for separation with sharp splits and mixed products.
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Figure 14. Residual products and key component bounds in example 4.
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Figure 15- Global optimum solution of example 4.
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2A

Figure 16. Global optimum solution of example 5.
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Figure 17. Solution of example 6.
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Figure 18.
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Solution of example 7.
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Figure 19. Solution of example 8.
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Figure 20. Solution of example 9.

Figure 21. Solution of example 10.
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Figure 22. Solution of example 11.

29.333

38



140

67.26

72,**

37.929 IDEF

6

Figure 23. Solution of example 12.
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Table 1. Computational

Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9

Example 10
Example 11
Example 12

Comp.

—
—

3
3
4
4
4
5
5
6
6

results.
WocL

...

...
2
2
2
2
3
4
2
2
4

Var.

29
35
113
65
65

107
107
125
281
225
350
430

Lower
bound
-500

-513.22
138.18
1.8639

16
54.25
32.7

26.76
85.16
156.56

173
362

Initial
gap
20'
0.3
0.4
0.0
0.0
2.3
0.0
0.1
0.5
12.4
3.5
14.8

Global
solution

-400
-511.87

138.7
1.8639

16
55.5
32.7

26.79
85.65
159.48
179.11
388

Nodes

3
3
1
1
1
3
1
1
1
5
5

33

LP
time
0.05
0.26
0.34
0.13
0.13
0.97
0.17
0.23
3.08
2.59
9.98
19.8

NLP
time
0.1
0.3
0.4
-.
. .

0.4
. .

0.3
2.8
2.3
8.8
13.2

Table 2. Data for example 6.
Component
Product 1
Product 2
Feed

A
5
10
15

B
10
10
20

c4
6
10

D"
10
5
15

Total
29
31
60

Table 3. Data for example 7.
Component
Product 1
Product 2
Feed

A
7.5
7.5
15

B
10
10
20

c
6
10

D
10
5
15

Total
31.5
28.5
60

Table 4. Data for example 8.
Component
Product 1
Product 2
Product 3
Feed

A
2
1
3
6

B
3
4
1
8

C
1
1
3
5

D
3
5
1
9

Total
9
11
8

28

40



Table 5. Data for example 9.
1 Component
Product 1
Product 2
Product 3
Product 4
Feed

A
7
10
5
10
32

B
8
3
5
0
16

C
3
5
6
6

2 0

D
9
5
7
4

25

E
8
4
3
9

2 4

Total
35
27
26
29
117

Table 6, Data for example 10,
Component
Product 1
Product 2
Feed

A
2
8
10

B
2.4
5.6
8

C
16
4

2 0

D
8
8
16

E
1
9
10

Total
29.4
34.6

6 4

Table 7. Data for example 11.
[Component 1
Product 1
Product 2
Feed

A
3
8
11

B
2
10
12

C
16
8

2 4

D
8
8
16

E
4
6
10

F
10
5
15

Total
4$
4$
8 8

Table 8. Data for example 12.
Component
Product 1
Product 2
Product 3
Product 4
Feed

A
3
8
5
7

23

B
2
10
4
3
19

C
6
8
10
1

25

D
8
8
3
2

21

E
4
6
11
5

26

F
10
5
4
7

26

Total
33
45
37
25
140

4 1



From
separators

'residual
product' k Product k

Pk

Figure 10. Definition of'residual product'.

B 3.333
B 3.333
C 0.666

• — ^

B 3.333 >w
C 1.666

0.666,

C 1.666/ i.o

Flow to separator = 5.0

C 1.0

B 1.333
C 0.666.

B 3.333
C 1.666" C 1.0" I C

B2.0
CO.O

BO.O
C 1.0

\ B 3.333
C 0.666

Flow to separator = 3.0

C 1.0
Figure 11. Example of solution without and with a zero component flow in 'residual product".
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Abstract

This paper deals with the global optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides a valid lower bound to the global optimum. This formulation is then
used within a spatial branch and bound search. The application of this method is considered
in detail for sharp separation systems with single feed and mixed products. Numerical results
are presented on twelve test problems to show that only few nodes are commonly required in
the branch and bound search.



Introduction

A common source of nonconvexities in the synthesis and design of processes, as well as in

flowsheet optimization, are the material flow equations for multicomponcnt streams. These

nonconvex equations involve bilinear terms and they arise in the mass balance equations when

the compositions are unknown. There are different equivalent formulations for this type of

networks. One alternative is to formulate the mass balance equations in terms of component

concentrations* In this form bilinear terms are present in tht equations for the mixer units

and the different process units (e.g. sharp separators). A second alternative is to express the

mass balances in terms of flows of individual components. This option has the advantage that

it involves a smaller number of nonlinear equations. However, the modelling of the splitter

units involves bilinear terms that arise due to the condition that the proportions of flows

between components have to be the same for the different streams.

The difficulty with the nonconvexities noted above is that they may give rise to

optimization problems involving several local optima and numerical singularities that may

produce failure in the NLP algorithms. Recently there have been important efforts in the area

of global optimization. Examples of algorithms are the ones proposed by McConnick (1976),

Floudas and Viswewaran (1990) and Sherali and Alameddine (1992) which can be used to solve

bilinear programming problems like the ones that arise in networks with multicomponent

streams. For a recent review in the area of bilinear programming see Al-Khayyal (1992).

As for previous work in the design and synthesis of multicomponent process networks

Mahalec and Motard (1977) and Nath (1977) developed evolutionary techniques that are based

on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of

separation networks with mixed products in which only sharp separators are considered. A

superstructure of the process network was proposed and modelled in terms of concentrations.

The resulting model is nonconvex and solved with a standard NLP algorithm with no guarantee

of global optimality. Floudas and Aggaiwal (1990) solved small pooling and blending problems

and sharp separation networks problems using a strategy based on Senders decomposition. In

this approach only convex subproblems are solved but there is no guarantee of obtaining the

global optimum. Kocis and Grossmann (1989) modelled process networks with

multicomponent streams in terms of the individual component flows. They included a set of

bounding constraints with binary variables to approximate the nonconvexities that are present

in splitters with multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp

separation networks with mixed products. They proposed a search procedure that involves the



enumeration of the different separation sequences. The nonconvex equations are dropped and

constraints that are valid for each particular sequence with a set of bounds over the key

components are included to obtain tighter LP relaxations for each configuration. However, the

number of sequences to be examined grows rapidly and there is no guarantee of global

optimalitv*

In some particular cases the nonconvexities in the mass balances can be avoided

through the introduction of binary variables. One of these cases is when single choice splitters

are present in the flowsheet (Kocis and Grossmann. 1989). Here, it is possible to have a mixed

integer ?fryfl»r formulation for the mass balance equations in terms of the individual component

flows. Another restricted case for which some nonconvexities can be reformulated is when

mining within the network is only allowed for streams of the same concentration. In this form,

larger network superestructures must be proposed and the concentrations of the streams are

known beforehand. Integer variables are introduced to model the existence of the different

streams (e.g. the mixed integer linear formulation for sharp separation networks by Floudas

and Anastasiadis, 1988).

The objective of this paper is to present an efficient global optimization method that

exploits the particular structure that is present in process networks with multicomponent

streams (e.g. pooling and blending systems, sharp separation networks). First a relation is

established between formulations based on concentrations and individual flows. This is done

following the Reformulation-Linearization technique proposed by Sherali and Alameddine

(1992). As will be shown, a linear relaxation Is obtained that is in the space of the

concentrations and individual flows which can be used in a branch and bound search is to find

the global optimum. Application to the optimal design of sharp separation systems with single

feed and mixed products is considered in detail. Different preprocessing techniques that allow

tightening of the relaxation problem are presented. The performance of the algorithm is

reported on a total of twelve problems.

Modeling with concentrations and individual flows

Consider a process network that consists of splitters, mixers and pfrbcess units tliat are

interconnected with multicomponent streams (see Fig. 1). The process iinits that arc

considered in this paper are units in which the output flows of the components can be

expressed as a linear relation of the inlet flows (e.g. sharp separators, reactor with^known

conversion). It is possible to formulate the mathematical model of the process network in

terms of the concentrations of the streams, Xjk. Another possibility is to model the network



using flows of individual components. The former has the advantages that it provides a

convenient framework for the evaluation of thermodynamic properties, and in many cases

bounds can be expressed in a more natural form. A major disadvantage is that many

nonconvex terms (bilinear) are involved in the mass balances for the components. Hie

individual component flows formulation is often chosen since it gives rise to a larger number of

linear equations and the only nonconvexities are involved in the modelling of the splitters. In

these untis it is necessary to enforce that the components maintain the same concentration in

each of the streams leaving the splitter. These constraints can be expressed as relations

between the different components (Wehe and Westerberg. 1987). One deficiency of this

representation is that since many flows can take values of zero, singularities may arise with

which conventional nonlinear programming methods may have difficulties to converge.

Another alternative is to introduce additional variables that represent split fractions (Kocis and

Grossmann. 1989). This involves a larger number of constraints but tends to yield a

formulation that numerically is better behaved.

Following are the equations that apply to the mixers, splitters and units using the two

alternative representations:

Mixer

A mixer k consists of a set of inlet streams, Mk, and an outlet stream k (see Fig.2).

a) Concentrations

The total mass balance for a mixer k is given by:
F*= 2 F* (1)

where F* Is the total flow in stream i. The mass balance for each component j is given by the

nonlinear equations,
F * * ^ £ Pxj1 forallj (2)

where x,1 is the concentration of component j in the stream i

b) Individual flows

Here it is only necessary to write a mass balance for each component j, given by the

linear equations:
^ ^ 2 fj! forallj (3)

where fj1 is the flow of component j in stream i.

Splitter

A splitter k has an inlet stream k and a set of outlet streams S* (see Fig. 3).



cQ Concentrations
The equations for a splitter in terms of the concentrations are given: by the following

linear equations
Fk (4)

for alii 6 Skai*dj (5)
(6)

b) IndividuuaLJlows
The mass balance for each component J is given by

sff forallj (7)
i€Sfc

Here, it is also necessary to enforce the condition that the streams leaving the splitter

have the same proportions in flow for each component. These relations between components,

which are nonlinear, can be expressed in terms of the inlet stream k and a given component J*

fj* tf = fjk f)V for alii 6 Ikandj*j' (8)

A different approach consists of introducing as additional variables the split ratios ^,

that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear
equations are given by

(braliie Ikandj (9)

Process units

In this paper it will be assumed that the outlet streams, i € Ok, in the process units can

be expressed as linear relations of the inlet streams, i e Ik (see Fig. 4). This is for instance the

case of sharp split separators, separations in which the recovery level is known, or reactors

that have a fixed conversion.

a) Concentrations T

The overall mass balance for process unit k is given by,
IF*= £F (10)

if Ik *«°k
The mass balance for each component] is given by the nonlinear equations:

£ P^F*'^'sPx' forallie Okandj (11)
»*«lk

where
stream i e Ok coming

pjr
lk is a constant for process unit k that gives the distribution of component j in the

i i e Ok coining from streams i1 € Ik. For a separator unit it is required tliat £ f̂ * = 1

and £ Pjitk s i . A sharp split separator is one for which IIkl = 1 and IOkl =2 (top and
V € l k

bottom streams) and for all the components the constant pjt
ilc are either 0 or 1.



ffi Uvdiiikixialjlows

Only the mas balance for each component is necessary and it is given by:
forallie Okandj (12)

A model in terms of individual flows MF consists of the linear equations (3), (7) and (12)

plus the nonlinear equations (8) or (9). The model in terms of the concentrations. MX includes

the linear equations (1). (4), (5). (6) and (10) plus the nonlinear equations (2) and (11).

Refor"? TI totton and Linearization

In order to avoid the direct use of the nonconvex models MX and MF, there is a relation that

can be established between them using the reformulation and linearization technique for

bilinear programming models proposed by Shcrali and Alameddine (1992). This technique can

be applied to the model MX. First, consider the bounds over the variables present in the

bilinear terms (total flow, F1 and concentrations Xj1)

(13)

(14)

Using the bounds in (13). (14) the following constraints can be generated for the bilinear

terms in (2) and (UK

fL (15)

j t u (16)

F1 Xj4 £ F*ux,4 + xfL F* - F*u XjIL (17)

F1 xf < FiLx/ + Xj4u F1 - F1L Xj*u (18)

In fact. McCormick (1976) has shown that the constraints in (15M 18) correspond to the

convex and concave envelopes of the bilinear terms over the given bounds. The formulation is

linearized by the definition of the following variables:

$*¥**{• (19)

Tfte resultihg model which involves equations (1). (3), (4). (5), (6). (10). (12) and the

constraints in (15)-{18) is a linear relaxation of the original nonconvex concentration model.

MX. in which the nonlinear equations (2) and (11) have been replaced by the linear equations

(3) and (12) from the individual flow model. MF. It is possible to generate additional linear

constraints that are redundant to the original nonlinear model, MX, but that can be

nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sherali et



al.. 1992). In particular, consider equation (7) that is the linear component mass balance for

the sputters in model MF. This linear equation is not present in the linear relaxation of the

concentration model, MX. Take equation (4) and multiply by the valid bound constraint xf £ 0

to get
I F x j ^ F * ^ (20)

Using equation (5) yields.
t P x j ^ F ^ (21)

that can be linearized to,

" f 'k ( 2 2 )

yielding equation (7). Hence, the linear equation for the splitter is valid and it is Included. Hie

nonlinear equations (8) or (9) can also be generated in a similar fashion but their linearizations

are in general redundant (see Appendix A). They are only useful when the formulation df the

problem provides non-trivial bounds over certain components in the outlet streams of a

splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that relate the total flow and the individual flows of a stream can

be generated for the splitters. Taking equation (6) and multiply by F1 yields.
* • " , - • . • • • . - .

= P (23)

Using the constraints xf = xjk in equation (23) and linearizing with fj1 = F1 xf yields.

F-Itf (24)
j

Based on the above it is possible to obtain a reformulated model MR that involves

concentrations, total flows and component flows, and which bounds the solution of the original

problem. The following equations are given for model MR:

a) Objective function. 0. which is expressed in terms of individual or total flows, ...

b) Mixer equations, which are expressed ta terms of the total and individual component flows.
* (1)

^ for all j (3)
t€Mk

J

6



c) Splitter equations, that are expressed in terms df the individual component flows and the

of the streams

l#S k

for all i€ SkandJ

for all J

(5)

(6)

(7)

d) Process units equations, that are given in terms of the total and individual component flows
XF* (10)

I € ifc I € Ofc

for all ie Okandj

e) Relation between the total flow and the individual component flows
= £ f/

J
for all streams

(12)

(24)

fj Bounds on flows and concentrations

f) Linear estimators, relate the individual component flows with the total flow and

concentrations.

fji S F ^ + x ^ P - F 1 " ^ " foral l i€Sk (16)

fji < ji u ̂ i ̂  x̂ t L pi. p u x̂ i L i s k € splitters t!7)

^iu foralljeJ (18)

(13)

(14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)

looser approximations of the nonlinear terms were used. In both cases, the nonconvex problem

(MF) was relaxed to a linear model by dropping the nonlinear equations (8) or (9). Equations

that approximate the difference relation between the components were considered (Kocis and

Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter

between the flowrate of the components and required the introduction of binary variables.



Outline of global optimization method

Model MR can be applied to predict lower bounds to the global optimum in the optimization of

pooling and blending problems and in the synthesis of separation systems. The reason is that

model MR provides a valid relaxation of the original feasible region since the nonlinear

equations (2) and (11) in model MX are not considered, and the valid linear equations (3), (7),

(12) and (15)-(18) are included. The proposed global optimization algorithm relies on the

solution of the relaxed problem MR within a spatial branch and bound enumeration. The

outline of the algorithm is as follows (for a more detailed description of step 4 see Quesada and

Grossmann (1993))

0. Preprocessing (optional)

Determine bounds on the variables involved in the nonconvex terms, that is total flows.

F*. and concentrations, xf. Apply any additional preprocessing specific to the structure of the

problem in order to further bound or fix variables.

1. Lower Bound

Solve model MR over a given subregion (initial subregion is the complete feasible region)

minimizing a convex objective function <J>. If <t> is linear the model is an LP.

2. Upper Bound

Any feasible solution to the nonlinear model provides an upper bound. Heuristic

techniques can be employed to obtain good feasible solutions or the original problem. MF. can

be solved using the solution of model MR as a good initial point. If the solution of problem MR

is feasible it provides an upper bound.

3. Convergence

If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper

bound.

4. Branch and Bound
Partition the remaining subregions into a sell of disjoint subproblems. Repeat steps 1-3

for each of the new subregions.

Remarks

The preprocessing step plays an important role in the above algorithm. It is during this step

that initial bounds for the variables involved in nonconvex terms are obtained. The quality of

8



these bounds affects the tigthness of the lower bound since they are part of the estimator

equations (15)418). Additionally, these bounds affect the performance of the algorithm because

they define the search space over which the branch and bound procedure may have to be

conducted.

In some cases, as described later in this paper, it is possible to exploit the particular

structure of the process network and generate bounds for the variables without having |o solve

any subproblems. Furthermore, during this preprocessing step additional constraints can be

generated for predicting a tighter lower bound of the global optimum can be obtained.

Some of the linear mass balances and the estimator equations are redundant in the

nolinear formulations, MF and MX. These equations become nonredundant in the

refonnulated model, MR, and for that reason it is important to write a complete formulation of

the network. However, this model can present some redundancies that can be easily identified

and eliminated to reduce the size of the model. This is the case for the concentration variables

used in the splitters. Model MR uses different sets of concentrations variables for the inlet and

outlet variables of a split unit. In practice, it is only necessary to define the concentration of

the component in the splitter and use the same variables for all the splitter streams. Also,

some redundancies can occur with the total flow variables. These ones are necessary for the

streams in the splitters but they might be redundant and eliminated in the other untis if they

do not appear in other part of the model or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it

corresponds to the global optimal solution. When the solution to the model MR is not feasible

it is necessary to follow a branch and bound procedure to search for the global optimum. This

procedure requires a valid upper bound on the global optimum. This can be generated through

heuristics or by solving directly the nonconvex model. For this purpose, the process network

model is formulated in terms of the individual component flows and the nonconvex equations

for the splitters are included. Equation (9J was also used in this work to model the splitters

due to it is better numerical behavior. The solution to the model MR was used for the good

initial point. In many instances, it was not possible to solve these nonlinear problems with

MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is generated. Of the set of open

nodes, these are the nodes that have a lower bound that is e-smaller than the current upper

bound, the node with the smaller upper bound is selected to branch on. The splitter units are

the units that are approximated, and of these, the splitter that has the largest difference



between its approximated and actual individual component flows is selected. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter. The branching is done in the selected splitter over the

concentration of the component that has the largest difference.

First, the actual concentrations for the individual component flows in the LP solution O

for the splitters are calculated by,

for all the inlet streams to splitter (26)

the splitter unit m is then selected according to the equation.

(27)
j .

Equation (27) represents the total difference between the LP solution for the flows after

the splitter and the actual value of these flows considering the concentrations before the

splitter. Once the splitter has been selected, the component in that sputter that has the largest

difference. J\ is selected by.

jf = argmax,( I If/ -1£ FM] (28»

Hie following branching constraints are then used:

Xj.m>z,m (29)

To improve the upper bound it might be necessary to solve additional nonconvex

problems. These can be solved after a given number of nodes using the solution of the node

with the smallest upper bound as the initial point. In this work if there was no significant

change in the lower bound df the new nodes with respect to the lower bound of the parent node

( < 1%) a new nonconvex problem was solved.

Example 1

Consider the following pooling and blending problem by Harveley (1978). Two streams that

have components A and B are mixed in a initial mixer a then go through a splitter to obtain two

streams than can be mixed with an additional stream (see Fig. 5a). Two different products can

be obatined and there are constraints on the concentration of component A in these products.

The objective function consists of mimizing the cost that is given by the total flow of the

streams times the cost coefficients. ct, given in Fig. 5.

10



This problem has two local solutions. One has an objective function <t> = -100 and

consists of otify producing product 2. The other local solution, that corresponds to the global

optimum, has an objective of 4> = -400 and here only product 1 is produced.

Model MR is formulated for this problem and the initial lower bound is 4>L = -500. The

nonlinear model, MF, is solved using the solution of model MR as the initial point and an upper

bound of • a -400 is obtained* Since there is a gap between the bounds of the global solution a

partition is performed- There is only one splitter that needs to be approximated and since there

are only two components it is irrelevant which one is selected since the composition bounds are

related (eg. xB
L s i - x*u). The actual value of the composition of A in the solution of model MR

is used as the branching point (x* = 0.0166) to generate two new subproblems. The first

subproblem (xA £ 0.0166) has a lower bound of 4>L = -100 and the second subproblem (x* <

0.0166) has a solution of fa = -400 (see Fig. 5b). Both of these bounds are greater or equal

than the upper bound, therefore the global solution has been found (xA = 0.01).

Example 2

Tbe next example is a separation problem taken from Kocis and Grossmann (1987). The

original problem has binary variables in* the formulation and they have been fixed to 1 for this

example (see Fig. 6).

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream

has 80% of the inlet flow of component B. In the column. 97.5% of the inlet flow of A goes to

the top whereas 95% of the inlet flow of B goes to the bottom stream. The total flow to the flash

unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of

each of the two feed streams has to be less than 25. The objective function is given by,

<t> ss 52 + 10 F! + 8 F2 + F4 + 4 F5 - 35 P,A- 30 P2
B (30)

The initial lower bound for this problem is 4>L = -513.22 and it is infeasible for the

original NLP model. A nonconvex problem is solved using CONOPT with the solution of model

MR as the initial point obtaining an upper bound of <t> = -511.87 and the relative gap is only

0.3%. Again only one splitter is present in the network and a partition can be performed using

the concentration of component A in this splitter. The lower bounds for the new two

subproblems are 0L = -511.87 (xA £ 0.5121) and 0L = -511.80 (xA > 0.5121). Both solutions are

greater or equal than the upper bound and the global solution has been obtained. In the global

solution Fx ss 8 and F2 = 25, and 11% of the inlet flow to the splitter is directed to the flash.

76% to the column and the rest bypassed to P2.

11



Example 3

This example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

The initial lower bound is 4>L = 138.18 and the nonconvex problem MP is solved
obtaining a solution of <fr « 138.7. The gap between these bounds is less than 0.4 %. The
global optimum for this tolerance is shown In Fig. 8.

Sharp separation

In order to illustrate the application of the above algorithm to a specialized case where the
structure can be further (exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
specified multicomponent product streams. The components are ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9)). The superstructure consist of N-l separators. Separator 1 performs the
task of removing component number 1 to number 1 at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-l
streams, Ft. that go to the separators and K streams, ak. that bypass the network to go to the
products. Each stream F< is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i, St.

The outlet streams of separator i are the top. Tl9 and the bottom, Bt. These streams, T«
and B{, are each split into streams, PTt

k and PB<k respectively, that go to the K products and
into streams, KIV' and RB/\ that are redirected to the other separators. The top stream of
separator 1, Tt, can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaller (lows. KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, Bt, can be redirected only to separators i+1 to N-l since it can only
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contain components that are separated by these sharp separators. RB,1' is the redirected flow
from the bottcpi stream of separator i to separator i'.

Model

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
and total flows has the following form:

V
min 4>

sL Feed*

c,S,
N-l K

N-l

St xs« a f« + X RBf1 xb,-. +
N-l

1-1

l

for alii and j

for alii

for alii and j

for alii

for all i and ord(j) <i

for all i and ord(j) > i

for all i and ord(j) > i

for all i and ord(J) £ i

for alii

for ail i

for all k

akz, for all k and j

for all 1

for alii

for all i

S,, T,, B,, F,t RT '̂, RBt1', PTt
k

f PBtk. c*t fy, xs,j, xfy xb«, ^ 0

N-l

N-l

N-l

r + £PB t
k

k«l
N-l

+ y.PB,k +1

N-l

(32.1)

(32.2)

(32.3)

(32.4)

(32.5)

(32.6)

(32.7)

(32.8)

(32.9)

(32,10)

(32.11)

(32.12)

(32.13)

(32.14)

(32.15)

(32.16)

(32.17)
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The parameters Feed, zj, Pk and pkJ represent the total feed, composition of the feed,

total flow of product k and component flow of component j in product k. respectively. The

variables xsq, xtfj and xb«j are the concentrations of component j in the inlet stream to separator

i. top of separator i and bottom of separator i, respectively.

The objective function (32.1) is a linear function of the inlet flow to the separators.

Equation (32.2) is the total mass balance in the inlet splitter and equation (32.3) is the

component mass balance. Equations (32.4) and (32.5) are the total and component mass

balances for the mixer i before the separator L The material balances for separator i are given

by equations (32.6). that is the total mass balance for the separator, equations (32.7) and (32.8)

that are the component balances for the top stream and indicate that nothing from components

number 1+1 to N-l is in the top of the separator, and equations (32.9) and (32.10) that are the

component mass balances for the bottom streams. Equations (32.11) and (32.12) are the

overall mass balances for the splitters of the top and bottom streams after separator i. The

equations that state that the concentrations of the outlet streams should be the same that the

inlet stream in a splitter have been already substituted. Finally, equations (32.13) and (32.14)

are the overall and component mass balances for the mixer for product k.

Model (32) corresponds to a formulation of the type of model MX where the distribution

coefficients are known and restricted to 0 or 1. Some simplifications have been made to avoid

including many irrelevant variables (e.g. not to define concentrations for the streams that go

the top i to product k). Although, some of the linear constraints in this formulation are

redundant, they can become nonredundant in the linear relaxation as will be shown in

Example 4.

Equations (32.5), (32.7), (32*9) and (32.14) involve nonconvex terms. This model can be

reformulated as in model MR by introducing individual component flows and the linear

equations (15)-(18) and (7) according to the approach illustrated eaiiier to obtain a model in the

form of model MR. The resulting reformulated model is as follows,
N-l

min $' = £ c4 S4

N-l K

st Feed = I Ft + Z

t-1 N-l

i-1 N-l

for all i andj

for all i

for all i and j

(33.1)

(33.2)

(33.3)

(33.4)

(33.5)
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N-l

rt-i

N-l

N-l K

X
k-1

xt,,= 1
1 J

""•-S/

for all i

for all i and ord(j) £ i

for all 1 and ord(j) > 1

for all i and ord(j) > i

for all i and ord(j) < i

for all i

for all 1

for all k

for all k and J

for alii and j

for all i and j

for all i

for all i

for all i

for alii

for all i and k

for all 1 and k

for all i and i' < i

for all i and i' > i

(33.6)

(33.7)

(33.8)

(33.9)

(33.10)

(33.11)

(33.12)

(33.13)

(33.14)

(33.15)

(33.16)

(33.17)

(33.18)

(33.19)

(33.20)

(33.21)

(33.22)

(33.23)

(33.24)

Equations (15-18) forty. rtrj
l and pty

k in terms of xtg

and the total flow of its respective stream.

Equations (15-18) for by. rbq1 and pbtl
k in terms of xb

and the total flow of its respective stream.

S,.T,, B,. F,. RT,'. RB,f. PT,k. PB,k, Ok. ftt. xs,j. xUt. xb(J SO

Sg. t,j. b,j pti,k. pb,,11. rt,,1'. rb,,1' > 0
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It is not necessary to Include equations (15) -(18) for the inlet component flows to the

separator, Sq, since the variables xs,j only appear in these equations. Also, the component

flows, s,j, only appear in mixers and sharp separators units which can be exactly represented in

terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-

(33.16) that are the component mass balances for the splitters of top and bottom streams have

been included accordingly to the reformulation previously presented. Equations (33.19M33.24)

relate the total flow and the individual component flows for the splitter streams.

Hie proposed superstructure (Fig. 9) allows to bypass certain amount of the feed to the product

k, a*, without having to go through the separation network. The amount of the product k that

is not bypassed has to be processed in the separation network and it will be denoted as the

'residual product*. Hence, the total 'residual product k' is given by (Pk - ak) and has the

component flows given by (p^ - ô z, )(see Fig. 10).

The global optimal solution of model (32) is a network in which all the 'residual

products'.have at least one component with a zero flow. The reason that it is not optimal to

separate a stream in the network and later to remix it. The same degree of separation can be

achieved using a bypass that does not incur any cost in the objective function.

Consider the second separator in the solution obtained by Floudas (1987) to his second

example (see Fig. 11). For this subnetwork of the complete structure the upper 'residual

product* has components B and C present. The components are being separated and remixed

again. The same outlet flows can be obtained with a smaller input flow to the separator as it is

shown in Fig. 11. Note that both 'residual products' have components with zero flow.

It should be clear that if there was not a component with zero flow in the 'residual

product1, then there is part of this stream that could have been obtained by just bypassing the

network. This in turn does not incur in any cost, whereas going through the network has a

positive cost. The above condition gives a lower bound for the bypass to each product. This

also corresponds to the largest amount that can be bypassed since all the flows in the residual

flow* have to be positive. In this form the bypass can be precalculated without affecting the

global optimality of the solution.

The bypass to product k is given by the maximum amount that can be sent to product k

without having a negative flow; that is.

a,, = min, [ ^ 4 (34)
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where Zjis the feed composition and pkj is the flow of component j in product k. The

component flows for 'residual product' k. Tkj are given by.

(35)

Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the (low of the key

components in separator L These bounds are based on the fact that separator i is the only unit

that can perform the task of separating component number 1 from component nutaber 1+1.

They are redundant for the nonlinear formulation (32) but they are relevant for the linear

relaxation in (33). To calculate them, it is necessary to determine in each product what is the

difference between the two key components of separator i with respect to the concentrations in

the feed. The lower bounds in separator i' for the flow of the key components in the top

(component Jl) and bottom (component J2) streams are given by:

for alii (36)

foralli (37)

where Ykj is given by (35). It is important to include both bounds in the relax model (33) since

there is no guarantee that the inlet flow to separator i has the same proportion between the key

components as the feed. It is not known in which part of the sequence separator i will be

placed, and it can be after a splitter that is not being approximated correctly.

The bounds in (36) and (37) can be extended to separation of components that are not

adjacent in the feed. Consider component number i and component number i+3. There are

three separators that can perform this task/separators i. i+1 and i+2. Cuts of the following

form can be obtained.

tt i + tM i + t|*a 12 £ {.Dd - zt minord(j),< or H3 [-r1]} for all i (38)

K y

i + b M i 2 £ {Tki*3 - z,*3 minorsO M*3 i~)) for all i (39)

Equations as the ones in (38) and (39) can be redundant compared to equations (36)

and (37) and it is possible to detect this before solving the problem.

Relative flowrate constraints
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These constraints are used when the relation between the flowrates of two components

is known. In particular, consider component A in the la:st column ofthe network (see Fig. 12).

None of the redirected streams contains component A. Therefore, the relative flowrate of

component A with respect to the other components in the top stream has to be smaller than in

the feed. This relation should remain valid after the top stream is split to the products and

redirected flows.

Ill the separator previous to the last one, N-2, all the streams do not have component A

except the one coming from the top of the last column. For this one it is already known that

the relative flow of component A with respect to the other components is smaller than in the

feed. This type of analysis can be done for component A and component N in all the columns

yielding th$ following linear constraints for the splitters.

for all 1 and k

ZNpbgX-Zjpt

for all i and 1' > i

for aU 1 and 1' < 1

f o r j * A

for ord(j)

f o r j * A

and ord(j) < i

* N and ord(j) > i

and ordtf) S i

(40)

(41)

2'0 forord(J)^Wandord(J)>i (431

Bounds on concentrations and total Jlows

The approximations (15-18) require bounds for the total flows and component

concentrations In the splitters. The lower bound for the total flow of the top and bottom

streams is given by the lower bound of the key components obtained in equations (36) and (37).

For the outlet streams of the splittters, that are the redirected streams and the streams that go

to the products, the lower bound is zero. The upper bound for the total flow of the top and

bottom streams is given by the feed to the network of the components that can be present in

each stream .that is.

Tt
u= ItFeed-XoicJz, for alii (44)

N

B^s [TlFeed-Taiazj for alii (45)

The upper bound for the streams after the splitter are given by.
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PB,k Jb?

for all i and i1 <

for alii aridi'>

for all i and k

for all i and k

i

i

(46)

(47)

(48)

(49)

The lower bounds for the concentrations are zero except for fee key components in the

separator for which the lower bounds are given by the lower bound of its flow divided by the

upper bound of the total flow of that stream. The upper bounds in the concentrations are given

by one minus the lower bounds of the other components.

The solution of the linear programming model (33) provides a lower bound to the global

optimum since this model is a valid relaxation of the nonconvex model (32). This lower bound

is obtained by solving the LP model for the residual products1 in (35) with the addition of the

valid constraints (36)-(43).

The upper bounds are generated solving model (32) in terms of the individual flows for

the residual products'. When additional nonconvex problems are solved to improve the current

upper bound it can happen that very similar initial point are generated. In this case, a new

nonconvex NLP is solved in which bounds over the total inlet flows to the separators (S,) are

included. For this purpose the values of these variables in the LP solution (S,*) arc used such

that the current incumbent solution is no longer feasible.

Example 4

Consider the 3 component example proposed by Floudas and Aggarwal (1990). An equimolar

feed has to be separated into two products as show in Fig. 13. The objective function is given

by

<{> s 0.2395 + 0.00432 S, + 0.7584 + 0.01517 S2 (50)

The bypass to products 1 and 2 can be calculated according to equation (34) and the

'residual product1 component flows are obtained through equation (35) (see Fig. 14). The total

bypass to product 1 is a, = 90 and the bypass to product 2 is <x2 = ISO and the feed has a

concentration of zA = 1/3, zQ = 1/3 and ZQ = 1/3. In this form the 'residual product1 1 is YIA =

0. YiB = 20 and Y*C = 0 and the residual product* 2 is Y2A = 20, Y2B = 0 and Yac s 20.

Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35M36). The key components in separator 1 are component A in the top and

its flow has to be at least 20 and component B in the bottom has to have at least a flow of 20.

In the top stream of the second separator at least 20 units of component B have to be

separated from 20 units of component C in the bottom stream. It is important to note that

after preprocessing the network several suboptimal solutions have been cut off. One of these

suboptimal solutions for this particular data is a parallel configuration of both separators

(there are situations in which a parallel configuration can correspond to the global solution as

will be shown in example 5). In this example the direct or indirect sequence have a lower

objective function. Both of these configurations are local solutions with an objective function

value of 4 = 1.8639 for the direct sequence and $ = 2.081 for the indirect one. In some

instances, MINOS 5.2 had problems converging even in this small example.

The LP (33) is formulated for this problem, giving a lower bound of ^ = 1.8639. The

approximations are exact and therefore this solution is a feasible solution of model (32) proving

that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.

The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted

that if the linear mass balances for the mixer for product 2 were not considered since they are

redundant for the nonlinear formulation, a lower bound in the relaxed model of $L = 1.12 is

obtained. This shows that It is relevant to include all the mass balances in the linear model in

order to tighten the lower bound.

ExompteS

In the approach proposed by Wehe and Westerberg (1987) for the case of 3 components only

the direct and indirect sequences are considered and both options can be modelled as LP

problems since no mixing is required for these separation networks. However, this example

shows that parallel configurations can be also globally optimal and that they are not excluded

by the method proposed in this paper. To be able to consider parallel configurations or any

combination of parallel with direct or indirect sequences it is necessary to model a

superstructure in which mixing is allowed (like in the structure used in Fig. 13). Here,

nonconvexities arise in the mass balance equations after the separators.

Consider that an equimolar feed is to be separated into the two different products given

in Fig. 16. The objective function is to minimize the sum of the total flows into the separators.

The same procedure that in the previous example is followed and the bypass can be

precalculated by equation (34). The solution to the model (32) yields <t>L = 12 and since it is a

feasible solution of model (32) it corresponds to the global optimum (see Fig. 16). Note that the

solutions for the direct or indirect sequences have an objective function of $ = 16.
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Branch and Bound

If there is a gap between the lower ai}d upper bound, a branch and bound search is performed.

It is only necessary to do the search over the variables involved in the nonconvex terms. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter. In this way. it is necessary to check the approximation for the

concentrations in the splitters of the top and bottom strear^s of the separator. Equations (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound

search.

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation

network examples 4 to 12. The number of variables is the total number of variables that are

included in the reformulated and relaxed model (33) for that example. The lower bound is the

initial bound that is obtained by solving model (33) over the entire feasible space. The inital

gap represents the percentage difference between the initial lower and upper bounds. When

there is a zero initial gap it means that the first relaxed solution is feasible in the original

problem thereby corresponding to the global solution. The column for nodes gives the total

number of subproblems that where solved before converging to the global solution. A relative

tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after

branching and example 12 for which a tolerance of 0.02 was used. It is important to note that

the initial lower bound is tight and that it corresponds to a good estimation of the global

solution. The largest differences are for example 1 with a 25% of difference and for example 12

with a 7% difference. The LP time refers to the time used to solve each relaxed model and the

NLP time is the time used for solving a nonconvex model. It is possible to do updates using the

previous LP solution and in this form have a more efficient implementation. The times are in

seconds and the problems were solved on an IBM RS600/530 using GAMS 2.25 (Brooke et al.

(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP

problems. A brief description of the example problems 6 to 12 is given below. It includes the

specific data for the problem, the objective function and the topology of the network that is the

global solution.

Example 6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

(M2.5S!+3 .0S 2 +1.5S 3 (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is <t>L = 54.25 and an upper bound of $ = 55.5 is obtained by

solving the nonconvex problem. A partition of the feasible region is performed using the

composition of component D in the bottom stream of separator 1. The first subproblem (x £

0.166) yields a lower bound of ̂  = 55.45 and the second subproblem (x < 0.166) has a solution

of 4>L= 55.8. The latter is greater than the upper bound and the former is less than 1% of the

global solution (see Fig. 17).

Exampie7
This example is taken from Floudas (1987). The data for this problem is given in Table 3 and

the linear objective function is given by:

+3.0S2+1.2S3
(52)

The initial lower bound is 4>L = 32.7 and it provides a feasible solution to the nonconvex

problem. In this form the global solution (see Fig. 18Ms obtained in one iteration. It is

interesting to see that this solution also provides a better objective function for the concave

objective function used by Floudas (1987) (4 = 10.65 versus 0 = 13.68 which is 28% higher)

Elxample 8
This four component problem is taken from Wehe and Westerberg (1987). The data for the

products is given in Table 4 and the objective function has the following form:

<j> s 5.0 + 0.5 Si + 4.0 + 0.3 S2 + 6.0 + 0.7 S3
(53)

The first relaxed subproblem has a solution of <|>L =26,76 and it is infeasible for the

nonconvex problem. A nonconvex problem is solved using CONOPT with the LP solution as the

initial point. An upper bound of 0 « 26.79 is obtained corresponding to the global solution (see

Fig. 19) within a 0.1%.

Example 9
This example corresponds to example 1 from Wehe and Westerberg (1987). Table 5 provides

the data for the product flows and the objective function is given by:

<|> = 5.0 + 0.5 Si + 9.0+1.0 S2 + 3.0 + 0.4 S3 + 6.0 + 0.6 S4 (54)

A initial lower bound of 4>L = 85.16 is obtained and the upper bound Is 0 » 85-65. The

difference is 0.5% and the global solution (see Fig. 20) is obtained in one iteration.

22

..,.:,. mlMi, >



Example 10
This problem is taken from Flotidas (1987) and the data is given in Table 6. The objective

function is given by,

<J> * 1.2 Si + 3.0 Sj + 2.5 S3 + 1.5 S4 (55)

The <y*«*m lower bound is <t̂  = 156.56 and the upper bound is <t> = 179.08. After 5 nodes

the global solution of 0 m 159.48 (see Fig. 21) is obtained.

Example 11
Hie data for this 6 component problem are given in Table 7 and the objective function has the

following form:

* *1.5 S, + 3-0 Sa + 2.0 S3 + 1.0S4 + 4.0 S5 . (56)

The initial lower bound is <frL = 173 and the upper bound is 0 » 179.11. After five nodes

the global solution is obtained (see Fig. 22).

Example 12

This is a 6 component 4 products problem and the data are given in Table 8. The objective

function is:

* = 5.0 S! + 3.0 Sj + 2.0 S3 + 2.5 S4 + 4.0 S5 (57)

The initial lower bound is $L = 362 and the initial upper bound is <t» = 415.6. The global

solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent

streams has been proposed. The basic idea relies on a relaxed LP model that is obtained

through reformulation-linearization techniques that establish a clear relation between the

component flow and the composition models for mass balances. The reformulated model

combines both of these providing tighter lower bounds than other relaxations proposed in the

previous work. The relaxed linear model has been embedded in a branch and bound procedure

to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of

the particular structure of sharp separation networks with single feed and mixed products.

Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model

can be obtained without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter

lower bound.

Twelve examples for both general process networks and for sharp separation networks

have been presented to illustrate the performance of the algorithm. As has been shown, only a

small number of nodes are commonly needed in the branch and bound search to identify the

global or e-global solution. Moreover, in many cases the initial lower bound is either the exact

solution or a very good approximation to the global solution.
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Appendix A. Reformulation-Linearization to obtain the nonlinear
constraints in model MF

The nonlinear equations in model MF, that can be expressed either as (8) or (9), can also be

generated from model MX. For this purpose take the concentration model MX and consider

equation (5),

... l ^
multiply by the valid bound constraint Xj-k £ 0

xfxfmxfzp (A.2)
Use equation (5) for component j\

x,kV**il*fk 1A-3'
Multiply by the valid bound constraints Fk > 0 and F1 > 0,

F^JP^-F^F*^ tA.41

that it is linearized to yield.

fffJJsfj'ff (A.5)

which is precisely equation (8) for the splitters in the individual flow model MF.

Consider again equation (5).
x,k = x,1 (A.6)

multiply by the valid bound constraints Fk > 0 and F* > 0,
k IA.7)

that can be linearized to yield,
ffF^f/F* (A.8)

Define the split fraction ? to be,
? = | * (A.9)

Equation (A.8) can then be expressed as
f/ = ? fjk (A.10)

which corresponds to equation (9).

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear

approximations in general are also redundant in the linear reformulated model MR Consider

equation (A.1O), similarly to (15) one of its linear approximations is given by.

If there are no particular restrictions in the splitters, then the bounds for the split

fraction variable are 0 < ^ < 1 and using them in (A. 11) yields.
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The bound for the individual component flow is given by fjk L = xf L Fk L: also x,k = x,4 and £f

F1

pt, which leads to.

The estimator (15) for the same conditions (F*L = 0) is given by

Since the factor -^r is always less or equal than 1, equation (A. 13) is redundant. A similar

analisis can be performed for the other estimators. Only when more specific bounds over the

split fractions or the individual component flows are known, will these additional estimators be

non redundant.
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Figure 1. Process network with units, splitters and mixers.

streams i e Mk

Figure 2. Mixer module
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Figure 3. Splitter module.
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Figure 4. Process unit module.
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Figure 5. Network and branch and bound search for example 1
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Figure 6. Network for example 2.

Figure 7. Network for example 3.
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Figure 8. Optimal network for example 3.
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Figure 9. Superstructure for separation with sharp splits and mixed products.
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Abstract

This paper deals with the global optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides a valid lower bound to the global optimum. This formulation is then
used within a spatial branch and bound search. The application of this method is considered
in detail for sharp separation systems with single feed and mixed products. Numerical results
are presented on twdve test problems to show that only few nodes are commonly required in
the branch and bound search.



Introduction

A common source of noneonvexities in the synthesis and design of processes, as well as in

flowsheet optimization, are the material flow equations for multiccmponent streams. These

nonconvex equations involve bilinear terms and they arise in the mass balance equations when

the compositions are unknown. There are different equivalent formulations for this type of

networks. One alternative is to formulate the mass balance equations in terms of component

concentrations. In this form bilinear terms are present in the equation* for the mixer units

and the different process units (e.g. sharp separators). A second alternative is to express the

mass balances in terms of flows of individual components. This option has the advantage that

it involves a ^naUmr number of nonlinear equations. However, the modelling of the splitter

units involves bilinear terms that arise due to the condition that the proportions of flows

between components have to be the same for the different streams.

The difficulty with the nonconvexities noted above is that they may give rise to

optimization problems Involving several local optima and numerical singularities that may

produce failure in the NLP algorithms. Recently there have been important efforts in the area

of global optimization. Examples of algorithms are the ones proposed by McCormick (1976).

Floudas and Viswewaran (1990) and Sherali and Alameddine (1992) which can be used to solve

bilinear programming problems like the ones that arise in networks with multicomponent

streams. For a recent review in the area of bilinear programming see Al-Khayyal (1992).

As for previous work in the design and synthesis of multicomponent process networks

Mahalec and Motard (1977) and Nath (1977) developed evolutionary techniques that are based

on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of

separation networks with mixed products in which only sharp separators are considered. A

superstructure of the process network was proposed and modelled in terms of concentrations.

The resulting model is nonconvex and solved with a standard NLP algorithm with no guarantee

of global optimality. Floudas and Aggarwal (1990) solved small pooling and blending problems

and sharp separation networks problems using a strategy based on Benders decomposition. In

this approach only convex subproblems are solved but there is no guarantee of obtaining the

global optimum. Kocis and Grossmann (1989) modelled process networks with

multicomponent streams in terms of the individual component flows. They included a set of

bounding constraints with binaxy variables to approximate the nonconvexities that are present

in splitters with multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp

separation networks with mixed products. They proposed a search procedure that involves the



enumeration of the different separation sequences. The nonconvex equations are dropped and

constraints that are valid for each particular sequence with a set of bounds over the key

components are included to obtain tighter UP relaxations for each configuration. However, the

number of sequences to be examined grows rapidly and there is no guarantee of global

optimality.

In some particular cases the nonconvexities in the mass balances can be avoided

through the introduction of binary variables. One of these cases is when single choice splitters

are present in the flowsheet (Kocis and Grossmann, 1989). Here, it is possible to have a mixed

integer linear formulation for the mass balance equations in terms of the individual component

flows. Another restricted case for which some nonconvexities can be reformulated is when

mixing within the network is only allowed for streams of the same concentration. In this form,

larger network superestructures must be proposed and the concentrations of the streams are

known beforehand. Integer variables are introduced to model the existence of the different

streams (e.g. the mixed integer linear formulation for sharp separation networks by Floudas

and Anastasiadis, 1988).

The objective of this paper is to present an efficient global optimization method that

exploits the particular structure that is present in process networks with multicomponent

streams (e.g. pooling and blending systems, sharp separation networks). First a relation is

established between formulations based on concentrations and individual flows. This is done

following the Reformulation-Linearization technique proposed by Sherali and Alameddine

(1992). As will be shown, a linear relaxation Is obtained that is in the space of the

concentrations and individual flows which can be used in a branch and bound search is to find

the global optimum. Application to the optimal design of sharp separation systems with single

feed and mixed products is considered In detail. Different preprocessing techniques that allow

tightening of the relaxation problem are presented. The performance of the algorithm is

reported on a total of twelve problems.

Modeling with concentrations and individual flows

Consider a process network that consists of splitters, mixers and process units that are

interconnected with multicomponent streams (see Fig. 1). The process iinits that are

considered in this paper are units in which the output flows of the components can be

expressed as a linear relation of the inlet flows (e.g. sharp separators, reactor with^known

conversion). It is possible to formulate the mathematical model of the process network in

terms of the concentrations of the streams. Xjk. Another possibility is to model the network



using flows of individual components. The former has the advantages that it provides a

convenient framework for the evaluation of therxnodynamic properties, and in many cases

bounds can be expressed in a more natural form. A major disadvantage is that many

nonconvex terms (bilinear) are involved in the mass balances for the components. The

individual component flows formulation is often chosen since it gives rise to a larger number of

linear equations and the only nonconvexities are involved in the modelling of the splitters. In

these untis it is necessary to enforce that the components maintain the same concentration in

each of the streams leaving the splitter. These constraints can be expressed as relations

between the different components (Wehe and Westerberg, 1987). One deficiency of this

representation is that since many flows can take values of zero, singularities may arise with

which conventional nonlinear programming methods may have difficulties to converge.

Another alternative is to introduce additional variables that represent split fractions (Kocis and

Grossmann. 1989). This involves a larger number of constraints but tends to yield a

formulation that numerically is better behaved.

Following axe the equations that apply to the mixers, splitters and units using the two

alternative representations:

Mixer

A mixer k consists of a set of Inlet streams, Mk, and an outlet stream k (see Fig.2).

a) Concentrations

The total mass balance for a mixer k is given by:
F*« X F* (1)

t«Mfc

where F1 is the total flow in stream i. The mass balance for each component j is given by the

nonlinear equations.
F^xfc 2 Fixj» for all j (2)

where xf is the concentration of component j in the stream i

b) Individual Jlows

Here it is only necessary to write a mass balance for each component j, given by the
linear equations:

^ 1 for all j (3)

where fj1 is the flow of component j In stream i.

Splitter

A splitter k has an inlet stream k and a set of outlet streams Sk (see Fig. 3).



ql[Concentrations

The equations for a splitter in terms of the concentrations are given by the following

linear equations
I ' P = P * (4)

1 € Sfc

Xj* = x,k for all i 6 Sk a$d j (5)
1 x ^ = 1 " (6)
J

b) Individual flows

The mass balance for each component j is given by
I f^a fA for all j (7)

t€Sfc

Here, it is also necessary to enforce the condition that the streams leaving the splitter

have the same proportions in flow for each component. These relations between components,

which are nonlinear, can be expressed in terms of the inlet stream k and a given component j'

fr
k fj* s fjk fjJ for all i € Ikand j * j1 (8)

A different approach consists of introducing as additional variables the split ratios §f
t

that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear

equations are given by

ff«9fjk for al i i € Ik and j (9)

w i t h O £ ? £ l .

Process units • .*. .

In this paper it will be assumed that the outlet streams, i € Ok, in the process units can

be expressed as linear relations of the inlet streams, i e Ik (see Fig. 4). This is for instance the

case of sharp split separators, separations in which the recovery level is known, or reactors

that have a fixed conversion.

a) Concentrations "

The overall mass balance for process unit k is given by,
I Pa I P (10)

l € l k i € O k

The mass balance for each component j is given by the nonlinear equations;
= Px,4 for all ie Okandj (11)

where Pjr
lk is a constant for process unit k that gives the distribution of component j in the

stream i e Ok coming from streams i1 e Ik. For a separator unit it is required tliat 2 IV* = 1

and £ Pjr
tk a 1. A sharp split separator is one for which IIkl = 1 and IOkl =.2 (top and

i' € lk

bottom streams) and for all the components the constant pjr
ik are either 0 or 1.



b) Individual flows

Only the mas balance for each component is necessary and it is given by:
' forallie Okandj (12)

l#€ Ik

A model in terms of individual flows MF consists of the linear equations (3), (7) and (12)

plus the nonlinear equations (8) or (9). The model in terms of the concentrations, MX, includes

the linear equations (1), (4), (5), (6) and (10) plus the nonlinear equations (2) and (11).

Reformulation and Linearization

In order to avoid the direct use of the nonconvex models MX and MF, there is a relation that

can be established between them using the reformulation and linearization technique for

bilinear programming models proposed by Sherali and Alameddine (1992). This technique can

be applied to the model MX. First, consider the bounds over the variables present in the

bilinear terms (total flow, F1 and concentrations x,')

(13)

(14)

Using the bounds in (13), (14) the following constraints can be generated for the bilinear

terms in (2) and (11),
I L (15)

^ ^ ^ ^ l u ( 1 6 )

F1 *j» £ F*ux,4 + Xj»L F* - F*u XjIL (17)

j ' " (18)

In fact, McConnick (1976) has shown that the constraints in (15)-(18) correspond to the

convex and concave envelopes of the bilinear terms over the given bounds. The formulation is

linearized by the definition of the following variables:

fjl = Px j
i (19)

Tile resulting model which involves equations UK (3). (4). (5), (6). (10). (12) and the

constraints in (15M18) is a linear relaxation of the original nonconvex concentration model,

MX, in which the nonlinear equations (2) and (11) have been replaced by the linear equations

(3) and (12) from the individual flow model. MF. It is possible to generate additional linear

constraints that are redundant to the original nonlinear model, MX, but that can be

nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sherali et



al*. 1992). In particular, consider equation (7) that is the linear component mass balance for

the splitters in model MF. "This linear equation is not present in the linear relaxation of the

concentration model. MX. Take equation (4) and multiply by the valid bound constraint x,k £ 0

to get
£ F*xJ

k = Fk^k (20)

Using equation (5) yields.
£'F**i l»lE*^k (21)

that can be linearized to.

yielding equation (7). Hence, the linear equation for the splitter is valid and it is included. The

nonlinear equations (8) or (9) can also be generated in a similar fashion but their linearizations

are in general redundant (see Appendix A). They are only useful when the formulation 6f the

problem provides non-trivial bounds over certain components in the outlet streams of a

splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that relate the total flow and the individual flows of a stream can

be generated for the splitters. Taking equation (6) and multiply by F1 yields.

= F< (23)

Using the constraints x,1 = x̂ k in equation (23) and linearizing with fj1« F* x,4 yields,

(24)
j

Based on the above it is possible to obtain a reformulated model MR that involves

concentrations, total flows and component flows, and which bounds the solution of the original

problem. The following equations are given for model MR:

a) Objective function. <t>. which is expressed in terms of individual or total flows.

b) Mixer equations, which are expressed in terms of the total and individual component flows.
•.F*« £ F* (1)

t€Mk

If/ forallj (3)
icMfe

6



c) Splitter equations, that are expressed in terms of the individual component flows and the

f^oncditi^ tf̂ nff of the streams

y p-pk (4)
t€Sk

Xj' = Xjk for alii e 3* and J (5)

XxJ<=i (6)

£ If «f f for ail j (7)

d) Process units equations, that are given in terms of the total and individual component flows
(10)

fj«= T p/'f/ foraUie Okandj (12)

e) Relation between the total flow and the individual component flows

j

= £ f/ for all streams (24)

f) Linear estimators, relate the individual component flows with the total flow and

concentrations.

ri £> pi L jqi + v * I* pi . pi L jri L (15)

fji ^F 1 t t ^ 4 ^^! u F l -F l u ^ l u for alii e Sk (16)

f/ <F l t t^ l4-^1 LF i-F ! u^ I L i s k € splitters flT)

fj1 ^F^XJ' + X ^ F - F ' - X J ' " foralljeJ (18)

f) Bounds on flows and concentrations

(13)

(14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)

looser approximations of the nonlinear terms were used. In both cases, the nonconvex problem

(MF) was relaxed to a linear model by dropping the nonlinear equations (8) or (9). Equations

that approximate the difference relation between the components were considered (Kocis and

Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter

between the flowrate of the components and required the introduction of binaiy variables.



method

Model MR can be applied to predict lower bounds to the global optimum in the optimization of

pooling and blending problems and in the synthesis of separation systems. The reason is that

model MR provides a valid relaxation of the original feasible region since the nonlinear

equations (2) and (11) in model MX are not considered, and the valid linear equations (3), (7),

(12) and (15)-(18) are included. The proposed global optimization algorithm relies on the

solution of the relaxed problem MR within a spatial branch and bound enumeration. The

outline of the algorithm is as follows (for a more detailed description of step 4 see Quesada and

Grossmann (1993))

0. Preprocessing (optional)

Determine bounds on the variables involved in the nonconvex terms, that is total flows,

F1, and concentrations, x{. Apply any additional preprocessing specific to the structure of the

problem in order to further bound or flx variables.

1. Lower Bound

Solve model MR over a given subregion (initial subregion is the complete feasible region)

minimizing a convex objective function $. If <t> is linear the model Is an LP.

2. Upper Bound

Any feasible solution to the nonlinear model provides an upper bound. Heuristic

techniques can be employed to obtain good feasible solutions or the original problem, MF. can

be solved using the solution of model MR as a good initial point. If the solution of problem MR

is feasible it provides an upper bound.

3. Convergence

If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper

bound.

4. Branch and Bound

Partition the remaining subregions into a set of disjoint subproblems. Repeat steps 1-3

for each of the new subregions.

Remarks

The preprocessing step plays an important role in the above algorithm. It is during this step

that initial bounds for the variables involved in nonconvex terms are obtained. The quality of

8



these bounds affects the tigthness of the lower bound since they are part of the estimator

equations (15)418). Additionally, these bounds affect the performance of the algorithm because

they define the search space over which the branch and bound procedure may have to be

conducted.

In some cases, as described later in this papier, it is possible to exploit the particular

structure of the process network and generate bounds for the variables without having to solve

any subproblems. Furthermore, during this preprocessing step additional constraints can be

generated for predicting a tighter lower bound of the global optimum can be obtained.

Some of the linear mass balances and the estimator equations are redundant in the

nolinear formulations, MF and MX. These equations become nonredundant in the

reformulated model, MR. and for that reason it is important to write a complete formulation of

the network. However, this model can present some redundancies that can be easily identified

and eliminated to reduce the size of the model. This is the case for the concentration variables

used in the splitters. Model MR uses different sets of concentrations variables for the inlet and

outlet variables of a split unit. In practice, it is only necessary to define the concentration of

the component in the splitter and use the same variables for all the splitter streams. Also,

some redundancies can occur with the total flow variables. These ones are necessary for the

streams in the splitters but they might be redundant and eliminated in the other untis if they

do not appear in other part of the model or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it

corresponds to the global optimal solution. When the solution to the model MR Is not feasible

it is necessary to follow a blanch and bound procedure to search for the global optimum. This

procedure requires a valid upper bound on the global optimum. This can be generated through

heuristics or by solving directly the nonconvex model. For this purpose, the process network

model is formulated in terms of the individual component flows and the nonconvex equations

for the splitters are included. Equation (9) was also used in this work to model the splitters

due to it is better numerical behavior. The solution to the model MR was used for the good

initial point. In many instances, it was not possible to solve these nonlinear problems with

MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is generated. Of the set of open

nodes, these are the nodes that have a lower bound that is e-smaller than the current upper

bound, the node with the smaller upper bound is selected to branch on. The splitter units are

the units that are approximated, and of these, the splitter that has the largest difference

9



between its approximated and actual individual component flows is selected. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter. The branching is done in the selected splitter over the

concentration of the component that has the largest difference.

First, the actual concentrations for the individual component flaws in the LP solution (*)

for the splitters are calculated by,

for all the inlet streams to splitter (26)

The splitter unit m is then selected according to the equation.

N • • , . . : .

c mitt ( ty-z^FH) , (27)

Equation (27) represents the total difference between the LP solution for the flows after

the splitter and the actual value of these flows considering the concentrations before the

splitter. Once the splitter has been selected, the component in that splitter that has the largest

difference. J\ is selected by,

J--aigma^( JL I f/ - z»te F* 11 (28)

The following branching constraints are then used;

(29)

To improve the upper bound it might be necessary to solve additional nonconvex

problems. These can be solved after a given number of nodes using the solution of the node

with the smallest upper bound as the initial point. In this work if there was no significant

change in the lower bound of the new nodes with respect to the lower bound of the parent node

( < 1%) a new nonconvex problem was solved.

Example 1

Consider the following pooling and blending problem by Harveley (1978). Two streams that

have components A and B are mixed in a initial mixer a then go through a splitter to obtain two

streams than can be mixed with an additional stream (see Fig. 5a). Two different products can

be obatined and there are constraints on the concentration of component A in these products.

The objective function consists of niimizing the cost that is given by the total flow of the

streams times the cost coefficients, ct, given in Fig. 5.

10



This problem has two local solutions. One has an objective function 0 = -100 and

consists of only producing product 2. The other local solution, that corresponds to the global

optimum, has an objective of + « -400 and here only product 1 is produced.

Model MR is formulated for this problem and the initial lower bound is 0L = -500. The

nonlinear model. MF, is solved using the solution of model MR as the initial point and an upper

bound of $ s -400 is obtained. Since there is a gap between the bounds of the global solution a

partition is performed. There is only one splitter that needs to be approximated and since there

axe only two components it is irrelevant which one is selected since the composition bounds are

related (eg. xB
L = 1 • x*u). The actual value of the composition of A in the solution of model MR

is used as the branching point (x* = 0.0166) to generate two new subproblexns. The first

subproblcm (xA £ 0.0166) has a lower bound of 4>L = -100 and the second subproblem (x* £

0.0166) has a solution of fa. = -400 (see Fig. Sb). Both of these bounds are greater or equal

than the upper bound, therefore the global solution has been found (xA = 0.01).

The next example is a separation problem taken from Kocis and Grossmann (1987). The

original problem has binary variables in the formulation and they have been fixed to 1 for this

example (see Fig. 6).
*

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream

has 80% of the inlet flow of component B. In the column. 97.5% of the inlet flow of A goes to

the top whereas 95% of the inlet flow of B goes to the bottom stream. Hie total flow to the flash

unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of

each of the two feed streams has to be less than 25. The objective function is given by,

<|> = 52 + 10 F! + 8 F2 + F4 + 4 F5 - 35 PjA- 30 P2
B (30)

The initial lower bound for this problem is 0L = -513.22 and it is infeasible for the

original NLP model. A nonconvex problem is solved using CONOPT with the solution of model

MR as the initial point obtaining an upper bound of <J> = -511.87 and the relative gap is only

0.3%. Again only one splitter is present in the network and a partition can be performed using

the concentration of component A in this splitter. The lower bounds for the new two

subproblexns are fa = -511.87 (xA £ 0.5121) and <t>L = -511.80 (xA > 0.5121). Both solutions are

greater or equal than the upper bound and the global solution has been obtained. In the global

solution Fi = 8 and F2 = 25, and 11% of the inlet flow lo the splitter is directed to the flash.

76% to the column and the rest bypassed to P2.

11



Example 3

TIUs example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

>«4Si + 1.5S2 + 4S3 (3D

The initial lower bound is 4>L = 138.18 and the nonconvex problem MP is solved
obtaining a solution of $ = 138.7. The gap between these bounds is less than 0.4 %. The
global optimum for this tolerance is shown in Fig. 8.

Sharp separation networks

In order to illustrate the application of the above algorithm to a specialized case where the
structure can be further exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
specified multicomponent product streams. The components are ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9)). The superestructure consist of N-l separators. Separator i performs the
task of removing component number 1 to number! at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-l
streams, Ft, that go to the separators and K streams, ak. that bypass the network to go to the
products. Each stream F{ is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i, S^

The outlet streams of separator i are the top, T(, and the bottom, Bt. These streams, T,
and Bt. are each split into streams, PTt

k and PB^ respectively, that go to the K products and
into streams, KIV' and.RBf. that are redirected to the other separators. The top stream of
separator i, Tit can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaller flows. KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, B,, can be redirected only to separators i+1 to N-l since it can only

12
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contain components that are separated by these sharp separators. RB/ is the redirected flow
from the bottom stream of separator i to separator i\

Model

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
and total flows has the following form:

min •= Zc t S| (32.1)
N-l K

st. reeo!•» 2u * i * m®k IOZ.ZJ
t»i k*i

LsF|L for all i and j (32.3)
1-1 N-l

Si» F| + £ RB,1 + X Kiy for aU i (32.4)
t'«l !'«*•!

1-1 N-l
Si xsq = flj + £ RBf1 x^j + £ KTr

! xtrj for all i and j (32.5)

S i s ^ + Bi for alii (32.61

for all i and ord(j) < i (32.7)

for aU i and ord(j) > i (32.8)

for all i and ord(j) > i (32.9)

= 0 for all i and ordQ) ^ i (32.10)
t - i K " !

Tf m £RTir + £FTt
k for aU i (32.11)

1*1 k«l
N-l K

Bi s £RB^f + £PBt
k for all i (32.12)

N-l N-l

3^ + 0^ Tor'alt k (32.13)
N-l N-l
£PT,k xt« + £PB,k xbq+ ak z. for all k and j (32.14)
i*l i»l

1 for alii (32.15)
N
Z xb,j = 1 for all i (32.16)
N
I x s , j = l for alii (32.17)

Si, T|t B,. Fi. RT/. RBt*'. PTt
k. PBik. c*. t^ xs,j, xty.
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The parameters Feed, zj, Pk and pkj represent the total feed, composition of the feed,

total flow of product k and component flow of component j in product k, respectively. The

variables xsq, xty and xbg are the concentrations of component j in the inlet stream to separator

1, top of separator 1 and bottom of separator i, respectively.

The objective function (32.1) is a linear function of the inlet flow to the separators.

Equation (32.2) is the total mass balance in the inlet splitter and equation (32.3) is the

component mass balance. Equations (32.4) and (32.5) are the total and component mass

balances for the mixer i before the separator L The material balances for separator i are given

by equations (32.6)* that is the total mass balance for the separator, equations (32.7) and (32.8)

that are the component balances for the top stream and indicate that nothing from components

number 1+1 to N-l is in the top of the separator, and equations (32.9) and (32.10) that are the

component mass balances for the bottom streams. Equations (32.11) and (32.12) are the

overall mass balances for the splitters of the top and bottom streams alter separator 1. The

equations that state that the concentrations of the outlet streams should be the same that the

inlet stream in a splitter have been already substituted. Finally, equations (32.13) and (32.14)

are the overall and component mass balances for the mixer for product k.

Model (32) corresponds to a formulation of the type of model MX where the distribution

coefficients are known and restricted to 0 or 1. Some simplifications have been made to avoid

including many irrelevant variables (e.g. not to define concentrations for the streams that go

the top i to product k). Although, some of the linear constraints in this formulation are

redundant, they can become nonredundant in the linear relaxation as will be shown in

Example 4.

Equations (32.5). (32.7). (32.9) and (32.14) involve nonconvex terms. This model can be

reformulated as in model MR by introducing individual component flows and the linear

equations (15M18) and (7) according to the approach illustrated earlier to obtain a model in the

form of model MR The resulting reformulated model is as follows,
N-l

min <)>f =

s t Feed

fij = F

S, = f

s<j = fi

S c < S i
1*1

N-l

= IF1 +

1 »I

i-1

j+ Z rbt

K

I<

teftKi

Xk

N-l

1 •••i

N-l

I rtrj>
i«t*l

for all i

for alii

for all i
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andj

andj

(33.1)

(33.2)

(33.3)

(33.4)

(33.5)
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Sr-TV+'B, for a l i i (33.6)

tn = sij for all i and ord(j J £ i (33.7)

t f * 0 for all i and ord(j) > i (33.8)

b,jSSSg for all i and ord(j) > i (33.9)

t,j = O for all i and ordfl) £ i (33.10)

T, = sW + lPT4
k for all i (33.11)

1*1 k«l
N-l K

Bi m £RB,if + £PB t
k for all i (33.12)

p* = TFTt
k" + £PB|k + otk for all k (33.13)

>M riti
Pki * 5jt t ,k + Xpb^k + ctk z, for all k and j (33.14)

1*1 K

t« = Z ^ / + Zptijk foraUiandj (33.15)
i'»l k«l

N-l K

b« = Zrbij4' + £pb«k for all i and j (33.16)
l'*t+l k» l

1 for alii (33.17)
I "

for all i (33.18)

for alii (33.19)
l

N
B,s Ib« for alii (33.20)

PTik= Tpt<*k for ali i and k (33.21)
oixi(j)»iJ

N
PB,k= Ipbqk for alii and k (33.22)

i

RT/ = ] D V f o r all i and if < i (33.23)
ord(i)-l

N

for all i and r > i (33.24)= Irb/

Equations (15-18) for t4J, rttJ
l and pttj

k in terms o

and the total flow of its respective stream.

Equations (15-18) for bq, rbq* and pbfj
k in tenns

and the total flow of its respective stream.

Tlt Bt. F4. KTf, RB,1', PT,k. PB^. ak. f,j. xs,jf xt4jf xb,j ^ 0

j k . rt,/. rby1* > 0
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It is not necessary to include equations (15) -(18) for the inlet component flows to the

separator, Sq. since the variables xsy only appear in these equations. Also, the component

flows, S|j9 only appear in mixers and sharp separators units which can be exactly represented in

terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-

(33,16) that are the component mass balances for the splitters of top and bottom streams have

been included accordingly to the reformulation previously presented. Equations (33.19M33.24)

relate the total flow and the individual component flows for the splitter streams.

The proposed Superstructure (Fig. 9) allows to bypass certain amount of the feed to the product

k. Ok, without having to go through the separation network. The amount of the product k that

is not bypassed has to be processed In the separation network and it will be denoted as the

'residual product*. Hence, the total 'residual product kf is given by (Pk - ak) and has the

component flows given by (p^ - ô Zj )(see Fig. 10).

The global optimal solution of model (32) is a network in which all the residual

products1, have at least one component with a zero flow. The reason that it is not optimal to

separate a stream in the network and later to remix it. The same degree of separation can be

achieved using a bypass that does not incur any cost in the objective function.

Consider the second separator in the solution obtained by Floudas (1987) to his second

example (see Fig. 11). For this subnetwork of the complete structure the "upper 'residual

product' has components B and C present. The components are being separated and remixed

again. The same outlet flows can be obtained with a smaller input flow to the separator as it is

shown in Fig. 11. Note that both 'residual products' have components with zero flow.

It should be clear that if there was not a component with zero flow in the 'residual

product1, then there is part of this stream that could have been obtained by just bypassing the

network. This in turn does not incur in any cost, whereas going through the network has a

positive cost. The above condition gives a lower bound for the bypass to each product. This

also corresponds to the largest amount that can be bypassed since all this flows in the residual

flow1 have to be positive. In this form the bypass can be precalculated without affecting the

global optimality of the solution.

The bypass to product k is given by the maximum amount that can be sent to product k

without having a negative flow; that is.

a* = minj t ^4 (34)

16



where Zjis the feed composition and pkJ is the flow of component j in product k. The

component flews for residual product1 k, y# are given by.

Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the flow of the key

components in separator i. These bounds are based on the fact that separator i is the only unit

that can perform the task of separating component number i from component nutaber i+1.

They are redundant for the nonlinear formulation (32) but they are relevant for the linear

relaxation in (33). To calculate them, it is necessary to determine in each product what is the

difference between the two key components of separator 1 with respect to the concentrations in

the feed. The lower bounds in separator i* for the flow of the key components in the top

(component Jl) and bottom (component j2) streams are given by:

t|i * I {TWji - zji nitowi J2 nn ) for all i (36)

foralli (37)

where y^ is given by (35). It is important to include both bounds in the relax model (33) since

there is no guarantee that the inlet flow to separator i has the same proportion between the key

components as the feed. It is not known in which part of the sequence separator 1 will be

placed, and it can be after a splitter that is not being approximated correctly.

The bounds in (36) and (37) can be extended to separation of components that are not

adjacent in the feed. Consider component number i and component number i+3. There are

three separators that can perform this task, separators i. i+1 and i+2. Cuts of the following

form can be obtained,

K
t* i + tf! t + t,«a i Z I {Tkt - z, mtaonHH or *3 l~Tl) for all i (38)

ki l \

or i+3 £~]} for all i (39)

Equations as the ones in (38) and (39) can be redundant compared to equations (36)

and (37) and it is possible to detect this before solving the problem.

Relative flowrate constraints
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These constraints are used when the relation between the flowrates of two components

is known. In particular, consider component A in the last column of the network (we Fig. 12).

None of the redirected streams contains component A. Therefore, the relative flowrate of

component A with respect to the other components in the top stream has to be smaller than in

the feed. This relation should remain valid after the top stream is split to the products and

redirected flows.

In the separator previous to the last one, N-2, all the streams do not have component A

except the one coming from the top of the last column. For this one it is already known that

the relative flow of component A with respect to the other components is smaller than in the

feed. This type of analysis can be done for component A and component N in all the columns

yielding th$ following linear constraints for the splitters.

for alii and k

ZAPtijk-ZjPt«Ak^O forj *Aandord(j)<i (40)

zN pb,jk - z, pt*N
k £ 0 for ord(j) * N and ord(j) > i (41)

fora l l iandi '> i

ZArt|jr • Zj rtiA4' ̂  0 f o rJ * A a n d o rdW ^ * W2)
for alii and f < i

O forord(J)*Wandord(j)>i I43J

Boundson concentrationsand total flows

The approximations (15-18) require bounds for the total flows and component

concentrations in the splitters. The lower bound for the total flow of the top and bottom

streams is given by the lower bound of the key components obtained in equations (36) and (37).

For the outlet streams of the splittters, that are the redirected streams and the streams that go

to the products, the lower bound is zero. The upper bound for the total flow of the top and

bottom streams is given by the feed to the network of the components that can be present in

each stream .that is,

t

Tt
u= Z(Feed-Xak)z, for ail i (44)

B|«= ItFeed-IOfcJz, forallj (45)

The upper bound for the streams after the splitter are given by.
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for ail i and i' <

for all i and i'>

for all i and k

for alii and k

i

i

(46)

(47)

(48)

(49)

The lower bounds for the concentrations are zero except for the key components in the

separator for which the lower bounds are given by the lower bound of its flow divided by the

upper bound of the total flow of that stream. The upper bounds in the concentrations are given

by one minus the lower bounds of the other components.

The solution of the linear programming model (33) provides a lower bound to the global

optimum since this model is a valid relaxation of the nonconvex model (32). This lower bound

is obtained by solving the LP model for the residual products' in 135) with the addition of the

valid constraints (36)-(43).

The upper bounds are generated solving mode} (32) in terms of the individual flows for

the residual products'. When additional nonconvex problems are solved to improve the current

upper bound it can happen that very similar initial point are generated. In this case, a new

nonconvex NLP is solved in which bounds over the total inlet flows to the separators (SJ are

included. For this purpose the values of these variables in the LP solution (S4*) are used such

that the current incumbent solution is no longer feasible.

Example 4

Consider the 3 component example proposed by Floudas and Agganval (1990). An equimolar

feed has to be separated into two products as show in Fig. 13. The objective function is given
by

<t> = 0.2395 + 0.00432 S, + 0.7584 + 0.01517 &* (50)

The bypass to products 1 and 2 can be calculated according to equation (34) and the

'residual product1 component flows are obtained through equation (35) (see Fig. 14). The total

bypass to product 1 is a, = 90 and the bypass to product 2 is ct2 = ISO and the feed has a

concentration of zA = 1/3, zQ = 1/3 and Zc = 1/3. In this form the 'residual product1 1 is YIA =

0, YiB = 20 and ylc = 0 and the residual product' 2 is Y2A = 20, Y2B = 0 and Y2C = 20.

Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35)-(36). The key components in separator 1 are component A in the top and

its flow has to be at least 20 and component B in the bottom has to have at least a flow of 20.

In the top stream of the second separator at least 20 units of component B have to be

separated from 20 units of component C in the bottom stream. It is important to note that

after preprocessing the network several suboptimal solutions have been cut off. One of these

suboptimal solutions for this particular data is a parallel configuration of both separators

(there are situations in which a parallel configuration can correspond to the global solution as

will be shown in example 5). In this example the direct or indirect sequence have a lower

objective function. Both of these configurations are local solutions with an objective function

value of 4 » 1.8639 for the direct sequence and 4 = 2.081 for the indirect one. In some

instances, MINOS 5.2 had problems converging even in this small example.

The LP (33) is formulated for this problem, giving a lower bound of (^ = 1.8639. The

approximations are exact and therefore this solution is a feasible solution of model (32) proving

that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.

The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted

that if the linear mass balances for the mixer for product 2 were not considered since they are

redundant for the nonlinear formulation, a lower bound in the relaxed model of <t>L = 1.12 is

obtained, this shows that it is relevant to include all the mass balances in the linear model in

order to tighten the lower bound.

Example 5

In the approach proposed by Wehe and Westerberg (1987) for the case of 3 components only

the direct and indirect sequences are considered and both options can be modelled as LP

problems since no mixing is required for these separation networks. However, this example

shows that parallel configurations can be also globally optimal and that they are not excluded

by the method proposed in this paper. To be able to consider parallel configurations or any

combination of parallel with direct or indirect sequences it is necessary to model a

superstructure in which mixing is allowed (like in the structure used in Fig. 13). Here,

nonconvexities arise in the mass balance equations after the separators.

Consider that an equimolar feed is to be separated into the two different products given

in Fig. 16. The objective function is to minimize the sum of the total flows into the separators.

The same procedure that in the previous example is followed and the bypass can be

precalculated by equation (34). The solution to the model (32) yields <t>L = 12 and since it is a

feasible solution of model (32) it corresponds to the global optimum (see Fig. 16). Note that the

solutions for the direct or indirect sequences have an objective function of <)> =16.
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Branch and Bound

If there is a gap between the lower and upper bound a branch and bound search is performed.

It is only necessary to do the search over the variables involved in the nonconvex terms. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter* In this way. it is necessary to check the approximation for the

concentrations in the splitters of the top and bottom streains of the separator. Equations (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound

search.

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation

network examples 4 to 12. The number of variables is the total number of variables that are

included in the reformulated and relaxed model (33) for that example. The lower bound is the

initial bound that fs obtained by solving model (33) over the entire feasible space. The inital

gap represents the percentage diflerence between the initial lower and upper bounds. When

there is a zero initial gap it means that the first relaxed solution is feasible in the original

problem thereby corresponding to the global solution. The column for nodes gives the total

number of subproblems that where solved before converging to the global solution. A relative

tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after

branching and example 12 for which a tolerance of 0.02 was used. It is important to note that

the initial lower bound is tight and that it corresponds to a good estimation of the global

solution. The largest differences are for example 1 with a 25% of diflerence and for example 12

with a 7% diflerence. The LP time refers to the time used to solve each relaxed model and the

NLP time is the time used for solving a nonconvex model. It is possible to do updates using the

previous LP solution and in this form have a more efficient implementation. The times are in

seconds and the problems were solved on an IBM RS600/530 using GAMS 2.25 (Brooke et al.

(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP

problems. A brief description of the example problems 6 to 12 is given below. It includes the

specific data for the problem, the objective function and the topology of the network that is the

global solution.

Example 6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

<t> = 2.5 S! +3.0 S2 + 1.5 S3 (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is <t>L = 54.25 and an upper bound of 0 = 55.5 is obtained by

solving the nonconvex problem. A partition of the feasible region is performed using the

composition of component D in the bottom stream of separator 1. The first subproblem (x £

0.166) yields a lower bound of 4>L = 55.45 and the second subproblem (x < 0.166) has a solution

of 4>L= 55.8. The latter is greater than the upper bound iand the former is less than 1% of the

global solution (see Fig. 17).

Exajnple7
This example is taken from Floudas (1987). The data for this problem is given in Table 3 and

the linear objective function is given by:

4> = 2.5S1+3.0S2+L2S3 (52)

The initial lower bound is <J>L = 32.7 and it provides a feasible solution to the nonconvex

problem. In this form the global solution (see Fig. 18) is obtained in one iteration. It is

interesting to see that this solution also provides a better objective function for the concave

objective function used by Floudas (1987) ($ = 10.65 versus $ = 13.68 which is 28% higher)

Example 8
Tills four component problem is taken from Wehe and Westerberg (1987). The data for the

products is given in Table 4 and the objective function has the following form:

<t> = 5.0 + 0.5 Si + 4.0 + 0.3 S2 + 6.0 + 0.7 S3 (53)

The first relaxed subproblem has a solution of 0L =26.76 and it is infeasible for the

nonconvex problem. A nonconvex problem is solved using CONOPT with the LP solution as the

initial point. An upper bound of 4> = 26.79 Is obtained corresponding to the global solution (see

Fig. 19) within a 0.1%.

Example 9
This example corresponds to example 1 from Wehe and Westerberg (1987). Table 5 provides

the data for the product flows and the objective function is given by:

<J> = 5.0 + 0.5 Si + 9.0 + 1.0 S2 + 3.0 + 0.4 S3 + 6.0 + 0.6 S4 (54)

A initial lower bound of <t>L = 85.16 is obtained and the upper bound Is $ « 85.65. The

difference is 0,5% and the global solution (see Fig. 20) is obtained in one iteration.
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Example 10
This problem is taken from Floudas (1987) and the data is given in Table 6. The objective

function is given by,

4 « 1.2 Sj + 3.0 Sj + 2.5 S3 + 1.5 S4 (55)

The JrHtuii lower bound is <^ = 156.56 and the upper bound is <J> = 179.08. After 5 nodes

the global solution of $ = 159.48 (see Fig. 21) is obtained.

Example 11
The data for this 6 component problem are given in Table 7 and the objective function has the

following form:

4 »i.5 S, + 3.0 Sj + 2.0 S3 + I.OS4 + 4.0 S5 . (56)

The initial lower bound is 0L = 173 and the upper bound is 4 » 179.11. After five nodes

the global solution is obtained (see Fig. 22).

Example 12

This is a 6 component 4 products problem and the data are given in Table 8. The objective

function is:

$ m 5.0 Si + 3.0 S2 + 2.0 S3 + 2.5 S4 + 4.0 S5 (57)

The initial lower bound is <frL = 362 and the initial upper bound is 0 = 415.6. The global

solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent

streams has been proposed. The basic idea relies on a relaxed LP model that is obtained

through reformulation-linearization techniques that establish a clear relation between the

component flow and the composition models for mass balances. The reformulated model

combines both of these providing tighter lower bounds than other relaxations proposed in the

previous work. The relaxed linear model has been embedded in a branch and bound procedure

to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of

the particular structure of sharp separation networks with single feed and mixed products.

Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model

can be obtained without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter

lower bound.

Twelve examples for both general process networks and for sharp separation networks

have been presented to illustrate the performance of the algorithm. As has been shown, only a

small number of nodes are commonly needed in the branch and bound search to identify the

global or e-global solution. Moreover, in many cases the initial lower bound is either the exact

solution or a very good approximation to the global solution.
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Appendix A. Reformulation-Linearization to obtain the nonlinear

constraints in model MF

The nonlinear equations in model MF. that can be expressed either as (8) or (9), can also be

generated from model MX. For this purpose take the concentration model MX and consider

equation (5),

multiply by the valid bound constraint Xjk £ 0

xfvfm^xf (A.2)
Use equation (5) for component J\

xfxf**xtXfk (A.3)

Multiply by the valid bound constraints Fk > 0 and F1 > 0,

Fkx,kFlXf4 = F*^lFkx^k (A.4)

that it is linearized to yield.

which is precisely equation (8) for the splitters in the individual flow model MF.

Consider again equation (5),

x,k = ^ IA.6)

multiply by the valid bound constraints Fk > 0 and F1 > 0,

F^xfF^F'xj'F1 ' IA.7)

that can be linearized to yield.

Define the split fraction £ to be,

? » £ < A - 9 J

Equation (A.8) can then be expressed as
fjt^tff (A. 10)

which corresponds to equation (9).

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear

approximations in general are also redundant in the linear reformulated model MR. Consider

equation (A. 10), similarly to (15) one of its linear approximations is given by.

If there are no particular restrictions in the splitters, then the bounds for the split

fraction variable are 0 £ £f < 1 and using them in (A. 11) yields.
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The bound for the individual component flow is given by fjk L = x,k L Fk L; also x,k = x,1 and £f -
F1

p£f which leads to,
1 (A. 13)

The estimator (15) for the same conditions (F1 L - 0) is given by

(A. 14)
pkL

Since the factor -pg- ls always less or equal than 1. equation (A. 13) is redundant. A similar

analisis can be performed for the other estimators. Only when more specific bounds over the

split fractions or the individual component flows are known, will these additional estimators be

non redundant.
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Figure 1. Process network with units, splitters and mixers.
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Figure 2. Mixer module

stream k
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Figure 3. Splitter module.
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Figure 4. Process unit module.
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Figure 5. Network and branch and bound search for example 1
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Figure 6. Network for example 2.
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Figure 8. Optimal network for example 3.
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Figure 14. Residual products and key component bounds in example 4.
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Figure 15- Global optimum solution of example 4.
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Figure 16. Global optimum solution of example 5.
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Figure 17. Solution of example 6.
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Figure 18.
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5.333 B
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Solution of example 7.

1.5 A
2B
1C

^ -

2.5 A

3.333 a
1.667 C

c
D

T

1.5 A
2B

1C

Z:
I D y

7.5 A
10 B
4C

10 D

/ / 2 *

7.5 A
10 B
6C
5 D

2.25 A

P3

Figure 19. Solution of example 8.
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0L66Z

5.375?

5.16
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Figure 20. Solution of example 9.

Figure 21. Solution of example 10.
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Figure 22. Solution of example 11.
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140

67.26

72,**

37.929 IDEF

6

Figure 23. Solution of example 12.
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Table 1. Computational

Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9

Example 10
Example 11
Example 12

Comp.

—
—

3
3
4
4
4
5
5
6
6

results.
WocL

...

...
2
2
2
2
3
4
2
2
4

Var.

29
35
113
65
65

107
107
125
281
225
350
430

Lower
bound
-500

-513.22
138.18
1.8639

16
54.25
32.7

26.76
85.16
156.56

173
362

Initial
gap
20'
0.3
0.4
0.0
0.0
2.3
0.0
0.1
0.5
12.4
3.5
14.8

Global
solution

-400
-511.87

138.7
1.8639

16
55.5
32.7

26.79
85.65
159.48
179.11
388

Nodes

3
3
1
1
1
3
1
1
1
5
5

33

LP
time
0.05
0.26
0.34
0.13
0.13
0.97
0.17
0.23
3.08
2.59
9.98
19.8

NLP
time
0.1
0.3
0.4
-.
. .

0.4
. .

0.3
2.8
2.3
8.8
13.2

Table 2. Data for example 6.
Component
Product 1
Product 2
Feed

A
5
10
15

B
10
10
20

c4
6
10

D"
10
5
15

Total
29
31
60

Table 3. Data for example 7.
Component
Product 1
Product 2
Feed

A
7.5
7.5
15

B
10
10
20

c
6
10

D
10
5
15

Total
31.5
28.5
60

Table 4. Data for example 8.
Component
Product 1
Product 2
Product 3
Feed

A
2
1
3
6

B
3
4
1
8

C
1
1
3
5

D
3
5
1
9

Total
9
11
8

28

40



Table 5. Data for example 9.
1 Component
Product 1
Product 2
Product 3
Product 4
Feed

A
7
10
5
10
32

B
8
3
5
0
16

C
3
5
6
6

2 0

D
9
5
7
4

25

E
8
4
3
9

2 4

Total
35
27
26
29
117

Table 6, Data for example 10,
Component
Product 1
Product 2
Feed

A
2
8
10

B
2.4
5.6
8

C
16
4

2 0

D
8
8
16

E
1
9
10

Total
29.4
34.6

6 4

Table 7. Data for example 11.
[Component 1
Product 1
Product 2
Feed

A
3
8
11

B
2
10
12

C
16
8

2 4

D
8
8
16

E
4
6
10

F
10
5
15

Total
4$
4$
8 8

Table 8. Data for example 12.
Component
Product 1
Product 2
Product 3
Product 4
Feed

A
3
8
5
7

23

B
2
10
4
3
19

C
6
8
10
1

25

D
8
8
3
2

21

E
4
6
11
5

26

F
10
5
4
7

26

Total
33
45
37
25
140

4 1



From
separators

'residual
product' k Product k

Pk

Figure 10. Definition of'residual product'.

B 3.333
B 3.333
C 0.666

• — ^

B 3.333 >w
C 1.666

0.666,

C 1.666/ i.o

Flow to separator = 5.0

C 1.0

B 1.333
C 0.666.

B 3.333
C 1.666" C 1.0" I C

B2.0
CO.O

BO.O
C 1.0

\ B 3.333
C 0.666

Flow to separator = 3.0

C 1.0
Figure 11. Example of solution without and with a zero component flow in 'residual product".
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Abstract

This paper deals with the global optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides a valid lower bound to the global optimum. This formulation is then
used within a spatial branch and bound search. The application of this method is considered
in detail for sharp separation systems with single feed and mixed products. Numerical results
are presented on twelve test problems to show that only few nodes are commonly required in
the branch and bound search.



Introduction

A common source of nonconvexities in the synthesis and design of processes, as well as in

flowsheet optimization, are the material flow equations for multicomponcnt streams. These

nonconvex equations involve bilinear terms and they arise in the mass balance equations when

the compositions are unknown. There are different equivalent formulations for this type of

networks. One alternative is to formulate the mass balance equations in terms of component

concentrations* In this form bilinear terms are present in tht equations for the mixer units

and the different process units (e.g. sharp separators). A second alternative is to express the

mass balances in terms of flows of individual components. This option has the advantage that

it involves a smaller number of nonlinear equations. However, the modelling of the splitter

units involves bilinear terms that arise due to the condition that the proportions of flows

between components have to be the same for the different streams.

The difficulty with the nonconvexities noted above is that they may give rise to

optimization problems involving several local optima and numerical singularities that may

produce failure in the NLP algorithms. Recently there have been important efforts in the area

of global optimization. Examples of algorithms are the ones proposed by McConnick (1976),

Floudas and Viswewaran (1990) and Sherali and Alameddine (1992) which can be used to solve

bilinear programming problems like the ones that arise in networks with multicomponent

streams. For a recent review in the area of bilinear programming see Al-Khayyal (1992).

As for previous work in the design and synthesis of multicomponent process networks

Mahalec and Motard (1977) and Nath (1977) developed evolutionary techniques that are based

on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of

separation networks with mixed products in which only sharp separators are considered. A

superstructure of the process network was proposed and modelled in terms of concentrations.

The resulting model is nonconvex and solved with a standard NLP algorithm with no guarantee

of global optimality. Floudas and Aggaiwal (1990) solved small pooling and blending problems

and sharp separation networks problems using a strategy based on Senders decomposition. In

this approach only convex subproblems are solved but there is no guarantee of obtaining the

global optimum. Kocis and Grossmann (1989) modelled process networks with

multicomponent streams in terms of the individual component flows. They included a set of

bounding constraints with binary variables to approximate the nonconvexities that are present

in splitters with multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp

separation networks with mixed products. They proposed a search procedure that involves the



enumeration of the different separation sequences. The nonconvex equations are dropped and

constraints that are valid for each particular sequence with a set of bounds over the key

components are included to obtain tighter LP relaxations for each configuration. However, the

number of sequences to be examined grows rapidly and there is no guarantee of global

optimalitv*

In some particular cases the nonconvexities in the mass balances can be avoided

through the introduction of binary variables. One of these cases is when single choice splitters

are present in the flowsheet (Kocis and Grossmann. 1989). Here, it is possible to have a mixed

integer ?fryfl»r formulation for the mass balance equations in terms of the individual component

flows. Another restricted case for which some nonconvexities can be reformulated is when

mining within the network is only allowed for streams of the same concentration. In this form,

larger network superestructures must be proposed and the concentrations of the streams are

known beforehand. Integer variables are introduced to model the existence of the different

streams (e.g. the mixed integer linear formulation for sharp separation networks by Floudas

and Anastasiadis, 1988).

The objective of this paper is to present an efficient global optimization method that

exploits the particular structure that is present in process networks with multicomponent

streams (e.g. pooling and blending systems, sharp separation networks). First a relation is

established between formulations based on concentrations and individual flows. This is done

following the Reformulation-Linearization technique proposed by Sherali and Alameddine

(1992). As will be shown, a linear relaxation Is obtained that is in the space of the

concentrations and individual flows which can be used in a branch and bound search is to find

the global optimum. Application to the optimal design of sharp separation systems with single

feed and mixed products is considered in detail. Different preprocessing techniques that allow

tightening of the relaxation problem are presented. The performance of the algorithm is

reported on a total of twelve problems.

Modeling with concentrations and individual flows

Consider a process network that consists of splitters, mixers and pfrbcess units tliat are

interconnected with multicomponent streams (see Fig. 1). The process iinits that arc

considered in this paper are units in which the output flows of the components can be

expressed as a linear relation of the inlet flows (e.g. sharp separators, reactor with^known

conversion). It is possible to formulate the mathematical model of the process network in

terms of the concentrations of the streams, Xjk. Another possibility is to model the network



using flows of individual components. The former has the advantages that it provides a

convenient framework for the evaluation of thermodynamic properties, and in many cases

bounds can be expressed in a more natural form. A major disadvantage is that many

nonconvex terms (bilinear) are involved in the mass balances for the components. Hie

individual component flows formulation is often chosen since it gives rise to a larger number of

linear equations and the only nonconvexities are involved in the modelling of the splitters. In

these untis it is necessary to enforce that the components maintain the same concentration in

each of the streams leaving the splitter. These constraints can be expressed as relations

between the different components (Wehe and Westerberg. 1987). One deficiency of this

representation is that since many flows can take values of zero, singularities may arise with

which conventional nonlinear programming methods may have difficulties to converge.

Another alternative is to introduce additional variables that represent split fractions (Kocis and

Grossmann. 1989). This involves a larger number of constraints but tends to yield a

formulation that numerically is better behaved.

Following are the equations that apply to the mixers, splitters and units using the two

alternative representations:

Mixer

A mixer k consists of a set of inlet streams, Mk, and an outlet stream k (see Fig.2).

a) Concentrations

The total mass balance for a mixer k is given by:
F*= 2 F* (1)

where F* Is the total flow in stream i. The mass balance for each component j is given by the

nonlinear equations,
F * * ^ £ Pxj1 forallj (2)

where x,1 is the concentration of component j in the stream i

b) Individual flows

Here it is only necessary to write a mass balance for each component j, given by the

linear equations:
^ ^ 2 fj! forallj (3)

where fj1 is the flow of component j in stream i.

Splitter

A splitter k has an inlet stream k and a set of outlet streams S* (see Fig. 3).



cQ Concentrations
The equations for a splitter in terms of the concentrations are given: by the following

linear equations
Fk (4)

for alii 6 Skai*dj (5)
(6)

b) IndividuuaLJlows
The mass balance for each component J is given by

sff forallj (7)
i€Sfc

Here, it is also necessary to enforce the condition that the streams leaving the splitter

have the same proportions in flow for each component. These relations between components,

which are nonlinear, can be expressed in terms of the inlet stream k and a given component J*

fj* tf = fjk f)V for alii 6 Ikandj*j' (8)

A different approach consists of introducing as additional variables the split ratios ^,

that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear
equations are given by

(braliie Ikandj (9)

Process units

In this paper it will be assumed that the outlet streams, i € Ok, in the process units can

be expressed as linear relations of the inlet streams, i e Ik (see Fig. 4). This is for instance the

case of sharp split separators, separations in which the recovery level is known, or reactors

that have a fixed conversion.

a) Concentrations T

The overall mass balance for process unit k is given by,
IF*= £F (10)

if Ik *«°k
The mass balance for each component] is given by the nonlinear equations:

£ P^F*'^'sPx' forallie Okandj (11)
»*«lk

where
stream i e Ok coming

pjr
lk is a constant for process unit k that gives the distribution of component j in the

i i e Ok coining from streams i1 € Ik. For a separator unit it is required tliat £ f̂ * = 1

and £ Pjitk s i . A sharp split separator is one for which IIkl = 1 and IOkl =2 (top and
V € l k

bottom streams) and for all the components the constant pjt
ilc are either 0 or 1.



ffi Uvdiiikixialjlows

Only the mas balance for each component is necessary and it is given by:
forallie Okandj (12)

A model in terms of individual flows MF consists of the linear equations (3), (7) and (12)

plus the nonlinear equations (8) or (9). The model in terms of the concentrations. MX includes

the linear equations (1). (4), (5). (6) and (10) plus the nonlinear equations (2) and (11).

Refor"? TI totton and Linearization

In order to avoid the direct use of the nonconvex models MX and MF, there is a relation that

can be established between them using the reformulation and linearization technique for

bilinear programming models proposed by Shcrali and Alameddine (1992). This technique can

be applied to the model MX. First, consider the bounds over the variables present in the

bilinear terms (total flow, F1 and concentrations Xj1)

(13)

(14)

Using the bounds in (13). (14) the following constraints can be generated for the bilinear

terms in (2) and (UK

fL (15)

j t u (16)

F1 Xj4 £ F*ux,4 + xfL F* - F*u XjIL (17)

F1 xf < FiLx/ + Xj4u F1 - F1L Xj*u (18)

In fact. McCormick (1976) has shown that the constraints in (15M 18) correspond to the

convex and concave envelopes of the bilinear terms over the given bounds. The formulation is

linearized by the definition of the following variables:

$*¥**{• (19)

Tfte resultihg model which involves equations (1). (3), (4). (5), (6). (10). (12) and the

constraints in (15)-{18) is a linear relaxation of the original nonconvex concentration model.

MX. in which the nonlinear equations (2) and (11) have been replaced by the linear equations

(3) and (12) from the individual flow model. MF. It is possible to generate additional linear

constraints that are redundant to the original nonlinear model, MX, but that can be

nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sherali et



al.. 1992). In particular, consider equation (7) that is the linear component mass balance for

the sputters in model MF. This linear equation is not present in the linear relaxation of the

concentration model, MX. Take equation (4) and multiply by the valid bound constraint xf £ 0

to get
I F x j ^ F * ^ (20)

Using equation (5) yields.
t P x j ^ F ^ (21)

that can be linearized to,

" f 'k ( 2 2 )

yielding equation (7). Hence, the linear equation for the splitter is valid and it is Included. Hie

nonlinear equations (8) or (9) can also be generated in a similar fashion but their linearizations

are in general redundant (see Appendix A). They are only useful when the formulation df the

problem provides non-trivial bounds over certain components in the outlet streams of a

splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that relate the total flow and the individual flows of a stream can

be generated for the splitters. Taking equation (6) and multiply by F1 yields.
* • " , - • . • • • . - .

= P (23)

Using the constraints xf = xjk in equation (23) and linearizing with fj1 = F1 xf yields.

F-Itf (24)
j

Based on the above it is possible to obtain a reformulated model MR that involves

concentrations, total flows and component flows, and which bounds the solution of the original

problem. The following equations are given for model MR:

a) Objective function. 0. which is expressed in terms of individual or total flows, ...

b) Mixer equations, which are expressed ta terms of the total and individual component flows.
* (1)

^ for all j (3)
t€Mk

J

6



c) Splitter equations, that are expressed in terms df the individual component flows and the

of the streams

l#S k

for all i€ SkandJ

for all J

(5)

(6)

(7)

d) Process units equations, that are given in terms of the total and individual component flows
XF* (10)

I € ifc I € Ofc

for all ie Okandj

e) Relation between the total flow and the individual component flows
= £ f/

J
for all streams

(12)

(24)

fj Bounds on flows and concentrations

f) Linear estimators, relate the individual component flows with the total flow and

concentrations.

fji S F ^ + x ^ P - F 1 " ^ " foral l i€Sk (16)

fji < ji u ̂ i ̂  x̂ t L pi. p u x̂ i L i s k € splitters t!7)

^iu foralljeJ (18)

(13)

(14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)

looser approximations of the nonlinear terms were used. In both cases, the nonconvex problem

(MF) was relaxed to a linear model by dropping the nonlinear equations (8) or (9). Equations

that approximate the difference relation between the components were considered (Kocis and

Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter

between the flowrate of the components and required the introduction of binary variables.



Outline of global optimization method

Model MR can be applied to predict lower bounds to the global optimum in the optimization of

pooling and blending problems and in the synthesis of separation systems. The reason is that

model MR provides a valid relaxation of the original feasible region since the nonlinear

equations (2) and (11) in model MX are not considered, and the valid linear equations (3), (7),

(12) and (15)-(18) are included. The proposed global optimization algorithm relies on the

solution of the relaxed problem MR within a spatial branch and bound enumeration. The

outline of the algorithm is as follows (for a more detailed description of step 4 see Quesada and

Grossmann (1993))

0. Preprocessing (optional)

Determine bounds on the variables involved in the nonconvex terms, that is total flows.

F*. and concentrations, xf. Apply any additional preprocessing specific to the structure of the

problem in order to further bound or fix variables.

1. Lower Bound

Solve model MR over a given subregion (initial subregion is the complete feasible region)

minimizing a convex objective function <J>. If <t> is linear the model is an LP.

2. Upper Bound

Any feasible solution to the nonlinear model provides an upper bound. Heuristic

techniques can be employed to obtain good feasible solutions or the original problem. MF. can

be solved using the solution of model MR as a good initial point. If the solution of problem MR

is feasible it provides an upper bound.

3. Convergence

If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper

bound.

4. Branch and Bound
Partition the remaining subregions into a sell of disjoint subproblems. Repeat steps 1-3

for each of the new subregions.

Remarks

The preprocessing step plays an important role in the above algorithm. It is during this step

that initial bounds for the variables involved in nonconvex terms are obtained. The quality of

8



these bounds affects the tigthness of the lower bound since they are part of the estimator

equations (15)418). Additionally, these bounds affect the performance of the algorithm because

they define the search space over which the branch and bound procedure may have to be

conducted.

In some cases, as described later in this paper, it is possible to exploit the particular

structure of the process network and generate bounds for the variables without having |o solve

any subproblems. Furthermore, during this preprocessing step additional constraints can be

generated for predicting a tighter lower bound of the global optimum can be obtained.

Some of the linear mass balances and the estimator equations are redundant in the

nolinear formulations, MF and MX. These equations become nonredundant in the

refonnulated model, MR, and for that reason it is important to write a complete formulation of

the network. However, this model can present some redundancies that can be easily identified

and eliminated to reduce the size of the model. This is the case for the concentration variables

used in the splitters. Model MR uses different sets of concentrations variables for the inlet and

outlet variables of a split unit. In practice, it is only necessary to define the concentration of

the component in the splitter and use the same variables for all the splitter streams. Also,

some redundancies can occur with the total flow variables. These ones are necessary for the

streams in the splitters but they might be redundant and eliminated in the other untis if they

do not appear in other part of the model or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it

corresponds to the global optimal solution. When the solution to the model MR is not feasible

it is necessary to follow a branch and bound procedure to search for the global optimum. This

procedure requires a valid upper bound on the global optimum. This can be generated through

heuristics or by solving directly the nonconvex model. For this purpose, the process network

model is formulated in terms of the individual component flows and the nonconvex equations

for the splitters are included. Equation (9J was also used in this work to model the splitters

due to it is better numerical behavior. The solution to the model MR was used for the good

initial point. In many instances, it was not possible to solve these nonlinear problems with

MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is generated. Of the set of open

nodes, these are the nodes that have a lower bound that is e-smaller than the current upper

bound, the node with the smaller upper bound is selected to branch on. The splitter units are

the units that are approximated, and of these, the splitter that has the largest difference



between its approximated and actual individual component flows is selected. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter. The branching is done in the selected splitter over the

concentration of the component that has the largest difference.

First, the actual concentrations for the individual component flows in the LP solution O

for the splitters are calculated by,

for all the inlet streams to splitter (26)

the splitter unit m is then selected according to the equation.

(27)
j .

Equation (27) represents the total difference between the LP solution for the flows after

the splitter and the actual value of these flows considering the concentrations before the

splitter. Once the splitter has been selected, the component in that sputter that has the largest

difference. J\ is selected by.

jf = argmax,( I If/ -1£ FM] (28»

Hie following branching constraints are then used:

Xj.m>z,m (29)

To improve the upper bound it might be necessary to solve additional nonconvex

problems. These can be solved after a given number of nodes using the solution of the node

with the smallest upper bound as the initial point. In this work if there was no significant

change in the lower bound df the new nodes with respect to the lower bound of the parent node

( < 1%) a new nonconvex problem was solved.

Example 1

Consider the following pooling and blending problem by Harveley (1978). Two streams that

have components A and B are mixed in a initial mixer a then go through a splitter to obtain two

streams than can be mixed with an additional stream (see Fig. 5a). Two different products can

be obatined and there are constraints on the concentration of component A in these products.

The objective function consists of mimizing the cost that is given by the total flow of the

streams times the cost coefficients. ct, given in Fig. 5.

10



This problem has two local solutions. One has an objective function <t> = -100 and

consists of otify producing product 2. The other local solution, that corresponds to the global

optimum, has an objective of 4> = -400 and here only product 1 is produced.

Model MR is formulated for this problem and the initial lower bound is 4>L = -500. The

nonlinear model, MF, is solved using the solution of model MR as the initial point and an upper

bound of • a -400 is obtained* Since there is a gap between the bounds of the global solution a

partition is performed- There is only one splitter that needs to be approximated and since there

are only two components it is irrelevant which one is selected since the composition bounds are

related (eg. xB
L s i - x*u). The actual value of the composition of A in the solution of model MR

is used as the branching point (x* = 0.0166) to generate two new subproblems. The first

subproblem (xA £ 0.0166) has a lower bound of 4>L = -100 and the second subproblem (x* <

0.0166) has a solution of fa = -400 (see Fig. 5b). Both of these bounds are greater or equal

than the upper bound, therefore the global solution has been found (xA = 0.01).

Example 2

Tbe next example is a separation problem taken from Kocis and Grossmann (1987). The

original problem has binary variables in* the formulation and they have been fixed to 1 for this

example (see Fig. 6).

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream

has 80% of the inlet flow of component B. In the column. 97.5% of the inlet flow of A goes to

the top whereas 95% of the inlet flow of B goes to the bottom stream. The total flow to the flash

unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of

each of the two feed streams has to be less than 25. The objective function is given by,

<t> ss 52 + 10 F! + 8 F2 + F4 + 4 F5 - 35 P,A- 30 P2
B (30)

The initial lower bound for this problem is 4>L = -513.22 and it is infeasible for the

original NLP model. A nonconvex problem is solved using CONOPT with the solution of model

MR as the initial point obtaining an upper bound of <t> = -511.87 and the relative gap is only

0.3%. Again only one splitter is present in the network and a partition can be performed using

the concentration of component A in this splitter. The lower bounds for the new two

subproblems are 0L = -511.87 (xA £ 0.5121) and 0L = -511.80 (xA > 0.5121). Both solutions are

greater or equal than the upper bound and the global solution has been obtained. In the global

solution Fx ss 8 and F2 = 25, and 11% of the inlet flow to the splitter is directed to the flash.

76% to the column and the rest bypassed to P2.

11



Example 3

This example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

The initial lower bound is 4>L = 138.18 and the nonconvex problem MP is solved
obtaining a solution of <fr « 138.7. The gap between these bounds is less than 0.4 %. The
global optimum for this tolerance is shown In Fig. 8.

Sharp separation

In order to illustrate the application of the above algorithm to a specialized case where the
structure can be further (exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
specified multicomponent product streams. The components are ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9)). The superstructure consist of N-l separators. Separator 1 performs the
task of removing component number 1 to number 1 at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-l
streams, Ft. that go to the separators and K streams, ak. that bypass the network to go to the
products. Each stream F< is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i, St.

The outlet streams of separator i are the top. Tl9 and the bottom, Bt. These streams, T«
and B{, are each split into streams, PTt

k and PB<k respectively, that go to the K products and
into streams, KIV' and RB/\ that are redirected to the other separators. The top stream of
separator 1, Tt, can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaller (lows. KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, Bt, can be redirected only to separators i+1 to N-l since it can only
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contain components that are separated by these sharp separators. RB,1' is the redirected flow
from the bottcpi stream of separator i to separator i'.

Model

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
and total flows has the following form:

V
min 4>

sL Feed*

c,S,
N-l K

N-l

St xs« a f« + X RBf1 xb,-. +
N-l

1-1

l

for alii and j

for alii

for alii and j

for alii

for all i and ord(j) <i

for all i and ord(j) > i

for all i and ord(j) > i

for all i and ord(J) £ i

for alii

for ail i

for all k

akz, for all k and j

for all 1

for alii

for all i

S,, T,, B,, F,t RT '̂, RBt1', PTt
k

f PBtk. c*t fy, xs,j, xfy xb«, ^ 0

N-l

N-l

N-l

r + £PB t
k

k«l
N-l

+ y.PB,k +1

N-l

(32.1)

(32.2)

(32.3)

(32.4)

(32.5)

(32.6)

(32.7)

(32.8)

(32.9)

(32,10)

(32.11)

(32.12)

(32.13)

(32.14)

(32.15)

(32.16)

(32.17)
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The parameters Feed, zj, Pk and pkJ represent the total feed, composition of the feed,

total flow of product k and component flow of component j in product k. respectively. The

variables xsq, xtfj and xb«j are the concentrations of component j in the inlet stream to separator

i. top of separator i and bottom of separator i, respectively.

The objective function (32.1) is a linear function of the inlet flow to the separators.

Equation (32.2) is the total mass balance in the inlet splitter and equation (32.3) is the

component mass balance. Equations (32.4) and (32.5) are the total and component mass

balances for the mixer i before the separator L The material balances for separator i are given

by equations (32.6). that is the total mass balance for the separator, equations (32.7) and (32.8)

that are the component balances for the top stream and indicate that nothing from components

number 1+1 to N-l is in the top of the separator, and equations (32.9) and (32.10) that are the

component mass balances for the bottom streams. Equations (32.11) and (32.12) are the

overall mass balances for the splitters of the top and bottom streams after separator i. The

equations that state that the concentrations of the outlet streams should be the same that the

inlet stream in a splitter have been already substituted. Finally, equations (32.13) and (32.14)

are the overall and component mass balances for the mixer for product k.

Model (32) corresponds to a formulation of the type of model MX where the distribution

coefficients are known and restricted to 0 or 1. Some simplifications have been made to avoid

including many irrelevant variables (e.g. not to define concentrations for the streams that go

the top i to product k). Although, some of the linear constraints in this formulation are

redundant, they can become nonredundant in the linear relaxation as will be shown in

Example 4.

Equations (32.5), (32.7), (32*9) and (32.14) involve nonconvex terms. This model can be

reformulated as in model MR by introducing individual component flows and the linear

equations (15)-(18) and (7) according to the approach illustrated eaiiier to obtain a model in the

form of model MR. The resulting reformulated model is as follows,
N-l

min $' = £ c4 S4

N-l K

st Feed = I Ft + Z

t-1 N-l

i-1 N-l

for all i andj

for all i

for all i and j

(33.1)

(33.2)

(33.3)

(33.4)

(33.5)
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N-l

rt-i

N-l

N-l K

X
k-1

xt,,= 1
1 J

""•-S/

for all i

for all i and ord(j) £ i

for all 1 and ord(j) > 1

for all i and ord(j) > i

for all i and ord(j) < i

for all i

for all 1

for all k

for all k and J

for alii and j

for all i and j

for all i

for all i

for all i

for alii

for all i and k

for all 1 and k

for all i and i' < i

for all i and i' > i

(33.6)

(33.7)

(33.8)

(33.9)

(33.10)

(33.11)

(33.12)

(33.13)

(33.14)

(33.15)

(33.16)

(33.17)

(33.18)

(33.19)

(33.20)

(33.21)

(33.22)

(33.23)

(33.24)

Equations (15-18) forty. rtrj
l and pty

k in terms of xtg

and the total flow of its respective stream.

Equations (15-18) for by. rbq1 and pbtl
k in terms of xb

and the total flow of its respective stream.

S,.T,, B,. F,. RT,'. RB,f. PT,k. PB,k, Ok. ftt. xs,j. xUt. xb(J SO

Sg. t,j. b,j pti,k. pb,,11. rt,,1'. rb,,1' > 0
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It is not necessary to Include equations (15) -(18) for the inlet component flows to the

separator, Sq, since the variables xs,j only appear in these equations. Also, the component

flows, s,j, only appear in mixers and sharp separators units which can be exactly represented in

terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-

(33.16) that are the component mass balances for the splitters of top and bottom streams have

been included accordingly to the reformulation previously presented. Equations (33.19M33.24)

relate the total flow and the individual component flows for the splitter streams.

Hie proposed superstructure (Fig. 9) allows to bypass certain amount of the feed to the product

k, a*, without having to go through the separation network. The amount of the product k that

is not bypassed has to be processed in the separation network and it will be denoted as the

'residual product*. Hence, the total 'residual product k' is given by (Pk - ak) and has the

component flows given by (p^ - ô z, )(see Fig. 10).

The global optimal solution of model (32) is a network in which all the 'residual

products'.have at least one component with a zero flow. The reason that it is not optimal to

separate a stream in the network and later to remix it. The same degree of separation can be

achieved using a bypass that does not incur any cost in the objective function.

Consider the second separator in the solution obtained by Floudas (1987) to his second

example (see Fig. 11). For this subnetwork of the complete structure the upper 'residual

product* has components B and C present. The components are being separated and remixed

again. The same outlet flows can be obtained with a smaller input flow to the separator as it is

shown in Fig. 11. Note that both 'residual products' have components with zero flow.

It should be clear that if there was not a component with zero flow in the 'residual

product1, then there is part of this stream that could have been obtained by just bypassing the

network. This in turn does not incur in any cost, whereas going through the network has a

positive cost. The above condition gives a lower bound for the bypass to each product. This

also corresponds to the largest amount that can be bypassed since all the flows in the residual

flow* have to be positive. In this form the bypass can be precalculated without affecting the

global optimality of the solution.

The bypass to product k is given by the maximum amount that can be sent to product k

without having a negative flow; that is.

a,, = min, [ ^ 4 (34)
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where Zjis the feed composition and pkj is the flow of component j in product k. The

component flows for 'residual product' k. Tkj are given by.

(35)

Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the (low of the key

components in separator L These bounds are based on the fact that separator i is the only unit

that can perform the task of separating component number 1 from component nutaber 1+1.

They are redundant for the nonlinear formulation (32) but they are relevant for the linear

relaxation in (33). To calculate them, it is necessary to determine in each product what is the

difference between the two key components of separator i with respect to the concentrations in

the feed. The lower bounds in separator i' for the flow of the key components in the top

(component Jl) and bottom (component J2) streams are given by:

for alii (36)

foralli (37)

where Ykj is given by (35). It is important to include both bounds in the relax model (33) since

there is no guarantee that the inlet flow to separator i has the same proportion between the key

components as the feed. It is not known in which part of the sequence separator i will be

placed, and it can be after a splitter that is not being approximated correctly.

The bounds in (36) and (37) can be extended to separation of components that are not

adjacent in the feed. Consider component number i and component number i+3. There are

three separators that can perform this task/separators i. i+1 and i+2. Cuts of the following

form can be obtained.

tt i + tM i + t|*a 12 £ {.Dd - zt minord(j),< or H3 [-r1]} for all i (38)

K y

i + b M i 2 £ {Tki*3 - z,*3 minorsO M*3 i~)) for all i (39)

Equations as the ones in (38) and (39) can be redundant compared to equations (36)

and (37) and it is possible to detect this before solving the problem.

Relative flowrate constraints
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These constraints are used when the relation between the flowrates of two components

is known. In particular, consider component A in the la:st column ofthe network (see Fig. 12).

None of the redirected streams contains component A. Therefore, the relative flowrate of

component A with respect to the other components in the top stream has to be smaller than in

the feed. This relation should remain valid after the top stream is split to the products and

redirected flows.

Ill the separator previous to the last one, N-2, all the streams do not have component A

except the one coming from the top of the last column. For this one it is already known that

the relative flow of component A with respect to the other components is smaller than in the

feed. This type of analysis can be done for component A and component N in all the columns

yielding th$ following linear constraints for the splitters.

for all 1 and k

ZNpbgX-Zjpt

for all i and 1' > i

for aU 1 and 1' < 1

f o r j * A

for ord(j)

f o r j * A

and ord(j) < i

* N and ord(j) > i

and ordtf) S i

(40)

(41)

2'0 forord(J)^Wandord(J)>i (431

Bounds on concentrations and total Jlows

The approximations (15-18) require bounds for the total flows and component

concentrations In the splitters. The lower bound for the total flow of the top and bottom

streams is given by the lower bound of the key components obtained in equations (36) and (37).

For the outlet streams of the splittters, that are the redirected streams and the streams that go

to the products, the lower bound is zero. The upper bound for the total flow of the top and

bottom streams is given by the feed to the network of the components that can be present in

each stream .that is.

Tt
u= ItFeed-XoicJz, for alii (44)

N

B^s [TlFeed-Taiazj for alii (45)

The upper bound for the streams after the splitter are given by.
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PB,k Jb?

for all i and i1 <

for alii aridi'>

for all i and k

for all i and k

i

i

(46)

(47)

(48)

(49)

The lower bounds for the concentrations are zero except for fee key components in the

separator for which the lower bounds are given by the lower bound of its flow divided by the

upper bound of the total flow of that stream. The upper bounds in the concentrations are given

by one minus the lower bounds of the other components.

The solution of the linear programming model (33) provides a lower bound to the global

optimum since this model is a valid relaxation of the nonconvex model (32). This lower bound

is obtained by solving the LP model for the residual products1 in (35) with the addition of the

valid constraints (36)-(43).

The upper bounds are generated solving model (32) in terms of the individual flows for

the residual products'. When additional nonconvex problems are solved to improve the current

upper bound it can happen that very similar initial point are generated. In this case, a new

nonconvex NLP is solved in which bounds over the total inlet flows to the separators (S,) are

included. For this purpose the values of these variables in the LP solution (S,*) arc used such

that the current incumbent solution is no longer feasible.

Example 4

Consider the 3 component example proposed by Floudas and Aggarwal (1990). An equimolar

feed has to be separated into two products as show in Fig. 13. The objective function is given

by

<{> s 0.2395 + 0.00432 S, + 0.7584 + 0.01517 S2 (50)

The bypass to products 1 and 2 can be calculated according to equation (34) and the

'residual product1 component flows are obtained through equation (35) (see Fig. 14). The total

bypass to product 1 is a, = 90 and the bypass to product 2 is <x2 = ISO and the feed has a

concentration of zA = 1/3, zQ = 1/3 and ZQ = 1/3. In this form the 'residual product1 1 is YIA =

0. YiB = 20 and Y*C = 0 and the residual product* 2 is Y2A = 20, Y2B = 0 and Yac s 20.

Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35M36). The key components in separator 1 are component A in the top and

its flow has to be at least 20 and component B in the bottom has to have at least a flow of 20.

In the top stream of the second separator at least 20 units of component B have to be

separated from 20 units of component C in the bottom stream. It is important to note that

after preprocessing the network several suboptimal solutions have been cut off. One of these

suboptimal solutions for this particular data is a parallel configuration of both separators

(there are situations in which a parallel configuration can correspond to the global solution as

will be shown in example 5). In this example the direct or indirect sequence have a lower

objective function. Both of these configurations are local solutions with an objective function

value of 4 = 1.8639 for the direct sequence and $ = 2.081 for the indirect one. In some

instances, MINOS 5.2 had problems converging even in this small example.

The LP (33) is formulated for this problem, giving a lower bound of ^ = 1.8639. The

approximations are exact and therefore this solution is a feasible solution of model (32) proving

that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.

The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted

that if the linear mass balances for the mixer for product 2 were not considered since they are

redundant for the nonlinear formulation, a lower bound in the relaxed model of $L = 1.12 is

obtained. This shows that It is relevant to include all the mass balances in the linear model in

order to tighten the lower bound.

ExompteS

In the approach proposed by Wehe and Westerberg (1987) for the case of 3 components only

the direct and indirect sequences are considered and both options can be modelled as LP

problems since no mixing is required for these separation networks. However, this example

shows that parallel configurations can be also globally optimal and that they are not excluded

by the method proposed in this paper. To be able to consider parallel configurations or any

combination of parallel with direct or indirect sequences it is necessary to model a

superstructure in which mixing is allowed (like in the structure used in Fig. 13). Here,

nonconvexities arise in the mass balance equations after the separators.

Consider that an equimolar feed is to be separated into the two different products given

in Fig. 16. The objective function is to minimize the sum of the total flows into the separators.

The same procedure that in the previous example is followed and the bypass can be

precalculated by equation (34). The solution to the model (32) yields <t>L = 12 and since it is a

feasible solution of model (32) it corresponds to the global optimum (see Fig. 16). Note that the

solutions for the direct or indirect sequences have an objective function of $ = 16.
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Branch and Bound

If there is a gap between the lower ai}d upper bound, a branch and bound search is performed.

It is only necessary to do the search over the variables involved in the nonconvex terms. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter. In this way. it is necessary to check the approximation for the

concentrations in the splitters of the top and bottom strear^s of the separator. Equations (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound

search.

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation

network examples 4 to 12. The number of variables is the total number of variables that are

included in the reformulated and relaxed model (33) for that example. The lower bound is the

initial bound that is obtained by solving model (33) over the entire feasible space. The inital

gap represents the percentage difference between the initial lower and upper bounds. When

there is a zero initial gap it means that the first relaxed solution is feasible in the original

problem thereby corresponding to the global solution. The column for nodes gives the total

number of subproblems that where solved before converging to the global solution. A relative

tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after

branching and example 12 for which a tolerance of 0.02 was used. It is important to note that

the initial lower bound is tight and that it corresponds to a good estimation of the global

solution. The largest differences are for example 1 with a 25% of difference and for example 12

with a 7% difference. The LP time refers to the time used to solve each relaxed model and the

NLP time is the time used for solving a nonconvex model. It is possible to do updates using the

previous LP solution and in this form have a more efficient implementation. The times are in

seconds and the problems were solved on an IBM RS600/530 using GAMS 2.25 (Brooke et al.

(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP

problems. A brief description of the example problems 6 to 12 is given below. It includes the

specific data for the problem, the objective function and the topology of the network that is the

global solution.

Example 6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

(M2.5S!+3 .0S 2 +1.5S 3 (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is <t>L = 54.25 and an upper bound of $ = 55.5 is obtained by

solving the nonconvex problem. A partition of the feasible region is performed using the

composition of component D in the bottom stream of separator 1. The first subproblem (x £

0.166) yields a lower bound of ̂  = 55.45 and the second subproblem (x < 0.166) has a solution

of 4>L= 55.8. The latter is greater than the upper bound and the former is less than 1% of the

global solution (see Fig. 17).

Exampie7
This example is taken from Floudas (1987). The data for this problem is given in Table 3 and

the linear objective function is given by:

+3.0S2+1.2S3
(52)

The initial lower bound is 4>L = 32.7 and it provides a feasible solution to the nonconvex

problem. In this form the global solution (see Fig. 18Ms obtained in one iteration. It is

interesting to see that this solution also provides a better objective function for the concave

objective function used by Floudas (1987) (4 = 10.65 versus 0 = 13.68 which is 28% higher)

Elxample 8
This four component problem is taken from Wehe and Westerberg (1987). The data for the

products is given in Table 4 and the objective function has the following form:

<j> s 5.0 + 0.5 Si + 4.0 + 0.3 S2 + 6.0 + 0.7 S3
(53)

The first relaxed subproblem has a solution of <|>L =26,76 and it is infeasible for the

nonconvex problem. A nonconvex problem is solved using CONOPT with the LP solution as the

initial point. An upper bound of 0 « 26.79 is obtained corresponding to the global solution (see

Fig. 19) within a 0.1%.

Example 9
This example corresponds to example 1 from Wehe and Westerberg (1987). Table 5 provides

the data for the product flows and the objective function is given by:

<|> = 5.0 + 0.5 Si + 9.0+1.0 S2 + 3.0 + 0.4 S3 + 6.0 + 0.6 S4 (54)

A initial lower bound of 4>L = 85.16 is obtained and the upper bound Is 0 » 85-65. The

difference is 0.5% and the global solution (see Fig. 20) is obtained in one iteration.
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Example 10
This problem is taken from Flotidas (1987) and the data is given in Table 6. The objective

function is given by,

<J> * 1.2 Si + 3.0 Sj + 2.5 S3 + 1.5 S4 (55)

The <y*«*m lower bound is <t̂  = 156.56 and the upper bound is <t> = 179.08. After 5 nodes

the global solution of 0 m 159.48 (see Fig. 21) is obtained.

Example 11
Hie data for this 6 component problem are given in Table 7 and the objective function has the

following form:

* *1.5 S, + 3-0 Sa + 2.0 S3 + 1.0S4 + 4.0 S5 . (56)

The initial lower bound is <frL = 173 and the upper bound is 0 » 179.11. After five nodes

the global solution is obtained (see Fig. 22).

Example 12

This is a 6 component 4 products problem and the data are given in Table 8. The objective

function is:

* = 5.0 S! + 3.0 Sj + 2.0 S3 + 2.5 S4 + 4.0 S5 (57)

The initial lower bound is $L = 362 and the initial upper bound is <t» = 415.6. The global

solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent

streams has been proposed. The basic idea relies on a relaxed LP model that is obtained

through reformulation-linearization techniques that establish a clear relation between the

component flow and the composition models for mass balances. The reformulated model

combines both of these providing tighter lower bounds than other relaxations proposed in the

previous work. The relaxed linear model has been embedded in a branch and bound procedure

to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of

the particular structure of sharp separation networks with single feed and mixed products.

Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model

can be obtained without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter

lower bound.

Twelve examples for both general process networks and for sharp separation networks

have been presented to illustrate the performance of the algorithm. As has been shown, only a

small number of nodes are commonly needed in the branch and bound search to identify the

global or e-global solution. Moreover, in many cases the initial lower bound is either the exact

solution or a very good approximation to the global solution.
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Appendix A. Reformulation-Linearization to obtain the nonlinear
constraints in model MF

The nonlinear equations in model MF, that can be expressed either as (8) or (9), can also be

generated from model MX. For this purpose take the concentration model MX and consider

equation (5),

... l ^
multiply by the valid bound constraint Xj-k £ 0

xfxfmxfzp (A.2)
Use equation (5) for component j\

x,kV**il*fk 1A-3'
Multiply by the valid bound constraints Fk > 0 and F1 > 0,

F^JP^-F^F*^ tA.41

that it is linearized to yield.

fffJJsfj'ff (A.5)

which is precisely equation (8) for the splitters in the individual flow model MF.

Consider again equation (5).
x,k = x,1 (A.6)

multiply by the valid bound constraints Fk > 0 and F* > 0,
k IA.7)

that can be linearized to yield,
ffF^f/F* (A.8)

Define the split fraction ? to be,
? = | * (A.9)

Equation (A.8) can then be expressed as
f/ = ? fjk (A.10)

which corresponds to equation (9).

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear

approximations in general are also redundant in the linear reformulated model MR Consider

equation (A.1O), similarly to (15) one of its linear approximations is given by.

If there are no particular restrictions in the splitters, then the bounds for the split

fraction variable are 0 < ^ < 1 and using them in (A. 11) yields.
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The bound for the individual component flow is given by fjk L = xf L Fk L: also x,k = x,4 and £f

F1

pt, which leads to.

The estimator (15) for the same conditions (F*L = 0) is given by

Since the factor -^r is always less or equal than 1, equation (A. 13) is redundant. A similar

analisis can be performed for the other estimators. Only when more specific bounds over the

split fractions or the individual component flows are known, will these additional estimators be

non redundant.
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Figure 1. Process network with units, splitters and mixers.

streams i e Mk

Figure 2. Mixer module

stream k

stream k ^ -^streams ie Sk

Figure 3. Splitter module.
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streams i€ Ik
Figure 4. Process unit module.
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Figure 5. Network and branch and bound search for example 1
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Figure 6. Network for example 2.

Figure 7. Network for example 3.
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Figure 8. Optimal network for example 3.
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separators

Product 1

Product 2

Product K

Figure 9. Superstructure for separation with sharp splits and mixed products.
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Abstract

This paper deals with the global optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides a valid lower bound to the global optimum. This formulation is then
used within a spatial branch and bound search. The application of this method is considered
in detail for sharp separation systems with single feed and mixed products. Numerical results
are presented on twdve test problems to show that only few nodes are commonly required in
the branch and bound search.



Introduction

A common source of noneonvexities in the synthesis and design of processes, as well as in

flowsheet optimization, are the material flow equations for multiccmponent streams. These

nonconvex equations involve bilinear terms and they arise in the mass balance equations when

the compositions are unknown. There are different equivalent formulations for this type of

networks. One alternative is to formulate the mass balance equations in terms of component

concentrations. In this form bilinear terms are present in the equation* for the mixer units

and the different process units (e.g. sharp separators). A second alternative is to express the

mass balances in terms of flows of individual components. This option has the advantage that

it involves a ^naUmr number of nonlinear equations. However, the modelling of the splitter

units involves bilinear terms that arise due to the condition that the proportions of flows

between components have to be the same for the different streams.

The difficulty with the nonconvexities noted above is that they may give rise to

optimization problems Involving several local optima and numerical singularities that may

produce failure in the NLP algorithms. Recently there have been important efforts in the area

of global optimization. Examples of algorithms are the ones proposed by McCormick (1976).

Floudas and Viswewaran (1990) and Sherali and Alameddine (1992) which can be used to solve

bilinear programming problems like the ones that arise in networks with multicomponent

streams. For a recent review in the area of bilinear programming see Al-Khayyal (1992).

As for previous work in the design and synthesis of multicomponent process networks

Mahalec and Motard (1977) and Nath (1977) developed evolutionary techniques that are based

on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of

separation networks with mixed products in which only sharp separators are considered. A

superstructure of the process network was proposed and modelled in terms of concentrations.

The resulting model is nonconvex and solved with a standard NLP algorithm with no guarantee

of global optimality. Floudas and Aggarwal (1990) solved small pooling and blending problems

and sharp separation networks problems using a strategy based on Benders decomposition. In

this approach only convex subproblems are solved but there is no guarantee of obtaining the

global optimum. Kocis and Grossmann (1989) modelled process networks with

multicomponent streams in terms of the individual component flows. They included a set of

bounding constraints with binaxy variables to approximate the nonconvexities that are present

in splitters with multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp

separation networks with mixed products. They proposed a search procedure that involves the



enumeration of the different separation sequences. The nonconvex equations are dropped and

constraints that are valid for each particular sequence with a set of bounds over the key

components are included to obtain tighter UP relaxations for each configuration. However, the

number of sequences to be examined grows rapidly and there is no guarantee of global

optimality.

In some particular cases the nonconvexities in the mass balances can be avoided

through the introduction of binary variables. One of these cases is when single choice splitters

are present in the flowsheet (Kocis and Grossmann, 1989). Here, it is possible to have a mixed

integer linear formulation for the mass balance equations in terms of the individual component

flows. Another restricted case for which some nonconvexities can be reformulated is when

mixing within the network is only allowed for streams of the same concentration. In this form,

larger network superestructures must be proposed and the concentrations of the streams are

known beforehand. Integer variables are introduced to model the existence of the different

streams (e.g. the mixed integer linear formulation for sharp separation networks by Floudas

and Anastasiadis, 1988).

The objective of this paper is to present an efficient global optimization method that

exploits the particular structure that is present in process networks with multicomponent

streams (e.g. pooling and blending systems, sharp separation networks). First a relation is

established between formulations based on concentrations and individual flows. This is done

following the Reformulation-Linearization technique proposed by Sherali and Alameddine

(1992). As will be shown, a linear relaxation Is obtained that is in the space of the

concentrations and individual flows which can be used in a branch and bound search is to find

the global optimum. Application to the optimal design of sharp separation systems with single

feed and mixed products is considered In detail. Different preprocessing techniques that allow

tightening of the relaxation problem are presented. The performance of the algorithm is

reported on a total of twelve problems.

Modeling with concentrations and individual flows

Consider a process network that consists of splitters, mixers and process units that are

interconnected with multicomponent streams (see Fig. 1). The process iinits that are

considered in this paper are units in which the output flows of the components can be

expressed as a linear relation of the inlet flows (e.g. sharp separators, reactor with^known

conversion). It is possible to formulate the mathematical model of the process network in

terms of the concentrations of the streams. Xjk. Another possibility is to model the network



using flows of individual components. The former has the advantages that it provides a

convenient framework for the evaluation of therxnodynamic properties, and in many cases

bounds can be expressed in a more natural form. A major disadvantage is that many

nonconvex terms (bilinear) are involved in the mass balances for the components. The

individual component flows formulation is often chosen since it gives rise to a larger number of

linear equations and the only nonconvexities are involved in the modelling of the splitters. In

these untis it is necessary to enforce that the components maintain the same concentration in

each of the streams leaving the splitter. These constraints can be expressed as relations

between the different components (Wehe and Westerberg, 1987). One deficiency of this

representation is that since many flows can take values of zero, singularities may arise with

which conventional nonlinear programming methods may have difficulties to converge.

Another alternative is to introduce additional variables that represent split fractions (Kocis and

Grossmann. 1989). This involves a larger number of constraints but tends to yield a

formulation that numerically is better behaved.

Following axe the equations that apply to the mixers, splitters and units using the two

alternative representations:

Mixer

A mixer k consists of a set of Inlet streams, Mk, and an outlet stream k (see Fig.2).

a) Concentrations

The total mass balance for a mixer k is given by:
F*« X F* (1)

t«Mfc

where F1 is the total flow in stream i. The mass balance for each component j is given by the

nonlinear equations.
F^xfc 2 Fixj» for all j (2)

where xf is the concentration of component j in the stream i

b) Individual Jlows

Here it is only necessary to write a mass balance for each component j, given by the
linear equations:

^ 1 for all j (3)

where fj1 is the flow of component j In stream i.

Splitter

A splitter k has an inlet stream k and a set of outlet streams Sk (see Fig. 3).



ql[Concentrations

The equations for a splitter in terms of the concentrations are given by the following

linear equations
I ' P = P * (4)

1 € Sfc

Xj* = x,k for all i 6 Sk a$d j (5)
1 x ^ = 1 " (6)
J

b) Individual flows

The mass balance for each component j is given by
I f^a fA for all j (7)

t€Sfc

Here, it is also necessary to enforce the condition that the streams leaving the splitter

have the same proportions in flow for each component. These relations between components,

which are nonlinear, can be expressed in terms of the inlet stream k and a given component j'

fr
k fj* s fjk fjJ for all i € Ikand j * j1 (8)

A different approach consists of introducing as additional variables the split ratios §f
t

that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear

equations are given by

ff«9fjk for al i i € Ik and j (9)

w i t h O £ ? £ l .

Process units • .*. .

In this paper it will be assumed that the outlet streams, i € Ok, in the process units can

be expressed as linear relations of the inlet streams, i e Ik (see Fig. 4). This is for instance the

case of sharp split separators, separations in which the recovery level is known, or reactors

that have a fixed conversion.

a) Concentrations "

The overall mass balance for process unit k is given by,
I Pa I P (10)

l € l k i € O k

The mass balance for each component j is given by the nonlinear equations;
= Px,4 for all ie Okandj (11)

where Pjr
lk is a constant for process unit k that gives the distribution of component j in the

stream i e Ok coming from streams i1 e Ik. For a separator unit it is required tliat 2 IV* = 1

and £ Pjr
tk a 1. A sharp split separator is one for which IIkl = 1 and IOkl =.2 (top and

i' € lk

bottom streams) and for all the components the constant pjr
ik are either 0 or 1.



b) Individual flows

Only the mas balance for each component is necessary and it is given by:
' forallie Okandj (12)

l#€ Ik

A model in terms of individual flows MF consists of the linear equations (3), (7) and (12)

plus the nonlinear equations (8) or (9). The model in terms of the concentrations, MX, includes

the linear equations (1), (4), (5), (6) and (10) plus the nonlinear equations (2) and (11).

Reformulation and Linearization

In order to avoid the direct use of the nonconvex models MX and MF, there is a relation that

can be established between them using the reformulation and linearization technique for

bilinear programming models proposed by Sherali and Alameddine (1992). This technique can

be applied to the model MX. First, consider the bounds over the variables present in the

bilinear terms (total flow, F1 and concentrations x,')

(13)

(14)

Using the bounds in (13), (14) the following constraints can be generated for the bilinear

terms in (2) and (11),
I L (15)

^ ^ ^ ^ l u ( 1 6 )

F1 *j» £ F*ux,4 + Xj»L F* - F*u XjIL (17)

j ' " (18)

In fact, McConnick (1976) has shown that the constraints in (15)-(18) correspond to the

convex and concave envelopes of the bilinear terms over the given bounds. The formulation is

linearized by the definition of the following variables:

fjl = Px j
i (19)

Tile resulting model which involves equations UK (3). (4). (5), (6). (10). (12) and the

constraints in (15M18) is a linear relaxation of the original nonconvex concentration model,

MX, in which the nonlinear equations (2) and (11) have been replaced by the linear equations

(3) and (12) from the individual flow model. MF. It is possible to generate additional linear

constraints that are redundant to the original nonlinear model, MX, but that can be

nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sherali et



al*. 1992). In particular, consider equation (7) that is the linear component mass balance for

the splitters in model MF. "This linear equation is not present in the linear relaxation of the

concentration model. MX. Take equation (4) and multiply by the valid bound constraint x,k £ 0

to get
£ F*xJ

k = Fk^k (20)

Using equation (5) yields.
£'F**i l»lE*^k (21)

that can be linearized to.

yielding equation (7). Hence, the linear equation for the splitter is valid and it is included. The

nonlinear equations (8) or (9) can also be generated in a similar fashion but their linearizations

are in general redundant (see Appendix A). They are only useful when the formulation 6f the

problem provides non-trivial bounds over certain components in the outlet streams of a

splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that relate the total flow and the individual flows of a stream can

be generated for the splitters. Taking equation (6) and multiply by F1 yields.

= F< (23)

Using the constraints x,1 = x̂ k in equation (23) and linearizing with fj1« F* x,4 yields,

(24)
j

Based on the above it is possible to obtain a reformulated model MR that involves

concentrations, total flows and component flows, and which bounds the solution of the original

problem. The following equations are given for model MR:

a) Objective function. <t>. which is expressed in terms of individual or total flows.

b) Mixer equations, which are expressed in terms of the total and individual component flows.
•.F*« £ F* (1)

t€Mk

If/ forallj (3)
icMfe

6



c) Splitter equations, that are expressed in terms of the individual component flows and the

f^oncditi^ tf̂ nff of the streams

y p-pk (4)
t€Sk

Xj' = Xjk for alii e 3* and J (5)

XxJ<=i (6)

£ If «f f for ail j (7)

d) Process units equations, that are given in terms of the total and individual component flows
(10)

fj«= T p/'f/ foraUie Okandj (12)

e) Relation between the total flow and the individual component flows

j

= £ f/ for all streams (24)

f) Linear estimators, relate the individual component flows with the total flow and

concentrations.

ri £> pi L jqi + v * I* pi . pi L jri L (15)

fji ^F 1 t t ^ 4 ^^! u F l -F l u ^ l u for alii e Sk (16)

f/ <F l t t^ l4-^1 LF i-F ! u^ I L i s k € splitters flT)

fj1 ^F^XJ' + X ^ F - F ' - X J ' " foralljeJ (18)

f) Bounds on flows and concentrations

(13)

(14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)

looser approximations of the nonlinear terms were used. In both cases, the nonconvex problem

(MF) was relaxed to a linear model by dropping the nonlinear equations (8) or (9). Equations

that approximate the difference relation between the components were considered (Kocis and

Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter

between the flowrate of the components and required the introduction of binaiy variables.



method

Model MR can be applied to predict lower bounds to the global optimum in the optimization of

pooling and blending problems and in the synthesis of separation systems. The reason is that

model MR provides a valid relaxation of the original feasible region since the nonlinear

equations (2) and (11) in model MX are not considered, and the valid linear equations (3), (7),

(12) and (15)-(18) are included. The proposed global optimization algorithm relies on the

solution of the relaxed problem MR within a spatial branch and bound enumeration. The

outline of the algorithm is as follows (for a more detailed description of step 4 see Quesada and

Grossmann (1993))

0. Preprocessing (optional)

Determine bounds on the variables involved in the nonconvex terms, that is total flows,

F1, and concentrations, x{. Apply any additional preprocessing specific to the structure of the

problem in order to further bound or flx variables.

1. Lower Bound

Solve model MR over a given subregion (initial subregion is the complete feasible region)

minimizing a convex objective function $. If <t> is linear the model Is an LP.

2. Upper Bound

Any feasible solution to the nonlinear model provides an upper bound. Heuristic

techniques can be employed to obtain good feasible solutions or the original problem, MF. can

be solved using the solution of model MR as a good initial point. If the solution of problem MR

is feasible it provides an upper bound.

3. Convergence

If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper

bound.

4. Branch and Bound

Partition the remaining subregions into a set of disjoint subproblems. Repeat steps 1-3

for each of the new subregions.

Remarks

The preprocessing step plays an important role in the above algorithm. It is during this step

that initial bounds for the variables involved in nonconvex terms are obtained. The quality of

8



these bounds affects the tigthness of the lower bound since they are part of the estimator

equations (15)418). Additionally, these bounds affect the performance of the algorithm because

they define the search space over which the branch and bound procedure may have to be

conducted.

In some cases, as described later in this papier, it is possible to exploit the particular

structure of the process network and generate bounds for the variables without having to solve

any subproblems. Furthermore, during this preprocessing step additional constraints can be

generated for predicting a tighter lower bound of the global optimum can be obtained.

Some of the linear mass balances and the estimator equations are redundant in the

nolinear formulations, MF and MX. These equations become nonredundant in the

reformulated model, MR. and for that reason it is important to write a complete formulation of

the network. However, this model can present some redundancies that can be easily identified

and eliminated to reduce the size of the model. This is the case for the concentration variables

used in the splitters. Model MR uses different sets of concentrations variables for the inlet and

outlet variables of a split unit. In practice, it is only necessary to define the concentration of

the component in the splitter and use the same variables for all the splitter streams. Also,

some redundancies can occur with the total flow variables. These ones are necessary for the

streams in the splitters but they might be redundant and eliminated in the other untis if they

do not appear in other part of the model or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it

corresponds to the global optimal solution. When the solution to the model MR Is not feasible

it is necessary to follow a blanch and bound procedure to search for the global optimum. This

procedure requires a valid upper bound on the global optimum. This can be generated through

heuristics or by solving directly the nonconvex model. For this purpose, the process network

model is formulated in terms of the individual component flows and the nonconvex equations

for the splitters are included. Equation (9) was also used in this work to model the splitters

due to it is better numerical behavior. The solution to the model MR was used for the good

initial point. In many instances, it was not possible to solve these nonlinear problems with

MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is generated. Of the set of open

nodes, these are the nodes that have a lower bound that is e-smaller than the current upper

bound, the node with the smaller upper bound is selected to branch on. The splitter units are

the units that are approximated, and of these, the splitter that has the largest difference

9



between its approximated and actual individual component flows is selected. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter. The branching is done in the selected splitter over the

concentration of the component that has the largest difference.

First, the actual concentrations for the individual component flaws in the LP solution (*)

for the splitters are calculated by,

for all the inlet streams to splitter (26)

The splitter unit m is then selected according to the equation.

N • • , . . : .

c mitt ( ty-z^FH) , (27)

Equation (27) represents the total difference between the LP solution for the flows after

the splitter and the actual value of these flows considering the concentrations before the

splitter. Once the splitter has been selected, the component in that splitter that has the largest

difference. J\ is selected by,

J--aigma^( JL I f/ - z»te F* 11 (28)

The following branching constraints are then used;

(29)

To improve the upper bound it might be necessary to solve additional nonconvex

problems. These can be solved after a given number of nodes using the solution of the node

with the smallest upper bound as the initial point. In this work if there was no significant

change in the lower bound of the new nodes with respect to the lower bound of the parent node

( < 1%) a new nonconvex problem was solved.

Example 1

Consider the following pooling and blending problem by Harveley (1978). Two streams that

have components A and B are mixed in a initial mixer a then go through a splitter to obtain two

streams than can be mixed with an additional stream (see Fig. 5a). Two different products can

be obatined and there are constraints on the concentration of component A in these products.

The objective function consists of niimizing the cost that is given by the total flow of the

streams times the cost coefficients, ct, given in Fig. 5.

10



This problem has two local solutions. One has an objective function 0 = -100 and

consists of only producing product 2. The other local solution, that corresponds to the global

optimum, has an objective of + « -400 and here only product 1 is produced.

Model MR is formulated for this problem and the initial lower bound is 0L = -500. The

nonlinear model. MF, is solved using the solution of model MR as the initial point and an upper

bound of $ s -400 is obtained. Since there is a gap between the bounds of the global solution a

partition is performed. There is only one splitter that needs to be approximated and since there

axe only two components it is irrelevant which one is selected since the composition bounds are

related (eg. xB
L = 1 • x*u). The actual value of the composition of A in the solution of model MR

is used as the branching point (x* = 0.0166) to generate two new subproblexns. The first

subproblcm (xA £ 0.0166) has a lower bound of 4>L = -100 and the second subproblem (x* £

0.0166) has a solution of fa. = -400 (see Fig. Sb). Both of these bounds are greater or equal

than the upper bound, therefore the global solution has been found (xA = 0.01).

The next example is a separation problem taken from Kocis and Grossmann (1987). The

original problem has binary variables in the formulation and they have been fixed to 1 for this

example (see Fig. 6).
*

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream

has 80% of the inlet flow of component B. In the column. 97.5% of the inlet flow of A goes to

the top whereas 95% of the inlet flow of B goes to the bottom stream. Hie total flow to the flash

unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of

each of the two feed streams has to be less than 25. The objective function is given by,

<|> = 52 + 10 F! + 8 F2 + F4 + 4 F5 - 35 PjA- 30 P2
B (30)

The initial lower bound for this problem is 0L = -513.22 and it is infeasible for the

original NLP model. A nonconvex problem is solved using CONOPT with the solution of model

MR as the initial point obtaining an upper bound of <J> = -511.87 and the relative gap is only

0.3%. Again only one splitter is present in the network and a partition can be performed using

the concentration of component A in this splitter. The lower bounds for the new two

subproblexns are fa = -511.87 (xA £ 0.5121) and <t>L = -511.80 (xA > 0.5121). Both solutions are

greater or equal than the upper bound and the global solution has been obtained. In the global

solution Fi = 8 and F2 = 25, and 11% of the inlet flow lo the splitter is directed to the flash.

76% to the column and the rest bypassed to P2.

11



Example 3

TIUs example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

>«4Si + 1.5S2 + 4S3 (3D

The initial lower bound is 4>L = 138.18 and the nonconvex problem MP is solved
obtaining a solution of $ = 138.7. The gap between these bounds is less than 0.4 %. The
global optimum for this tolerance is shown in Fig. 8.

Sharp separation networks

In order to illustrate the application of the above algorithm to a specialized case where the
structure can be further exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
specified multicomponent product streams. The components are ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9)). The superestructure consist of N-l separators. Separator i performs the
task of removing component number 1 to number! at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-l
streams, Ft, that go to the separators and K streams, ak. that bypass the network to go to the
products. Each stream F{ is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i, S^

The outlet streams of separator i are the top, T(, and the bottom, Bt. These streams, T,
and Bt. are each split into streams, PTt

k and PB^ respectively, that go to the K products and
into streams, KIV' and.RBf. that are redirected to the other separators. The top stream of
separator i, Tit can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaller flows. KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, B,, can be redirected only to separators i+1 to N-l since it can only

12
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contain components that are separated by these sharp separators. RB/ is the redirected flow
from the bottom stream of separator i to separator i\

Model

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
and total flows has the following form:

min •= Zc t S| (32.1)
N-l K

st. reeo!•» 2u * i * m®k IOZ.ZJ
t»i k*i

LsF|L for all i and j (32.3)
1-1 N-l

Si» F| + £ RB,1 + X Kiy for aU i (32.4)
t'«l !'«*•!

1-1 N-l
Si xsq = flj + £ RBf1 x^j + £ KTr

! xtrj for all i and j (32.5)

S i s ^ + Bi for alii (32.61

for all i and ord(j) < i (32.7)

for aU i and ord(j) > i (32.8)

for all i and ord(j) > i (32.9)

= 0 for all i and ordQ) ^ i (32.10)
t - i K " !

Tf m £RTir + £FTt
k for aU i (32.11)

1*1 k«l
N-l K

Bi s £RB^f + £PBt
k for all i (32.12)

N-l N-l

3^ + 0^ Tor'alt k (32.13)
N-l N-l
£PT,k xt« + £PB,k xbq+ ak z. for all k and j (32.14)
i*l i»l

1 for alii (32.15)
N
Z xb,j = 1 for all i (32.16)
N
I x s , j = l for alii (32.17)

Si, T|t B,. Fi. RT/. RBt*'. PTt
k. PBik. c*. t^ xs,j, xty.
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The parameters Feed, zj, Pk and pkj represent the total feed, composition of the feed,

total flow of product k and component flow of component j in product k, respectively. The

variables xsq, xty and xbg are the concentrations of component j in the inlet stream to separator

1, top of separator 1 and bottom of separator i, respectively.

The objective function (32.1) is a linear function of the inlet flow to the separators.

Equation (32.2) is the total mass balance in the inlet splitter and equation (32.3) is the

component mass balance. Equations (32.4) and (32.5) are the total and component mass

balances for the mixer i before the separator L The material balances for separator i are given

by equations (32.6)* that is the total mass balance for the separator, equations (32.7) and (32.8)

that are the component balances for the top stream and indicate that nothing from components

number 1+1 to N-l is in the top of the separator, and equations (32.9) and (32.10) that are the

component mass balances for the bottom streams. Equations (32.11) and (32.12) are the

overall mass balances for the splitters of the top and bottom streams alter separator 1. The

equations that state that the concentrations of the outlet streams should be the same that the

inlet stream in a splitter have been already substituted. Finally, equations (32.13) and (32.14)

are the overall and component mass balances for the mixer for product k.

Model (32) corresponds to a formulation of the type of model MX where the distribution

coefficients are known and restricted to 0 or 1. Some simplifications have been made to avoid

including many irrelevant variables (e.g. not to define concentrations for the streams that go

the top i to product k). Although, some of the linear constraints in this formulation are

redundant, they can become nonredundant in the linear relaxation as will be shown in

Example 4.

Equations (32.5). (32.7). (32.9) and (32.14) involve nonconvex terms. This model can be

reformulated as in model MR by introducing individual component flows and the linear

equations (15M18) and (7) according to the approach illustrated earlier to obtain a model in the

form of model MR The resulting reformulated model is as follows,
N-l

min <)>f =

s t Feed

fij = F

S, = f

s<j = fi

S c < S i
1*1

N-l

= IF1 +

1 »I

i-1

j+ Z rbt

K

I<

teftKi

Xk

N-l

1 •••i

N-l

I rtrj>
i«t*l

for all i

for alii

for all i
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andj

andj

(33.1)

(33.2)

(33.3)

(33.4)

(33.5)
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Sr-TV+'B, for a l i i (33.6)

tn = sij for all i and ord(j J £ i (33.7)

t f * 0 for all i and ord(j) > i (33.8)

b,jSSSg for all i and ord(j) > i (33.9)

t,j = O for all i and ordfl) £ i (33.10)

T, = sW + lPT4
k for all i (33.11)

1*1 k«l
N-l K

Bi m £RB,if + £PB t
k for all i (33.12)

p* = TFTt
k" + £PB|k + otk for all k (33.13)

>M riti
Pki * 5jt t ,k + Xpb^k + ctk z, for all k and j (33.14)

1*1 K

t« = Z ^ / + Zptijk foraUiandj (33.15)
i'»l k«l

N-l K

b« = Zrbij4' + £pb«k for all i and j (33.16)
l'*t+l k» l

1 for alii (33.17)
I "

for all i (33.18)

for alii (33.19)
l

N
B,s Ib« for alii (33.20)

PTik= Tpt<*k for ali i and k (33.21)
oixi(j)»iJ

N
PB,k= Ipbqk for alii and k (33.22)

i

RT/ = ] D V f o r all i and if < i (33.23)
ord(i)-l

N

for all i and r > i (33.24)= Irb/

Equations (15-18) for t4J, rttJ
l and pttj

k in terms o

and the total flow of its respective stream.

Equations (15-18) for bq, rbq* and pbfj
k in tenns

and the total flow of its respective stream.

Tlt Bt. F4. KTf, RB,1', PT,k. PB^. ak. f,j. xs,jf xt4jf xb,j ^ 0

j k . rt,/. rby1* > 0
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It is not necessary to include equations (15) -(18) for the inlet component flows to the

separator, Sq. since the variables xsy only appear in these equations. Also, the component

flows, S|j9 only appear in mixers and sharp separators units which can be exactly represented in

terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-

(33,16) that are the component mass balances for the splitters of top and bottom streams have

been included accordingly to the reformulation previously presented. Equations (33.19M33.24)

relate the total flow and the individual component flows for the splitter streams.

The proposed Superstructure (Fig. 9) allows to bypass certain amount of the feed to the product

k. Ok, without having to go through the separation network. The amount of the product k that

is not bypassed has to be processed In the separation network and it will be denoted as the

'residual product*. Hence, the total 'residual product kf is given by (Pk - ak) and has the

component flows given by (p^ - ô Zj )(see Fig. 10).

The global optimal solution of model (32) is a network in which all the residual

products1, have at least one component with a zero flow. The reason that it is not optimal to

separate a stream in the network and later to remix it. The same degree of separation can be

achieved using a bypass that does not incur any cost in the objective function.

Consider the second separator in the solution obtained by Floudas (1987) to his second

example (see Fig. 11). For this subnetwork of the complete structure the "upper 'residual

product' has components B and C present. The components are being separated and remixed

again. The same outlet flows can be obtained with a smaller input flow to the separator as it is

shown in Fig. 11. Note that both 'residual products' have components with zero flow.

It should be clear that if there was not a component with zero flow in the 'residual

product1, then there is part of this stream that could have been obtained by just bypassing the

network. This in turn does not incur in any cost, whereas going through the network has a

positive cost. The above condition gives a lower bound for the bypass to each product. This

also corresponds to the largest amount that can be bypassed since all this flows in the residual

flow1 have to be positive. In this form the bypass can be precalculated without affecting the

global optimality of the solution.

The bypass to product k is given by the maximum amount that can be sent to product k

without having a negative flow; that is.

a* = minj t ^4 (34)
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where Zjis the feed composition and pkJ is the flow of component j in product k. The

component flews for residual product1 k, y# are given by.

Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the flow of the key

components in separator i. These bounds are based on the fact that separator i is the only unit

that can perform the task of separating component number i from component nutaber i+1.

They are redundant for the nonlinear formulation (32) but they are relevant for the linear

relaxation in (33). To calculate them, it is necessary to determine in each product what is the

difference between the two key components of separator 1 with respect to the concentrations in

the feed. The lower bounds in separator i* for the flow of the key components in the top

(component Jl) and bottom (component j2) streams are given by:

t|i * I {TWji - zji nitowi J2 nn ) for all i (36)

foralli (37)

where y^ is given by (35). It is important to include both bounds in the relax model (33) since

there is no guarantee that the inlet flow to separator i has the same proportion between the key

components as the feed. It is not known in which part of the sequence separator 1 will be

placed, and it can be after a splitter that is not being approximated correctly.

The bounds in (36) and (37) can be extended to separation of components that are not

adjacent in the feed. Consider component number i and component number i+3. There are

three separators that can perform this task, separators i. i+1 and i+2. Cuts of the following

form can be obtained,

K
t* i + tf! t + t,«a i Z I {Tkt - z, mtaonHH or *3 l~Tl) for all i (38)

ki l \

or i+3 £~]} for all i (39)

Equations as the ones in (38) and (39) can be redundant compared to equations (36)

and (37) and it is possible to detect this before solving the problem.

Relative flowrate constraints
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These constraints are used when the relation between the flowrates of two components

is known. In particular, consider component A in the last column of the network (we Fig. 12).

None of the redirected streams contains component A. Therefore, the relative flowrate of

component A with respect to the other components in the top stream has to be smaller than in

the feed. This relation should remain valid after the top stream is split to the products and

redirected flows.

In the separator previous to the last one, N-2, all the streams do not have component A

except the one coming from the top of the last column. For this one it is already known that

the relative flow of component A with respect to the other components is smaller than in the

feed. This type of analysis can be done for component A and component N in all the columns

yielding th$ following linear constraints for the splitters.

for alii and k

ZAPtijk-ZjPt«Ak^O forj *Aandord(j)<i (40)

zN pb,jk - z, pt*N
k £ 0 for ord(j) * N and ord(j) > i (41)

fora l l iandi '> i

ZArt|jr • Zj rtiA4' ̂  0 f o rJ * A a n d o rdW ^ * W2)
for alii and f < i

O forord(J)*Wandord(j)>i I43J

Boundson concentrationsand total flows

The approximations (15-18) require bounds for the total flows and component

concentrations in the splitters. The lower bound for the total flow of the top and bottom

streams is given by the lower bound of the key components obtained in equations (36) and (37).

For the outlet streams of the splittters, that are the redirected streams and the streams that go

to the products, the lower bound is zero. The upper bound for the total flow of the top and

bottom streams is given by the feed to the network of the components that can be present in

each stream .that is,

t

Tt
u= Z(Feed-Xak)z, for ail i (44)

B|«= ItFeed-IOfcJz, forallj (45)

The upper bound for the streams after the splitter are given by.
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for ail i and i' <

for all i and i'>

for all i and k

for alii and k

i

i

(46)

(47)

(48)

(49)

The lower bounds for the concentrations are zero except for the key components in the

separator for which the lower bounds are given by the lower bound of its flow divided by the

upper bound of the total flow of that stream. The upper bounds in the concentrations are given

by one minus the lower bounds of the other components.

The solution of the linear programming model (33) provides a lower bound to the global

optimum since this model is a valid relaxation of the nonconvex model (32). This lower bound

is obtained by solving the LP model for the residual products' in 135) with the addition of the

valid constraints (36)-(43).

The upper bounds are generated solving mode} (32) in terms of the individual flows for

the residual products'. When additional nonconvex problems are solved to improve the current

upper bound it can happen that very similar initial point are generated. In this case, a new

nonconvex NLP is solved in which bounds over the total inlet flows to the separators (SJ are

included. For this purpose the values of these variables in the LP solution (S4*) are used such

that the current incumbent solution is no longer feasible.

Example 4

Consider the 3 component example proposed by Floudas and Agganval (1990). An equimolar

feed has to be separated into two products as show in Fig. 13. The objective function is given
by

<t> = 0.2395 + 0.00432 S, + 0.7584 + 0.01517 &* (50)

The bypass to products 1 and 2 can be calculated according to equation (34) and the

'residual product1 component flows are obtained through equation (35) (see Fig. 14). The total

bypass to product 1 is a, = 90 and the bypass to product 2 is ct2 = ISO and the feed has a

concentration of zA = 1/3, zQ = 1/3 and Zc = 1/3. In this form the 'residual product1 1 is YIA =

0, YiB = 20 and ylc = 0 and the residual product' 2 is Y2A = 20, Y2B = 0 and Y2C = 20.

Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35)-(36). The key components in separator 1 are component A in the top and

its flow has to be at least 20 and component B in the bottom has to have at least a flow of 20.

In the top stream of the second separator at least 20 units of component B have to be

separated from 20 units of component C in the bottom stream. It is important to note that

after preprocessing the network several suboptimal solutions have been cut off. One of these

suboptimal solutions for this particular data is a parallel configuration of both separators

(there are situations in which a parallel configuration can correspond to the global solution as

will be shown in example 5). In this example the direct or indirect sequence have a lower

objective function. Both of these configurations are local solutions with an objective function

value of 4 » 1.8639 for the direct sequence and 4 = 2.081 for the indirect one. In some

instances, MINOS 5.2 had problems converging even in this small example.

The LP (33) is formulated for this problem, giving a lower bound of (^ = 1.8639. The

approximations are exact and therefore this solution is a feasible solution of model (32) proving

that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.

The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted

that if the linear mass balances for the mixer for product 2 were not considered since they are

redundant for the nonlinear formulation, a lower bound in the relaxed model of <t>L = 1.12 is

obtained, this shows that it is relevant to include all the mass balances in the linear model in

order to tighten the lower bound.

Example 5

In the approach proposed by Wehe and Westerberg (1987) for the case of 3 components only

the direct and indirect sequences are considered and both options can be modelled as LP

problems since no mixing is required for these separation networks. However, this example

shows that parallel configurations can be also globally optimal and that they are not excluded

by the method proposed in this paper. To be able to consider parallel configurations or any

combination of parallel with direct or indirect sequences it is necessary to model a

superstructure in which mixing is allowed (like in the structure used in Fig. 13). Here,

nonconvexities arise in the mass balance equations after the separators.

Consider that an equimolar feed is to be separated into the two different products given

in Fig. 16. The objective function is to minimize the sum of the total flows into the separators.

The same procedure that in the previous example is followed and the bypass can be

precalculated by equation (34). The solution to the model (32) yields <t>L = 12 and since it is a

feasible solution of model (32) it corresponds to the global optimum (see Fig. 16). Note that the

solutions for the direct or indirect sequences have an objective function of <)> =16.
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Branch and Bound

If there is a gap between the lower and upper bound a branch and bound search is performed.

It is only necessary to do the search over the variables involved in the nonconvex terms. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter* In this way. it is necessary to check the approximation for the

concentrations in the splitters of the top and bottom streains of the separator. Equations (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound

search.

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation

network examples 4 to 12. The number of variables is the total number of variables that are

included in the reformulated and relaxed model (33) for that example. The lower bound is the

initial bound that fs obtained by solving model (33) over the entire feasible space. The inital

gap represents the percentage diflerence between the initial lower and upper bounds. When

there is a zero initial gap it means that the first relaxed solution is feasible in the original

problem thereby corresponding to the global solution. The column for nodes gives the total

number of subproblems that where solved before converging to the global solution. A relative

tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after

branching and example 12 for which a tolerance of 0.02 was used. It is important to note that

the initial lower bound is tight and that it corresponds to a good estimation of the global

solution. The largest differences are for example 1 with a 25% of diflerence and for example 12

with a 7% diflerence. The LP time refers to the time used to solve each relaxed model and the

NLP time is the time used for solving a nonconvex model. It is possible to do updates using the

previous LP solution and in this form have a more efficient implementation. The times are in

seconds and the problems were solved on an IBM RS600/530 using GAMS 2.25 (Brooke et al.

(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP

problems. A brief description of the example problems 6 to 12 is given below. It includes the

specific data for the problem, the objective function and the topology of the network that is the

global solution.

Example 6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

<t> = 2.5 S! +3.0 S2 + 1.5 S3 (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is <t>L = 54.25 and an upper bound of 0 = 55.5 is obtained by

solving the nonconvex problem. A partition of the feasible region is performed using the

composition of component D in the bottom stream of separator 1. The first subproblem (x £

0.166) yields a lower bound of 4>L = 55.45 and the second subproblem (x < 0.166) has a solution

of 4>L= 55.8. The latter is greater than the upper bound iand the former is less than 1% of the

global solution (see Fig. 17).

Exajnple7
This example is taken from Floudas (1987). The data for this problem is given in Table 3 and

the linear objective function is given by:

4> = 2.5S1+3.0S2+L2S3 (52)

The initial lower bound is <J>L = 32.7 and it provides a feasible solution to the nonconvex

problem. In this form the global solution (see Fig. 18) is obtained in one iteration. It is

interesting to see that this solution also provides a better objective function for the concave

objective function used by Floudas (1987) ($ = 10.65 versus $ = 13.68 which is 28% higher)

Example 8
Tills four component problem is taken from Wehe and Westerberg (1987). The data for the

products is given in Table 4 and the objective function has the following form:

<t> = 5.0 + 0.5 Si + 4.0 + 0.3 S2 + 6.0 + 0.7 S3 (53)

The first relaxed subproblem has a solution of 0L =26.76 and it is infeasible for the

nonconvex problem. A nonconvex problem is solved using CONOPT with the LP solution as the

initial point. An upper bound of 4> = 26.79 Is obtained corresponding to the global solution (see

Fig. 19) within a 0.1%.

Example 9
This example corresponds to example 1 from Wehe and Westerberg (1987). Table 5 provides

the data for the product flows and the objective function is given by:

<J> = 5.0 + 0.5 Si + 9.0 + 1.0 S2 + 3.0 + 0.4 S3 + 6.0 + 0.6 S4 (54)

A initial lower bound of <t>L = 85.16 is obtained and the upper bound Is $ « 85.65. The

difference is 0,5% and the global solution (see Fig. 20) is obtained in one iteration.
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Example 10
This problem is taken from Floudas (1987) and the data is given in Table 6. The objective

function is given by,

4 « 1.2 Sj + 3.0 Sj + 2.5 S3 + 1.5 S4 (55)

The JrHtuii lower bound is <^ = 156.56 and the upper bound is <J> = 179.08. After 5 nodes

the global solution of $ = 159.48 (see Fig. 21) is obtained.

Example 11
The data for this 6 component problem are given in Table 7 and the objective function has the

following form:

4 »i.5 S, + 3.0 Sj + 2.0 S3 + I.OS4 + 4.0 S5 . (56)

The initial lower bound is 0L = 173 and the upper bound is 4 » 179.11. After five nodes

the global solution is obtained (see Fig. 22).

Example 12

This is a 6 component 4 products problem and the data are given in Table 8. The objective

function is:

$ m 5.0 Si + 3.0 S2 + 2.0 S3 + 2.5 S4 + 4.0 S5 (57)

The initial lower bound is <frL = 362 and the initial upper bound is 0 = 415.6. The global

solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent

streams has been proposed. The basic idea relies on a relaxed LP model that is obtained

through reformulation-linearization techniques that establish a clear relation between the

component flow and the composition models for mass balances. The reformulated model

combines both of these providing tighter lower bounds than other relaxations proposed in the

previous work. The relaxed linear model has been embedded in a branch and bound procedure

to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of

the particular structure of sharp separation networks with single feed and mixed products.

Here, it is possible to preprocess the problem to reduce the space over which the search is

23



conducted. The bounds that are necessary for the estimator functions in the relaxed model

can be obtained without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter

lower bound.

Twelve examples for both general process networks and for sharp separation networks

have been presented to illustrate the performance of the algorithm. As has been shown, only a

small number of nodes are commonly needed in the branch and bound search to identify the

global or e-global solution. Moreover, in many cases the initial lower bound is either the exact

solution or a very good approximation to the global solution.
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Appendix A. Reformulation-Linearization to obtain the nonlinear

constraints in model MF

The nonlinear equations in model MF. that can be expressed either as (8) or (9), can also be

generated from model MX. For this purpose take the concentration model MX and consider

equation (5),

multiply by the valid bound constraint Xjk £ 0

xfvfm^xf (A.2)
Use equation (5) for component J\

xfxf**xtXfk (A.3)

Multiply by the valid bound constraints Fk > 0 and F1 > 0,

Fkx,kFlXf4 = F*^lFkx^k (A.4)

that it is linearized to yield.

which is precisely equation (8) for the splitters in the individual flow model MF.

Consider again equation (5),

x,k = ^ IA.6)

multiply by the valid bound constraints Fk > 0 and F1 > 0,

F^xfF^F'xj'F1 ' IA.7)

that can be linearized to yield.

Define the split fraction £ to be,

? » £ < A - 9 J

Equation (A.8) can then be expressed as
fjt^tff (A. 10)

which corresponds to equation (9).

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear

approximations in general are also redundant in the linear reformulated model MR. Consider

equation (A. 10), similarly to (15) one of its linear approximations is given by.

If there are no particular restrictions in the splitters, then the bounds for the split

fraction variable are 0 £ £f < 1 and using them in (A. 11) yields.
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The bound for the individual component flow is given by fjk L = x,k L Fk L; also x,k = x,1 and £f -
F1

p£f which leads to,
1 (A. 13)

The estimator (15) for the same conditions (F1 L - 0) is given by

(A. 14)
pkL

Since the factor -pg- ls always less or equal than 1. equation (A. 13) is redundant. A similar

analisis can be performed for the other estimators. Only when more specific bounds over the

split fractions or the individual component flows are known, will these additional estimators be

non redundant.
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Figure 1. Process network with units, splitters and mixers.
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Figure 2. Mixer module
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Figure 3. Splitter module.
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Figure 4. Process unit module.
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Figure 5. Network and branch and bound search for example 1
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Figure 8. Optimal network for example 3.
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Figure 14. Residual products and key component bounds in example 4.
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Figure 15- Global optimum solution of example 4.
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Figure 16. Global optimum solution of example 5.
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Solution of example 7.
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Figure 19. Solution of example 8.
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Figure 21. Solution of example 10.
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Table 1. Computational

Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9

Example 10
Example 11
Example 12

Comp.

—
—

3
3
4
4
4
5
5
6
6

results.
WocL

...

...
2
2
2
2
3
4
2
2
4

Var.

29
35
113
65
65

107
107
125
281
225
350
430

Lower
bound
-500

-513.22
138.18
1.8639

16
54.25
32.7

26.76
85.16
156.56

173
362

Initial
gap
20'
0.3
0.4
0.0
0.0
2.3
0.0
0.1
0.5
12.4
3.5
14.8

Global
solution

-400
-511.87

138.7
1.8639

16
55.5
32.7

26.79
85.65
159.48
179.11
388

Nodes

3
3
1
1
1
3
1
1
1
5
5

33

LP
time
0.05
0.26
0.34
0.13
0.13
0.97
0.17
0.23
3.08
2.59
9.98
19.8

NLP
time
0.1
0.3
0.4
-.
. .

0.4
. .

0.3
2.8
2.3
8.8
13.2

Table 2. Data for example 6.
Component
Product 1
Product 2
Feed

A
5
10
15

B
10
10
20

c4
6
10

D"
10
5
15

Total
29
31
60

Table 3. Data for example 7.
Component
Product 1
Product 2
Feed

A
7.5
7.5
15

B
10
10
20

c
6
10

D
10
5
15

Total
31.5
28.5
60

Table 4. Data for example 8.
Component
Product 1
Product 2
Product 3
Feed

A
2
1
3
6

B
3
4
1
8

C
1
1
3
5

D
3
5
1
9

Total
9
11
8

28

40



Table 5. Data for example 9.
1 Component
Product 1
Product 2
Product 3
Product 4
Feed

A
7
10
5
10
32

B
8
3
5
0
16

C
3
5
6
6

2 0

D
9
5
7
4

25

E
8
4
3
9

2 4

Total
35
27
26
29
117

Table 6, Data for example 10,
Component
Product 1
Product 2
Feed

A
2
8
10

B
2.4
5.6
8

C
16
4

2 0

D
8
8
16

E
1
9
10

Total
29.4
34.6

6 4

Table 7. Data for example 11.
[Component 1
Product 1
Product 2
Feed

A
3
8
11

B
2
10
12

C
16
8

2 4

D
8
8
16

E
4
6
10

F
10
5
15

Total
4$
4$
8 8

Table 8. Data for example 12.
Component
Product 1
Product 2
Product 3
Product 4
Feed

A
3
8
5
7

23

B
2
10
4
3
19

C
6
8
10
1

25

D
8
8
3
2

21

E
4
6
11
5

26

F
10
5
4
7

26

Total
33
45
37
25
140

4 1
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Abstract

This paper deals with the global optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides a valid lower bound to the global optimum. This formulation is then
used within a spatial branch and bound search. The application of this method is considered
in detail for sharp separation systems with single feed and mixed products. Numerical results
are presented on twelve test problems to show that only few nodes are commonly required in
the branch and bound search.



Introduction

A common source of nonconvexities in the synthesis and design of processes, as well as in

flowsheet optimization, are the material flow equations for multicomponcnt streams. These

nonconvex equations involve bilinear terms and they arise in the mass balance equations when

the compositions are unknown. There are different equivalent formulations for this type of

networks. One alternative is to formulate the mass balance equations in terms of component

concentrations* In this form bilinear terms are present in tht equations for the mixer units

and the different process units (e.g. sharp separators). A second alternative is to express the

mass balances in terms of flows of individual components. This option has the advantage that

it involves a smaller number of nonlinear equations. However, the modelling of the splitter

units involves bilinear terms that arise due to the condition that the proportions of flows

between components have to be the same for the different streams.

The difficulty with the nonconvexities noted above is that they may give rise to

optimization problems involving several local optima and numerical singularities that may

produce failure in the NLP algorithms. Recently there have been important efforts in the area

of global optimization. Examples of algorithms are the ones proposed by McConnick (1976),

Floudas and Viswewaran (1990) and Sherali and Alameddine (1992) which can be used to solve

bilinear programming problems like the ones that arise in networks with multicomponent

streams. For a recent review in the area of bilinear programming see Al-Khayyal (1992).

As for previous work in the design and synthesis of multicomponent process networks

Mahalec and Motard (1977) and Nath (1977) developed evolutionary techniques that are based

on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of

separation networks with mixed products in which only sharp separators are considered. A

superstructure of the process network was proposed and modelled in terms of concentrations.

The resulting model is nonconvex and solved with a standard NLP algorithm with no guarantee

of global optimality. Floudas and Aggaiwal (1990) solved small pooling and blending problems

and sharp separation networks problems using a strategy based on Senders decomposition. In

this approach only convex subproblems are solved but there is no guarantee of obtaining the

global optimum. Kocis and Grossmann (1989) modelled process networks with

multicomponent streams in terms of the individual component flows. They included a set of

bounding constraints with binary variables to approximate the nonconvexities that are present

in splitters with multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp

separation networks with mixed products. They proposed a search procedure that involves the



enumeration of the different separation sequences. The nonconvex equations are dropped and

constraints that are valid for each particular sequence with a set of bounds over the key

components are included to obtain tighter LP relaxations for each configuration. However, the

number of sequences to be examined grows rapidly and there is no guarantee of global

optimalitv*

In some particular cases the nonconvexities in the mass balances can be avoided

through the introduction of binary variables. One of these cases is when single choice splitters

are present in the flowsheet (Kocis and Grossmann. 1989). Here, it is possible to have a mixed

integer ?fryfl»r formulation for the mass balance equations in terms of the individual component

flows. Another restricted case for which some nonconvexities can be reformulated is when

mining within the network is only allowed for streams of the same concentration. In this form,

larger network superestructures must be proposed and the concentrations of the streams are

known beforehand. Integer variables are introduced to model the existence of the different

streams (e.g. the mixed integer linear formulation for sharp separation networks by Floudas

and Anastasiadis, 1988).

The objective of this paper is to present an efficient global optimization method that

exploits the particular structure that is present in process networks with multicomponent

streams (e.g. pooling and blending systems, sharp separation networks). First a relation is

established between formulations based on concentrations and individual flows. This is done

following the Reformulation-Linearization technique proposed by Sherali and Alameddine

(1992). As will be shown, a linear relaxation Is obtained that is in the space of the

concentrations and individual flows which can be used in a branch and bound search is to find

the global optimum. Application to the optimal design of sharp separation systems with single

feed and mixed products is considered in detail. Different preprocessing techniques that allow

tightening of the relaxation problem are presented. The performance of the algorithm is

reported on a total of twelve problems.

Modeling with concentrations and individual flows

Consider a process network that consists of splitters, mixers and pfrbcess units tliat are

interconnected with multicomponent streams (see Fig. 1). The process iinits that arc

considered in this paper are units in which the output flows of the components can be

expressed as a linear relation of the inlet flows (e.g. sharp separators, reactor with^known

conversion). It is possible to formulate the mathematical model of the process network in

terms of the concentrations of the streams, Xjk. Another possibility is to model the network



using flows of individual components. The former has the advantages that it provides a

convenient framework for the evaluation of thermodynamic properties, and in many cases

bounds can be expressed in a more natural form. A major disadvantage is that many

nonconvex terms (bilinear) are involved in the mass balances for the components. Hie

individual component flows formulation is often chosen since it gives rise to a larger number of

linear equations and the only nonconvexities are involved in the modelling of the splitters. In

these untis it is necessary to enforce that the components maintain the same concentration in

each of the streams leaving the splitter. These constraints can be expressed as relations

between the different components (Wehe and Westerberg. 1987). One deficiency of this

representation is that since many flows can take values of zero, singularities may arise with

which conventional nonlinear programming methods may have difficulties to converge.

Another alternative is to introduce additional variables that represent split fractions (Kocis and

Grossmann. 1989). This involves a larger number of constraints but tends to yield a

formulation that numerically is better behaved.

Following are the equations that apply to the mixers, splitters and units using the two

alternative representations:

Mixer

A mixer k consists of a set of inlet streams, Mk, and an outlet stream k (see Fig.2).

a) Concentrations

The total mass balance for a mixer k is given by:
F*= 2 F* (1)

where F* Is the total flow in stream i. The mass balance for each component j is given by the

nonlinear equations,
F * * ^ £ Pxj1 forallj (2)

where x,1 is the concentration of component j in the stream i

b) Individual flows

Here it is only necessary to write a mass balance for each component j, given by the

linear equations:
^ ^ 2 fj! forallj (3)

where fj1 is the flow of component j in stream i.

Splitter

A splitter k has an inlet stream k and a set of outlet streams S* (see Fig. 3).



cQ Concentrations
The equations for a splitter in terms of the concentrations are given: by the following

linear equations
Fk (4)

for alii 6 Skai*dj (5)
(6)

b) IndividuuaLJlows
The mass balance for each component J is given by

sff forallj (7)
i€Sfc

Here, it is also necessary to enforce the condition that the streams leaving the splitter

have the same proportions in flow for each component. These relations between components,

which are nonlinear, can be expressed in terms of the inlet stream k and a given component J*

fj* tf = fjk f)V for alii 6 Ikandj*j' (8)

A different approach consists of introducing as additional variables the split ratios ^,

that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear
equations are given by

(braliie Ikandj (9)

Process units

In this paper it will be assumed that the outlet streams, i € Ok, in the process units can

be expressed as linear relations of the inlet streams, i e Ik (see Fig. 4). This is for instance the

case of sharp split separators, separations in which the recovery level is known, or reactors

that have a fixed conversion.

a) Concentrations T

The overall mass balance for process unit k is given by,
IF*= £F (10)

if Ik *«°k
The mass balance for each component] is given by the nonlinear equations:

£ P^F*'^'sPx' forallie Okandj (11)
»*«lk

where
stream i e Ok coming

pjr
lk is a constant for process unit k that gives the distribution of component j in the

i i e Ok coining from streams i1 € Ik. For a separator unit it is required tliat £ f̂ * = 1

and £ Pjitk s i . A sharp split separator is one for which IIkl = 1 and IOkl =2 (top and
V € l k

bottom streams) and for all the components the constant pjt
ilc are either 0 or 1.



ffi Uvdiiikixialjlows

Only the mas balance for each component is necessary and it is given by:
forallie Okandj (12)

A model in terms of individual flows MF consists of the linear equations (3), (7) and (12)

plus the nonlinear equations (8) or (9). The model in terms of the concentrations. MX includes

the linear equations (1). (4), (5). (6) and (10) plus the nonlinear equations (2) and (11).

Refor"? TI totton and Linearization

In order to avoid the direct use of the nonconvex models MX and MF, there is a relation that

can be established between them using the reformulation and linearization technique for

bilinear programming models proposed by Shcrali and Alameddine (1992). This technique can

be applied to the model MX. First, consider the bounds over the variables present in the

bilinear terms (total flow, F1 and concentrations Xj1)

(13)

(14)

Using the bounds in (13). (14) the following constraints can be generated for the bilinear

terms in (2) and (UK

fL (15)

j t u (16)

F1 Xj4 £ F*ux,4 + xfL F* - F*u XjIL (17)

F1 xf < FiLx/ + Xj4u F1 - F1L Xj*u (18)

In fact. McCormick (1976) has shown that the constraints in (15M 18) correspond to the

convex and concave envelopes of the bilinear terms over the given bounds. The formulation is

linearized by the definition of the following variables:

$*¥**{• (19)

Tfte resultihg model which involves equations (1). (3), (4). (5), (6). (10). (12) and the

constraints in (15)-{18) is a linear relaxation of the original nonconvex concentration model.

MX. in which the nonlinear equations (2) and (11) have been replaced by the linear equations

(3) and (12) from the individual flow model. MF. It is possible to generate additional linear

constraints that are redundant to the original nonlinear model, MX, but that can be

nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sherali et



al.. 1992). In particular, consider equation (7) that is the linear component mass balance for

the sputters in model MF. This linear equation is not present in the linear relaxation of the

concentration model, MX. Take equation (4) and multiply by the valid bound constraint xf £ 0

to get
I F x j ^ F * ^ (20)

Using equation (5) yields.
t P x j ^ F ^ (21)

that can be linearized to,

" f 'k ( 2 2 )

yielding equation (7). Hence, the linear equation for the splitter is valid and it is Included. Hie

nonlinear equations (8) or (9) can also be generated in a similar fashion but their linearizations

are in general redundant (see Appendix A). They are only useful when the formulation df the

problem provides non-trivial bounds over certain components in the outlet streams of a

splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that relate the total flow and the individual flows of a stream can

be generated for the splitters. Taking equation (6) and multiply by F1 yields.
* • " , - • . • • • . - .

= P (23)

Using the constraints xf = xjk in equation (23) and linearizing with fj1 = F1 xf yields.

F-Itf (24)
j

Based on the above it is possible to obtain a reformulated model MR that involves

concentrations, total flows and component flows, and which bounds the solution of the original

problem. The following equations are given for model MR:

a) Objective function. 0. which is expressed in terms of individual or total flows, ...

b) Mixer equations, which are expressed ta terms of the total and individual component flows.
* (1)

^ for all j (3)
t€Mk

J

6



c) Splitter equations, that are expressed in terms df the individual component flows and the

of the streams

l#S k

for all i€ SkandJ

for all J

(5)

(6)

(7)

d) Process units equations, that are given in terms of the total and individual component flows
XF* (10)

I € ifc I € Ofc

for all ie Okandj

e) Relation between the total flow and the individual component flows
= £ f/

J
for all streams

(12)

(24)

fj Bounds on flows and concentrations

f) Linear estimators, relate the individual component flows with the total flow and

concentrations.

fji S F ^ + x ^ P - F 1 " ^ " foral l i€Sk (16)

fji < ji u ̂ i ̂  x̂ t L pi. p u x̂ i L i s k € splitters t!7)

^iu foralljeJ (18)

(13)

(14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)

looser approximations of the nonlinear terms were used. In both cases, the nonconvex problem

(MF) was relaxed to a linear model by dropping the nonlinear equations (8) or (9). Equations

that approximate the difference relation between the components were considered (Kocis and

Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter

between the flowrate of the components and required the introduction of binary variables.



Outline of global optimization method

Model MR can be applied to predict lower bounds to the global optimum in the optimization of

pooling and blending problems and in the synthesis of separation systems. The reason is that

model MR provides a valid relaxation of the original feasible region since the nonlinear

equations (2) and (11) in model MX are not considered, and the valid linear equations (3), (7),

(12) and (15)-(18) are included. The proposed global optimization algorithm relies on the

solution of the relaxed problem MR within a spatial branch and bound enumeration. The

outline of the algorithm is as follows (for a more detailed description of step 4 see Quesada and

Grossmann (1993))

0. Preprocessing (optional)

Determine bounds on the variables involved in the nonconvex terms, that is total flows.

F*. and concentrations, xf. Apply any additional preprocessing specific to the structure of the

problem in order to further bound or fix variables.

1. Lower Bound

Solve model MR over a given subregion (initial subregion is the complete feasible region)

minimizing a convex objective function <J>. If <t> is linear the model is an LP.

2. Upper Bound

Any feasible solution to the nonlinear model provides an upper bound. Heuristic

techniques can be employed to obtain good feasible solutions or the original problem. MF. can

be solved using the solution of model MR as a good initial point. If the solution of problem MR

is feasible it provides an upper bound.

3. Convergence

If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper

bound.

4. Branch and Bound
Partition the remaining subregions into a sell of disjoint subproblems. Repeat steps 1-3

for each of the new subregions.

Remarks

The preprocessing step plays an important role in the above algorithm. It is during this step

that initial bounds for the variables involved in nonconvex terms are obtained. The quality of

8



these bounds affects the tigthness of the lower bound since they are part of the estimator

equations (15)418). Additionally, these bounds affect the performance of the algorithm because

they define the search space over which the branch and bound procedure may have to be

conducted.

In some cases, as described later in this paper, it is possible to exploit the particular

structure of the process network and generate bounds for the variables without having |o solve

any subproblems. Furthermore, during this preprocessing step additional constraints can be

generated for predicting a tighter lower bound of the global optimum can be obtained.

Some of the linear mass balances and the estimator equations are redundant in the

nolinear formulations, MF and MX. These equations become nonredundant in the

refonnulated model, MR, and for that reason it is important to write a complete formulation of

the network. However, this model can present some redundancies that can be easily identified

and eliminated to reduce the size of the model. This is the case for the concentration variables

used in the splitters. Model MR uses different sets of concentrations variables for the inlet and

outlet variables of a split unit. In practice, it is only necessary to define the concentration of

the component in the splitter and use the same variables for all the splitter streams. Also,

some redundancies can occur with the total flow variables. These ones are necessary for the

streams in the splitters but they might be redundant and eliminated in the other untis if they

do not appear in other part of the model or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it

corresponds to the global optimal solution. When the solution to the model MR is not feasible

it is necessary to follow a branch and bound procedure to search for the global optimum. This

procedure requires a valid upper bound on the global optimum. This can be generated through

heuristics or by solving directly the nonconvex model. For this purpose, the process network

model is formulated in terms of the individual component flows and the nonconvex equations

for the splitters are included. Equation (9J was also used in this work to model the splitters

due to it is better numerical behavior. The solution to the model MR was used for the good

initial point. In many instances, it was not possible to solve these nonlinear problems with

MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is generated. Of the set of open

nodes, these are the nodes that have a lower bound that is e-smaller than the current upper

bound, the node with the smaller upper bound is selected to branch on. The splitter units are

the units that are approximated, and of these, the splitter that has the largest difference



between its approximated and actual individual component flows is selected. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter. The branching is done in the selected splitter over the

concentration of the component that has the largest difference.

First, the actual concentrations for the individual component flows in the LP solution O

for the splitters are calculated by,

for all the inlet streams to splitter (26)

the splitter unit m is then selected according to the equation.

(27)
j .

Equation (27) represents the total difference between the LP solution for the flows after

the splitter and the actual value of these flows considering the concentrations before the

splitter. Once the splitter has been selected, the component in that sputter that has the largest

difference. J\ is selected by.

jf = argmax,( I If/ -1£ FM] (28»

Hie following branching constraints are then used:

Xj.m>z,m (29)

To improve the upper bound it might be necessary to solve additional nonconvex

problems. These can be solved after a given number of nodes using the solution of the node

with the smallest upper bound as the initial point. In this work if there was no significant

change in the lower bound df the new nodes with respect to the lower bound of the parent node

( < 1%) a new nonconvex problem was solved.

Example 1

Consider the following pooling and blending problem by Harveley (1978). Two streams that

have components A and B are mixed in a initial mixer a then go through a splitter to obtain two

streams than can be mixed with an additional stream (see Fig. 5a). Two different products can

be obatined and there are constraints on the concentration of component A in these products.

The objective function consists of mimizing the cost that is given by the total flow of the

streams times the cost coefficients. ct, given in Fig. 5.

10



This problem has two local solutions. One has an objective function <t> = -100 and

consists of otify producing product 2. The other local solution, that corresponds to the global

optimum, has an objective of 4> = -400 and here only product 1 is produced.

Model MR is formulated for this problem and the initial lower bound is 4>L = -500. The

nonlinear model, MF, is solved using the solution of model MR as the initial point and an upper

bound of • a -400 is obtained* Since there is a gap between the bounds of the global solution a

partition is performed- There is only one splitter that needs to be approximated and since there

are only two components it is irrelevant which one is selected since the composition bounds are

related (eg. xB
L s i - x*u). The actual value of the composition of A in the solution of model MR

is used as the branching point (x* = 0.0166) to generate two new subproblems. The first

subproblem (xA £ 0.0166) has a lower bound of 4>L = -100 and the second subproblem (x* <

0.0166) has a solution of fa = -400 (see Fig. 5b). Both of these bounds are greater or equal

than the upper bound, therefore the global solution has been found (xA = 0.01).

Example 2

Tbe next example is a separation problem taken from Kocis and Grossmann (1987). The

original problem has binary variables in* the formulation and they have been fixed to 1 for this

example (see Fig. 6).

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream

has 80% of the inlet flow of component B. In the column. 97.5% of the inlet flow of A goes to

the top whereas 95% of the inlet flow of B goes to the bottom stream. The total flow to the flash

unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of

each of the two feed streams has to be less than 25. The objective function is given by,

<t> ss 52 + 10 F! + 8 F2 + F4 + 4 F5 - 35 P,A- 30 P2
B (30)

The initial lower bound for this problem is 4>L = -513.22 and it is infeasible for the

original NLP model. A nonconvex problem is solved using CONOPT with the solution of model

MR as the initial point obtaining an upper bound of <t> = -511.87 and the relative gap is only

0.3%. Again only one splitter is present in the network and a partition can be performed using

the concentration of component A in this splitter. The lower bounds for the new two

subproblems are 0L = -511.87 (xA £ 0.5121) and 0L = -511.80 (xA > 0.5121). Both solutions are

greater or equal than the upper bound and the global solution has been obtained. In the global

solution Fx ss 8 and F2 = 25, and 11% of the inlet flow to the splitter is directed to the flash.

76% to the column and the rest bypassed to P2.
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Example 3

This example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

The initial lower bound is 4>L = 138.18 and the nonconvex problem MP is solved
obtaining a solution of <fr « 138.7. The gap between these bounds is less than 0.4 %. The
global optimum for this tolerance is shown In Fig. 8.

Sharp separation

In order to illustrate the application of the above algorithm to a specialized case where the
structure can be further (exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
specified multicomponent product streams. The components are ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9)). The superstructure consist of N-l separators. Separator 1 performs the
task of removing component number 1 to number 1 at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-l
streams, Ft. that go to the separators and K streams, ak. that bypass the network to go to the
products. Each stream F< is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i, St.

The outlet streams of separator i are the top. Tl9 and the bottom, Bt. These streams, T«
and B{, are each split into streams, PTt

k and PB<k respectively, that go to the K products and
into streams, KIV' and RB/\ that are redirected to the other separators. The top stream of
separator 1, Tt, can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaller (lows. KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, Bt, can be redirected only to separators i+1 to N-l since it can only

12



contain components that are separated by these sharp separators. RB,1' is the redirected flow
from the bottcpi stream of separator i to separator i'.

Model

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
and total flows has the following form:

V
min 4>

sL Feed*

c,S,
N-l K

N-l

St xs« a f« + X RBf1 xb,-. +
N-l

1-1

l

for alii and j

for alii

for alii and j

for alii

for all i and ord(j) <i

for all i and ord(j) > i

for all i and ord(j) > i

for all i and ord(J) £ i

for alii

for ail i

for all k

akz, for all k and j

for all 1

for alii

for all i

S,, T,, B,, F,t RT '̂, RBt1', PTt
k

f PBtk. c*t fy, xs,j, xfy xb«, ^ 0

N-l

N-l

N-l

r + £PB t
k

k«l
N-l

+ y.PB,k +1

N-l

(32.1)

(32.2)

(32.3)

(32.4)

(32.5)

(32.6)

(32.7)

(32.8)

(32.9)

(32,10)

(32.11)

(32.12)

(32.13)

(32.14)

(32.15)

(32.16)

(32.17)
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The parameters Feed, zj, Pk and pkJ represent the total feed, composition of the feed,

total flow of product k and component flow of component j in product k. respectively. The

variables xsq, xtfj and xb«j are the concentrations of component j in the inlet stream to separator

i. top of separator i and bottom of separator i, respectively.

The objective function (32.1) is a linear function of the inlet flow to the separators.

Equation (32.2) is the total mass balance in the inlet splitter and equation (32.3) is the

component mass balance. Equations (32.4) and (32.5) are the total and component mass

balances for the mixer i before the separator L The material balances for separator i are given

by equations (32.6). that is the total mass balance for the separator, equations (32.7) and (32.8)

that are the component balances for the top stream and indicate that nothing from components

number 1+1 to N-l is in the top of the separator, and equations (32.9) and (32.10) that are the

component mass balances for the bottom streams. Equations (32.11) and (32.12) are the

overall mass balances for the splitters of the top and bottom streams after separator i. The

equations that state that the concentrations of the outlet streams should be the same that the

inlet stream in a splitter have been already substituted. Finally, equations (32.13) and (32.14)

are the overall and component mass balances for the mixer for product k.

Model (32) corresponds to a formulation of the type of model MX where the distribution

coefficients are known and restricted to 0 or 1. Some simplifications have been made to avoid

including many irrelevant variables (e.g. not to define concentrations for the streams that go

the top i to product k). Although, some of the linear constraints in this formulation are

redundant, they can become nonredundant in the linear relaxation as will be shown in

Example 4.

Equations (32.5), (32.7), (32*9) and (32.14) involve nonconvex terms. This model can be

reformulated as in model MR by introducing individual component flows and the linear

equations (15)-(18) and (7) according to the approach illustrated eaiiier to obtain a model in the

form of model MR. The resulting reformulated model is as follows,
N-l

min $' = £ c4 S4

N-l K

st Feed = I Ft + Z

t-1 N-l

i-1 N-l

for all i andj

for all i

for all i and j

(33.1)

(33.2)

(33.3)

(33.4)

(33.5)
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N-l

rt-i

N-l

N-l K

X
k-1

xt,,= 1
1 J

""•-S/

for all i

for all i and ord(j) £ i

for all 1 and ord(j) > 1

for all i and ord(j) > i

for all i and ord(j) < i

for all i

for all 1

for all k

for all k and J

for alii and j

for all i and j

for all i

for all i

for all i

for alii

for all i and k

for all 1 and k

for all i and i' < i

for all i and i' > i

(33.6)

(33.7)

(33.8)

(33.9)

(33.10)

(33.11)

(33.12)

(33.13)

(33.14)

(33.15)

(33.16)

(33.17)

(33.18)

(33.19)

(33.20)

(33.21)

(33.22)

(33.23)

(33.24)

Equations (15-18) forty. rtrj
l and pty

k in terms of xtg

and the total flow of its respective stream.

Equations (15-18) for by. rbq1 and pbtl
k in terms of xb

and the total flow of its respective stream.

S,.T,, B,. F,. RT,'. RB,f. PT,k. PB,k, Ok. ftt. xs,j. xUt. xb(J SO

Sg. t,j. b,j pti,k. pb,,11. rt,,1'. rb,,1' > 0
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It is not necessary to Include equations (15) -(18) for the inlet component flows to the

separator, Sq, since the variables xs,j only appear in these equations. Also, the component

flows, s,j, only appear in mixers and sharp separators units which can be exactly represented in

terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-

(33.16) that are the component mass balances for the splitters of top and bottom streams have

been included accordingly to the reformulation previously presented. Equations (33.19M33.24)

relate the total flow and the individual component flows for the splitter streams.

Hie proposed superstructure (Fig. 9) allows to bypass certain amount of the feed to the product

k, a*, without having to go through the separation network. The amount of the product k that

is not bypassed has to be processed in the separation network and it will be denoted as the

'residual product*. Hence, the total 'residual product k' is given by (Pk - ak) and has the

component flows given by (p^ - ô z, )(see Fig. 10).

The global optimal solution of model (32) is a network in which all the 'residual

products'.have at least one component with a zero flow. The reason that it is not optimal to

separate a stream in the network and later to remix it. The same degree of separation can be

achieved using a bypass that does not incur any cost in the objective function.

Consider the second separator in the solution obtained by Floudas (1987) to his second

example (see Fig. 11). For this subnetwork of the complete structure the upper 'residual

product* has components B and C present. The components are being separated and remixed

again. The same outlet flows can be obtained with a smaller input flow to the separator as it is

shown in Fig. 11. Note that both 'residual products' have components with zero flow.

It should be clear that if there was not a component with zero flow in the 'residual

product1, then there is part of this stream that could have been obtained by just bypassing the

network. This in turn does not incur in any cost, whereas going through the network has a

positive cost. The above condition gives a lower bound for the bypass to each product. This

also corresponds to the largest amount that can be bypassed since all the flows in the residual

flow* have to be positive. In this form the bypass can be precalculated without affecting the

global optimality of the solution.

The bypass to product k is given by the maximum amount that can be sent to product k

without having a negative flow; that is.

a,, = min, [ ^ 4 (34)
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where Zjis the feed composition and pkj is the flow of component j in product k. The

component flows for 'residual product' k. Tkj are given by.

(35)

Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the (low of the key

components in separator L These bounds are based on the fact that separator i is the only unit

that can perform the task of separating component number 1 from component nutaber 1+1.

They are redundant for the nonlinear formulation (32) but they are relevant for the linear

relaxation in (33). To calculate them, it is necessary to determine in each product what is the

difference between the two key components of separator i with respect to the concentrations in

the feed. The lower bounds in separator i' for the flow of the key components in the top

(component Jl) and bottom (component J2) streams are given by:

for alii (36)

foralli (37)

where Ykj is given by (35). It is important to include both bounds in the relax model (33) since

there is no guarantee that the inlet flow to separator i has the same proportion between the key

components as the feed. It is not known in which part of the sequence separator i will be

placed, and it can be after a splitter that is not being approximated correctly.

The bounds in (36) and (37) can be extended to separation of components that are not

adjacent in the feed. Consider component number i and component number i+3. There are

three separators that can perform this task/separators i. i+1 and i+2. Cuts of the following

form can be obtained.

tt i + tM i + t|*a 12 £ {.Dd - zt minord(j),< or H3 [-r1]} for all i (38)

K y

i + b M i 2 £ {Tki*3 - z,*3 minorsO M*3 i~)) for all i (39)

Equations as the ones in (38) and (39) can be redundant compared to equations (36)

and (37) and it is possible to detect this before solving the problem.

Relative flowrate constraints
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These constraints are used when the relation between the flowrates of two components

is known. In particular, consider component A in the la:st column ofthe network (see Fig. 12).

None of the redirected streams contains component A. Therefore, the relative flowrate of

component A with respect to the other components in the top stream has to be smaller than in

the feed. This relation should remain valid after the top stream is split to the products and

redirected flows.

Ill the separator previous to the last one, N-2, all the streams do not have component A

except the one coming from the top of the last column. For this one it is already known that

the relative flow of component A with respect to the other components is smaller than in the

feed. This type of analysis can be done for component A and component N in all the columns

yielding th$ following linear constraints for the splitters.

for all 1 and k

ZNpbgX-Zjpt

for all i and 1' > i

for aU 1 and 1' < 1

f o r j * A

for ord(j)

f o r j * A

and ord(j) < i

* N and ord(j) > i

and ordtf) S i

(40)

(41)

2'0 forord(J)^Wandord(J)>i (431

Bounds on concentrations and total Jlows

The approximations (15-18) require bounds for the total flows and component

concentrations In the splitters. The lower bound for the total flow of the top and bottom

streams is given by the lower bound of the key components obtained in equations (36) and (37).

For the outlet streams of the splittters, that are the redirected streams and the streams that go

to the products, the lower bound is zero. The upper bound for the total flow of the top and

bottom streams is given by the feed to the network of the components that can be present in

each stream .that is.

Tt
u= ItFeed-XoicJz, for alii (44)

N

B^s [TlFeed-Taiazj for alii (45)

The upper bound for the streams after the splitter are given by.
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PB,k Jb?

for all i and i1 <

for alii aridi'>

for all i and k

for all i and k

i

i

(46)

(47)

(48)

(49)

The lower bounds for the concentrations are zero except for fee key components in the

separator for which the lower bounds are given by the lower bound of its flow divided by the

upper bound of the total flow of that stream. The upper bounds in the concentrations are given

by one minus the lower bounds of the other components.

The solution of the linear programming model (33) provides a lower bound to the global

optimum since this model is a valid relaxation of the nonconvex model (32). This lower bound

is obtained by solving the LP model for the residual products1 in (35) with the addition of the

valid constraints (36)-(43).

The upper bounds are generated solving model (32) in terms of the individual flows for

the residual products'. When additional nonconvex problems are solved to improve the current

upper bound it can happen that very similar initial point are generated. In this case, a new

nonconvex NLP is solved in which bounds over the total inlet flows to the separators (S,) are

included. For this purpose the values of these variables in the LP solution (S,*) arc used such

that the current incumbent solution is no longer feasible.

Example 4

Consider the 3 component example proposed by Floudas and Aggarwal (1990). An equimolar

feed has to be separated into two products as show in Fig. 13. The objective function is given

by

<{> s 0.2395 + 0.00432 S, + 0.7584 + 0.01517 S2 (50)

The bypass to products 1 and 2 can be calculated according to equation (34) and the

'residual product1 component flows are obtained through equation (35) (see Fig. 14). The total

bypass to product 1 is a, = 90 and the bypass to product 2 is <x2 = ISO and the feed has a

concentration of zA = 1/3, zQ = 1/3 and ZQ = 1/3. In this form the 'residual product1 1 is YIA =

0. YiB = 20 and Y*C = 0 and the residual product* 2 is Y2A = 20, Y2B = 0 and Yac s 20.

Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35M36). The key components in separator 1 are component A in the top and

its flow has to be at least 20 and component B in the bottom has to have at least a flow of 20.

In the top stream of the second separator at least 20 units of component B have to be

separated from 20 units of component C in the bottom stream. It is important to note that

after preprocessing the network several suboptimal solutions have been cut off. One of these

suboptimal solutions for this particular data is a parallel configuration of both separators

(there are situations in which a parallel configuration can correspond to the global solution as

will be shown in example 5). In this example the direct or indirect sequence have a lower

objective function. Both of these configurations are local solutions with an objective function

value of 4 = 1.8639 for the direct sequence and $ = 2.081 for the indirect one. In some

instances, MINOS 5.2 had problems converging even in this small example.

The LP (33) is formulated for this problem, giving a lower bound of ^ = 1.8639. The

approximations are exact and therefore this solution is a feasible solution of model (32) proving

that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.

The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted

that if the linear mass balances for the mixer for product 2 were not considered since they are

redundant for the nonlinear formulation, a lower bound in the relaxed model of $L = 1.12 is

obtained. This shows that It is relevant to include all the mass balances in the linear model in

order to tighten the lower bound.

ExompteS

In the approach proposed by Wehe and Westerberg (1987) for the case of 3 components only

the direct and indirect sequences are considered and both options can be modelled as LP

problems since no mixing is required for these separation networks. However, this example

shows that parallel configurations can be also globally optimal and that they are not excluded

by the method proposed in this paper. To be able to consider parallel configurations or any

combination of parallel with direct or indirect sequences it is necessary to model a

superstructure in which mixing is allowed (like in the structure used in Fig. 13). Here,

nonconvexities arise in the mass balance equations after the separators.

Consider that an equimolar feed is to be separated into the two different products given

in Fig. 16. The objective function is to minimize the sum of the total flows into the separators.

The same procedure that in the previous example is followed and the bypass can be

precalculated by equation (34). The solution to the model (32) yields <t>L = 12 and since it is a

feasible solution of model (32) it corresponds to the global optimum (see Fig. 16). Note that the

solutions for the direct or indirect sequences have an objective function of $ = 16.
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Branch and Bound

If there is a gap between the lower ai}d upper bound, a branch and bound search is performed.

It is only necessary to do the search over the variables involved in the nonconvex terms. The

concentrations are used as the branching variables since a change in them affects the inlet and

outlet streams of a splitter. In this way. it is necessary to check the approximation for the

concentrations in the splitters of the top and bottom strear^s of the separator. Equations (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound

search.

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation

network examples 4 to 12. The number of variables is the total number of variables that are

included in the reformulated and relaxed model (33) for that example. The lower bound is the

initial bound that is obtained by solving model (33) over the entire feasible space. The inital

gap represents the percentage difference between the initial lower and upper bounds. When

there is a zero initial gap it means that the first relaxed solution is feasible in the original

problem thereby corresponding to the global solution. The column for nodes gives the total

number of subproblems that where solved before converging to the global solution. A relative

tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after

branching and example 12 for which a tolerance of 0.02 was used. It is important to note that

the initial lower bound is tight and that it corresponds to a good estimation of the global

solution. The largest differences are for example 1 with a 25% of difference and for example 12

with a 7% difference. The LP time refers to the time used to solve each relaxed model and the

NLP time is the time used for solving a nonconvex model. It is possible to do updates using the

previous LP solution and in this form have a more efficient implementation. The times are in

seconds and the problems were solved on an IBM RS600/530 using GAMS 2.25 (Brooke et al.

(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP

problems. A brief description of the example problems 6 to 12 is given below. It includes the

specific data for the problem, the objective function and the topology of the network that is the

global solution.

Example 6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

(M2.5S!+3 .0S 2 +1.5S 3 (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is <t>L = 54.25 and an upper bound of $ = 55.5 is obtained by

solving the nonconvex problem. A partition of the feasible region is performed using the

composition of component D in the bottom stream of separator 1. The first subproblem (x £

0.166) yields a lower bound of ̂  = 55.45 and the second subproblem (x < 0.166) has a solution

of 4>L= 55.8. The latter is greater than the upper bound and the former is less than 1% of the

global solution (see Fig. 17).

Exampie7
This example is taken from Floudas (1987). The data for this problem is given in Table 3 and

the linear objective function is given by:

+3.0S2+1.2S3
(52)

The initial lower bound is 4>L = 32.7 and it provides a feasible solution to the nonconvex

problem. In this form the global solution (see Fig. 18Ms obtained in one iteration. It is

interesting to see that this solution also provides a better objective function for the concave

objective function used by Floudas (1987) (4 = 10.65 versus 0 = 13.68 which is 28% higher)

Elxample 8
This four component problem is taken from Wehe and Westerberg (1987). The data for the

products is given in Table 4 and the objective function has the following form:

<j> s 5.0 + 0.5 Si + 4.0 + 0.3 S2 + 6.0 + 0.7 S3
(53)

The first relaxed subproblem has a solution of <|>L =26,76 and it is infeasible for the

nonconvex problem. A nonconvex problem is solved using CONOPT with the LP solution as the

initial point. An upper bound of 0 « 26.79 is obtained corresponding to the global solution (see

Fig. 19) within a 0.1%.

Example 9
This example corresponds to example 1 from Wehe and Westerberg (1987). Table 5 provides

the data for the product flows and the objective function is given by:

<|> = 5.0 + 0.5 Si + 9.0+1.0 S2 + 3.0 + 0.4 S3 + 6.0 + 0.6 S4 (54)

A initial lower bound of 4>L = 85.16 is obtained and the upper bound Is 0 » 85-65. The

difference is 0.5% and the global solution (see Fig. 20) is obtained in one iteration.
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Example 10
This problem is taken from Flotidas (1987) and the data is given in Table 6. The objective

function is given by,

<J> * 1.2 Si + 3.0 Sj + 2.5 S3 + 1.5 S4 (55)

The <y*«*m lower bound is <t̂  = 156.56 and the upper bound is <t> = 179.08. After 5 nodes

the global solution of 0 m 159.48 (see Fig. 21) is obtained.

Example 11
Hie data for this 6 component problem are given in Table 7 and the objective function has the

following form:

* *1.5 S, + 3-0 Sa + 2.0 S3 + 1.0S4 + 4.0 S5 . (56)

The initial lower bound is <frL = 173 and the upper bound is 0 » 179.11. After five nodes

the global solution is obtained (see Fig. 22).

Example 12

This is a 6 component 4 products problem and the data are given in Table 8. The objective

function is:

* = 5.0 S! + 3.0 Sj + 2.0 S3 + 2.5 S4 + 4.0 S5 (57)

The initial lower bound is $L = 362 and the initial upper bound is <t» = 415.6. The global

solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent

streams has been proposed. The basic idea relies on a relaxed LP model that is obtained

through reformulation-linearization techniques that establish a clear relation between the

component flow and the composition models for mass balances. The reformulated model

combines both of these providing tighter lower bounds than other relaxations proposed in the

previous work. The relaxed linear model has been embedded in a branch and bound procedure

to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of

the particular structure of sharp separation networks with single feed and mixed products.

Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model

can be obtained without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter

lower bound.

Twelve examples for both general process networks and for sharp separation networks

have been presented to illustrate the performance of the algorithm. As has been shown, only a

small number of nodes are commonly needed in the branch and bound search to identify the

global or e-global solution. Moreover, in many cases the initial lower bound is either the exact

solution or a very good approximation to the global solution.
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Appendix A. Reformulation-Linearization to obtain the nonlinear
constraints in model MF

The nonlinear equations in model MF, that can be expressed either as (8) or (9), can also be

generated from model MX. For this purpose take the concentration model MX and consider

equation (5),

... l ^
multiply by the valid bound constraint Xj-k £ 0

xfxfmxfzp (A.2)
Use equation (5) for component j\

x,kV**il*fk 1A-3'
Multiply by the valid bound constraints Fk > 0 and F1 > 0,

F^JP^-F^F*^ tA.41

that it is linearized to yield.

fffJJsfj'ff (A.5)

which is precisely equation (8) for the splitters in the individual flow model MF.

Consider again equation (5).
x,k = x,1 (A.6)

multiply by the valid bound constraints Fk > 0 and F* > 0,
k IA.7)

that can be linearized to yield,
ffF^f/F* (A.8)

Define the split fraction ? to be,
? = | * (A.9)

Equation (A.8) can then be expressed as
f/ = ? fjk (A.10)

which corresponds to equation (9).

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear

approximations in general are also redundant in the linear reformulated model MR Consider

equation (A.1O), similarly to (15) one of its linear approximations is given by.

If there are no particular restrictions in the splitters, then the bounds for the split

fraction variable are 0 < ^ < 1 and using them in (A. 11) yields.
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The bound for the individual component flow is given by fjk L = xf L Fk L: also x,k = x,4 and £f

F1

pt, which leads to.

The estimator (15) for the same conditions (F*L = 0) is given by

Since the factor -^r is always less or equal than 1, equation (A. 13) is redundant. A similar

analisis can be performed for the other estimators. Only when more specific bounds over the

split fractions or the individual component flows are known, will these additional estimators be

non redundant.
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Figure 1. Process network with units, splitters and mixers.

streams i e Mk

Figure 2. Mixer module

stream k

stream k ^ -^streams ie Sk

Figure 3. Splitter module.
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streams i€ Ik
Figure 4. Process unit module.

c = 1 0 2%A

C = 1

(a) Network

xA< 0.0166

<fc=-400

streams ie Ok

Flow <t 200

Product 1

Product 2

(b) Tree search

Figure 5. Network and branch and bound search for example 1
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55% A
45% B

50% A
50% B.

Figure 6. Network for example 2.

Figure 7. Network for example 3.

15 PI

xo2 0.35
20 P2 Xc^0.35

X o = Xc

15 P3

30



4.5

Figure 8. Optimal network for example 3.

Redirected flow
separators

Product 1

Product 2

Product K

Figure 9. Superstructure for separation with sharp splits and mixed products.
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AS 20

80 Al
80 B
80 C

Figure 14. Residual products and key component bounds in example 4.

100 A
100 B
100 C

20 A
20 B
20 C

20 A

80 A
80 B
80C

Figure 15. Global optimum solution of example 4.
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2 A

Figure 16. Global optimum solution of example 5.

2.5 A,

Figure 17. Solution of example 6.
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4A
5.333 B
2.667 C

4D

Figure 18. Solution of example 7.

2.25 A

7.5 A
10

4
10

4

B
C
D

7.5 A
10
6
5

B
C
D

20

Figure 19. SoluUon of example 8.
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14 A

PI

117

51.675

Figure 20. Solution of example 9.

Figure 21. Solution of example 10.
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PI

29.333

Figure 22. Solution of example 11.
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6

Figure 23. Solution of example 12.
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Table 1. Computational

Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9
Exarnpte 10
Example 11
Example 12

Comp.

...

3
3
4
4
4
5
5
6

- 6. v
___mm___m_m_m_*«-m__i

results.
>rocL

...

...

2
2
2
2
3
4
2
2
4

Var.

29
35
113
65
65
107
107
125
281
225
350
430

Lower
bound
-500

-513.22
138.18
1.8639

16
54.25
32.7
26.76
85.16
156.56

173
362

Initial
gap
20
0.3
0.4
0.0
0.0
2.3
0.0
0.1
0.5
12.4
3.5
14.8

_M_____M

Global
solution

-511.87
138.7
1.8639

16
55.5
32.7
26.79
85.65
159.48
179.11
388

Nodes

3
3
1
1
1
3
1
1
1
5
5

33

LP
time
0.05
0.26
0.34
0.13
0.13
0.97
0.17
0.23
3.08
2.59
9.98
19.8

NLP
time

0.3
0.4
—
—

0.4
—

0.3
2.8
2.3
8.8
13.2

Table 2. Data for example 6.
Component
Product 1
Product 2
Feed

A
"5

10
15

B
10
10
20

C
4
6
10

D<
10
5
i5

Total
29
31
60

Table 3. Data for example 7.
Component
Product 1
Product 2
Feed

A
7.5
7.5
15

B
10
10
20

c
6
10

D
10
5
15

Total
31.5
28.5
60

Table 4. Data for example 8.
Component
Product 1
Product 2
Product 3
Feed

A B C D
2 3 1 3
1 4 1 5
3 1 3 1

Total
9
11
8

6 8 5 9 28
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Table 5. Data for example 9.
1 Component
Product 1
Product 2
Product 3
Product 4
Feed

A B C D E
7 8 3 9 8
10 3 5 5 4
5 5 6 7 3
10 0 6 4 9
32 16 20 25 24

Total
35
27
26
29
117

Table 6, Data for example 10
Component C D E Total
Product 1
Product 2

2
8

2.4
5.6

16
4

8
8

1
9

29.4
34.6

Feed 10 20 16 10 64

Table 7. Data for example 11.
Component
Product l
Product 2
Feed

A B C D E F
3 2 16 8 4 10
8 10 8 8 6 5
11 12 24 16 10 15

Total
43
4S
88

Table 8. Data for example 12.
Component
Product 1
Product 2
Product 3
Product 4
Feed

A B C D E F
3 2 6 8 4 10
8 10 8 8 6 5
5 4 10 3 11 4
7 3 1 2 5 7

23 19 25 21 26 26

Total
33
45
37
25
140
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product1 k Product k

Pk

Figure 10. Definition of'residual product1.

B 3.333
B 3.333
C 0.666

B 3.333 ^
C 1.666

B
C

0.666 Flow to separator = 5.0

C 1.666/l .Q C 1.0

B 3.333
C 1.666

B 1.333
C 0.666.

B2.0
CO.O

BO.O
C 1.0

\ B 3.333
C 0.666

Flow to separator = 3.0

G 1.0
Figure 11. Example of solution without and with a zero component flow in 'residual product1.
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32


