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Abstract

This paper deds with the globd optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides avdid lower bound to the globa optimum. This formulation is then
used within a spatial branch and bound search. The application of this method is considered
in detail for sharp separation systems with single feed and mixed products. Numerica results

are presented on twdve test problems to show that only fev nodes are commonly required in
the branch and bound search.




_Int_roduction _

A common source of-noneonvexities in the synthesis and design of processes, as well as in
flowsheet optimization, are-the-material flow equations for multiccmponent streams. These
nonconvex equations involve bilinear terms and they arise in the mass balance equationswhen
the compositions are unknown. There are different equivalent formulations for this type of
networks. One alte_rhati&é’is to formulate the mass balance equations in terms of component
concmtratibns. In thisform bilineér' terms are present in the equation* for the mixer units
and the different process un-i'ts'(e.g. sharp '%paratdrs).' A second altérnative is to express the
mass balancesin terms of flowsof individual components. This option hasthe advantage:that
it involves a "n_au__mr number of nonlinear eguations. However, the rmodélling-ofthe splitter
units involves bilinear terms that arise due to the condition-that the proportions of flows
between comp_onmfs have to be the same for the differerit streams.

The difficulty with the nonconvexities noted. above is that they may give rise to
optimization problems Involving several local optima and numerical singularities that may
produce failure in the NLP algorithms. Recently there have been important efforts in the area
of gI'obaI _optimizatio'n. Examples of algorithms are the ones proposed by McCormick (1976).

Floudas and Viswewaran (1990)'and Sherali and Alameddine (1992) which can be used to solve
bilinear programming problems like the ones that arise in networks with multicomponent
streams. For arecent review in the area of bilinear programming see Al-K hayyal (1992). -

Asfor previous work-in the design and synthesis of multicomponent process networks
Mahalec-and Matard (1977) and Nath (1977).developed evolutionary techniques that are based
- on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of
separation networks with mixed products in which only sharp.separators are considered. A
super structure of the process network was proposed and modelled in terms of concentrations.
The resulting model is nonconvex and solved with a standard NLP algorithm with no guarantee
of global optimality. Floudas and Aggarwal (1990) solved small pooling and blending problems
and sharp separation networks problems using a strategy based on Bender s decomposition.. In

. this approach only convex subproblems are solved but there is no guarantee of obtaining the

global optimum.  Kocis and Grossmann (1989) modelled process networks with
multicomponent streams in terms of the individual component flows. They included a set of
_.bounding constraints with binaxy variables to approximate the nonconvexities that are present
in splitterswith multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp
~separation networ ks with mixed products. They proposed a search procedurethat involvesthe




enumer ation of the different separation sequences. The nonconvex equations are dropped and
constraints that are valid for each particular sequence with a set of bounds over the'key

“componentsare included to obtain tighter .UP relaxations for.each configuration. However, the
number of sequences'to be examined grows rapidly: and there is.no guarantee of global
optimality.

In. some partlcular cases the nonconvexities in the mass balances can be avoided
through the introduction of binary variables. One of these cases is When srngle choice splltters
are present in the flowsheet .(Koors_and Grossmann, 1989). Here, itis posableto have a mixed
integer linear formulation for the mass balance equations in terms of the individual oomponer]t
- flows.. Another restricted case for which some nonconveX|t|es can be reformulated is when
mixing within the network is.only allowed for streams of the same concentration. In this form,
larger network superestructures must be proposed and the concentratlons of the streams are
known beforehand. Integer variables are introduced to model the existence of the different
streams (e.g. the mixed integer linear formulation for sharp separation networks by Floudas
and Anastasiadis, 1988).

- The objective of this paper is to present an eff|C|ent global optlmlzatlon method that

exploits the particular structure that is present in process networks with multlcomponent
- streams (e.g. pooling and blending systems, sharp separatron networks). First a relation is
established between formulations based on concentrations and individual flows. Thls is done
following the Reformulation-Linearization technique proposed by Sherall and Alameddine
(1992).. As will be shown, a linear relaxation Is obtained that is in the space of the

concentrations and individual flows which can be used in a branch -and bound search isto find
the global optimum. Application to the optimal design of sharp separation systemswith single
feed and mixed products isconsidered In detail. Different preprocessing techniques that allow
tightening of the relaxation problem are presented. The performance of the algorithm is

* reported on a total of twelve problems. '

Modeling with concentrations and indi_\ridual_ flows -

Consider a process network that consists of splitters, mixers and process units that are
interconnected with multicomponent streams (see Fig. 1). ‘The process iinits that are
con_sidered in this paper are units in which the output flows of the components can be
expressed as a linear relation of the inlet flows (e.g. sharp separators, reactor with*known
conversion). It is possible to formulate the mathematical model of the process network in
terms of the concentrations of the streams. X_jk. Another possibility is to model the network
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using flows of individual components. The former has the advantages that it prowdes a
convenient-framework for the evaluation of therxnodynamm propertles, and |n ‘many casés
bounds can be expressed in a more natural form. A major disadvantage is that many
nonconvex terms (bilinear) are involved in the mass balances for the components. "The
individual component flows formulation is often chosen since it givesrise to a larger number of
linear equations and the only nonconvexities are involved in the modelling of the splitters. In
these untisit is necessary to enforce that the components maintain the same concentration in
each of the streams leaving the splitter. These constraints can be expressed as relations
between the different components (Wehe and Westerberg, 1987). One deficiency .of this
representation is that since many flows can take values-of zero, singularities may arise with
which conventional nonlinear programming methods may have difficulties to converge.
- Another alternative.isto introduce additional variables that represent split fractions (Kocis and
Grossmann. 1989).. This involves a larger number of constraints but tends to yield a
formulation that numerically is better behaved. ‘

Following axe the'équations that apply to the mixers, splitters and units using the two
alter native representations.

Mixer
A mixer k'consists of a set of Inlet streams, My, and an outlet stream K (see Fig.2).

a)Concentrations

The total mass balance for a mixer k is given by:

Fr« X.F : D
t«Mfc

where F! isthe total flow in stream i. The mass balance for each component j is given by the
nonlinear equations. '

N i i
FAxfc thMkFXJ» for allj ()

wherexf isthe concentration of component j in the stream |

b)I ndividual Jlows

Here it is only nec&sary to erte a mass balance for each component j, given by the
linear equations:

Ul “%kfj - " for all j ‘ 3
wherefj istheflow of componentj In stream i.
=plitter |

A splitter k hasan inlet stream k and a set of outlet streams S, (see Fig. 3).




| qI[ConcentraU ons
The equations for a splltter in terms of the concentratlons are glven by the following
Ilnear equations

I'P=P* ' )
1€sfic - ) ) ’

TS . for alli 6 Sca$sdj (5

S | ©©

J

“b) Individual_flows :
- Themass balance for each componentj isgiven by

117afA | foralj (@
t€Sfc

Here, it is also necessary to enforce the condition that the'streams leaving the splitter
have the same proportions in flow for each component. These relations between components,
which are nonlinear, can be expressed in terms of the inlet stream k and a given component j'

i sfi 0 for all i € l,andj *j' (8)

A different approach consists of introducing as additional variables the split ratios §|
that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear
equations are given by

ff«ofj ' ~for alii € I andj ©9)
withO£?£l.

Process units : - o

In this paper it will be assumed that the outlet streams, i € Oy, in the process unitscan
be expressed as linear relations of the inlet streams, i e I (see Fig. 4). Thisis for instance the
case of sharp split separators, separations in which the recovery level is known, or r_éactors
that have a fixed conversion. |

a) Concentrations coom
The overall mass balance for process unit k is given by,

| Pa IP (10
1€1 €0
Themassbalance for each componentj |sg|ven by the nonllnear equations;
3 By Fxf =Px,’ for all ie Oxandj  (11)
fely

where PJr is a constant for process unit k that gives the distribution of componentj in the
stream i e O, coming from streamsi' e I;. For aseparator unit it |sreqU|red tllat 2 vx =1

and £ P,r“‘ a 1. A sharp split separator is one for which Il = 1 and 10yl —.2 (top and

i"€ Iy

bottom streams) and for all the componentstheéonstant p,-r‘k areeither O-or 1.




“‘b) Individual flows

Only themas balancefor emh component IS neceleary and it isgiven by:
gl Byff forallie Okandj (12

I*€ Ik

A model interms of individual flows MF consists of the linear equations (3), (7) and (12)
plus the nonlinear equations (8) or (9). The model in terms of the concentrations, MX, includes
the linear equations (1), (4), (5), (6) and (10) plusthe nonlinear equat’i_on;s__(Z)'and"(ll). '

Reformulation and Linearization

In order to avoid the direct use of the nonconvex models MX and MF, there is arelation that

can be established. between them using the reformulation and linearization technique for

bilinear_programming models proposed by Sherali and All'ameddi'ne (1992). This techniqué ¢an

be applied to the model MX. First, conS|der the bounds over the varlables present inthe
- bilinear terms (total flow, F! and concentrations x,)

FLSPSFY - |  (13)
xftsxisxe | - 14

Using the bounds in (13), (14) the following constraints can be generated for the bilinear
termsin (2) and (11), B

Fixl2Filx)+xLFl-Fily't (15)
PN Pe 1 M tu i Fruu (16)
FHojs £ F* %, + Xt B - FrU Xt (17)
Fix<Filyl+xuP-Ftly - (18)

In fact, McConnick (1976) has shown that the constraintsin (15)-(18) correspond to the
convex and concave envel opes of the bilinear terms over the given bounds.. The formulation is
linearized by the definition of the following variables:

fl=Px;' : (19)

Tile resulting model which involves equations UK -(3). (4). (5), (6). (10). (12) and the
constraints in (15M18) is a linear relaxation of the original nonconvexconcentration model,
MX, in which the nonlinear equations (2) and (11) have been replaced by the linear equations
(3 and (12) from the individual flow model. MF. It is possible to generate additional linear
constraints that are redundant to the origina nonlinear model, MX, but that can be
nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sherali et




al*. 1992). In particular, consider equation (7) that is the linear component. mass balance:for
the splitters in model MF. "This linear equation is not present-in the linearrelaxation of the
concentration model. MX. Take equation (4) and multiply by the valid bound constraint x,* £0

to get
L B PeeE S ™
Using equation (5) ylelds ) :
’ £;f**| >)|E*Ak . (21) .
L |
that can belinearized to. KL :
, 'Z&tf,‘ =f o (22)

_yiel'di'ng equation (7). Hence, the linear equatlon for the splitter isvalid and'it isincluded. The
nonlinear equations (8) or (9) can alsobe generated in‘a similar fashion but theif linearizations
are in general redundant (see Appendix A) They are only useful when the formulation &f the
problem provides non-trivial bounds over certain c'o"mponents in the outlet streams of a
splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that relate the total flow and the individual flows of a stream can
be generated for the splitters. Taking equation (6) and multiply by F* yields. )

P Sxp =K S | @
1

Using the constraintsx,! = ¥ in equation (23) and linearizing with fj'« F* x* yields,

P = 5ff | - (24)
J . .

Based on the above it is possible to-obtain a reformulated model MR that involves
concentrations, total flows and component flows, and which bounds,the solution of the original
problem. The following equations are given for-model MR: " .

a) Objective function. <= which is expressed in terms of individual or total flows,

b) Mixer equations, which are expressed in terms.of the total and individual component flows.

oF*« £ F* o o @
O tEMy
fe= If/ _ forallj . NN
icMfe , . .
6

Lﬂn—u.mmmmﬂau:a.; Skt ids e a1 R B BB Ttendns il




c) Splitter equations, that are expressed in terms of the individual component flows and the

froncditi® tnff of the streams
Y, p-pk o @
t€S,
Xj =Xk for alii e 3*'andJ e
Xxd<=i : | ®
EaJf «ff for ail 0
d) Processunitsequations, that aregiven in termsof the total and individual gomp_orienf flows
Fl= F (10)
laly ie
fike I pl'fl foraUie Oxandj (12
l'c-ik.

e) Rdation between the total flow and the individual component flows _
Fl=£ f/ for all streams (24)

J

f) Linear estimators, relate the individual component flows with the total flow and
concentrations. |

{,i &piqui-ﬂa*l* pi.piLjIjiL _ (15)" -

fi AEIAAAAUEI_ElUATY for alii e S (16)_
f <EAl4 AlLpi_plualL i sk € splitters ~~ fIT)
' AFAXJ + XAF-F'-XJ*" foralljel R (18)

f) Boundson flowsand concentrations
FLgFI<Pin S (13 .
leLlelsxllu (14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)
IoOser'approximatiOns'ofthe nonlinear ter mswere used. In both cases, the nonconvex problem
(MF) wasreaxed to a linear model by dropping the nonlinear equations (8) or (9).- Equations
that approximate the difference relation between the components were considered (Kods and
Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter
between theflowrateof the components and required the introduction of binaiy variables.




Outline of global opttmization method

- Modd MR can be applied to predict lower bounds to the global optimum in the optimization of

pooling and blending problems and in the synthesis of separation systems. The reason is that
model MR provides a valid relaxation of the original feasible region since the nonlinear
equations (2) and (11) in modd MX are not considered, and the valid linear equations (3), (7),
(12) and (15)-(18) are included. The proposed global optimization algorithm relies on the
solution of the relaxed problem MR within a spatial branch and bound enumeration. The

outline of the algorithm is as follows (for a more detailed description of step 4 see Quesadaand -
Grossmann (1993))

0. Preprocessing (optional)
Determine bounds on the variables involved in the nonconvex terms, that istotal flows,

F, and concentrations, x{. Apply any additional preprocessing specific to the structure of the
problem in order to further bound or fIxvariables.

1. Lower Bound

Solve model MR over a given subregion (initial subregion is the complete feasu ble region)
minimizing aconvex objectlve function $. 1f < islinear the model Is an LP. :

2. Upper Bound

Any feasible solution to the nonlinear model prowdes an upper bound. Heuristic
techniques can be employed to obtain good feasible solutions or the original problem, MF. can
be solved using the solution of model MR as agood initia point. If the solution of problem MR
isfeasible it provides an upper bound.

3.Convergence
If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper
bound. '

4.BranchandBound

Partitionithe remaining subreglons into a set of d|5_|0| nt subprobl ems. Repeat steps 1-3
for each of the new subregions.

Remarks |

The preprocessing step plays an important role in the above algorithm. - It is during this step
that initial bounds for the variables involved in nonconvex terms are obtained. The quality of

P
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these bounds affects the tigthness of the lower bound since they are part of the estimator
equations (15)418). Additionally, these bounds affect the performance of the algorithm because
they define the search space over which the-branch and bound_ procedure may have to be
conducted.

In some cases, -as described later in this papier, it is possible to exploit the particular
structure of the process network and generate boundsfor the.variables without having to solve
any subproblems. Furthermore, during this preprocessing step additional constraints can be
generated for predicting a tighter lower bound:- of the global optimum can be obtained.

Some of the linear mass balances and.the estimator equations are redundant in the
nolinear formulations, MF and MX. These equations become nonredundant in the
reformulated mode, MR. and for that reason it is important to write a.complete formulation of
the network. However, thismode can present some redundancies that can be easily identified
and diminated-to reduce the size of themodel. Thisisthe case for the concentration variables
used in the splitters. Modd MR uses different sets of concentrationsvariables for theinlet and
~ outlet variables of a split unit. --In practice, it isonly necessary to define the concentration of
the component in the splitter and use the same variables for all the splitter streams. Also,
some redundancies can occur with the total flow variables. These ones are necessary for the
streams in the splitters but they might be redundant and diminated in the other untis if they
do not appear in other part of the mode or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it
corresponds to the global optimal solution. When the solution to the model MR I's not feasible
it isnecessary to follow a blanch and bound procedure to search for the global optimum. This
- procedurerequires avalid upper bound on the global optimum. This can be generated through
heuristics or by solving directly the nonconvex model. For this purpose, the process network
mode is formulated in terms of the individual component flows and the nonconvex equations
for the splitters are included. Equation (9) was also used in this work to modd the plitters
due to it is better numerical behavior. The solution to the model MR was used for the good
initial point. In many instances, it was not possible to solve these nonlinear problems with
MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is generated. Of the set of open
nodes, these are the nodes that have a lower bound that is esrhaller than the_cUrrent upper
bound, the node with the smaller upper bound is selected to branch on. The splitter unitsare
the units that are approximated, and of these, the splitter that has the largest difference




between its approximated and actual individual component flows is. selected. The
concentrations are used as the branching variables since.a change in them affectstheinlet and
outlet streams of a splitter. The branching is done in the selected splitter over the

~ concentration of the component that has the largest difference.

Firgt, the actual concentrationsfor the individual component flaws in the LP solution () -
for the splitters are calculated by,

r,"=%;‘r for all theinlet streamsto splitter  (26)
Thésplitter unit m isthen selected according to the-equation.

 m= AR R Py _
m ugmc mitt ( % jg; ty-z"FH) - 27)

Equation:(27) representsthe total difference between the LP_squtioh___fpr' fhe flows after
the splitter and the actual value of these flows considering the concentrations before the
splitter. ‘Once the splitter has been selected, the component in that splltter that hasthelargest

- difference. J\ is selected by,

J--aigma” ( JL;Lf/- 2P F* 11 | ()

The following branching constraints are then used;
X Szmand X2z . | (29) -

To improve thé upper bound it might be necessary to solve additional nonconvex
problems. These can be solved after a given number of nodés using the solution ofithe node
with the smallest upper bound as the initial point. In thiswork:if there was no significant

| c'hange‘in'the'lower bound 6f the new nodes with respect to the lower bound of the parent node

(< 1%) anew nonconvex problem was solved.

Examplel - -

Consder the following . poollng and blending problem by Harveley (1978). Two streams that
have components A and B are mixed in ainitial mixer a then go through a splitter to obtain two
streams than can be mixed with an additional stream (see Fig.-5a). Two different products can
be obatined and there are constraints on the concentration of component A in these products.
The objective function consists of niimizing the cost that is glven by the total 'flow of the
streams times the cost coefficients, ¢, given in Fig. 5.
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This problem has two local solutions. One has an objective function 0 = -100 and
- consists of only producing product 2. The other local solution, that corresponds to the global
optimum, has an objective of + « -400 and hereonly product 1 is produced.

Modd MR isformulated for this problem and the initial lower bound isQ_. = -500. The
nonlinear model. MF, is solved using the solution of model MR asthe initial point and an upper
bound of $ s -400 is obtained. Sincethereisagap between the bounds of the global solution a
partition is performed. Thereisonly one splitter that needs to be approximated and since there
axe only two componentsit is irrdevant which one is selected since the composition bounds are
rdated (eg. xg- = 1 * x*"). The actual value of the composition of A in the solution of model MR
is used as the branching point (x* = 0.0166) to generate two new subproblexns. The first
subpraoblecm (x4 £ 0.0166) has a lower bound of 4y = -100 and the second shbproblem (x* £
0.0166) has a solution of fa.= -400 (see Fig. Sb). Both of these bounds are greater or equal
than the upper bound, therefore the global solution has been found (x = 0.01).

Example 2

- The next example is a separation problem taken from Kocis and Grossmann (1987). The
original problem has binary variables in the formulation and they have been fixed to 1 for this
 example (see Fig. 6). ‘

*

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream
‘has 80% of the inlet flow of compohent B. In the column. 97.5% of the inlet flow of A goesto
the top whereas 95% of the inlet flow of B goesto the bottom stream. Hietotal flow to the flash
unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of
each of the two feed streams hasto be lessthan 25. The objectivefunétion isgiven by,

$ =52+ 10F! +8F,+F,+4F;-35Pj"-30P,° (30)

The initial lower bound for this problem is O, = -513.22 and it is infeasible for the
original NLP model. A nonconvex problem is solved using CONOPT with the solution of model
MR as the initial point obtaining an upper bound of ¢ = -511.87 and the relative gap isonly
0.3%. Again only one splitter is present in the network and a partition can be performed using
the concentration of component A in this splitter. The lower bounds for the new two
subproblexns are fa = -511.87 (X £ 0.5121) and <t = -511.80 (X5 > 0.5121). Both solutionsare
greater or equal than the upper bound and the global solution has been obtained. In the global
solution Fi =8 and F, = 25, and 11% of the inlet flow lo the splitter is directed to the flash.
76% to the column and therest bypassed to P,.

11




Example3 - :

TIUs example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

>«4Si+ 1552 +4S3 : @D

The initial lower bound is 4y = 138.18 and the nonconvex problem MP is solved
obtaining a solution of $ = 138.7. The gap between these bounds is less than 0.4 %. The
globa optimum for thistolerance is shown in Fig. 8. '

Sharp separation networks

In order to illustrate the application of the above algorithm to a specialized case where the
structure can be further exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
sp_ecifiéd multicomponent product streams. The components are-ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9)). The superestructure consist of N-I separators. Separator i performs the
task of removing compénent number 1 to number! at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-|
streams, F, that go to the separators and K streams, a,. that bypass the network to go to the
products. Each stream F is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i,

The outlet streams of separator i are the top, T(, and the bottom, B.. These streams, T,
and B,. are each split into streams, PT{ and PB” respectively, that go to the K products and
into streams, KIV' and.RBf. that are redirected to the other separators. The top stream of
separator i, Ty can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaller flows  KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, B,, can be redirected only to separators i+1 to N-I since it can only

12
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contain components that are separated by these sharp separators. RB/ is the redirected flow
_from the bottom stream of separator i to separator i\

M odel

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
~ and total flowshas the falowing form:

oL, Nl .
min *="ZcS| (321
. | ] L
N-I K
st. reeole» 1 *i * m®k : 10Z.23
ti k*i
L SF|L, foraliandj (323
11 N-
Si»F|+ £RB'+ X Kiy forau i (329
t'«l I'«rel
11 LN :
Si xgq = flj +#8 RBf' x| + vdisKT,' xtrj  for all i and] (32.5)
Sis” + Bi S foralii (32.61
Ty xty = S, x5y for all i and ord(j) i (32.7)
Xty=0 for aU i and ord(j) > i (32.8)
B, xby = S; x3, ' for all i and ord() > i (32.9)
xby=0 for all i and ordQ) ~ i (32.10)
t-i K wl
Tim ERTi' + £FTX foral i . (32.11)
1*1 k«l
N-I K
Bi s rERBA" +BPB* for all i (32.12)
N N : L
Ph= TPT*+ TPI3n + 00 "~ Toratk $(3213)
N N . ' ' :
Py = £PT *xtg + £PB,“xbg+ acz ~ forall kand] (32.14) .
i*l i»l
1 .
azgt.,-—- 1 for alii (32.15)
N
Gkl = 1 for all i (32.16)
N
I xs,j=I for alii (32.17)
ovdijj=t

S, Ty B,. Fi. RT/. RBt*. PT{ PBI. ¢*. t xsj, Xty. xby 2 0
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The parameters Feed, zj, PX and py; répresent the total feed; composition of the feed,
total flow of product k and component flow of component j in product k, respectively. - The
variablesxsg, xty and xbg are the concentr ations of component j in the inlet stream to separator
1 top of separator 1 and bottom of separ ator i, respectively.

The objective function (32 1) is a linear function of the inlet flow to the separators
Equation (32.2) is the total mass balance in the inlet splltter and equatlon (32 3) is the
component mass balance. Equations (32.4) and (32.5) are the total and component mass
balances for the mixer i before the separator L The material balances for separator i are given
by equations (32.6)* that isthe total mass balance for the separator; equations--(32.7) and (32.8)
that are the component balances for the top stream and indicate that nothing from components
number 1+1 to N-l isin thetop of the separator, and equations (32.9) and (32.10) that are the
component mass balances for the bottom streams. Equations (32.11) and (32.12) are the
overall mass balances for the splitters of the top and bottom streams alter separator 1. The
equations that state that the concentrations of the outlet streams should be the same that the
inlet stream in-a splitter have been already substituted. Finally, equations (32.13) and (32.14)
arethe overall and component mass balances for the mixer for product k.

Modd (32) correspondsto a formulation.of the type of mode M X where the distribution
coefficients are known and restricted to 0 or 1. Some smplifications have been made to avoid
including many irrelevant variables (e.g. not to define concentrations for the streams that go
the top i to product k). Although, some of the linear constraints in this formulation are
redundant, they can become nonredundant in the linear relaxation as will be shown in
Example 4.

Equations (32.5). (32.7). (32.9) and (32.14) involve nonconvex terms. This model can be
reformulated as in model MR by introducing individual component flows and the linear
equations (15M 18) and (7) according to the approach illustrated earlier to obtain a modd in the
form of model MR The resulting reformulated model is as follows,

min¢:"§'c<8i | | (33.1)
st Feed :N|-||: 1+ |K<><k . _ (332
i=Fg M' for all i andj (33.3)
S=fi+ZT RB.-t+p§;Frf' S - for alii (33.4)
=i+ Z by + 1> for all i andj (335)
el
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Sr-TV+'B, - for alii - : (33.6)

t, = gj forall i andord(jJ£ i - (33.7)
t*0 for all i and ord(j) > i (33.8)
b,jssSg : for all i and ord(j) > i (33.9)
tj=0 ' for all i and ordfl) £i (33.10)
’ t= K .
T, = sW + IPT, for all i (33.11)
191 k«|
N-I
Bim £RB, "+ £PB k for all i (33.12)
p* = Tl-—rt " +'£PB| +ak - for all k : (33.13)
>M riti : L
Pki * ._Sljtt," + XpbN* ok z, for all k andj (33.14)
= ! i=]
*1 K )
te= Z "/ + Zptij* foraUiandj (33.15)
i'»l k «l
N-I K o
bg = Zrbij* + £pb«* for all i andj (33.16)
I'*t+] - k>l
Ext.. =1 for alii ) (33.17)
| Exbu-l | forall i (33.18)
= 5 for alii 33.19)
T l:all | ( )
B,s Ib« for alii . (3320
udlll-i
PTi*= _pt<*k for alii and k (33.21)
0|><|(])>>| .
= Ip_’b _ for alii and k - (33.22)
RT/ = ]DV _ foralliandif <i (33.23)
ord(l) |
RBf = I|l rb/ o foralliandr > i (33.24)

Equations (15-18) for ty, rtyy' and pty* in terms of xty
-andthe total flow of its respective stream.
- Equations (15-18) for bq, rbg* and pbe in tennso{xl:,,
and the total flow of its respective stream.

S Tt Bt. Fa. KTf, RBY, PTX. PB". ac. fj. xs,jt Xty xbjj ~ 0

Sy, ty. Dy Dty*. phyj . rt,/. ly* 20




It is not nécessary to include equations (15)-(18) for the inlet component flows to the
separator, . since the variables xsy only appear in these equations. Also, the component
flows, g only appear in mixersand sharp separators unitswhich can be exactly represented in
terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-
(33,16) that are the component mass balances for the splitters of top and bottom streams have
been included accordingly to the reformulation previoudy presented. Equations (33.19M 33.24)
relate the total flow and the individual component flows for the splitter streams.

Preprocessing

The proposed Superstructure (Fig. 9) allows to bypass certain amount of the feed to the product
k. Ok, without having to go through the separation network. The amount of the product k that
is not bypassed has to be processed I'n the separation network and it will be denoted as the
'residual product*. Hence, the total 'residual product k' is given by (P* - a) and has the
component flows given by (p* - d'Z )(seeFig. 10).

The global optimal solution of model (32) is a network in which all the ‘residual
productsl,ha\/e at least one component with a zero flow. The reason that it is not optimal to
separate a stream in the network and later to remix it. The same degree of separation can be
achieved using a bypass that does not incur any cost in the objective function.

Consder the second separator in the solution obtained by Floudas (1987) to his second
example (see Fig. 11). For this subnetwork of the complete structure the"upper 'residual
product’ hascomponents B and C present. The components are being separated and remixed
again. The same outlet flows can be obtained with a smaller input flow to the separator asit is
shown in Fig. 11. Notethat both ‘resdual products have componentswith zero flow.

It should be clear that if there was not a component with zero flow in the 'residual
product’, thenthereiis part of this stream that could have been obtained by just bypassing the
network. Thisin turn does not incur in any cost, whereas going"'through t‘h'e network has a
positive cost. The above condition gives a lower bound for the bypass to each product. This
also correspondsto the largest amount that can be bypassed sinceall thisflowsin the ‘resdual
flow® have to be positive. In this form the bypass can be precalculated without affecting the
global optimality of the solution. '

The bypassto product k is given by the maximum amount that can be sent to product k
without having a negativeflow; that is.

a* =minj t"4 (34)

' 1
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- Where Zjis the feed composition and py; -is.the flow of componentj in product k. The
-component flewsfor resdugl product k, y# are given by.

=Dy - Ok | . . | (3s)
Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the flow of the key
componentsin separator i. These bounds are based on the fact that separator i isthe only unit
that can perform the task of separating component number i from component nutaber i+1.
They are reduhdant for the nonlinear formulation (32) but they are relevant for the linear
relaxation in (33). To calculatethem itis nece&laryto determine in each product what isthe
differ ence between the two key components of separator 1 with respect to the concentrations.in
the feed. The lower bounds in separator i* for the flow of the key components in the top
(component JI) and bottom (component j2) streams are given by:

thi* | I{T\Mi - 7ji nitowi;, ) for all i (36)
bw2 I (g - 2 ity o () foralli (3

wherey™ isgiven by (35). It isimpartant.to include both bounds in the relax mode (33) since
thereisno guarantee that the inlet flow to separator i hasthe same prdpoftion between the key
components as the feed. It is not known in which part of the sequence separator 1 will be
placed, and it can be after a splitter that is not being approximated correctly.

The bounds in (36) and (37) can be extended to separation of components that are not
adjacent in the feed. Consder-component number i and component number i+3. There are
three separators that can perform this task, separatorsi. i+1 and i+2. Cuts of the following
form can be obtained,

K
0+t t+ teai Z | {TKE - Z, miaonHH o *5 12F1) forali (39)
K y

X
bey + Diaz g + Diazi zél{‘huoa = Zyo3 MR yrei(jim or i +3 Ejl;'j} -~ forali (39

Equations as the ones in (38) and (39) can be redundant compared to equati.ons (36)
and (37) and it is possible to detect this before solving the problem. |

Relativeflowrate constraints
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These constraints aré used when the relation between the flowrates of two components
isknown. In particular, consider component A in the last column of the network ((we Fig. 12).
None of the redirected streams contains component A. Therefore, the relative flowrate of
component A with respect to the other components in the top stream hasto be smaller than in
the feed. This relation should remain valid after the top stream is split to the products and
redirected flows. -

.Inthe separator pr__evioust(_)'the last bne, N-2; all the streams do not have component A
except the one coming from thetop .of the last column. For this’_on‘é it is\al'__ready known that
the relative flow of component. A with r@mmﬁ to the other comp'onents_istsmaller than in the

.feed. - Thistype of-analysis can be done for corhpbnent A and cOmenent N in all the columns
yielding th$ following linear constraintsfd the splitters.

for alii and k

ZAPYij*-ZjPt«A O forj * Aandord(j)<i (40)

zypb,j* - z, pr*a“ £0 ~ forord() * N andord() >i  (41)
foralliandi'>i :

ZArt]'=ZjrtiA%n0 forj x Aandordyy a x wW2)
for alii and f<i

Zy byl - 2, thy' 2 O -7 forord(J)* Wandord(j)>i -~ 143)
- Boundson concentrationsand total flows . -

The approXimations '(15-18) réqUire bounds for the total flows and component
concentrations-in the splittefs. The lower bound. for the total flow of the top and bottom
streams is given by the lower bound of the key components obtained in equations (36) and (37).
For the outlet streams of the splittters, that are the redirected streams and the streamsthat go
to the products, the lower bound is zero. The upper bound for the total flow of the top and
bottom streams is given by the feed to the network of the components that can be present in
each stream .that is, | -

t
TY= Z(Feed-Xak)z, - for ail i ‘ (44)
ard(l=1 ‘K B :
N
- Bl«= " ItFeed-10fcJz, forallj 45
or{fimie] k

The upper bound for the streams after the splitter are given by.
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RTf " =T - _— forailiandi' <i (46)

RB.‘“=B;“ - I foraliandi'>i - - (47)
PR 2 _.g.-{"’ B foralliandk : ‘(48)
PB = ..?:.“? : for alii and k (49)

The lower bounidsfor the concentrations are zero except for the-key componentsin the
separator for which the lowér bounds are given by the lower bound of its flow-divided by the
upper bound of the total flow of that stream. The upper bounds in the concentrationsare given
by one minus the lower bounds of the other components. '

The solution of the linear programming‘mode (33) provides a lower bound to the global
optimum since thismode is a valid relaxation of the nonconvex model (32).  This lower bound
" isobtained by solving the LP model for the ‘residual products' in 135) with the addition of.the
valid constraints (36)-(43).

The upper bounds are generated solving mode} (32).in terms of the individual flows for
the 'residual-products. When additional noncanvex problems are solved to improve the current
upper bound it can happen that very similar initial point are generated. In thiscase, a new
nonconvex NLP is solved in which bounds over the total inlet flows to the separators (S] are
included. For this purpose the values of these variablesin the LP solution (§*) areused such
that the current incumbent solution isno longer feasible.

Exampled

Consider the 3 component example proposed by Floudas and Agganval (1990). An equimolar
- feed has to be separated into two products as show in Fig. 13. The objective function is given
by '

4+ =0.2395+0.00432 S, +0.7584 + 0.01517 &* (50)

- The bypass to products 1 and 2 can be calculated according to equation (34) and the
'residual product’ component flows are obtained through equatlon (35) (see F|g 14). Thetotal
bypass to product 1 isa, = 90 and the bypass to product 2 is ctz = 190 and the feed has a
concentration of zx = 1/3, zQ = 1/3and Zc = 1/3. In thisform the 'residual product' 1 isYIA =
0, YiB = 20 and y,. = 0 and the residual product’ 2 is Y, A =20, Yz = 0 and Y = 20.
Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35)-(36). The key components in separator 1 are component-A in-the top and
itsflow has to beat least 20 and component B in the bottom has to have at least a flow of 20.
In the top stream of the second separator at least 20 units of component B have to be
separated from 20 units of component C:in the bottom stream. It is important to note that
after preprocessing the network several suboptimal solutions have been cut off. One of these
suboptimal solutions for this particular data is a parallel configuration of both separators
(there are situations in which a parallel configuration can correspond to the global solution as
will be shown in example.5). .In this example the direct or indirect sequence have a lower
objective function. . Both of these configurations are local soluti'ons with an objective function
value of 4 » 1.8639 for the direct sequence and 4 = 2.081 for the |nd|rect one In some
instances, MINOS 5.2 had problems conver ging even in this small example. '

The LP (33) isformulated for this problem, giving a lower bound of (* = 1.8639. The

. approximations are exact and therefore this solution is a feasible solution of mode! (32) proving

~that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.

The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted
that if the linear mass balances for the mixer for product 2 were not considered since they are
redundant for the nonlinear formulation, a lower bound in the relaxed modd of <3 = 1.12 is
obtained, thisshowsthat it isrelevant to include all the mass balancesin the linear modd in
order to tighten the lower bound.

- Example5

In the approach proposed by Wehe and Wester berg (1987) for the case of 3 components only
the direct and indirect sequences are considered and both options can be modeled as LP
problems since no mixing is required for these separation networks. However, this example
shows that paralld configurations can be also'globally optimal and that they are not excluded
by the method proposed in this paper. To be able to consider parallel configurations or any
combination of parallel with direct or indirect sequences it is necessary to model a
superstructure in which mixing is allowed (like in the structure used in Fig. 13) Here,
nonconvexities arise in the mass balance equations after the separators.

Consider that an equimolar feed is to be separated into the two different products given
inFig. 16. The objectivefuncti'on is to minimize the sum of the total flowsinto the separators.
The same procedure that in the previous example is followed and the bypass can be

_precalculated by equation (34). The solution to the mode (32) yields <t = 12 and sinceit isa

feasible solution of modd (32) it corresponds to the global optimum (see Fig. 16). Notethat the
solutionsfor thedirect or indirect sequences have an objective function of ¢ =16.
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Branch and Bound

Ifthereisa gap between the lower and upper bound a branch and bound search is performed.

It isonly'necessary to do the.search over thevariables involved in the nhonconvex terms. The
concentrations.are used asthe branching variables since a change in them affects the |nIet and
outlet streams:of a splitter* In thisway. it is necessary to check the apprOX|mat|on for the
concentrationsin-the splitters of the top and bottom streains.of the separ ator . Equations (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound
search. )

- Results

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation
network examples 4 to 12. The number of variables is the total number of variables that are
included in the reformulated and relaxed model (33) for that example. The lower bound isthe
initial bound that fs obtained by solving model (33) over the entire feasible space. The inital
gap represents the percentage diflerence between the initial lower and upper bounds. When
there is a zero initial gap it means that the first relaxed solution is feasible in the original
problem thereby corresponding to the global solution. The column for nodes gives the total
number of subproblems that wher e solved before converging to the global solution. A reative
tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after
branching and example 12 for which a tolerance of 0.02 was used. It isimportant to note that
the initial lower bound is tight and that it corresponds to a good estimation of the global
solution. The largest differences are for example 1 with a 25% of difterence and for example 12
with a 7% diflerence. The LP time refersto the time used to solve each relaxed modd and the
NLP time isthe time used for solving a nonconvex.model. It is possible to do updates using the
previous LP solution and in this form have a more efficient implementation. The times are in
seconds and the problemswere solved on an IBM RS600/530 using GAMS 2.25 (Brooke,et al.
(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP
problems. A brief description of the example problems 6 to 12 is given below. It includes the
specific data for the problem, the objective function and the topology of the network that is the
global solution.

Example6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

$=259 +3.02+15S;’ (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is <t = 54.25 and an-upper bound of 0 ='55.5 is obtained by

' solvmg the nonconvex problem A partition of the feasible region is performed using the

compostlon of component D in the bottom stream of separator 1. The first subproblem (x £

) 166) yields a lower bound of 4L ='55.45 and the second subproblem (x< 0.166) hasa solution

of 4= 55.8. Thelatter isgreater than the upper bound iand the former isless than 1% of the
global solution (see Fig. 17). =

Exajnple7
This example istaken from Floudas (1987). The data for this problem is given in Table 3 and
the linear.objective function is glven by

4>=2.5S,+3.0S,+L2s3 = - (52).

Theinitial lower bound is <J¢ = 32.7 and it provides a feasible solution to the nonconvex
problem. In this form the global solution (see Fig. 18).is obtained in one iteration;, It is
interesting to seethat this solution also provides a better objective function for the concave
objective function used by Floudas (1987) ($ = 10.65 versus$= 13.68 which is 28% higher)

Example 8 . _
Tills four component problem is taken from Wehe and Westerberg (1987) The data for the
. productsisgiven in Table 4 and the objectlve functlon has the foIIovvmg form

$=50+05Si +4.0+0.3S2+6.0+0.7S; - - (53)

The first relaxed subproblem has-a-solution of 0. =26.76 and it is infeasible.for the

nonconvex problem. A nonconvex problem is solved using CONOPT with the LP solution as the

“initial point. An upper bound of 4> = 26.79 I sobtained corresponding to the global solution (see
- Fig. 19) withina 0.1%.

Example9
This example corresponds to example 1 from Wehe and Wasterberg (1987) Table 5 prowdes
the data for the product flowsand the objective function is given by:

$=50+05Si +9.0+ 1.0S2+3.0+0.4S;+6.0+0.6 S, (54)

A initial lower bound of € = 85.16 is obtained and the upper-bound Is$ « 85.65. The
difference is 0,5% and the global solution (see Fig. 20) isobtained in one iteration.
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Example 10 . _ _
This problem is taken from Floudas (1987) and the data is given in Table 6. The objective
function isgiven by,

4«12S +3.0S) +25S;+ 15S, (55)

The.l;l;l_];gjll lower bound is<* = 156.56 and the upper bound is< = 179.08. After 5 nodes
the global solution of $ = 159.48 (see Fig. 21) is obtained.

Examplel1l
The data for this 6 component problem are given in Table 7 and the objective function hasthe
following form:

4»1.5S +3.0S +20S3+ [0OA+4.0S5 . | (56)

The initial lower bound isO. = 173 and the upper bound is4 » 179.11. After fivenodes
the global solution is obtained (see Fig. 22).

Example 12

Thisisa 6 component 4 products problem and the data are given in Table 8. The objective
function is:

$m50S +3.0R+20S;+255,+4.0S; (57)

Theinitial lower bound is<¢ =362 and the initial upper bound is0 = 415.6. The global
solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent
streams has been proposed. The basic idea relies on a relaxed LP model that is obtained
through reformulation-linearization techniques that establish a clear relation between the
component flow and the composition models for mass balances. The reformulated model
combines both of these providing tighter lower bounds than other relaxations proposed in the
previouswork. Thereaxed linear model has been embedded in a branch and bound procedure
to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of
the particular structure of sharp separation networks with single feed and mixed products.
Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model

can be obtained’ without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter
lower bound.

Twelve examples for both general process networks and for sharp separation networks
have been preéented to illustrate the performance of the algorithm. As has been shown, only a
small number of nodes are commonly needed in the branch and bound search to identif'y the
global or e-global solution. Moreover, in many cases the initial lower bound is either the exact
solution or avery good approximation to the globa solution.
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Appendix A. Reformulation-Linearization . to obtaih_,-t_h,e‘ nor‘l!_i'rflear
constraintsin model MF

The nonlinear equations,in model MF. that can be expressed eifher as (8 or 9), Can also be
generated from model MX. For this purpose take the concentration model MX and consider
equation (5), % '

L oXe=x . A1
multiply by the valid bound constraint Xj L O o S '
xfvfm xf | (A.2)
~Use equation (5) for component A Lo
XEXF* * XtXFX . . (A3)
Multiply by thevalid bound constraints F" 20 and F= O
P SEXE = FralFxnk : - (A4
thatitlsllnearlzedtoyleld. ' S
fe €2 = gk (A.5)

which is precisely equation (8) for the splitters in the individua flow model MF.

Consider again equation (5),

X, =1 1A.6)
multiply by thevalid bound constraints F =0 and F* = 0,-

FAXFFAFR'X) FY A7)
that can be linearized to yield.

ql: F=f F* (A.8)
Define the split fraction £ to be,

? ) £ <A_9J
Equation (A.8) can then be expressed as

fjtntff (A. 10

which corresponds to equation (9).

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear
approximations in general are also redundant in the linear reformulated model MR.  Consider
equation (A. 10), smilarly to (15) one of itslinear approximations is given by.

ﬁ'ZE”'gk-i- E)igkl._ g!l.ﬁkl. {A.11}

If there are no particular restrictions in the splitters, then the bounds for the split
fractionvariableare 0 £ £ < 1 and using them in (A. 11) yields.
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gy (A.12)
The bound for the individual component flow is given by fi" = x,*" F*"; alsox, = x,"and £ -
Fo |
pE which leadsto

23t Fl__l‘-‘"il _ (A.13)
The estimator (15) for the same conditions (F*" = 0) is given by

[ axitr ; : (A.14)
: pkL -

Since thefactor -pg-'® always |ess or equal than 1. equation (A.13) is redundant. A similar
analisis can be performed for the other estimators. Only when more specific bounds over the
-gplit fractions or the individual component flows are known, will these additional estimators be
non redundant.
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29




P1<15

fi __: 2 80% A
55% A
45% B

F2
20% A P2<18
50% |

275% B

Figure 6. Network for example 2.
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Figure 14. Resdual products and key component boundsin example 4. -

30A
50 B
100A 20A
100 B 20B B
100C 20C e
70A
50 B
ggAB “170C
80C

Figure 15- Global optimum solution of example 4.
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Figure 16. Global optimum solution of example 5.
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Figure 17. Solution of example 6.
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Figure18. Solution of example 7.
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Figure 19. Solution of exam"ple 8.
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Figure 20. Solution of example 9.
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Figure 21. Solution of example 10.
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Figure 22. Solution of example 11.
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Figure 23. Solution of example 12.
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Table 1. Computational results

Comp. * WocL ™ Var. Lower  Initial Globa Nodes LP  NLP
- : bound gap splution fime _time !

Examplel } — = . - 29 -500 20' -400 3 005 01
Example2 § — 35 -513.22 0.3 -511.87 3 0.26 0.3
Example 3 - 113 138.18 0.4 138.7 1 034 04
Example 4 3 2 65 1.8639 0.0 1.8639 1 0.13 -.
Example 5 3. 2 65 16 0.0 16 1 0.13 ..
Example 6 4 - 2 107 -54.25 2.3 55.5 3 097 04
Example 7 4 2 107 32.7 0.0 32.7 - 1 0.17 .
Example 8 4. .3 1125 26.76 0.1 26.79 1 0.23 0.3
Example 9 5 4 281 - 8516 0.5 85.65 1 3.08 28
Example 10} 5 2 225 -~ 156.56 124 159.48. 5 259 23
Example 11} - 6. 2 350 173 3.5 179.11 5 998 8.8
Example 12 6 4 430 362 14.8 388 . 33 - 198 132

Table 2. Datafor example6. - ... .

Component A B . . - D" F-Tota |

Productl | "5 10 % 10 29

| Product 2 10 10 6, 5-¢1 31

Leed 15 20 10 15 1 60

i

Table 3. Datafor exa'rhple 7.

Component. A B g D ITloa
Product 1 - 75 100 -~ -.10 1 315
Product 2 75 10 6 [ 28.5
Eecd 15 20 10 15 | 60
Table 4. Datafor example 8.
Component A B C D Total
Product 1 2 3 T 3 9)
Product 2 1 4 1 5 11
Product 3 3 1 3 1 8
Feed 6 8 5 9 , 28
40
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Table 5. Data for ex ple9.

omponen A B C D E _Tlod]
Product 1 7 8 3 9 8 | 35
Product 2 10 3 5 5 4 27
Product 3 5 5 6 7 3 26
Product 4 10 0 6 4 9 29
{Eead 32 16 20 25 24 117
Table6, Datafor exam_p__ e 10,
Component A C D E {Tota
uct' 1 2 2.4 16 8 1 29.4
Product 2 8 5.6 4 8 9 34.6
Eeed 10 8 20 16 10 64
Table 7. Datafor example 11. ~
omponen A B C D E - F T otal
roauct I 3 yJ 16 8 4 10 43
Product 2 8 10 8 8 6 5 | 4%
Eeed 11 12 24 16 10 15 88"
Table 8. Datafor example 12. .
| Component A B C D E__ F | lotd]
Product 1 3 2 6 8 4 10 33
Product 2 8 10 8 8 6 5 45
Product 3 5 4 10 3 11 4 37
Product 4 7 3 1 2 2 7 25
EFecd ' 23 19 25 21 ‘26 26 140
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Figure 10. Definition of residual pfoduct'.
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Abstract

This paper deals with the globa optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides avdid lower bound to the global optimum. Thisformulation is then
used within a spatial branch and bound search. The application of this method is consdered
in detail for sharp separation systemswith single feed and mixed products. Numerica results

are presented on twelve test problems to show that only fev nodes are commonly required in
the branch and bound search.




1 nt'roduction _

A common source of-nonconvexities in the synthesis and design of processes, as well as in
flowsheet optimization, arethe material flow-equations for multicomponcnt streams.. These
nonconvex equations involve bilinear terms and they arise in the mass balance equationswhen
the compositions are unknown. There are different equivalent formulations for this type of
networks. One alter natlve is to formuiate the mass balance equatlons in terms of component
concentr ations* In this form blllnear terms are present in tHE equationsfor the mixer units
and the different process units (eg sharp separators). A second alternative is to expressthe
mass balances in terms of flows of individual components. This option hasthe advantage that
it involves a smaller number of nonlinear equations. However, the modélling-of the splitter
units involves bilinear terms that arise due to the conditiont that the proportions of flows
between comp_onents have t6 be the same for the differerit streams. -

The difficulty with ‘the nonconvexities noted above is that they may give rise to
optimization problems involving several local optima and numerical singularities that may
produce failure in the NLP algorithms. Recently there have been important efforts in the area
of global optlmlzatlon Exammes of algorithms are the ones proposed by'McConnick (1976),

Floudas and Viswewaran (1990) and Sherali and Alameddine (1992) which can be used to solve
bilinear programming problems like the ones that arise in networks with multicomponent
streams. For a recent review in the area of bilinear programming see Al-K hayyal (1992). -

Asfor previous work:in the design and synthesis of multicomponent process networks
Mahalec-and Matard (1977).and Nath (1977).developed evolutionary techniques that are based
on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of
separation networks with mixed products in which only sharp, separators are considered. A
super &tructure of the process network was proposed and modelled in terms of concentrations.
The resulting mode is nonconvex and solved with a standard NLP algorithm with no guarantee
of global optimality. Floudas and Aggaiwal (1990) solved small pooling and blending problems
and sharp separation networks problems using a strategy based on Sender s decomposition. In

“this approach only convex subproblems are solved but there is no guarantee of obtaining the
global optimum. Kocis and Grossmann (1989) modelled process networks with
multicomponent streams in terms of the individual component flows. They included a set of
_bounding constraints with binary variables to approximate the nonconvexities that are present
in.splitters with multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp
.separation networ ks with mixed products. Th!ey proposed a search procedure that involvesthe




enumer ation of the different separation sequences. The nonconvex equations are dropped and
constraints that are valid for each particular sequence with a set of bounds ovéf” the key

“‘components are included to obtain tighter LP relaxations for.each configuration. However, the

number of sequences’'to be‘examined grows rapidly and there is-no guarantee of global
op'timalitv* ¥

In. some partlcular cases the nonconvexities in the mass balances can be avoided
through the,introduction of binary variables. One of these cases is when smgle choice splitters

- arepresent in the flowsheet (Kocis and Grossmann. 1989). Here itis possb_leto have a mixed

integer Zryfd formulation for the mass balance equations in terms of the individual component

- flows.. Another restricted case for which some nonconvexities can be reformulated is when

mining within the network is only allowed for streams of the same concentration. In thisform,
larger network superestructures must be proposed and the concentratlons of the streams are
known beforehand. Integer variables are introduced to model the existence of the different
streams (e.g. the mixed- integer linear formulation for .sharp. separation networks by Floudas
and Anastasiadis, 1988). - -

The objective of this paper is to present an efficient global optimization method that
exploits the particular structure that is present in process networks W|th multlcomponent

. «streams (eg. pooling and blending systems, sharp separatlon networks). First a relation is

established between formulations based on concentrations and individual flows. Thisi is done
following the Reformulation-Linearization technique proposed by Sherali and Alameddine
(1992). As will be shown, a linear relaxation Is obtained that is in the space of the
concentrations and individual flowswhich can be used in a branch and bound search isto find
the global optimum. Application to the optimal design of sharp separation systemswith single
feed and mixed productsisconsidered in detail. Different preprocessing.techniques that allow
tightening of the relaxation problem are presented. The performance of the algorithm is

~ reported on-a total of twelve problems.

Modeling with concentrations and_ indi\)idual_ flows

Consider a process network that consists of splitters, mixers and pfrbeess units tliat are
interconnected with multicomponent streams (see Fig. 1). “The process iinits that arc
co_nsidered in this paper are units in which the output flows of the comporients can be
expreesed as a linear relation of the inlet flows (e.g. sharp separators, reactor with*known
conversion). It is possible to formulate the mathematical model of the process network in
terms of the concentrations of the streams, Xj. Another possibility is to model the network
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using flows of individual components. The former has the advantages that it provides a
convenient- framework. for the evaluation of therr_nddynamic properties, and i'n'ma_l_hy cases
bounds can be expressed in a more natural form. A major diéadvantage is that many
nonconvex terms (bilinear) are involved in the mass balances for the components. Hie
individual component flows formulation is often chosen since it givesrise to a larger number of
linear equations and the only nonconvexities are involved in the modelling of the splitters. In
these untisit is necessary to enforce that the components maintain the same concentration in
each of the streams leaving the splitter. These constraints can be expressed as relations
between the different components (Wehe and Westerberg. 1987). One deficiency of this
representation is that since many flows can take values of zero, singularities may arise with
which conventional nonlinear programming methods may have difficulties to converge.
- Another alternativeis to introduce additional variables that represent split fractions (Kocis and
Grossmann. 1989).. This involves a larger number of constraints but tends to yield a
formulation that numerically is better behaved.

Following are the equations that apply to the mixers, splitters and units using the two
alternative representations:

Mixer

A mixer Kconsistsof a set of inlet streams, My, and an outlet stream k (see Fig.2).

a)Concentrations

The total mass balance for a mixer k is given by:
F*= 2. @
where F* Isthe total flow in stream i. The mass balance for each component j is given by the
nonlinear equations,
Frxn £ Pxj! forallj )
e My '

wherex_,1 is the concentration of component j in the stream i

b) Individual flows
Here it is only necessary to write a mass balance for each component j, given by the
linear equations: ) ' “ : 3
An 2T C " forallj : €)

My

where fj* is theflow of componientj in stream i.

Splitter
A splitter k hasan inlet stream k and a set of outlet streams S* (see Fig. 3).

3




~ cQConcentrations S _ _ _
'~ The equations for a’ splitter in terms of the concentrations are given: by the following
Ii_hear equations | |

F =Fk @
. a8y : . ) :
, : for alii 6 Scai*d] O .
X = x
_ ©)
L 350 |
7 |

’b)l ndividuualL Jlows
- Themassbalance for each component J is given by

2 [’1 Sff _forallj .. @)

i€Sfc

Here, it is also necessary to enforce the Iclondition that thetstreams leaving the splitter
have the same proportions in flow for each component. These relations between components,
which are nonlinear, can be expressed in terms of the inlet stream k and a given component J*

fi* tf =V . for alii 6 I andj*j' (8

A different approach consists of introducing as additional variables the split ratios *,

that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear
equations are given by '

. §‘=§‘fj" _ . (braliie Iandj ©)
withOs& <1,

Process units |
In this paper it will be assumed that the outlet streams, i € O, in the process unitscan
be expressed as linear relations-of the inlet streams, i e I (see Fig. 4). Thisisfor instance the

case of sharp split separators, separations in which the recovery leve ‘is known, or reactors
that have a fixed conversion. '

a) Concentrations : : T

The overall mass balance for process unit k is given by,
IF*= £F a0
if 1k *«°k ' :

The massbalance for each component] is given by the nonlinear equations:
: £ PME*'N'sPX! forallie Okand] (1)

»* «lk

e p; is a constant for process unit k that gives the distribution of companent | in the

sream i'(§8§88miw§ from streams i~ € I,. For a separator unit it isrequired thatugkf’\* =1

and £ Pji_tk si. A sharp split separator is one for which Il = 1 and 10 =2 (top and
VEI,

bottom streamé) and for all the components the constant p,-t“c are either O'or 1.
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~-ffi Uvdiiikixialjlows : :

Only the mas balance for each component is necessary and it is given by:

' ‘lkﬁﬁlkfjl‘ _ _ foral I_ie Okandj (12)
A modd in terms of individual flows MF consists of the linear equations.(3), (7) and (12)

plusthe nonlinear equations (8) or (9). The mode in terms of the concentrations. MX includes

the linear equations (1). (4), (5). (6) and (10) plus the nonlinear equati on_j_s'___(TZ)""and (12).

Refor'.? Tl tottonand L inearization

In order to avoid the direct usé of the nonconvex models MX and MF, there is arelation that
can.be established between them using the reformulation and linearization technique for
“bilinear. programming models propo.sed‘by Sherali and AIa_mé_ddihe (1992). This techhiquié'éan
‘be applied to the model MX. First, consider the bounds over the variables present in the
bilinear terms (total flow, F* and concentrétiohsxf) ' o

FILSFgFe ' - (13
x,ll.s*’lSX’Iu o s : . - (14

Using the bounds in (13). (14) the following constraints can be generated for the bilinear
termsin (2) and (UK : e

Fixp2Plx + 5L F - PtLoxf (15)
Fixi2Flux!+xupli. Fluy ' (16)
FUXGE Pt + o Pro- PGt (17)
F'xf s B+ X" F - B X (18)

In fact. McCormick (1976) has shown that the constraintsdin (15M 18) correspond to the
convex and concave envel opes of the bilinear terms.over the given bounds., The formulation is
linearized by the definition of the following variables:

$k¥**{. o | . . . (19)

Tfte resultihng model which involves equations (1). (3), (4). (5), (6). (10). (12) and the
constraints in (15)4{18) is a linear relaxation of the original nonconvex concentration model.
MX. in which the nonlinear equations (2) and (11) have been replaced by the linear equations
(3@ and (12) from the individual flow model. MF. It is possible to generat'e'addi'tional linear
constraints that are redundant to the original nonlinear model, MX, but that can be
nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sheradi et




al.. 1992). In particular, consider equation (7) that isthe linear component mass-balance:for
the sputters in model MF.  This linear equation is not present-in the linear:relaxation of the
concentration model, MX. Take equation (4) and multiply by the valid bound constraint xf £0

toget
- N * N B . ) .
us‘ij F - (20
Using equation (5) ylelds
tPxj~NEA 4
el

that can belinearized to,

£
‘5-; whik, ) N (22)

_yleldlng equatlon (7). Hence, the linear equatlon for the splltter isvalid and it i$Included. Hie

nonllnear equations (8) or (9) can alsobe generated in a similar fashion but theif linearizations
are in general redundant (see Appendix A) They are onIy useful when the formulation df the
problem provides non-trivial bounds over certain components in the outlet streams of a
splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that reate the total flow and the individual flows of a stream can
be generated for the splitters. Taklng equatlon (6) and multiply by F ylelds

Ft Txk = [es)
1

Using the congtraintsxf = xj* in equation (23) and linearizingwith fi* = F* xf yields.

F-1tf @

i

Based on therabove it is possible to-obtain a reformulated model MR that involves

‘concentrations, total flows and component flows, and which bounds,the solution of the original

problem. The following equations are given for-model MR: " .
a) Objective function. 0. which is expressed in terms of individual or total flows, ..

b) Mixer equations, which are expressed ta terms.of the total and individual component flows.

FE&=z ¥ F* - . o @
1a My

‘3- > " - for allj : RN
€M7 _ :
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c) Splitter equations, that are expressed in terms df the individual component flows and the

concentrations of the streams
 Ft=Fk (4
1 #Sy
Xy = x¥ for all i€ ScandJ (5)
Takel | | G
‘= for all
"Ests £k orallJ _ ()

d) Processunitsequations, that aregiven in terms of the total and individual ,(_:ompohent“ flows

T F= XF* (10
| €ifc | € Ofc
_'_r,lar:_“kg,,lkq‘ for all ie Oxand] (12

€) Reation between thetotal flow and the individual component flows _
= g, ff ' for all streams (24)

f) Linear estimators, relate the individual component flows with the total flow and

concentrations.

§ 2Plxf+xLF . Filx)L as’
fi SFA+xAP-Flrar foralli€s, (16
fi <jiuni™XtLpi.puxiL isk € splitters - 117)
ff SFLlxf+xiupi-FiLx foralljeJ @8

fj Bounds on_flows,and concentrations
FLSFISFe - | - (13 .
leLijl ijlll (14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)
~ looser approximations of the nonlinear termswere used. In both cases, the nonconvex problem
(MF) wasredaxed to a linear model by dropping the nonlinear ‘equations (8) or (9).. Equations
that approximate the difference relation between the components were considered (Kocis and
Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter
between the flowrate of the components and required the introduction of binary variables.




Outline of global optimization method

Modd MR can be applied to predict lower bounds to the global optimum in the optimization of
pooling and blending problems and in the synthesis of separation systems. The reason is that
model MR provides a valid relaxation of the original feasible region since the nonlinear
equations (2) and (11) inmodel MX are not considered, and the valid linear equations (3), (7),
(12) and (15)-(18) are included. The proposed global optimization algorithrh' relies on the
solution of the relaxed problem MR within a spatial branch and bound enumeration. The
outline of the algorithm is as follows (for a more detailed description of step 4 see Quesadaand -
Grossmann (1993))

0. Preprocessing (optiond)

Determine bounds on the variables involved in the nonconvex terms, that istotal flows.
. and concentrations, xf. Apply any additional preprocessing specific to the structure of the
problem in order to further bound or fix variables. -

1.LowerBound
Solve model MR over a given subregion (initial subregion is the complete feasible region)
minimizing a convex objective function <% If ¢ islinear the model is an LP. '

2. Upper Bound _

Any feasible solution to the nonlinear model provides an upper bound. Heuristic
techniques can be employed to obtaifn good feasible solutions or the origina problem. MF. can
be solved using the solution of model-MR as agood initial point. If the solution of problem MR
isfeasble it provides an upper bound.

3.Convergence
If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper
bound.

4. Branch andBound A o L 5
Partitionthe remaining subregions.into a sl of digoint subproblems. Repeat steps 1-3
for each of the new subregions.

Remarks

The preprocessing step plays an important role in the above algorithm. It is during this step
that initial bounds for the variables involved in nonconvex terms are obtained. The quality of
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these bounds affects the tigthness of the lower bound since they are part of thg estimator
equations (15)418). Additionally, these bounds affect the performance of the algorithm because
they define the search space over which the branch and bound_procedure may have to be
conducted.

In some cases, as described later in this paper, it is possible to exploit the particular
structure of the process network and generate bounds for the,variables without having |o solve
any subproblems. Furthermore, during this preprocessing step additional constraints can be
gener ated for predicting a tighter lower bound: of the global optimum can be obtained.

Some of the linear mass balances and.the estimator equations are redundant in the
nolinear formulations, MF and MX. These equations become nonredundant in the
refonnulated moddl, MR, and for that reason it isimportant to write a.complete formulation of
the network. However, thismodd can present some redundancies that can be easily identified
and diminated to reduce the size of themodel. This s the case for the concentration variables
used in the splitters. Modd MR uses different sets of concentrations variablesfor theinlet and
outlet variables of a split unit. ..In. practice, it is only necessary to define the concentration of
the component in the splitter and use the same variables for all the splitter streams. Also,
some redundancies can occur with the total flow variables. These ones are necessary for the
streams in the splitters but they might be redundant and eliminated in the other untis if they
do not appear in other part of the mode or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it
correspondsto the global optimal solution. When the solution to the model MR is not feasible
it isnecessary to follow a branch and bound procedure to search for the global optimum. This
* procedure requires a valid-upper bound on the global optimum. This can be generated through
heuristics or by solving directly the nonconvex model. For this purpose, the pr(')cess'network
model is formulated in terms of the individual component flows and the nonconvex equations
for the splitters are included. Equation ( was also used in this work to model the plitters
dueto it is better numerical behavior. The solution to the modd MR was used for the good
initial point. In many instances, it was not possible to solve these nonlinear problems with
MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is g_enerated. ‘Of the set of open
nodes, these are the nodes that have a lower bound that is esrhall_er than the_cUrrer_n upper
- bound, the node with the smaller upper bound is selected to branch on. The splitter unitsare
the units that are approximated, and of these, the splitter' that has the largest difference




" between its approximated and actual individual component flows is. selected. The
concentrations are used-as the branching variables since a change.in them affectstheinlet and
outlet streams of a splitter. The branching is done in the selected splitter. over the
concentration of the component that has the largest difference.

Firgt, the actual concentrationsfor the individual component flowsin the L P solution O -
- for'the splitters are calculated by,

z,“=%;‘r for all theinlet streamsto splitter ~ (26)

the'splitter unit m isthen selected according to the equation.
- 1.k
- m ﬂm"’“{u}:éu P2 1-zk i} ; (27)

- Equation-(27) represents the total difference between the LP_sqution__,er'__'theflovvs after -
the splitter and the actual value of these flows considering the concentrations before the
plitter . ‘Oncethe splitter has been selected, the component in.that sputter that hasthe largest
difference. J\ is selected by. SR

i = - . ' ' (28
] —ar_gmax,("ls’lf/ 1£ FM] (28

Hie following branching constraints are then used:
.xmSzemand Xj."=>z," | ' | (29) -

To improve thé upper bound it-might be necessary to solve additional nonconvex
problems These can be solved after a given number of nodés using the solution of-the node
with the smallest’ upper bound as the initial point. In thiswork-if there was no significant

_ change in the lower bound df the new nodes with respect to the lower bound of the parent node
( < %) anew nonconvex problem was solved

Examplel : - ‘
Consder the following poollng and blending problem by Harveley (1978). Two streams that
have componentsA and B are mixed in a initial mixer a then go through a splitter to obtain two
streams than can be mixed with an additional stream (see Fig.-5a).” Two different products can
be obatined and thefe are constraints on the concentration of component A in these products.
The objective function consists of mimizing the cost that is giveh by the total 'flow of the
streamstimes the cost coefficients. ¢, given in Fig. 5. ‘
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This problem has two local solutions. One has an objective function ¢ = -100 and
- consists of otify producing product 2. The other local solution, that corresponds to the global
optimum, hasan objective of 4> = -400 and here only product 1 isproduced. '

Modd MR is formulated for this problem and the initial lower bound is4y = -500. The
nonlinear model, MF, is solved using the solution of model MR asthe initial point and an upper
bound of » a -400 is obtained* Sincethereisa gap between the bounds of the global solution a
partition is performed- Thereis only one $plitter that needs to be approximated and since there
are only two componentsit is irrdevant which one is selected since the composition bounds are
rdated (eg. xg" si - x*"“). The actual value of the composition of A in the solution of modd MR
is used as the branching point (x* = 0.0166) to generate two new subproblems. The first
subproblem (x4 £ 0.0166) has a lower bound of 4y = -100 and the second subproblem (x* <
0.0166) has a solution of fa = -400 (see Fig. 5b). Both of these bounds are greater or equal
than the upper bound, therefore the global solution has been found (x5 = 0.01).

Example2 _
- The next example is a separation problem taken from Kocis and Grossmann (1987). The
original problem has binary variables in* the formulation and they have been fixed to 1 for this
example (see Fig. 6). '

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream
‘has 80% of the inlet flow of component B. In the column. 97.5% of the inlet flow of A goes to
the top whereas 95% of the inlet flow of B goes to the bottom stream. The total flow to the flash
unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of
each of the two feed sreams has to be lessthan 25. The objective function is given by,

& 52+ 10F! +8F,+ F,+4F;-35P,A-30P,° (30)

The initial lower bound for this problem is 4y = -513.22 and it is infeasible for the
original NLP modd. A nonconvex problem is solved using CONOPT with the solution of model
MR as the initial point obtaining an upper bound of ¢ = -511.87 and the relative gap isonly
0.3%. Again only one splitter is present in the network and a partition can be performed using
the concentration of component A in this splitter. The lower bounds for the new two
subproblemsareOL = -511.87 (X £0.5121) and O =-511.80 (xa> 0.5121). Both solutionsare
greater or equal than the upper bound and the global solution has been obtained. Inthe global
solution Fy ss8 and F, = 25, and 11% of the inlet flow to the splitter is directed to the flash.
76% to the column and therest bypassed to P,.
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Example3 : ,

This example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

0=45,+1.55,+4Sg (31)

The initial lower bound is 4y = 138.18 and the nonconvex problem MP is solved
‘obtaining a solution of 4 « 138.7. The gap between these bounds is less than 0.4 %. The
globa optimum for thistolerance is shown In Fig. 8. '

Sharp separ ation networks

In order to illustrate the application of the above agorithm to a specialized case where the
structure can be further (exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
sp_ecifiéd multicomponent product streams. The components are ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9). The superstructure consist of N-I separators: Separator 1 performs the
task of removing cdmpénent number 1 to number 1 at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-|
streams, F. that go to the separators and K streams, a. that bypass the network to go to the
products. Each stream F< is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i, S.

The outlet streams of separator i are the top. Tjg and the bottom, B;. These streams, T«
and B{, are each split into streams, PT{ and FB< respectively, that go to the K products and
into streams, KIV' and RB/\ that are redirected to the other separators. The top stream of
separator 1, T;, can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaler (lows. KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, B, can be redirected only to separators i+1 to N-I since it can only
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contain components that are separated by these sharp separators. RB,_]‘ is the redirected flow
. from the bottcpi stream of separator i to separator i'.

M odd

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
' and total flowshasthe fallowing form

| m.n4>-;cs (321)
. |
sL’ Feed* g‘ F Yo , (32.2)
fy=Fiz for aliiandj ~ (32.3)
1 N-| . :
Si=F + tZ‘,l.RB.-‘ + .r_%lm',-* for alii (32.4)
-1 . N-I
S xs«af« + X RBf xb,-. + .};,ﬂRT.-' xty for alii and] (32.5)
S, =T, +B, o foralii (32.6)
Ty Xty = Sy X8y for al’i and ord() <i (32.7)
xty=0 for al-iand ord() > i (32.8)
By xby = S, x3 : for all i and ord() > i (32.9)
xby=0 for all i and ord()) £ (32,10)
. K !
T,= | RIS + SPTX for alii (32.12)
1w kel
N-I K
= SRB{ + £PB* for ail i (32.12)
{'wiel k«l
N-1 _
pk= TPTK ’;LIIpB,k 0 - fordlk - (32.13)
i=1 1 . .
N-I N-I ' o .
= l211"1‘1":&‘, + Il,PB," xby+ a,z, - for all k and] (32.149)
= = ' ) *
i .
-‘%_xt.j =1 for all 1 (32.15)
Exb,, =1 for alii (32.16)
C‘E‘.::su =1 for all i (32.17)

S, T, B, F RT", RBt", PT; PBt“. c* f,, xs;j, xfy xtx * 0
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The parameters Feed, zj, PX and py; répresent the totat feed; composition of the feed,
total flow of product k and component flow of component j in product k. respectively. The
variablesxsq, xt; and X are the concentrations of componentj in the inlet stream to separator
i. top of separator i and bottom of separator i, respectively.

The objective function (32 1) is a linear function of the inlet flow to the separators
Equation (32.2) is the total mass balance in the inlet splrtter and equatlon (32 3) is the
component mass balance. Equations (32.4) and (32.5) are the total and component mass
balancesfor the mixer i beforethe separator L The material balances for separator i are given
by equations (32.6). that isthe total mass balance for the separator; equations(32.7) and (32.8)
that are the component balances for the top stream and indicate that nothing from components
number 1+1 to N-I isin the top of the separator, and equations (32.9) and (32.10) that are the
component mass balances for the bottom streams. Equations (32.11) and (32.12) are the
overall mass balances for the splitters of the top and bottom streams after separator i. The
equations that state that the concentrations of the outlet streams should be the same that the
inlet stream in-a splitter have been already substituted. Finally, equations (32.13) and (32.14)
arethe overall and component mass balances for the mixer for product k.

Modd (32) correspondsto a formulation of the type of model MX where the distribution
coefficients are known and restricted to 0 or 1. Some simplifications have been made to avoid
including many irrelevant variables (e.g. not to define concentrations for the streams that go
the top i to product k). Although, some of the linear constraints in this formulation are
redundant, they can become nonredundant in the linear relaxation as will be shown in
Example 4.

+

Equations (32.5), (32.7), (32*9) and (32.14) involve nonconvex terms. This model can be
reformulated as in model MR by introducing individual component flows and the linear
equations (15)-(18) and (7) according to the approach illustrated eaiiier to obtain amode in the

form of model MR. The resulting reformulated modd is as follows,
“N-I

min § = £6S _ | (33.1)
N-I K
st Fed = ||-|Ft + Z0% : : (332
=F z for al i andj (333
t-1 N-I . . .
=Fj+ YRB!+ TR - forali (334)
1=l f'aiel
i-1 N-I
S|] = ﬂ] + izl rb‘]‘ + § lrt‘-]‘ fOI’ a” | andJ (335)
‘= Umie
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S, =T, + B, foralli ~ - (336).

ty = Sy for all i and ord() £ - (337)

ty=0 for all 1and ord(j) > 1 (33.8)

by = 8y i for all i and ord()) > i (33.9)
ty=0 " for all i and ord(j) < | (33.10)
T,= :;‘lnr.f . élm‘.k © foralli (33.10)
B = hi‘"mas.r ¢ PBE for all 1 (33.12)
Cpe=PTES S'fﬂpa. ra for all k - (3313
Py = I}‘Iptq" ’ Eipb.,“ ronz forallkandd  (3314)
ty= zrq,' }:ipt" ' for alii and] (33.15)
by = :%;b,,r + Zpb.," for all i and (33.16)
ugz(t _1 Cforalli @®17)
'_‘E_.xb., =1 ‘ for all i (33.19)
T,= _&1 - for all i (33.19)
 By= “&?q - Cforalii (3320)
l1::..," for all i and k (33.20)
PBk = “,ﬁmk _ for all 1 and k L (322
won '-IS-/I o foraliandi' <i (33.23)
" -‘irgur B foraliandi'>i  (33.24)

Equations (15-18) forty. rt,;' and pt,* in terms of xtg
‘and the total flow of itsrespective stream.
- Equations (1518) for by. rbg"and pby* mtermsoth,
and the total flow of its respective stream.

S.T..B,.F.RT,.RB. PT /. PB/, Ok f;. xs].xU..xby SO
Sytj. bj pti <. po,"rt,".rb,* 20
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It is not necessary to Include equétions (15)-(18) for the inlet component flows to the
separator, Xy, since the variables xsj only appear in these equations. Also, the component
flows, sj, only appear in mixers and sharp separators unitswhich can be exactly represented in
terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-
(33.16) that are the component mass balances for the splitters of top and bottom streams have
been included accordingly to the reformulation previously presented. Equations (33.19M 33.24)
relate the total flow and the individual component flows for the splitter streams.

Preprocessing

Hie proposed superstructure (Fig. 9) allows to bypass certain amount of the feed to the product
k, a*, without having to go through the separation network. The amount of the product k that
is not bypassed has to be processed in the separation network and it will be denoted as the
'residual product*. Hence, the total 'residual product k' is given by (P* - &) and has the
component flows given by (p" - 0z )(see Fig. 10). "

The global optimal solution of model (32) is a network in which all the ‘resdual
products.have at least one component with a zero flow. The reason that it is not optimal to
separ ate a stream in the network and later to remix it. The same degree of separation can be
achieved using a bypass that does not incur any cost in the objectivefuh'ctioh.'

Consider the second separator in the solution obtained by Floudas (1987) to his second
example (see Fig. 11). For this subnetwork of the complete structure the‘upper 'residual
product* hasicomponents B and C present. The components are being separated and remixed
again. The same outlet flows can be obtained with a smaller input flow to the separator asit is
shownin Fig. 11. Notethat both ‘resdual products have componentswith zero flow.

It should be clear that if there was not a component with zero flow in the 'residual
product’, then there is part of this stream that could have been obtained byJust bypassing the
network. This in turn does not incur in any cost, whereas going through the network has a
positive cost. The above condition gives a lower bound for the bypass to each product. This
also corresponds to the largest amount that can be bypassed since all the flowsin the 'residual
flow* have to be positive. In thisform the bypass can be precalculated without affectlng the
global optimality of the solution.

The bypassto product k isgiven by the maximum amount that can be sent to product k
without having a negativeflow; that is.

a,=min, [ 4 (34)
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- where Zjis the feed composition and py; -is.the. flow of component j in product k. The
‘component:flows for 'residual product' k. T4 are given by. ' "

'Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the (low of the key
componentsin separator L These bounds are based on the fact that separator i isthe only unit
that c__ah perform the task of %pér_atihg component number 1 from component nutaber 1+1.
They are reduhdant for the nonlinear formulation (32) but they are relevant for-the linear
relaxation in (33). To calculate them, it is necessary to determine in each-product what isthe
difference between the two key components of separator i with respect to the concentrations in
the feed. The lower bounds in separator i' for the flow of the key components in the top
(component JI) and bottom (component J2) streams are given by:

K . e
ty EEI{TI:]I - Zy1 Miilyeyy g7 {);‘;‘] } for alii (36)
X
b2 3 (9 - zeming o (1) foralli 37)

where YK isgiven by (35). It isimportant to include both bounds in the relax model (33) since
thereisno guarantee that the inlet flow to separator i has the same pro'por-tion between the key
components as the feed. It is not known in which part of the sequence separator i will be
placed, and it can be after a splitter that is not being approximated correctly.

" Theé bounds in (36) and (37) can be extended to separation of components that are not
adjacent in the feed. Consder component number i and component number i+3. There are
three separators that can perform this task/separatorsi. i+1 and i+2. Cuts of the following
form can be obtained.

tei +tyi+tFal2 £ {Dd - zt MiNggg)<orns [3‘?‘1]} for all i (38)
K Yy
byg+#busi + by 2 £ {Tki*3 - z*s minorsow*3 =) - foralli (39

Equations as the ones in (38) and (39) can be redundant compared to equations (36)
and (37) and it is possible to detect this before solving the problem. '

Relativeflowrate constraints

17




These constraints aré used when the relation between the flowr ates of two components
isknown. In particular, consider component A in the lagt column ofthe'network (see Fig. 12).
None of the redirected streams contains component A. Therefore, the reative flowrate of
component A with respect to the other components in the top stream hasto be smaller than in
the feed. Thisrelation should remain valid after the top stream is split to the"p'r'od'ucts and
redirected flows.

1l the separator previousto the last o'ne N-2, all the streams do not have componentA _
except the one coming from thetop of the last column. For this one itis already known that
the relative flow of component A with respect to the other components is smaller than in the
feed. . Thistype of.analysis can be done for component A and component N in all the columns
yidding th$ following linear constrai ntsfor the splitters.

for all Land k
ZaDW* - Z DLk 20 forj* Aand ord(j) <i (40)
ZNpbgX-Zjpty 2 0 o for ord(j) * N and ord(j) >i  (41)
foralliand I >i
znnui' - % l'tmf >0 faril 4 A Aand Aardill < (42‘)

forj* A and ordtf) Si
toraU land1 <1

, z«rbu"-‘z, ibm*' 20 forord(J)"Wandord(J)>| (431
- Boundson concentrationsand total Jlows

The approximations (15-18) require bounds for the total flows and component
concentrations'In the spIitters. The lower bound for the total flow of the top and bottom
streams is given by the lower bound:of the key components obtained in equations (36) and (37).
For the outlet streams of the splittters, that are the redirected streams and the streamsthat go
to the products, the lower bound is zero. The upper bound for the total flow .of the top and
bottom streams is given by the feed to the network of the components that can be present in

each stream .that is. .
l -
T'= ItFeed-XoicJz, _ for alii (44)
ardijinl k _ . _ _
N . . ..
- BMhs - |£ lfeed-{.arazr, for alii- (45)

The upper bound for the streams after the splitter are given by.
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RT{f v =T <. fordliandit<i (46)
RB{'¢ = B,“ | for alii aridi'>i -~ = (47)

PTr =z - for all i and k . (48
s g o | 9

k;Jb’) for all i and k | ' | .(49)

The lower bounds for the concentrations are zero except for fee key componentsin the
separator for which the lowér bounds are given by the lower bound of its flow-divided by the
upper bound of the total flow of that stream. The upper boundsin the concentrationsare given
by one minusthe lower bounds of the other components.

The solution of the linear programming'modd (33) provides a lower bound to the global
optimum since thismodd is a valid relaxation of the nonconvex modd (32). This lower :bound
" is obtained by solving the LP model for the 'residual products1 in: (35) with the addition of.the
valid constraints (36)-(43).

The upper bounds are generated solving model (32) .in terms of the individual flows for
the'resdual-products. When additional nonconvex problems are solved to improve the current
upper bound it can happen that very similar initial point are generated. In this case, a new
nonconvex NLP is solved in which bounds over the total inlet flows to the separators (S) are
included. For this purpose the values of these variables in the LP solution (S*) arc used such
that the current incumbent solution is no longer feasible.

Exampled
Consider the 3 component example proposed by Floudas and Aggarwal (1990). An equimolar
- feed has to be separated into two products as show in Fig. 13. The obj_ec;ive function is given

by
4502395+ 0.00432 S, +0.7584 + 0.01517 S2 | | (50)

~ The bypass to products 1 and 2 can be calculated accordlng to equatlon (34) and the
'residual product’ component flows are obtained through equatlon (35) (see F|g 14). Thetotal
bypass to product 1 isa, = 90 and the bypass to product 2 |s<x2 = 190 and the feed has a
concentration of zy = 1/3, zo = 1/3and ZQ = 1/3 In thisform the residual product 1isYIA=
0. YiB = 20 and Y*C = 0 and the ‘residual product* 2 is Y ,A = 20, YB = 0 and Ya ° 20.
Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35M 36). The key component's“in separator 1 are component A inthetop and
itsflow has to be at least 20 and component B in the bottom has to have at least aflow of 20.
In the top stream of the second separator at least 20 units of component B have to be
separated from 20 units of component C:in the bottom stream. It is important to note that
after preprocessing the network several suboptimal solutions have been cut off. One of these
suboptimal solutions for this particular data.is a parallel configuration of both separators
(there are situations in which a parallel configuration can correspond to the global solution as

- will be-shown in example.5). In this example the direct or indirect sequence have a lower
objective function. Both of these configurations are local eol'utions with an objective function
value of 4 = 1.8639 for the direct sequence and $ = 2.081 for the indirect one In some
instances, MINOS 5.2 had problems conver ging even in this small example

The LP (33) is formulated for this problem, giving a lower bound of » = 1.8639. The
. approximations are exact and thereforethis solution is a feasible solution of model (32) proving
that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.
The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted
that if the linear mass balances for the mixer for product 2 were not consider ed sincethey are
redundant for the nonlinear formulation, a lower bound in the relaxed model of $ = 112 is
obtained. Thisshowsthat It isrelevant to mclude all themass balancesin the linear modd in
order totighten the lower bound. '

. ExompteS

In the approach proposed by Wehe and Wester berg (1987) for the case of 3 components only
the direct and indirect sequences are considered and both options can be moddled as LP
problems since no mixing is required for these separation networks. However, this.example
shows that parallel configurations can bealso globally optimal and that they are not excluded
by the method proposed in this paper. To be able to consider paralle configurations or any
combination of parallel with direct or indirect sequences it is necessary to mode a
superstructure in which mixing is allowed (like in the structure used in Fig. 13). Here,
nonconvexities arise in the mass balance equations after the separators.

_ Consider that an equimolar feed isto be separated into the two different products given
in Fig. 16. The objective function isto minimize the sum of the total flows into the Separators.
The same procedure that in the previous eXampIe is followed and the bypass can be
_precalculated by equation (34). The solution to the model (32) yields 4t = 12 and since it isa
feasible solution of mode (32) it corresponds to the global optimum (see Fig. 16). Note that the
solutions for the direct or indirect sequences have an objective function of $ = 16.
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Branch and Bound

Ifthereisa gap between the lower ai}d upper bound, a branch and bound sear ch is performed.

It isonly-necessary to.do the search over thevarlableslnvolved in the nonconvex terms. The
concentrationsare used asthebranching variables since a change in them affectsthe |nlet and
outlet streams of a splitter. In this way. it is necessary to check the a_tpproxmatlon for the
concentrationsin the splitters of the top and bottom strear*s of the separator. Equatlons (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound
search.

- Results

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation
network examples 4 to 12. The number of variables is the total number of variables that are
included in the reformulated and relaxed model (33) for that example. The lower bound isthe
initial bound that is obtained by solving model (33) over the entire feagble space. The inital
gap represents the percentage difference between the initial lower and upper bounds. When
there is a zero initial gap it means that the first relaxed solution isfeasible in the original
problem thereby corresponding to the global solution. The column for nodes gives.the total
number of subproblems that where solved before converging to the global solution. A redative
tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after
branchlng and example 12 for which a tolerance of 0.02 was used. It is important to note that
the initial lower bound is tight and that it corresponds to a good estimation of the global
solution. The largest differences are for example 1 with a 25% of difference and for example 12
with a 7% difference. The LP time refersto the time used to solve each relaxed modd and the
NLP time isthe time used for solving a nonconvex.model. It is possible to do updates using the
previous L P solution and in this form have a more efficient implementation. The times arein
seconds and the problemswere solved on an IBM RS600/530 using. GAMS 2.25 (Brooke et al.
(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP
problems. A brief description of the example problems 6 to 12 is given below. It includesthe
SpeCIfIC data for the problem, the objectlve function and the topology of the network that is the
global solution.

Example6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

(M2.5S!+3.0S,+1.5S; (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is ¢¢ = 54.25 and an upper bound of $ =55.5 is obtained by

“solving the nonconvex problem. A partition of the feasible region is performed using the
** comiposition of component D in the bottom stream of separator 1. The first:subproblem (x £

0.166) yields a lower bound of » = 55.45 and the second subproblem (x < 0.166) has a solution

of 44=55.8. Thelatter isgreater thanthe upper bound and theformer islessthan 1% ofthe

global solution (see Frg 17).

Exampie7
This example is taken from Floudas (1987). The data for this problem is given in Table 3 and

the linear.objective function is given by:. .

¢=258, +30S2+12% . (52)

The.initial lower bound is 4y = 32.7 and it prowd%afeasrble solutlon to the nonconvex
problem. In this form the global solution (see Fig. 18Ms obtained in one iteration. It is
interesting to see that this solution also provides a better objective function for the concave
obj ective function used by Floudas (1987) (4 = 10.65 versus0 = 13.68 which is28% higher)

Elxample8
Thrs four component problern IS taken from Wehe and Westerberg (1987) The data for the
products isgiven in Table 4 and the objectlve functlon has the followmg form

$55.0+0.5Si +4.0+0.32+6.0+0.7S; B CL)

The first relaxed subproblem has a-solution of ¢ =26,76_and it is infeasible for the
nonconvex problem. A nonconvex problem is solved using CONOPT with the L P solution as the

“initial point. An upper bound of 0 « 26.79.is obtained corresponding to the global solution (see

Fig. 19) withina0.1%. "

Example9
This example corresponds to example 1 from Wehe and Westerberg (1987) Table 5 prowdes
the data for the product flowsand the objective function is given by:

$=50+055+9.0+1.082+3.0+045+60+06S, G

A initial lower bound of 4y = 85.16 is obtained and the upper ‘bound Is0 » 85-65. The
difference is0.5% and the global solution (see Fig. 20) is obtained in one iteration.
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Example 10 ' _ : _
This problem is taken from Flotidas (1987) and the data is given in Table 6. The objective
function is given by,

3>*12Si+3.0Sj+25S,+ 15S, (55)

Thesrg_éffn lower bound is<t* = 156.56 and the upper bound is¢ = 179.08. After 5 nodes
the global solution of 0 m 159.48 (see Fig. 21) is obtained.

Examplell
Hie data for this 6 component problem are given in Table 7 and the objective function hasthe
following form:

**15S,+3-0Sa+2.0S3+ 1.0S,+4.0S5 . _ (56)

The initial lower bound is<f = 173 and the upper bound is0 » 179.11. After fivenodes
the global solution is obtained (see Fig. 22).

Example 12

Thisis a 6 component 4 products problem and the data are given in Table 8. The objective
function is:

*=508S! +3.0Sj +2.0S;+25S, + 4.0 Ss (57)

Theinitial lower bound is$ =362 and the initial upper bound is<4$ = 415.6. The global
-solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent
streams has been proposed. The basic idéa relies on a relaxed LP model that is obtained
through reformulation-linearization techniques that establish a clear relation between the
compohent flow and the composition models for mass balances. The reformulated model
combines both of these providing tighter lower bounds than other relaxations proposed in the
previouswork. Theredaxed linear modd has been embedded in a branch and bound procedure
to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of
the particular structure of sharp separation networks with single feed and mixed products.
Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model
can be obtained without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter
~ lower bound.

Twelve examples for both general process networks and for sharp separation networks
have been presented to illustrate the performance of the algorithm. As has been shown, only a
small number of nodes are commonly needed in the branch and bound search to identify the
global or e-global solution. Moreover, in many cases the initial lower bound is either the exact
solution or avery good approximation to the global solution.
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Appendix A. Reformulation-Linearization to obtain the no;nl_i'_rilear
constraintsin model M F

The nonlinear equations,in model MF that can be expressed elther as (8) or (9) can also be

generated from model MX. For this purpose take the concentration model MX and consider
equation (5), L ‘

LI o o A1)
multi ply by the valid bound constraint Xj¥ £ O . . _
xfxfmxfzp (A.2)
‘Use equation (5) for component j\ _ T :
x Kyl gk S A
Multiply by thevalid bound constraints F< = 0 and Fl >0,
FAIPN-FAF* A tA.41
that it is linearized to yield. | - o
fffJsfj'ff (A5

which is precisely equation (8) for the splitters in the individual flow model MF.

Consider again equation (5).

XK = x! (A.S)

multiply by the valid bound constraints F< >0 and F* > 0,
K 1IAL7)

FextF'=Fix'F .
that can be linearized to yidd,

fEFEN/F* A8
Define the split fraction ?to be,

=~ A9

Equation (A.8) can then be expressed as
fl = 21

which corresponds to equation (9).

(A.10)

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear
approximations in general are also redundant in the linear reformulated modd MR Consider
equation (A.10), smilarly to (15) one of its linear approximations is given by.

l]‘zf,“'l]"-i- BIEeL - BIL gkt (A.11)

If there are no particular restrictions in the splitters, then the bounds for the split
fraction variable are 0 <” < 1 and using them in (A. 11) yields.
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£ 2 L E (A.12)
The bound for the individual component flow is given by fi“ =xf" F*": alsox,“ =x‘and £ =
o |
pt, which Ieadsto?u ,

f ZﬁLFF _ {A.13)

The estimator (15) for the same conditions (F* = 0) is given by
L faxle L h - (A.14)
Since thefactor -*r is always less or éqUaI than 1, equation (A.13) is redundant. A similar
analisis can be performed for the other estimators. Only when more specific bounds over the

-split fractions or the individual component flows are known, will these additional estimators be
non redundant.
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Figure 5. Network and branch and bound search for example 1
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Abstract

This paper deds with the globd optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides avdid lower bound to the globa optimum. This formulation is then
used within a spatial branch and bound search. The application of this method is considered
in detail for sharp separation systems with single feed and mixed products. Numerica results

are presented on twdve test problems to show that only fev nodes are commonly required in
the branch and bound search.




_Int_roduction _

A common source of-noneonvexities in the synthesis and design of processes, as well as in
flowsheet optimization, are-the-material flow equations for multiccmponent streams. These
nonconvex equations involve bilinear terms and they arise in the mass balance equationswhen
the compositions are unknown. There are different equivalent formulations for this type of
networks. One alte_rhati&é’is to formulate the mass balance equations in terms of component
concmtratibns. In thisform bilineér' terms are present in the equation* for the mixer units
and the different process un-i'ts'(e.g. sharp '%paratdrs).' A second altérnative is to express the
mass balancesin terms of flowsof individual components. This option hasthe advantage:that
it involves a "n_au__mr number of nonlinear eguations. However, the rmodélling-ofthe splitter
units involves bilinear terms that arise due to the condition-that the proportions of flows
between comp_onmfs have to be the same for the differerit streams.

The difficulty with the nonconvexities noted. above is that they may give rise to
optimization problems Involving several local optima and numerical singularities that may
produce failure in the NLP algorithms. Recently there have been important efforts in the area
of gI'obaI _optimizatio'n. Examples of algorithms are the ones proposed by McCormick (1976).

Floudas and Viswewaran (1990)'and Sherali and Alameddine (1992) which can be used to solve
bilinear programming problems like the ones that arise in networks with multicomponent
streams. For arecent review in the area of bilinear programming see Al-K hayyal (1992). -

Asfor previous work-in the design and synthesis of multicomponent process networks
Mahalec-and Matard (1977) and Nath (1977).developed evolutionary techniques that are based
- on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of
separation networks with mixed products in which only sharp.separators are considered. A
super structure of the process network was proposed and modelled in terms of concentrations.
The resulting model is nonconvex and solved with a standard NLP algorithm with no guarantee
of global optimality. Floudas and Aggarwal (1990) solved small pooling and blending problems
and sharp separation networks problems using a strategy based on Bender s decomposition.. In

. this approach only convex subproblems are solved but there is no guarantee of obtaining the

global optimum.  Kocis and Grossmann (1989) modelled process networks with
multicomponent streams in terms of the individual component flows. They included a set of
_.bounding constraints with binaxy variables to approximate the nonconvexities that are present
in splitterswith multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp
~separation networ ks with mixed products. They proposed a search procedurethat involvesthe




enumer ation of the different separation sequences. The nonconvex equations are dropped and
constraints that are valid for each particular sequence with a set of bounds over the'key

“componentsare included to obtain tighter .UP relaxations for.each configuration. However, the
number of sequences'to be examined grows rapidly: and there is.no guarantee of global
optimality.

In. some partlcular cases the nonconvexities in the mass balances can be avoided
through the introduction of binary variables. One of these cases is When srngle choice splltters
are present in the flowsheet .(Koors_and Grossmann, 1989). Here, itis posableto have a mixed
integer linear formulation for the mass balance equations in terms of the individual oomponer]t
- flows.. Another restricted case for which some nonconveX|t|es can be reformulated is when
mixing within the network is.only allowed for streams of the same concentration. In this form,
larger network superestructures must be proposed and the concentratlons of the streams are
known beforehand. Integer variables are introduced to model the existence of the different
streams (e.g. the mixed integer linear formulation for sharp separation networks by Floudas
and Anastasiadis, 1988).

- The objective of this paper is to present an eff|C|ent global optlmlzatlon method that

exploits the particular structure that is present in process networks with multlcomponent
- streams (e.g. pooling and blending systems, sharp separatron networks). First a relation is
established between formulations based on concentrations and individual flows. Thls is done
following the Reformulation-Linearization technique proposed by Sherall and Alameddine
(1992).. As will be shown, a linear relaxation Is obtained that is in the space of the

concentrations and individual flows which can be used in a branch -and bound search isto find
the global optimum. Application to the optimal design of sharp separation systemswith single
feed and mixed products isconsidered In detail. Different preprocessing techniques that allow
tightening of the relaxation problem are presented. The performance of the algorithm is

* reported on a total of twelve problems. '

Modeling with concentrations and indi_\ridual_ flows -

Consider a process network that consists of splitters, mixers and process units that are
interconnected with multicomponent streams (see Fig. 1). ‘The process iinits that are
con_sidered in this paper are units in which the output flows of the components can be
expressed as a linear relation of the inlet flows (e.g. sharp separators, reactor with*known
conversion). It is possible to formulate the mathematical model of the process network in
terms of the concentrations of the streams. X_jk. Another possibility is to model the network

.
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using flows of individual components. The former has the advantages that it prowdes a
convenient-framework for the evaluation of therxnodynamm propertles, and |n ‘many casés
bounds can be expressed in a more natural form. A major disadvantage is that many
nonconvex terms (bilinear) are involved in the mass balances for the components. "The
individual component flows formulation is often chosen since it givesrise to a larger number of
linear equations and the only nonconvexities are involved in the modelling of the splitters. In
these untisit is necessary to enforce that the components maintain the same concentration in
each of the streams leaving the splitter. These constraints can be expressed as relations
between the different components (Wehe and Westerberg, 1987). One deficiency .of this
representation is that since many flows can take values-of zero, singularities may arise with
which conventional nonlinear programming methods may have difficulties to converge.
- Another alternative.isto introduce additional variables that represent split fractions (Kocis and
Grossmann. 1989).. This involves a larger number of constraints but tends to yield a
formulation that numerically is better behaved. ‘

Following axe the'équations that apply to the mixers, splitters and units using the two
alter native representations.

Mixer
A mixer k'consists of a set of Inlet streams, My, and an outlet stream K (see Fig.2).

a)Concentrations

The total mass balance for a mixer k is given by:

Fr« X.F : D
t«Mfc

where F! isthe total flow in stream i. The mass balance for each component j is given by the
nonlinear equations. '

N i i
FAxfc thMkFXJ» for allj ()

wherexf isthe concentration of component j in the stream |

b)I ndividual Jlows

Here it is only nec&sary to erte a mass balance for each component j, given by the
linear equations:

Ul “%kfj - " for all j ‘ 3
wherefj istheflow of componentj In stream i.
=plitter |

A splitter k hasan inlet stream k and a set of outlet streams S, (see Fig. 3).




| qI[ConcentraU ons
The equations for a splltter in terms of the concentratlons are glven by the following
Ilnear equations

I'P=P* ' )
1€sfic - ) ) ’

TS . for alli 6 Sca$sdj (5

S | ©©

J

“b) Individual_flows :
- Themass balance for each componentj isgiven by

117afA | foralj (@
t€Sfc

Here, it is also necessary to enforce the condition that the'streams leaving the splitter
have the same proportions in flow for each component. These relations between components,
which are nonlinear, can be expressed in terms of the inlet stream k and a given component j'

i sfi 0 for all i € l,andj *j' (8)

A different approach consists of introducing as additional variables the split ratios §|
that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear
equations are given by

ff«ofj ' ~for alii € I andj ©9)
withO£?£l.

Process units : - o

In this paper it will be assumed that the outlet streams, i € Oy, in the process unitscan
be expressed as linear relations of the inlet streams, i e I (see Fig. 4). Thisis for instance the
case of sharp split separators, separations in which the recovery level is known, or r_éactors
that have a fixed conversion. |

a) Concentrations coom
The overall mass balance for process unit k is given by,

| Pa IP (10
1€1 €0
Themassbalance for each componentj |sg|ven by the nonllnear equations;
3 By Fxf =Px,’ for all ie Oxandj  (11)
fely

where PJr is a constant for process unit k that gives the distribution of componentj in the
stream i e O, coming from streamsi' e I;. For aseparator unit it |sreqU|red tllat 2 vx =1

and £ P,r“‘ a 1. A sharp split separator is one for which Il = 1 and 10yl —.2 (top and

i"€ Iy

bottom streams) and for all the componentstheéonstant p,-r‘k areeither O-or 1.




“‘b) Individual flows

Only themas balancefor emh component IS neceleary and it isgiven by:
gl Byff forallie Okandj (12

I*€ Ik

A model interms of individual flows MF consists of the linear equations (3), (7) and (12)
plus the nonlinear equations (8) or (9). The model in terms of the concentrations, MX, includes
the linear equations (1), (4), (5), (6) and (10) plusthe nonlinear equat’i_on;s__(Z)'and"(ll). '

Reformulation and Linearization

In order to avoid the direct use of the nonconvex models MX and MF, there is arelation that

can be established. between them using the reformulation and linearization technique for

bilinear_programming models proposed by Sherali and All'ameddi'ne (1992). This techniqué ¢an

be applied to the model MX. First, conS|der the bounds over the varlables present inthe
- bilinear terms (total flow, F! and concentrations x,)

FLSPSFY - |  (13)
xftsxisxe | - 14

Using the bounds in (13), (14) the following constraints can be generated for the bilinear
termsin (2) and (11), B

Fixl2Filx)+xLFl-Fily't (15)
PN Pe 1 M tu i Fruu (16)
FHojs £ F* %, + Xt B - FrU Xt (17)
Fix<Filyl+xuP-Ftly - (18)

In fact, McConnick (1976) has shown that the constraintsin (15)-(18) correspond to the
convex and concave envel opes of the bilinear terms over the given bounds.. The formulation is
linearized by the definition of the following variables:

fl=Px;' : (19)

Tile resulting model which involves equations UK -(3). (4). (5), (6). (10). (12) and the
constraints in (15M18) is a linear relaxation of the original nonconvexconcentration model,
MX, in which the nonlinear equations (2) and (11) have been replaced by the linear equations
(3 and (12) from the individual flow model. MF. It is possible to generate additional linear
constraints that are redundant to the origina nonlinear model, MX, but that can be
nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sherali et




al*. 1992). In particular, consider equation (7) that is the linear component. mass balance:for
the splitters in model MF. "This linear equation is not present-in the linearrelaxation of the
concentration model. MX. Take equation (4) and multiply by the valid bound constraint x,* £0

to get
L B PeeE S ™
Using equation (5) ylelds ) :
’ £;f**| >)|E*Ak . (21) .
L |
that can belinearized to. KL :
, 'Z&tf,‘ =f o (22)

_yiel'di'ng equation (7). Hence, the linear equatlon for the splitter isvalid and'it isincluded. The
nonlinear equations (8) or (9) can alsobe generated in‘a similar fashion but theif linearizations
are in general redundant (see Appendix A) They are only useful when the formulation &f the
problem provides non-trivial bounds over certain c'o"mponents in the outlet streams of a
splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that relate the total flow and the individual flows of a stream can
be generated for the splitters. Taking equation (6) and multiply by F* yields. )

P Sxp =K S | @
1

Using the constraintsx,! = ¥ in equation (23) and linearizing with fj'« F* x* yields,

P = 5ff | - (24)
J . .

Based on the above it is possible to-obtain a reformulated model MR that involves
concentrations, total flows and component flows, and which bounds,the solution of the original
problem. The following equations are given for-model MR: " .

a) Objective function. <= which is expressed in terms of individual or total flows,

b) Mixer equations, which are expressed in terms.of the total and individual component flows.

oF*« £ F* o o @
O tEMy
fe= If/ _ forallj . NN
icMfe , . .
6
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c) Splitter equations, that are expressed in terms of the individual component flows and the

froncditi® tnff of the streams
Y, p-pk o @
t€S,
Xj =Xk for alii e 3*'andJ e
Xxd<=i : | ®
EaJf «ff for ail 0
d) Processunitsequations, that aregiven in termsof the total and individual gomp_orienf flows
Fl= F (10)
laly ie
fike I pl'fl foraUie Oxandj (12
l'c-ik.

e) Rdation between the total flow and the individual component flows _
Fl=£ f/ for all streams (24)

J

f) Linear estimators, relate the individual component flows with the total flow and
concentrations. |

{,i &piqui-ﬂa*l* pi.piLjIjiL _ (15)" -

fi AEIAAAAUEI_ElUATY for alii e S (16)_
f <EAl4 AlLpi_plualL i sk € splitters ~~ fIT)
' AFAXJ + XAF-F'-XJ*" foralljel R (18)

f) Boundson flowsand concentrations
FLgFI<Pin S (13 .
leLlelsxllu (14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)
IoOser'approximatiOns'ofthe nonlinear ter mswere used. In both cases, the nonconvex problem
(MF) wasreaxed to a linear model by dropping the nonlinear equations (8) or (9).- Equations
that approximate the difference relation between the components were considered (Kods and
Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter
between theflowrateof the components and required the introduction of binaiy variables.




Outline of global opttmization method

- Modd MR can be applied to predict lower bounds to the global optimum in the optimization of

pooling and blending problems and in the synthesis of separation systems. The reason is that
model MR provides a valid relaxation of the original feasible region since the nonlinear
equations (2) and (11) in modd MX are not considered, and the valid linear equations (3), (7),
(12) and (15)-(18) are included. The proposed global optimization algorithm relies on the
solution of the relaxed problem MR within a spatial branch and bound enumeration. The

outline of the algorithm is as follows (for a more detailed description of step 4 see Quesadaand -
Grossmann (1993))

0. Preprocessing (optional)
Determine bounds on the variables involved in the nonconvex terms, that istotal flows,

F, and concentrations, x{. Apply any additional preprocessing specific to the structure of the
problem in order to further bound or fIxvariables.

1. Lower Bound

Solve model MR over a given subregion (initial subregion is the complete feasu ble region)
minimizing aconvex objectlve function $. 1f < islinear the model Is an LP. :

2. Upper Bound

Any feasible solution to the nonlinear model prowdes an upper bound. Heuristic
techniques can be employed to obtain good feasible solutions or the original problem, MF. can
be solved using the solution of model MR as agood initia point. If the solution of problem MR
isfeasible it provides an upper bound.

3.Convergence
If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper
bound. '

4.BranchandBound

Partitionithe remaining subreglons into a set of d|5_|0| nt subprobl ems. Repeat steps 1-3
for each of the new subregions.

Remarks |

The preprocessing step plays an important role in the above algorithm. - It is during this step
that initial bounds for the variables involved in nonconvex terms are obtained. The quality of
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these bounds affects the tigthness of the lower bound since they are part of the estimator
equations (15)418). Additionally, these bounds affect the performance of the algorithm because
they define the search space over which the-branch and bound_ procedure may have to be
conducted.

In some cases, -as described later in this papier, it is possible to exploit the particular
structure of the process network and generate boundsfor the.variables without having to solve
any subproblems. Furthermore, during this preprocessing step additional constraints can be
generated for predicting a tighter lower bound:- of the global optimum can be obtained.

Some of the linear mass balances and.the estimator equations are redundant in the
nolinear formulations, MF and MX. These equations become nonredundant in the
reformulated mode, MR. and for that reason it is important to write a.complete formulation of
the network. However, thismode can present some redundancies that can be easily identified
and diminated-to reduce the size of themodel. Thisisthe case for the concentration variables
used in the splitters. Modd MR uses different sets of concentrationsvariables for theinlet and
~ outlet variables of a split unit. --In practice, it isonly necessary to define the concentration of
the component in the splitter and use the same variables for all the splitter streams. Also,
some redundancies can occur with the total flow variables. These ones are necessary for the
streams in the splitters but they might be redundant and diminated in the other untis if they
do not appear in other part of the mode or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it
corresponds to the global optimal solution. When the solution to the model MR I's not feasible
it isnecessary to follow a blanch and bound procedure to search for the global optimum. This
- procedurerequires avalid upper bound on the global optimum. This can be generated through
heuristics or by solving directly the nonconvex model. For this purpose, the process network
mode is formulated in terms of the individual component flows and the nonconvex equations
for the splitters are included. Equation (9) was also used in this work to modd the plitters
due to it is better numerical behavior. The solution to the model MR was used for the good
initial point. In many instances, it was not possible to solve these nonlinear problems with
MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is generated. Of the set of open
nodes, these are the nodes that have a lower bound that is esrhaller than the_cUrrent upper
bound, the node with the smaller upper bound is selected to branch on. The splitter unitsare
the units that are approximated, and of these, the splitter that has the largest difference




between its approximated and actual individual component flows is. selected. The
concentrations are used as the branching variables since.a change in them affectstheinlet and
outlet streams of a splitter. The branching is done in the selected splitter over the

~ concentration of the component that has the largest difference.

Firgt, the actual concentrationsfor the individual component flaws in the LP solution () -
for the splitters are calculated by,

r,"=%;‘r for all theinlet streamsto splitter  (26)
Thésplitter unit m isthen selected according to the-equation.

 m= AR R Py _
m ugmc mitt ( % jg; ty-z"FH) - 27)

Equation:(27) representsthe total difference between the LP_squtioh___fpr' fhe flows after
the splitter and the actual value of these flows considering the concentrations before the
splitter. ‘Once the splitter has been selected, the component in that splltter that hasthelargest

- difference. J\ is selected by,

J--aigma” ( JL;Lf/- 2P F* 11 | ()

The following branching constraints are then used;
X Szmand X2z . | (29) -

To improve thé upper bound it might be necessary to solve additional nonconvex
problems. These can be solved after a given number of nodés using the solution ofithe node
with the smallest upper bound as the initial point. In thiswork:if there was no significant

| c'hange‘in'the'lower bound 6f the new nodes with respect to the lower bound of the parent node

(< 1%) anew nonconvex problem was solved.

Examplel - -

Consder the following . poollng and blending problem by Harveley (1978). Two streams that
have components A and B are mixed in ainitial mixer a then go through a splitter to obtain two
streams than can be mixed with an additional stream (see Fig.-5a). Two different products can
be obatined and there are constraints on the concentration of component A in these products.
The objective function consists of niimizing the cost that is glven by the total 'flow of the
streams times the cost coefficients, ¢, given in Fig. 5.
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This problem has two local solutions. One has an objective function 0 = -100 and
- consists of only producing product 2. The other local solution, that corresponds to the global
optimum, has an objective of + « -400 and hereonly product 1 is produced.

Modd MR isformulated for this problem and the initial lower bound isQ_. = -500. The
nonlinear model. MF, is solved using the solution of model MR asthe initial point and an upper
bound of $ s -400 is obtained. Sincethereisagap between the bounds of the global solution a
partition is performed. Thereisonly one splitter that needs to be approximated and since there
axe only two componentsit is irrdevant which one is selected since the composition bounds are
rdated (eg. xg- = 1 * x*"). The actual value of the composition of A in the solution of model MR
is used as the branching point (x* = 0.0166) to generate two new subproblexns. The first
subpraoblecm (x4 £ 0.0166) has a lower bound of 4y = -100 and the second shbproblem (x* £
0.0166) has a solution of fa.= -400 (see Fig. Sb). Both of these bounds are greater or equal
than the upper bound, therefore the global solution has been found (x = 0.01).

Example 2

- The next example is a separation problem taken from Kocis and Grossmann (1987). The
original problem has binary variables in the formulation and they have been fixed to 1 for this
 example (see Fig. 6). ‘

*

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream
‘has 80% of the inlet flow of compohent B. In the column. 97.5% of the inlet flow of A goesto
the top whereas 95% of the inlet flow of B goesto the bottom stream. Hietotal flow to the flash
unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of
each of the two feed streams hasto be lessthan 25. The objectivefunétion isgiven by,

$ =52+ 10F! +8F,+F,+4F;-35Pj"-30P,° (30)

The initial lower bound for this problem is O, = -513.22 and it is infeasible for the
original NLP model. A nonconvex problem is solved using CONOPT with the solution of model
MR as the initial point obtaining an upper bound of ¢ = -511.87 and the relative gap isonly
0.3%. Again only one splitter is present in the network and a partition can be performed using
the concentration of component A in this splitter. The lower bounds for the new two
subproblexns are fa = -511.87 (X £ 0.5121) and <t = -511.80 (X5 > 0.5121). Both solutionsare
greater or equal than the upper bound and the global solution has been obtained. In the global
solution Fi =8 and F, = 25, and 11% of the inlet flow lo the splitter is directed to the flash.
76% to the column and therest bypassed to P,.
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Example3 - :

TIUs example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

>«4Si+ 1552 +4S3 : @D

The initial lower bound is 4y = 138.18 and the nonconvex problem MP is solved
obtaining a solution of $ = 138.7. The gap between these bounds is less than 0.4 %. The
globa optimum for thistolerance is shown in Fig. 8. '

Sharp separation networks

In order to illustrate the application of the above algorithm to a specialized case where the
structure can be further exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
sp_ecifiéd multicomponent product streams. The components are-ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9)). The superestructure consist of N-I separators. Separator i performs the
task of removing compénent number 1 to number! at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-|
streams, F, that go to the separators and K streams, a,. that bypass the network to go to the
products. Each stream F is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i,

The outlet streams of separator i are the top, T(, and the bottom, B.. These streams, T,
and B,. are each split into streams, PT{ and PB” respectively, that go to the K products and
into streams, KIV' and.RBf. that are redirected to the other separators. The top stream of
separator i, Ty can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaller flows  KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, B,, can be redirected only to separators i+1 to N-I since it can only
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contain components that are separated by these sharp separators. RB/ is the redirected flow
_from the bottom stream of separator i to separator i\

M odel

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
~ and total flowshas the falowing form:

oL, Nl .
min *="ZcS| (321
. | ] L
N-I K
st. reeole» 1 *i * m®k : 10Z.23
ti k*i
L SF|L, foraliandj (323
11 N-
Si»F|+ £RB'+ X Kiy forau i (329
t'«l I'«rel
11 LN :
Si xgq = flj +#8 RBf' x| + vdisKT,' xtrj  for all i and] (32.5)
Sis” + Bi S foralii (32.61
Ty xty = S, x5y for all i and ord(j) i (32.7)
Xty=0 for aU i and ord(j) > i (32.8)
B, xby = S; x3, ' for all i and ord() > i (32.9)
xby=0 for all i and ordQ) ~ i (32.10)
t-i K wl
Tim ERTi' + £FTX foral i . (32.11)
1*1 k«l
N-I K
Bi s rERBA" +BPB* for all i (32.12)
N N : L
Ph= TPT*+ TPI3n + 00 "~ Toratk $(3213)
N N . ' ' :
Py = £PT *xtg + £PB,“xbg+ acz ~ forall kand] (32.14) .
i*l i»l
1 .
azgt.,-—- 1 for alii (32.15)
N
Gkl = 1 for all i (32.16)
N
I xs,j=I for alii (32.17)
ovdijj=t

S, Ty B,. Fi. RT/. RBt*. PT{ PBI. ¢*. t xsj, Xty. xby 2 0
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The parameters Feed, zj, PX and py; répresent the total feed; composition of the feed,
total flow of product k and component flow of component j in product k, respectively. - The
variablesxsg, xty and xbg are the concentr ations of component j in the inlet stream to separator
1 top of separator 1 and bottom of separ ator i, respectively.

The objective function (32 1) is a linear function of the inlet flow to the separators
Equation (32.2) is the total mass balance in the inlet splltter and equatlon (32 3) is the
component mass balance. Equations (32.4) and (32.5) are the total and component mass
balances for the mixer i before the separator L The material balances for separator i are given
by equations (32.6)* that isthe total mass balance for the separator; equations--(32.7) and (32.8)
that are the component balances for the top stream and indicate that nothing from components
number 1+1 to N-l isin thetop of the separator, and equations (32.9) and (32.10) that are the
component mass balances for the bottom streams. Equations (32.11) and (32.12) are the
overall mass balances for the splitters of the top and bottom streams alter separator 1. The
equations that state that the concentrations of the outlet streams should be the same that the
inlet stream in-a splitter have been already substituted. Finally, equations (32.13) and (32.14)
arethe overall and component mass balances for the mixer for product k.

Modd (32) correspondsto a formulation.of the type of mode M X where the distribution
coefficients are known and restricted to 0 or 1. Some smplifications have been made to avoid
including many irrelevant variables (e.g. not to define concentrations for the streams that go
the top i to product k). Although, some of the linear constraints in this formulation are
redundant, they can become nonredundant in the linear relaxation as will be shown in
Example 4.

Equations (32.5). (32.7). (32.9) and (32.14) involve nonconvex terms. This model can be
reformulated as in model MR by introducing individual component flows and the linear
equations (15M 18) and (7) according to the approach illustrated earlier to obtain a modd in the
form of model MR The resulting reformulated model is as follows,

min¢:"§'c<8i | | (33.1)
st Feed :N|-||: 1+ |K<><k . _ (332
i=Fg M' for all i andj (33.3)
S=fi+ZT RB.-t+p§;Frf' S - for alii (33.4)
=i+ Z by + 1> for all i andj (335)
el
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Sr-TV+'B, - for alii - : (33.6)

t, = gj forall i andord(jJ£ i - (33.7)
t*0 for all i and ord(j) > i (33.8)
b,jssSg : for all i and ord(j) > i (33.9)
tj=0 ' for all i and ordfl) £i (33.10)
’ t= K .
T, = sW + IPT, for all i (33.11)
191 k«|
N-I
Bim £RB, "+ £PB k for all i (33.12)
p* = Tl-—rt " +'£PB| +ak - for all k : (33.13)
>M riti : L
Pki * ._Sljtt," + XpbN* ok z, for all k andj (33.14)
= ! i=]
*1 K )
te= Z "/ + Zptij* foraUiandj (33.15)
i'»l k «l
N-I K o
bg = Zrbij* + £pb«* for all i andj (33.16)
I'*t+] - k>l
Ext.. =1 for alii ) (33.17)
| Exbu-l | forall i (33.18)
= 5 for alii 33.19)
T l:all | ( )
B,s Ib« for alii . (3320
udlll-i
PTi*= _pt<*k for alii and k (33.21)
0|><|(])>>| .
= Ip_’b _ for alii and k - (33.22)
RT/ = ]DV _ foralliandif <i (33.23)
ord(l) |
RBf = I|l rb/ o foralliandr > i (33.24)

Equations (15-18) for ty, rtyy' and pty* in terms of xty
-andthe total flow of its respective stream.
- Equations (15-18) for bq, rbg* and pbe in tennso{xl:,,
and the total flow of its respective stream.

S Tt Bt. Fa. KTf, RBY, PTX. PB". ac. fj. xs,jt Xty xbjj ~ 0

Sy, ty. Dy Dty*. phyj . rt,/. ly* 20




It is not nécessary to include equations (15)-(18) for the inlet component flows to the
separator, . since the variables xsy only appear in these equations. Also, the component
flows, g only appear in mixersand sharp separators unitswhich can be exactly represented in
terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-
(33,16) that are the component mass balances for the splitters of top and bottom streams have
been included accordingly to the reformulation previoudy presented. Equations (33.19M 33.24)
relate the total flow and the individual component flows for the splitter streams.

Preprocessing

The proposed Superstructure (Fig. 9) allows to bypass certain amount of the feed to the product
k. Ok, without having to go through the separation network. The amount of the product k that
is not bypassed has to be processed I'n the separation network and it will be denoted as the
'residual product*. Hence, the total 'residual product k' is given by (P* - a) and has the
component flows given by (p* - d'Z )(seeFig. 10).

The global optimal solution of model (32) is a network in which all the ‘residual
productsl,ha\/e at least one component with a zero flow. The reason that it is not optimal to
separate a stream in the network and later to remix it. The same degree of separation can be
achieved using a bypass that does not incur any cost in the objective function.

Consder the second separator in the solution obtained by Floudas (1987) to his second
example (see Fig. 11). For this subnetwork of the complete structure the"upper 'residual
product’ hascomponents B and C present. The components are being separated and remixed
again. The same outlet flows can be obtained with a smaller input flow to the separator asit is
shown in Fig. 11. Notethat both ‘resdual products have componentswith zero flow.

It should be clear that if there was not a component with zero flow in the 'residual
product’, thenthereiis part of this stream that could have been obtained by just bypassing the
network. Thisin turn does not incur in any cost, whereas going"'through t‘h'e network has a
positive cost. The above condition gives a lower bound for the bypass to each product. This
also correspondsto the largest amount that can be bypassed sinceall thisflowsin the ‘resdual
flow® have to be positive. In this form the bypass can be precalculated without affecting the
global optimality of the solution. '

The bypassto product k is given by the maximum amount that can be sent to product k
without having a negativeflow; that is.

a* =minj t"4 (34)

' 1
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- Where Zjis the feed composition and py; -is.the flow of componentj in product k. The
-component flewsfor resdugl product k, y# are given by.

=Dy - Ok | . . | (3s)
Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the flow of the key
componentsin separator i. These bounds are based on the fact that separator i isthe only unit
that can perform the task of separating component number i from component nutaber i+1.
They are reduhdant for the nonlinear formulation (32) but they are relevant for the linear
relaxation in (33). To calculatethem itis nece&laryto determine in each product what isthe
differ ence between the two key components of separator 1 with respect to the concentrations.in
the feed. The lower bounds in separator i* for the flow of the key components in the top
(component JI) and bottom (component j2) streams are given by:

thi* | I{T\Mi - 7ji nitowi;, ) for all i (36)
bw2 I (g - 2 ity o () foralli (3

wherey™ isgiven by (35). It isimpartant.to include both bounds in the relax mode (33) since
thereisno guarantee that the inlet flow to separator i hasthe same prdpoftion between the key
components as the feed. It is not known in which part of the sequence separator 1 will be
placed, and it can be after a splitter that is not being approximated correctly.

The bounds in (36) and (37) can be extended to separation of components that are not
adjacent in the feed. Consder-component number i and component number i+3. There are
three separators that can perform this task, separatorsi. i+1 and i+2. Cuts of the following
form can be obtained,

K
0+t t+ teai Z | {TKE - Z, miaonHH o *5 12F1) forali (39)
K y

X
bey + Diaz g + Diazi zél{‘huoa = Zyo3 MR yrei(jim or i +3 Ejl;'j} -~ forali (39

Equations as the ones in (38) and (39) can be redundant compared to equati.ons (36)
and (37) and it is possible to detect this before solving the problem. |

Relativeflowrate constraints
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These constraints aré used when the relation between the flowrates of two components
isknown. In particular, consider component A in the last column of the network ((we Fig. 12).
None of the redirected streams contains component A. Therefore, the relative flowrate of
component A with respect to the other components in the top stream hasto be smaller than in
the feed. This relation should remain valid after the top stream is split to the products and
redirected flows. -

.Inthe separator pr__evioust(_)'the last bne, N-2; all the streams do not have component A
except the one coming from thetop .of the last column. For this’_on‘é it is\al'__ready known that
the relative flow of component. A with r@mmﬁ to the other comp'onents_istsmaller than in the

.feed. - Thistype of-analysis can be done for corhpbnent A and cOmenent N in all the columns
yielding th$ following linear constraintsfd the splitters.

for alii and k

ZAPYij*-ZjPt«A O forj * Aandord(j)<i (40)

zypb,j* - z, pr*a“ £0 ~ forord() * N andord() >i  (41)
foralliandi'>i :

ZArt]'=ZjrtiA%n0 forj x Aandordyy a x wW2)
for alii and f<i

Zy byl - 2, thy' 2 O -7 forord(J)* Wandord(j)>i -~ 143)
- Boundson concentrationsand total flows . -

The approXimations '(15-18) réqUire bounds for the total flows and component
concentrations-in the splittefs. The lower bound. for the total flow of the top and bottom
streams is given by the lower bound of the key components obtained in equations (36) and (37).
For the outlet streams of the splittters, that are the redirected streams and the streamsthat go
to the products, the lower bound is zero. The upper bound for the total flow of the top and
bottom streams is given by the feed to the network of the components that can be present in
each stream .that is, | -

t
TY= Z(Feed-Xak)z, - for ail i ‘ (44)
ard(l=1 ‘K B :
N
- Bl«= " ItFeed-10fcJz, forallj 45
or{fimie] k

The upper bound for the streams after the splitter are given by.
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RTf " =T - _— forailiandi' <i (46)

RB.‘“=B;“ - I foraliandi'>i - - (47)
PR 2 _.g.-{"’ B foralliandk : ‘(48)
PB = ..?:.“? : for alii and k (49)

The lower bounidsfor the concentrations are zero except for the-key componentsin the
separator for which the lowér bounds are given by the lower bound of its flow-divided by the
upper bound of the total flow of that stream. The upper bounds in the concentrationsare given
by one minus the lower bounds of the other components. '

The solution of the linear programming‘mode (33) provides a lower bound to the global
optimum since thismode is a valid relaxation of the nonconvex model (32).  This lower bound
" isobtained by solving the LP model for the ‘residual products' in 135) with the addition of.the
valid constraints (36)-(43).

The upper bounds are generated solving mode} (32).in terms of the individual flows for
the 'residual-products. When additional noncanvex problems are solved to improve the current
upper bound it can happen that very similar initial point are generated. In thiscase, a new
nonconvex NLP is solved in which bounds over the total inlet flows to the separators (S] are
included. For this purpose the values of these variablesin the LP solution (§*) areused such
that the current incumbent solution isno longer feasible.

Exampled

Consider the 3 component example proposed by Floudas and Agganval (1990). An equimolar
- feed has to be separated into two products as show in Fig. 13. The objective function is given
by '

4+ =0.2395+0.00432 S, +0.7584 + 0.01517 &* (50)

- The bypass to products 1 and 2 can be calculated according to equation (34) and the
'residual product’ component flows are obtained through equatlon (35) (see F|g 14). Thetotal
bypass to product 1 isa, = 90 and the bypass to product 2 is ctz = 190 and the feed has a
concentration of zx = 1/3, zQ = 1/3and Zc = 1/3. In thisform the 'residual product' 1 isYIA =
0, YiB = 20 and y,. = 0 and the residual product’ 2 is Y, A =20, Yz = 0 and Y = 20.
Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35)-(36). The key components in separator 1 are component-A in-the top and
itsflow has to beat least 20 and component B in the bottom has to have at least a flow of 20.
In the top stream of the second separator at least 20 units of component B have to be
separated from 20 units of component C:in the bottom stream. It is important to note that
after preprocessing the network several suboptimal solutions have been cut off. One of these
suboptimal solutions for this particular data is a parallel configuration of both separators
(there are situations in which a parallel configuration can correspond to the global solution as
will be shown in example.5). .In this example the direct or indirect sequence have a lower
objective function. . Both of these configurations are local soluti'ons with an objective function
value of 4 » 1.8639 for the direct sequence and 4 = 2.081 for the |nd|rect one In some
instances, MINOS 5.2 had problems conver ging even in this small example. '

The LP (33) isformulated for this problem, giving a lower bound of (* = 1.8639. The

. approximations are exact and therefore this solution is a feasible solution of mode! (32) proving

~that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.

The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted
that if the linear mass balances for the mixer for product 2 were not considered since they are
redundant for the nonlinear formulation, a lower bound in the relaxed modd of <3 = 1.12 is
obtained, thisshowsthat it isrelevant to include all the mass balancesin the linear modd in
order to tighten the lower bound.

- Example5

In the approach proposed by Wehe and Wester berg (1987) for the case of 3 components only
the direct and indirect sequences are considered and both options can be modeled as LP
problems since no mixing is required for these separation networks. However, this example
shows that paralld configurations can be also'globally optimal and that they are not excluded
by the method proposed in this paper. To be able to consider parallel configurations or any
combination of parallel with direct or indirect sequences it is necessary to model a
superstructure in which mixing is allowed (like in the structure used in Fig. 13) Here,
nonconvexities arise in the mass balance equations after the separators.

Consider that an equimolar feed is to be separated into the two different products given
inFig. 16. The objectivefuncti'on is to minimize the sum of the total flowsinto the separators.
The same procedure that in the previous example is followed and the bypass can be

_precalculated by equation (34). The solution to the mode (32) yields <t = 12 and sinceit isa

feasible solution of modd (32) it corresponds to the global optimum (see Fig. 16). Notethat the
solutionsfor thedirect or indirect sequences have an objective function of ¢ =16.
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Branch and Bound

Ifthereisa gap between the lower and upper bound a branch and bound search is performed.

It isonly'necessary to do the.search over thevariables involved in the nhonconvex terms. The
concentrations.are used asthe branching variables since a change in them affects the |nIet and
outlet streams:of a splitter* In thisway. it is necessary to check the apprOX|mat|on for the
concentrationsin-the splitters of the top and bottom streains.of the separ ator . Equations (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound
search. )

- Results

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation
network examples 4 to 12. The number of variables is the total number of variables that are
included in the reformulated and relaxed model (33) for that example. The lower bound isthe
initial bound that fs obtained by solving model (33) over the entire feasible space. The inital
gap represents the percentage diflerence between the initial lower and upper bounds. When
there is a zero initial gap it means that the first relaxed solution is feasible in the original
problem thereby corresponding to the global solution. The column for nodes gives the total
number of subproblems that wher e solved before converging to the global solution. A reative
tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after
branching and example 12 for which a tolerance of 0.02 was used. It isimportant to note that
the initial lower bound is tight and that it corresponds to a good estimation of the global
solution. The largest differences are for example 1 with a 25% of difterence and for example 12
with a 7% diflerence. The LP time refersto the time used to solve each relaxed modd and the
NLP time isthe time used for solving a nonconvex.model. It is possible to do updates using the
previous LP solution and in this form have a more efficient implementation. The times are in
seconds and the problemswere solved on an IBM RS600/530 using GAMS 2.25 (Brooke,et al.
(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP
problems. A brief description of the example problems 6 to 12 is given below. It includes the
specific data for the problem, the objective function and the topology of the network that is the
global solution.

Example6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

$=259 +3.02+15S;’ (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is <t = 54.25 and an-upper bound of 0 ='55.5 is obtained by

' solvmg the nonconvex problem A partition of the feasible region is performed using the

compostlon of component D in the bottom stream of separator 1. The first subproblem (x £

) 166) yields a lower bound of 4L ='55.45 and the second subproblem (x< 0.166) hasa solution

of 4= 55.8. Thelatter isgreater than the upper bound iand the former isless than 1% of the
global solution (see Fig. 17). =

Exajnple7
This example istaken from Floudas (1987). The data for this problem is given in Table 3 and
the linear.objective function is glven by

4>=2.5S,+3.0S,+L2s3 = - (52).

Theinitial lower bound is <J¢ = 32.7 and it provides a feasible solution to the nonconvex
problem. In this form the global solution (see Fig. 18).is obtained in one iteration;, It is
interesting to seethat this solution also provides a better objective function for the concave
objective function used by Floudas (1987) ($ = 10.65 versus$= 13.68 which is 28% higher)

Example 8 . _
Tills four component problem is taken from Wehe and Westerberg (1987) The data for the
. productsisgiven in Table 4 and the objectlve functlon has the foIIovvmg form

$=50+05Si +4.0+0.3S2+6.0+0.7S; - - (53)

The first relaxed subproblem has-a-solution of 0. =26.76 and it is infeasible.for the

nonconvex problem. A nonconvex problem is solved using CONOPT with the LP solution as the

“initial point. An upper bound of 4> = 26.79 I sobtained corresponding to the global solution (see
- Fig. 19) withina 0.1%.

Example9
This example corresponds to example 1 from Wehe and Wasterberg (1987) Table 5 prowdes
the data for the product flowsand the objective function is given by:

$=50+05Si +9.0+ 1.0S2+3.0+0.4S;+6.0+0.6 S, (54)

A initial lower bound of € = 85.16 is obtained and the upper-bound Is$ « 85.65. The
difference is 0,5% and the global solution (see Fig. 20) isobtained in one iteration.
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Example 10 . _ _
This problem is taken from Floudas (1987) and the data is given in Table 6. The objective
function isgiven by,

4«12S +3.0S) +25S;+ 15S, (55)

The.l;l;l_];gjll lower bound is<* = 156.56 and the upper bound is< = 179.08. After 5 nodes
the global solution of $ = 159.48 (see Fig. 21) is obtained.

Examplel1l
The data for this 6 component problem are given in Table 7 and the objective function hasthe
following form:

4»1.5S +3.0S +20S3+ [0OA+4.0S5 . | (56)

The initial lower bound isO. = 173 and the upper bound is4 » 179.11. After fivenodes
the global solution is obtained (see Fig. 22).

Example 12

Thisisa 6 component 4 products problem and the data are given in Table 8. The objective
function is:

$m50S +3.0R+20S;+255,+4.0S; (57)

Theinitial lower bound is<¢ =362 and the initial upper bound is0 = 415.6. The global
solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent
streams has been proposed. The basic idea relies on a relaxed LP model that is obtained
through reformulation-linearization techniques that establish a clear relation between the
component flow and the composition models for mass balances. The reformulated model
combines both of these providing tighter lower bounds than other relaxations proposed in the
previouswork. Thereaxed linear model has been embedded in a branch and bound procedure
to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of
the particular structure of sharp separation networks with single feed and mixed products.
Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model

can be obtained’ without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter
lower bound.

Twelve examples for both general process networks and for sharp separation networks
have been preéented to illustrate the performance of the algorithm. As has been shown, only a
small number of nodes are commonly needed in the branch and bound search to identif'y the
global or e-global solution. Moreover, in many cases the initial lower bound is either the exact
solution or avery good approximation to the globa solution.
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Appendix A. Reformulation-Linearization . to obtaih_,-t_h,e‘ nor‘l!_i'rflear
constraintsin model MF

The nonlinear equations,in model MF. that can be expressed eifher as (8 or 9), Can also be
generated from model MX. For this purpose take the concentration model MX and consider
equation (5), % '

L oXe=x . A1
multiply by the valid bound constraint Xj L O o S '
xfvfm xf | (A.2)
~Use equation (5) for component A Lo
XEXF* * XtXFX . . (A3)
Multiply by thevalid bound constraints F" 20 and F= O
P SEXE = FralFxnk : - (A4
thatitlsllnearlzedtoyleld. ' S
fe €2 = gk (A.5)

which is precisely equation (8) for the splitters in the individua flow model MF.

Consider again equation (5),

X, =1 1A.6)
multiply by thevalid bound constraints F =0 and F* = 0,-

FAXFFAFR'X) FY A7)
that can be linearized to yield.

ql: F=f F* (A.8)
Define the split fraction £ to be,

? ) £ <A_9J
Equation (A.8) can then be expressed as

fjtntff (A. 10

which corresponds to equation (9).

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear
approximations in general are also redundant in the linear reformulated model MR.  Consider
equation (A. 10), smilarly to (15) one of itslinear approximations is given by.

ﬁ'ZE”'gk-i- E)igkl._ g!l.ﬁkl. {A.11}

If there are no particular restrictions in the splitters, then the bounds for the split
fractionvariableare 0 £ £ < 1 and using them in (A. 11) yields.
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gy (A.12)
The bound for the individual component flow is given by fi" = x,*" F*"; alsox, = x,"and £ -
Fo |
pE which leadsto

23t Fl__l‘-‘"il _ (A.13)
The estimator (15) for the same conditions (F*" = 0) is given by

[ axitr ; : (A.14)
: pkL -

Since thefactor -pg-'® always |ess or equal than 1. equation (A.13) is redundant. A similar
analisis can be performed for the other estimators. Only when more specific bounds over the
-gplit fractions or the individual component flows are known, will these additional estimators be
non redundant.
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Figure 5. Network and branch and bound search for example 1
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34

A R T T I e



10A
10B -
10C

6A
68
6Ct.

Figure 16. Global optimum solution of example 5.
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Figure 17. Solution of example 6.
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Table 1. Computational results

Comp. * WocL ™ Var. Lower  Initial Globa Nodes LP  NLP
- : bound gap splution fime _time !

Examplel } — = . - 29 -500 20' -400 3 005 01
Example2 § — 35 -513.22 0.3 -511.87 3 0.26 0.3
Example 3 - 113 138.18 0.4 138.7 1 034 04
Example 4 3 2 65 1.8639 0.0 1.8639 1 0.13 -.
Example 5 3. 2 65 16 0.0 16 1 0.13 ..
Example 6 4 - 2 107 -54.25 2.3 55.5 3 097 04
Example 7 4 2 107 32.7 0.0 32.7 - 1 0.17 .
Example 8 4. .3 1125 26.76 0.1 26.79 1 0.23 0.3
Example 9 5 4 281 - 8516 0.5 85.65 1 3.08 28
Example 10} 5 2 225 -~ 156.56 124 159.48. 5 259 23
Example 11} - 6. 2 350 173 3.5 179.11 5 998 8.8
Example 12 6 4 430 362 14.8 388 . 33 - 198 132

Table 2. Datafor example6. - ... .

Component A B . . - D" F-Tota |

Productl | "5 10 % 10 29

| Product 2 10 10 6, 5-¢1 31

Leed 15 20 10 15 1 60

i

Table 3. Datafor exa'rhple 7.

Component. A B g D ITloa
Product 1 - 75 100 -~ -.10 1 315
Product 2 75 10 6 [ 28.5
Eecd 15 20 10 15 | 60
Table 4. Datafor example 8.
Component A B C D Total
Product 1 2 3 T 3 9)
Product 2 1 4 1 5 11
Product 3 3 1 3 1 8
Feed 6 8 5 9 , 28
40
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Table 5. Data for ex ple9.

omponen A B C D E _Tlod]
Product 1 7 8 3 9 8 | 35
Product 2 10 3 5 5 4 27
Product 3 5 5 6 7 3 26
Product 4 10 0 6 4 9 29
{Eead 32 16 20 25 24 117
Table6, Datafor exam_p__ e 10,
Component A C D E {Tota
uct' 1 2 2.4 16 8 1 29.4
Product 2 8 5.6 4 8 9 34.6
Eeed 10 8 20 16 10 64
Table 7. Datafor example 11. ~
omponen A B C D E - F T otal
roauct I 3 yJ 16 8 4 10 43
Product 2 8 10 8 8 6 5 | 4%
Eeed 11 12 24 16 10 15 88"
Table 8. Datafor example 12. .
| Component A B C D E__ F | lotd]
Product 1 3 2 6 8 4 10 33
Product 2 8 10 8 8 6 5 45
Product 3 5 4 10 3 11 4 37
Product 4 7 3 1 2 2 7 25
EFecd ' 23 19 25 21 ‘26 26 140
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Figure 10. Definition of residual pfoduct'.
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Abstract

This paper deals with the globa optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides avdid lower bound to the global optimum. Thisformulation is then
used within a spatial branch and bound search. The application of this method is consdered
in detail for sharp separation systemswith single feed and mixed products. Numerica results

are presented on twelve test problems to show that only fev nodes are commonly required in
the branch and bound search.




1 nt'roduction _

A common source of-nonconvexities in the synthesis and design of processes, as well as in
flowsheet optimization, arethe material flow-equations for multicomponcnt streams.. These
nonconvex equations involve bilinear terms and they arise in the mass balance equationswhen
the compositions are unknown. There are different equivalent formulations for this type of
networks. One alter natlve is to formuiate the mass balance equatlons in terms of component
concentr ations* In this form blllnear terms are present in tHE equationsfor the mixer units
and the different process units (eg sharp separators). A second alternative is to expressthe
mass balances in terms of flows of individual components. This option hasthe advantage that
it involves a smaller number of nonlinear equations. However, the modélling-of the splitter
units involves bilinear terms that arise due to the conditiont that the proportions of flows
between comp_onents have t6 be the same for the differerit streams. -

The difficulty with ‘the nonconvexities noted above is that they may give rise to
optimization problems involving several local optima and numerical singularities that may
produce failure in the NLP algorithms. Recently there have been important efforts in the area
of global optlmlzatlon Exammes of algorithms are the ones proposed by'McConnick (1976),

Floudas and Viswewaran (1990) and Sherali and Alameddine (1992) which can be used to solve
bilinear programming problems like the ones that arise in networks with multicomponent
streams. For a recent review in the area of bilinear programming see Al-K hayyal (1992). -

Asfor previous work:in the design and synthesis of multicomponent process networks
Mahalec-and Matard (1977).and Nath (1977).developed evolutionary techniques that are based
on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of
separation networks with mixed products in which only sharp, separators are considered. A
super &tructure of the process network was proposed and modelled in terms of concentrations.
The resulting mode is nonconvex and solved with a standard NLP algorithm with no guarantee
of global optimality. Floudas and Aggaiwal (1990) solved small pooling and blending problems
and sharp separation networks problems using a strategy based on Sender s decomposition. In

“this approach only convex subproblems are solved but there is no guarantee of obtaining the
global optimum. Kocis and Grossmann (1989) modelled process networks with
multicomponent streams in terms of the individual component flows. They included a set of
_bounding constraints with binary variables to approximate the nonconvexities that are present
in.splitters with multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp
.separation networ ks with mixed products. Th!ey proposed a search procedure that involvesthe




enumer ation of the different separation sequences. The nonconvex equations are dropped and
constraints that are valid for each particular sequence with a set of bounds ovéf” the key

“‘components are included to obtain tighter LP relaxations for.each configuration. However, the

number of sequences’'to be‘examined grows rapidly and there is-no guarantee of global
op'timalitv* ¥

In. some partlcular cases the nonconvexities in the mass balances can be avoided
through the,introduction of binary variables. One of these cases is when smgle choice splitters

- arepresent in the flowsheet (Kocis and Grossmann. 1989). Here itis possb_leto have a mixed

integer Zryfd formulation for the mass balance equations in terms of the individual component

- flows.. Another restricted case for which some nonconvexities can be reformulated is when

mining within the network is only allowed for streams of the same concentration. In thisform,
larger network superestructures must be proposed and the concentratlons of the streams are
known beforehand. Integer variables are introduced to model the existence of the different
streams (e.g. the mixed- integer linear formulation for .sharp. separation networks by Floudas
and Anastasiadis, 1988). - -

The objective of this paper is to present an efficient global optimization method that
exploits the particular structure that is present in process networks W|th multlcomponent

. «streams (eg. pooling and blending systems, sharp separatlon networks). First a relation is

established between formulations based on concentrations and individual flows. Thisi is done
following the Reformulation-Linearization technique proposed by Sherali and Alameddine
(1992). As will be shown, a linear relaxation Is obtained that is in the space of the
concentrations and individual flowswhich can be used in a branch and bound search isto find
the global optimum. Application to the optimal design of sharp separation systemswith single
feed and mixed productsisconsidered in detail. Different preprocessing.techniques that allow
tightening of the relaxation problem are presented. The performance of the algorithm is

~ reported on-a total of twelve problems.

Modeling with concentrations and_ indi\)idual_ flows

Consider a process network that consists of splitters, mixers and pfrbeess units tliat are
interconnected with multicomponent streams (see Fig. 1). “The process iinits that arc
co_nsidered in this paper are units in which the output flows of the comporients can be
expreesed as a linear relation of the inlet flows (e.g. sharp separators, reactor with*known
conversion). It is possible to formulate the mathematical model of the process network in
terms of the concentrations of the streams, Xj. Another possibility is to model the network
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using flows of individual components. The former has the advantages that it provides a
convenient- framework. for the evaluation of therr_nddynamic properties, and i'n'ma_l_hy cases
bounds can be expressed in a more natural form. A major diéadvantage is that many
nonconvex terms (bilinear) are involved in the mass balances for the components. Hie
individual component flows formulation is often chosen since it givesrise to a larger number of
linear equations and the only nonconvexities are involved in the modelling of the splitters. In
these untisit is necessary to enforce that the components maintain the same concentration in
each of the streams leaving the splitter. These constraints can be expressed as relations
between the different components (Wehe and Westerberg. 1987). One deficiency of this
representation is that since many flows can take values of zero, singularities may arise with
which conventional nonlinear programming methods may have difficulties to converge.
- Another alternativeis to introduce additional variables that represent split fractions (Kocis and
Grossmann. 1989).. This involves a larger number of constraints but tends to yield a
formulation that numerically is better behaved.

Following are the equations that apply to the mixers, splitters and units using the two
alternative representations:

Mixer

A mixer Kconsistsof a set of inlet streams, My, and an outlet stream k (see Fig.2).

a)Concentrations

The total mass balance for a mixer k is given by:
F*= 2. @
where F* Isthe total flow in stream i. The mass balance for each component j is given by the
nonlinear equations,
Frxn £ Pxj! forallj )
e My '

wherex_,1 is the concentration of component j in the stream i

b) Individual flows
Here it is only necessary to write a mass balance for each component j, given by the
linear equations: ) ' “ : 3
An 2T C " forallj : €)

My

where fj* is theflow of componientj in stream i.

Splitter
A splitter k hasan inlet stream k and a set of outlet streams S* (see Fig. 3).

3




~ cQConcentrations S _ _ _
'~ The equations for a’ splitter in terms of the concentrations are given: by the following
Ii_hear equations | |

F =Fk @
. a8y : . ) :
, : for alii 6 Scai*d] O .
X = x
_ ©)
L 350 |
7 |

’b)l ndividuualL Jlows
- Themassbalance for each component J is given by

2 [’1 Sff _forallj .. @)

i€Sfc

Here, it is also necessary to enforce the Iclondition that thetstreams leaving the splitter
have the same proportions in flow for each component. These relations between components,
which are nonlinear, can be expressed in terms of the inlet stream k and a given component J*

fi* tf =V . for alii 6 I andj*j' (8

A different approach consists of introducing as additional variables the split ratios *,

that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear
equations are given by '

. §‘=§‘fj" _ . (braliie Iandj ©)
withOs& <1,

Process units |
In this paper it will be assumed that the outlet streams, i € O, in the process unitscan
be expressed as linear relations-of the inlet streams, i e I (see Fig. 4). Thisisfor instance the

case of sharp split separators, separations in which the recovery leve ‘is known, or reactors
that have a fixed conversion. '

a) Concentrations : : T

The overall mass balance for process unit k is given by,
IF*= £F a0
if 1k *«°k ' :

The massbalance for each component] is given by the nonlinear equations:
: £ PME*'N'sPX! forallie Okand] (1)

»* «lk

e p; is a constant for process unit k that gives the distribution of companent | in the

sream i'(§8§88miw§ from streams i~ € I,. For a separator unit it isrequired thatugkf’\* =1

and £ Pji_tk si. A sharp split separator is one for which Il = 1 and 10 =2 (top and
VEI,

bottom streamé) and for all the components the constant p,-t“c are either O'or 1.
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~-ffi Uvdiiikixialjlows : :

Only the mas balance for each component is necessary and it is given by:

' ‘lkﬁﬁlkfjl‘ _ _ foral I_ie Okandj (12)
A modd in terms of individual flows MF consists of the linear equations.(3), (7) and (12)

plusthe nonlinear equations (8) or (9). The mode in terms of the concentrations. MX includes

the linear equations (1). (4), (5). (6) and (10) plus the nonlinear equati on_j_s'___(TZ)""and (12).

Refor'.? Tl tottonand L inearization

In order to avoid the direct usé of the nonconvex models MX and MF, there is arelation that
can.be established between them using the reformulation and linearization technique for
“bilinear. programming models propo.sed‘by Sherali and AIa_mé_ddihe (1992). This techhiquié'éan
‘be applied to the model MX. First, consider the bounds over the variables present in the
bilinear terms (total flow, F* and concentrétiohsxf) ' o

FILSFgFe ' - (13
x,ll.s*’lSX’Iu o s : . - (14

Using the bounds in (13). (14) the following constraints can be generated for the bilinear
termsin (2) and (UK : e

Fixp2Plx + 5L F - PtLoxf (15)
Fixi2Flux!+xupli. Fluy ' (16)
FUXGE Pt + o Pro- PGt (17)
F'xf s B+ X" F - B X (18)

In fact. McCormick (1976) has shown that the constraintsdin (15M 18) correspond to the
convex and concave envel opes of the bilinear terms.over the given bounds., The formulation is
linearized by the definition of the following variables:

$k¥**{. o | . . . (19)

Tfte resultihng model which involves equations (1). (3), (4). (5), (6). (10). (12) and the
constraints in (15)4{18) is a linear relaxation of the original nonconvex concentration model.
MX. in which the nonlinear equations (2) and (11) have been replaced by the linear equations
(3@ and (12) from the individual flow model. MF. It is possible to generat'e'addi'tional linear
constraints that are redundant to the original nonlinear model, MX, but that can be
nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sheradi et




al.. 1992). In particular, consider equation (7) that isthe linear component mass-balance:for
the sputters in model MF.  This linear equation is not present-in the linear:relaxation of the
concentration model, MX. Take equation (4) and multiply by the valid bound constraint xf £0

toget
- N * N B . ) .
us‘ij F - (20
Using equation (5) ylelds
tPxj~NEA 4
el

that can belinearized to,

£
‘5-; whik, ) N (22)

_yleldlng equatlon (7). Hence, the linear equatlon for the splltter isvalid and it i$Included. Hie

nonllnear equations (8) or (9) can alsobe generated in a similar fashion but theif linearizations
are in general redundant (see Appendix A) They are onIy useful when the formulation df the
problem provides non-trivial bounds over certain components in the outlet streams of a
splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that reate the total flow and the individual flows of a stream can
be generated for the splitters. Taklng equatlon (6) and multiply by F ylelds

Ft Txk = [es)
1

Using the congtraintsxf = xj* in equation (23) and linearizingwith fi* = F* xf yields.

F-1tf @

i

Based on therabove it is possible to-obtain a reformulated model MR that involves

‘concentrations, total flows and component flows, and which bounds,the solution of the original

problem. The following equations are given for-model MR: " .
a) Objective function. 0. which is expressed in terms of individual or total flows, ..

b) Mixer equations, which are expressed ta terms.of the total and individual component flows.

FE&=z ¥ F* - . o @
1a My

‘3- > " - for allj : RN
€M7 _ :

L TP TLRR
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c) Splitter equations, that are expressed in terms df the individual component flows and the

concentrations of the streams
 Ft=Fk (4
1 #Sy
Xy = x¥ for all i€ ScandJ (5)
Takel | | G
‘= for all
"Ests £k orallJ _ ()

d) Processunitsequations, that aregiven in terms of the total and individual ,(_:ompohent“ flows

T F= XF* (10
| €ifc | € Ofc
_'_r,lar:_“kg,,lkq‘ for all ie Oxand] (12

€) Reation between thetotal flow and the individual component flows _
= g, ff ' for all streams (24)

f) Linear estimators, relate the individual component flows with the total flow and

concentrations.

§ 2Plxf+xLF . Filx)L as’
fi SFA+xAP-Flrar foralli€s, (16
fi <jiuni™XtLpi.puxiL isk € splitters - 117)
ff SFLlxf+xiupi-FiLx foralljeJ @8

fj Bounds on_flows,and concentrations
FLSFISFe - | - (13 .
leLijl ijlll (14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)
~ looser approximations of the nonlinear termswere used. In both cases, the nonconvex problem
(MF) wasredaxed to a linear model by dropping the nonlinear ‘equations (8) or (9).. Equations
that approximate the difference relation between the components were considered (Kocis and
Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter
between the flowrate of the components and required the introduction of binary variables.




Outline of global optimization method

Modd MR can be applied to predict lower bounds to the global optimum in the optimization of
pooling and blending problems and in the synthesis of separation systems. The reason is that
model MR provides a valid relaxation of the original feasible region since the nonlinear
equations (2) and (11) inmodel MX are not considered, and the valid linear equations (3), (7),
(12) and (15)-(18) are included. The proposed global optimization algorithrh' relies on the
solution of the relaxed problem MR within a spatial branch and bound enumeration. The
outline of the algorithm is as follows (for a more detailed description of step 4 see Quesadaand -
Grossmann (1993))

0. Preprocessing (optiond)

Determine bounds on the variables involved in the nonconvex terms, that istotal flows.
. and concentrations, xf. Apply any additional preprocessing specific to the structure of the
problem in order to further bound or fix variables. -

1.LowerBound
Solve model MR over a given subregion (initial subregion is the complete feasible region)
minimizing a convex objective function <% If ¢ islinear the model is an LP. '

2. Upper Bound _

Any feasible solution to the nonlinear model provides an upper bound. Heuristic
techniques can be employed to obtaifn good feasible solutions or the origina problem. MF. can
be solved using the solution of model-MR as agood initial point. If the solution of problem MR
isfeasble it provides an upper bound.

3.Convergence
If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper
bound.

4. Branch andBound A o L 5
Partitionthe remaining subregions.into a sl of digoint subproblems. Repeat steps 1-3
for each of the new subregions.

Remarks

The preprocessing step plays an important role in the above algorithm. It is during this step
that initial bounds for the variables involved in nonconvex terms are obtained. The quality of
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these bounds affects the tigthness of the lower bound since they are part of thg estimator
equations (15)418). Additionally, these bounds affect the performance of the algorithm because
they define the search space over which the branch and bound_procedure may have to be
conducted.

In some cases, as described later in this paper, it is possible to exploit the particular
structure of the process network and generate bounds for the,variables without having |o solve
any subproblems. Furthermore, during this preprocessing step additional constraints can be
gener ated for predicting a tighter lower bound: of the global optimum can be obtained.

Some of the linear mass balances and.the estimator equations are redundant in the
nolinear formulations, MF and MX. These equations become nonredundant in the
refonnulated moddl, MR, and for that reason it isimportant to write a.complete formulation of
the network. However, thismodd can present some redundancies that can be easily identified
and diminated to reduce the size of themodel. This s the case for the concentration variables
used in the splitters. Modd MR uses different sets of concentrations variablesfor theinlet and
outlet variables of a split unit. ..In. practice, it is only necessary to define the concentration of
the component in the splitter and use the same variables for all the splitter streams. Also,
some redundancies can occur with the total flow variables. These ones are necessary for the
streams in the splitters but they might be redundant and eliminated in the other untis if they
do not appear in other part of the mode or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it
correspondsto the global optimal solution. When the solution to the model MR is not feasible
it isnecessary to follow a branch and bound procedure to search for the global optimum. This
* procedure requires a valid-upper bound on the global optimum. This can be generated through
heuristics or by solving directly the nonconvex model. For this purpose, the pr(')cess'network
model is formulated in terms of the individual component flows and the nonconvex equations
for the splitters are included. Equation ( was also used in this work to model the plitters
dueto it is better numerical behavior. The solution to the modd MR was used for the good
initial point. In many instances, it was not possible to solve these nonlinear problems with
MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is g_enerated. ‘Of the set of open
nodes, these are the nodes that have a lower bound that is esrhall_er than the_cUrrer_n upper
- bound, the node with the smaller upper bound is selected to branch on. The splitter unitsare
the units that are approximated, and of these, the splitter' that has the largest difference




" between its approximated and actual individual component flows is. selected. The
concentrations are used-as the branching variables since a change.in them affectstheinlet and
outlet streams of a splitter. The branching is done in the selected splitter. over the
concentration of the component that has the largest difference.

Firgt, the actual concentrationsfor the individual component flowsin the L P solution O -
- for'the splitters are calculated by,

z,“=%;‘r for all theinlet streamsto splitter ~ (26)

the'splitter unit m isthen selected according to the equation.
- 1.k
- m ﬂm"’“{u}:éu P2 1-zk i} ; (27)

- Equation-(27) represents the total difference between the LP_sqution__,er'__'theflovvs after -
the splitter and the actual value of these flows considering the concentrations before the
plitter . ‘Oncethe splitter has been selected, the component in.that sputter that hasthe largest
difference. J\ is selected by. SR

i = - . ' ' (28
] —ar_gmax,("ls’lf/ 1£ FM] (28

Hie following branching constraints are then used:
.xmSzemand Xj."=>z," | ' | (29) -

To improve thé upper bound it-might be necessary to solve additional nonconvex
problems These can be solved after a given number of nodés using the solution of-the node
with the smallest’ upper bound as the initial point. In thiswork-if there was no significant

_ change in the lower bound df the new nodes with respect to the lower bound of the parent node
( < %) anew nonconvex problem was solved

Examplel : - ‘
Consder the following poollng and blending problem by Harveley (1978). Two streams that
have componentsA and B are mixed in a initial mixer a then go through a splitter to obtain two
streams than can be mixed with an additional stream (see Fig.-5a).” Two different products can
be obatined and thefe are constraints on the concentration of component A in these products.
The objective function consists of mimizing the cost that is giveh by the total 'flow of the
streamstimes the cost coefficients. ¢, given in Fig. 5. ‘
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This problem has two local solutions. One has an objective function ¢ = -100 and
- consists of otify producing product 2. The other local solution, that corresponds to the global
optimum, hasan objective of 4> = -400 and here only product 1 isproduced. '

Modd MR is formulated for this problem and the initial lower bound is4y = -500. The
nonlinear model, MF, is solved using the solution of model MR asthe initial point and an upper
bound of » a -400 is obtained* Sincethereisa gap between the bounds of the global solution a
partition is performed- Thereis only one $plitter that needs to be approximated and since there
are only two componentsit is irrdevant which one is selected since the composition bounds are
rdated (eg. xg" si - x*"“). The actual value of the composition of A in the solution of modd MR
is used as the branching point (x* = 0.0166) to generate two new subproblems. The first
subproblem (x4 £ 0.0166) has a lower bound of 4y = -100 and the second subproblem (x* <
0.0166) has a solution of fa = -400 (see Fig. 5b). Both of these bounds are greater or equal
than the upper bound, therefore the global solution has been found (x5 = 0.01).

Example2 _
- The next example is a separation problem taken from Kocis and Grossmann (1987). The
original problem has binary variables in* the formulation and they have been fixed to 1 for this
example (see Fig. 6). '

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream
‘has 80% of the inlet flow of component B. In the column. 97.5% of the inlet flow of A goes to
the top whereas 95% of the inlet flow of B goes to the bottom stream. The total flow to the flash
unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of
each of the two feed sreams has to be lessthan 25. The objective function is given by,

& 52+ 10F! +8F,+ F,+4F;-35P,A-30P,° (30)

The initial lower bound for this problem is 4y = -513.22 and it is infeasible for the
original NLP modd. A nonconvex problem is solved using CONOPT with the solution of model
MR as the initial point obtaining an upper bound of ¢ = -511.87 and the relative gap isonly
0.3%. Again only one splitter is present in the network and a partition can be performed using
the concentration of component A in this splitter. The lower bounds for the new two
subproblemsareOL = -511.87 (X £0.5121) and O =-511.80 (xa> 0.5121). Both solutionsare
greater or equal than the upper bound and the global solution has been obtained. Inthe global
solution Fy ss8 and F, = 25, and 11% of the inlet flow to the splitter is directed to the flash.
76% to the column and therest bypassed to P,.

11




Example3 : ,

This example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

0=45,+1.55,+4Sg (31)

The initial lower bound is 4y = 138.18 and the nonconvex problem MP is solved
‘obtaining a solution of 4 « 138.7. The gap between these bounds is less than 0.4 %. The
globa optimum for thistolerance is shown In Fig. 8. '

Sharp separ ation networks

In order to illustrate the application of the above agorithm to a specialized case where the
structure can be further (exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
sp_ecifiéd multicomponent product streams. The components are ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9). The superstructure consist of N-I separators: Separator 1 performs the
task of removing cdmpénent number 1 to number 1 at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-|
streams, F. that go to the separators and K streams, a. that bypass the network to go to the
products. Each stream F< is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i, S.

The outlet streams of separator i are the top. Tjg and the bottom, B;. These streams, T«
and B{, are each split into streams, PT{ and FB< respectively, that go to the K products and
into streams, KIV' and RB/\ that are redirected to the other separators. The top stream of
separator 1, T;, can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaler (lows. KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, B, can be redirected only to separators i+1 to N-I since it can only

12




contain components that are separated by these sharp separators. RB,_]‘ is the redirected flow
. from the bottcpi stream of separator i to separator i'.

M odd

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
' and total flowshasthe fallowing form

| m.n4>-;cs (321)
. |
sL’ Feed* g‘ F Yo , (32.2)
fy=Fiz for aliiandj ~ (32.3)
1 N-| . :
Si=F + tZ‘,l.RB.-‘ + .r_%lm',-* for alii (32.4)
-1 . N-I
S xs«af« + X RBf xb,-. + .};,ﬂRT.-' xty for alii and] (32.5)
S, =T, +B, o foralii (32.6)
Ty Xty = Sy X8y for al’i and ord() <i (32.7)
xty=0 for al-iand ord() > i (32.8)
By xby = S, x3 : for all i and ord() > i (32.9)
xby=0 for all i and ord()) £ (32,10)
. K !
T,= | RIS + SPTX for alii (32.12)
1w kel
N-I K
= SRB{ + £PB* for ail i (32.12)
{'wiel k«l
N-1 _
pk= TPTK ’;LIIpB,k 0 - fordlk - (32.13)
i=1 1 . .
N-I N-I ' o .
= l211"1‘1":&‘, + Il,PB," xby+ a,z, - for all k and] (32.149)
= = ' ) *
i .
-‘%_xt.j =1 for all 1 (32.15)
Exb,, =1 for alii (32.16)
C‘E‘.::su =1 for all i (32.17)

S, T, B, F RT", RBt", PT; PBt“. c* f,, xs;j, xfy xtx * 0
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The parameters Feed, zj, PX and py; répresent the totat feed; composition of the feed,
total flow of product k and component flow of component j in product k. respectively. The
variablesxsq, xt; and X are the concentrations of componentj in the inlet stream to separator
i. top of separator i and bottom of separator i, respectively.

The objective function (32 1) is a linear function of the inlet flow to the separators
Equation (32.2) is the total mass balance in the inlet splrtter and equatlon (32 3) is the
component mass balance. Equations (32.4) and (32.5) are the total and component mass
balancesfor the mixer i beforethe separator L The material balances for separator i are given
by equations (32.6). that isthe total mass balance for the separator; equations(32.7) and (32.8)
that are the component balances for the top stream and indicate that nothing from components
number 1+1 to N-I isin the top of the separator, and equations (32.9) and (32.10) that are the
component mass balances for the bottom streams. Equations (32.11) and (32.12) are the
overall mass balances for the splitters of the top and bottom streams after separator i. The
equations that state that the concentrations of the outlet streams should be the same that the
inlet stream in-a splitter have been already substituted. Finally, equations (32.13) and (32.14)
arethe overall and component mass balances for the mixer for product k.

Modd (32) correspondsto a formulation of the type of model MX where the distribution
coefficients are known and restricted to 0 or 1. Some simplifications have been made to avoid
including many irrelevant variables (e.g. not to define concentrations for the streams that go
the top i to product k). Although, some of the linear constraints in this formulation are
redundant, they can become nonredundant in the linear relaxation as will be shown in
Example 4.

+

Equations (32.5), (32.7), (32*9) and (32.14) involve nonconvex terms. This model can be
reformulated as in model MR by introducing individual component flows and the linear
equations (15)-(18) and (7) according to the approach illustrated eaiiier to obtain amode in the

form of model MR. The resulting reformulated modd is as follows,
“N-I

min § = £6S _ | (33.1)
N-I K
st Fed = ||-|Ft + Z0% : : (332
=F z for al i andj (333
t-1 N-I . . .
=Fj+ YRB!+ TR - forali (334)
1=l f'aiel
i-1 N-I
S|] = ﬂ] + izl rb‘]‘ + § lrt‘-]‘ fOI’ a” | andJ (335)
‘= Umie
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S, =T, + B, foralli ~ - (336).

ty = Sy for all i and ord() £ - (337)

ty=0 for all 1and ord(j) > 1 (33.8)

by = 8y i for all i and ord()) > i (33.9)
ty=0 " for all i and ord(j) < | (33.10)
T,= :;‘lnr.f . élm‘.k © foralli (33.10)
B = hi‘"mas.r ¢ PBE for all 1 (33.12)
Cpe=PTES S'fﬂpa. ra for all k - (3313
Py = I}‘Iptq" ’ Eipb.,“ ronz forallkandd  (3314)
ty= zrq,' }:ipt" ' for alii and] (33.15)
by = :%;b,,r + Zpb.," for all i and (33.16)
ugz(t _1 Cforalli @®17)
'_‘E_.xb., =1 ‘ for all i (33.19)
T,= _&1 - for all i (33.19)
 By= “&?q - Cforalii (3320)
l1::..," for all i and k (33.20)
PBk = “,ﬁmk _ for all 1 and k L (322
won '-IS-/I o foraliandi' <i (33.23)
" -‘irgur B foraliandi'>i  (33.24)

Equations (15-18) forty. rt,;' and pt,* in terms of xtg
‘and the total flow of itsrespective stream.
- Equations (1518) for by. rbg"and pby* mtermsoth,
and the total flow of its respective stream.

S.T..B,.F.RT,.RB. PT /. PB/, Ok f;. xs].xU..xby SO
Sytj. bj pti <. po,"rt,".rb,* 20
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It is not necessary to Include equétions (15)-(18) for the inlet component flows to the
separator, Xy, since the variables xsj only appear in these equations. Also, the component
flows, sj, only appear in mixers and sharp separators unitswhich can be exactly represented in
terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-
(33.16) that are the component mass balances for the splitters of top and bottom streams have
been included accordingly to the reformulation previously presented. Equations (33.19M 33.24)
relate the total flow and the individual component flows for the splitter streams.

Preprocessing

Hie proposed superstructure (Fig. 9) allows to bypass certain amount of the feed to the product
k, a*, without having to go through the separation network. The amount of the product k that
is not bypassed has to be processed in the separation network and it will be denoted as the
'residual product*. Hence, the total 'residual product k' is given by (P* - &) and has the
component flows given by (p" - 0z )(see Fig. 10). "

The global optimal solution of model (32) is a network in which all the ‘resdual
products.have at least one component with a zero flow. The reason that it is not optimal to
separ ate a stream in the network and later to remix it. The same degree of separation can be
achieved using a bypass that does not incur any cost in the objectivefuh'ctioh.'

Consider the second separator in the solution obtained by Floudas (1987) to his second
example (see Fig. 11). For this subnetwork of the complete structure the‘upper 'residual
product* hasicomponents B and C present. The components are being separated and remixed
again. The same outlet flows can be obtained with a smaller input flow to the separator asit is
shownin Fig. 11. Notethat both ‘resdual products have componentswith zero flow.

It should be clear that if there was not a component with zero flow in the 'residual
product’, then there is part of this stream that could have been obtained byJust bypassing the
network. This in turn does not incur in any cost, whereas going through the network has a
positive cost. The above condition gives a lower bound for the bypass to each product. This
also corresponds to the largest amount that can be bypassed since all the flowsin the 'residual
flow* have to be positive. In thisform the bypass can be precalculated without affectlng the
global optimality of the solution.

The bypassto product k isgiven by the maximum amount that can be sent to product k
without having a negativeflow; that is.

a,=min, [ 4 (34)
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- where Zjis the feed composition and py; -is.the. flow of component j in product k. The
‘component:flows for 'residual product' k. T4 are given by. ' "

'Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the (low of the key
componentsin separator L These bounds are based on the fact that separator i isthe only unit
that c__ah perform the task of %pér_atihg component number 1 from component nutaber 1+1.
They are reduhdant for the nonlinear formulation (32) but they are relevant for-the linear
relaxation in (33). To calculate them, it is necessary to determine in each-product what isthe
difference between the two key components of separator i with respect to the concentrations in
the feed. The lower bounds in separator i' for the flow of the key components in the top
(component JI) and bottom (component J2) streams are given by:

K . e
ty EEI{TI:]I - Zy1 Miilyeyy g7 {);‘;‘] } for alii (36)
X
b2 3 (9 - zeming o (1) foralli 37)

where YK isgiven by (35). It isimportant to include both bounds in the relax model (33) since
thereisno guarantee that the inlet flow to separator i has the same pro'por-tion between the key
components as the feed. It is not known in which part of the sequence separator i will be
placed, and it can be after a splitter that is not being approximated correctly.

" Theé bounds in (36) and (37) can be extended to separation of components that are not
adjacent in the feed. Consder component number i and component number i+3. There are
three separators that can perform this task/separatorsi. i+1 and i+2. Cuts of the following
form can be obtained.

tei +tyi+tFal2 £ {Dd - zt MiNggg)<orns [3‘?‘1]} for all i (38)
K Yy
byg+#busi + by 2 £ {Tki*3 - z*s minorsow*3 =) - foralli (39

Equations as the ones in (38) and (39) can be redundant compared to equations (36)
and (37) and it is possible to detect this before solving the problem. '

Relativeflowrate constraints
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These constraints aré used when the relation between the flowr ates of two components
isknown. In particular, consider component A in the lagt column ofthe'network (see Fig. 12).
None of the redirected streams contains component A. Therefore, the reative flowrate of
component A with respect to the other components in the top stream hasto be smaller than in
the feed. Thisrelation should remain valid after the top stream is split to the"p'r'od'ucts and
redirected flows.

1l the separator previousto the last o'ne N-2, all the streams do not have componentA _
except the one coming from thetop of the last column. For this one itis already known that
the relative flow of component A with respect to the other components is smaller than in the
feed. . Thistype of.analysis can be done for component A and component N in all the columns
yidding th$ following linear constrai ntsfor the splitters.

for all Land k
ZaDW* - Z DLk 20 forj* Aand ord(j) <i (40)
ZNpbgX-Zjpty 2 0 o for ord(j) * N and ord(j) >i  (41)
foralliand I >i
znnui' - % l'tmf >0 faril 4 A Aand Aardill < (42‘)

forj* A and ordtf) Si
toraU land1 <1

, z«rbu"-‘z, ibm*' 20 forord(J)"Wandord(J)>| (431
- Boundson concentrationsand total Jlows

The approximations (15-18) require bounds for the total flows and component
concentrations'In the spIitters. The lower bound for the total flow of the top and bottom
streams is given by the lower bound:of the key components obtained in equations (36) and (37).
For the outlet streams of the splittters, that are the redirected streams and the streamsthat go
to the products, the lower bound is zero. The upper bound for the total flow .of the top and
bottom streams is given by the feed to the network of the components that can be present in

each stream .that is. .
l -
T'= ItFeed-XoicJz, _ for alii (44)
ardijinl k _ . _ _
N . . ..
- BMhs - |£ lfeed-{.arazr, for alii- (45)

The upper bound for the streams after the splitter are given by.
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RT{f v =T <. fordliandit<i (46)
RB{'¢ = B,“ | for alii aridi'>i -~ = (47)

PTr =z - for all i and k . (48
s g o | 9

k;Jb’) for all i and k | ' | .(49)

The lower bounds for the concentrations are zero except for fee key componentsin the
separator for which the lowér bounds are given by the lower bound of its flow-divided by the
upper bound of the total flow of that stream. The upper boundsin the concentrationsare given
by one minusthe lower bounds of the other components.

The solution of the linear programming'modd (33) provides a lower bound to the global
optimum since thismodd is a valid relaxation of the nonconvex modd (32). This lower :bound
" is obtained by solving the LP model for the 'residual products1 in: (35) with the addition of.the
valid constraints (36)-(43).

The upper bounds are generated solving model (32) .in terms of the individual flows for
the'resdual-products. When additional nonconvex problems are solved to improve the current
upper bound it can happen that very similar initial point are generated. In this case, a new
nonconvex NLP is solved in which bounds over the total inlet flows to the separators (S) are
included. For this purpose the values of these variables in the LP solution (S*) arc used such
that the current incumbent solution is no longer feasible.

Exampled
Consider the 3 component example proposed by Floudas and Aggarwal (1990). An equimolar
- feed has to be separated into two products as show in Fig. 13. The obj_ec;ive function is given

by
4502395+ 0.00432 S, +0.7584 + 0.01517 S2 | | (50)

~ The bypass to products 1 and 2 can be calculated accordlng to equatlon (34) and the
'residual product’ component flows are obtained through equatlon (35) (see F|g 14). Thetotal
bypass to product 1 isa, = 90 and the bypass to product 2 |s<x2 = 190 and the feed has a
concentration of zy = 1/3, zo = 1/3and ZQ = 1/3 In thisform the residual product 1isYIA=
0. YiB = 20 and Y*C = 0 and the ‘residual product* 2 is Y ,A = 20, YB = 0 and Ya ° 20.
Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35M 36). The key component's“in separator 1 are component A inthetop and
itsflow has to be at least 20 and component B in the bottom has to have at least aflow of 20.
In the top stream of the second separator at least 20 units of component B have to be
separated from 20 units of component C:in the bottom stream. It is important to note that
after preprocessing the network several suboptimal solutions have been cut off. One of these
suboptimal solutions for this particular data.is a parallel configuration of both separators
(there are situations in which a parallel configuration can correspond to the global solution as

- will be-shown in example.5). In this example the direct or indirect sequence have a lower
objective function. Both of these configurations are local eol'utions with an objective function
value of 4 = 1.8639 for the direct sequence and $ = 2.081 for the indirect one In some
instances, MINOS 5.2 had problems conver ging even in this small example

The LP (33) is formulated for this problem, giving a lower bound of » = 1.8639. The
. approximations are exact and thereforethis solution is a feasible solution of model (32) proving
that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.
The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted
that if the linear mass balances for the mixer for product 2 were not consider ed sincethey are
redundant for the nonlinear formulation, a lower bound in the relaxed model of $ = 112 is
obtained. Thisshowsthat It isrelevant to mclude all themass balancesin the linear modd in
order totighten the lower bound. '

. ExompteS

In the approach proposed by Wehe and Wester berg (1987) for the case of 3 components only
the direct and indirect sequences are considered and both options can be moddled as LP
problems since no mixing is required for these separation networks. However, this.example
shows that parallel configurations can bealso globally optimal and that they are not excluded
by the method proposed in this paper. To be able to consider paralle configurations or any
combination of parallel with direct or indirect sequences it is necessary to mode a
superstructure in which mixing is allowed (like in the structure used in Fig. 13). Here,
nonconvexities arise in the mass balance equations after the separators.

_ Consider that an equimolar feed isto be separated into the two different products given
in Fig. 16. The objective function isto minimize the sum of the total flows into the Separators.
The same procedure that in the previous eXampIe is followed and the bypass can be
_precalculated by equation (34). The solution to the model (32) yields 4t = 12 and since it isa
feasible solution of mode (32) it corresponds to the global optimum (see Fig. 16). Note that the
solutions for the direct or indirect sequences have an objective function of $ = 16.
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Branch and Bound

Ifthereisa gap between the lower ai}d upper bound, a branch and bound sear ch is performed.

It isonly-necessary to.do the search over thevarlableslnvolved in the nonconvex terms. The
concentrationsare used asthebranching variables since a change in them affectsthe |nlet and
outlet streams of a splitter. In this way. it is necessary to check the a_tpproxmatlon for the
concentrationsin the splitters of the top and bottom strear*s of the separator. Equatlons (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound
search.

- Results

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation
network examples 4 to 12. The number of variables is the total number of variables that are
included in the reformulated and relaxed model (33) for that example. The lower bound isthe
initial bound that is obtained by solving model (33) over the entire feagble space. The inital
gap represents the percentage difference between the initial lower and upper bounds. When
there is a zero initial gap it means that the first relaxed solution isfeasible in the original
problem thereby corresponding to the global solution. The column for nodes gives.the total
number of subproblems that where solved before converging to the global solution. A redative
tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after
branchlng and example 12 for which a tolerance of 0.02 was used. It is important to note that
the initial lower bound is tight and that it corresponds to a good estimation of the global
solution. The largest differences are for example 1 with a 25% of difference and for example 12
with a 7% difference. The LP time refersto the time used to solve each relaxed modd and the
NLP time isthe time used for solving a nonconvex.model. It is possible to do updates using the
previous L P solution and in this form have a more efficient implementation. The times arein
seconds and the problemswere solved on an IBM RS600/530 using. GAMS 2.25 (Brooke et al.
(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP
problems. A brief description of the example problems 6 to 12 is given below. It includesthe
SpeCIfIC data for the problem, the objectlve function and the topology of the network that is the
global solution.

Example6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

(M2.5S!+3.0S,+1.5S; (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is ¢¢ = 54.25 and an upper bound of $ =55.5 is obtained by

“solving the nonconvex problem. A partition of the feasible region is performed using the
** comiposition of component D in the bottom stream of separator 1. The first:subproblem (x £

0.166) yields a lower bound of » = 55.45 and the second subproblem (x < 0.166) has a solution

of 44=55.8. Thelatter isgreater thanthe upper bound and theformer islessthan 1% ofthe

global solution (see Frg 17).

Exampie7
This example is taken from Floudas (1987). The data for this problem is given in Table 3 and

the linear.objective function is given by:. .

¢=258, +30S2+12% . (52)

The.initial lower bound is 4y = 32.7 and it prowd%afeasrble solutlon to the nonconvex
problem. In this form the global solution (see Fig. 18Ms obtained in one iteration. It is
interesting to see that this solution also provides a better objective function for the concave
obj ective function used by Floudas (1987) (4 = 10.65 versus0 = 13.68 which is28% higher)

Elxample8
Thrs four component problern IS taken from Wehe and Westerberg (1987) The data for the
products isgiven in Table 4 and the objectlve functlon has the followmg form

$55.0+0.5Si +4.0+0.32+6.0+0.7S; B CL)

The first relaxed subproblem has a-solution of ¢ =26,76_and it is infeasible for the
nonconvex problem. A nonconvex problem is solved using CONOPT with the L P solution as the

“initial point. An upper bound of 0 « 26.79.is obtained corresponding to the global solution (see

Fig. 19) withina0.1%. "

Example9
This example corresponds to example 1 from Wehe and Westerberg (1987) Table 5 prowdes
the data for the product flowsand the objective function is given by:

$=50+055+9.0+1.082+3.0+045+60+06S, G

A initial lower bound of 4y = 85.16 is obtained and the upper ‘bound Is0 » 85-65. The
difference is0.5% and the global solution (see Fig. 20) is obtained in one iteration.
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Example 10 ' _ : _
This problem is taken from Flotidas (1987) and the data is given in Table 6. The objective
function is given by,

3>*12Si+3.0Sj+25S,+ 15S, (55)

Thesrg_éffn lower bound is<t* = 156.56 and the upper bound is¢ = 179.08. After 5 nodes
the global solution of 0 m 159.48 (see Fig. 21) is obtained.

Examplell
Hie data for this 6 component problem are given in Table 7 and the objective function hasthe
following form:

**15S,+3-0Sa+2.0S3+ 1.0S,+4.0S5 . _ (56)

The initial lower bound is<f = 173 and the upper bound is0 » 179.11. After fivenodes
the global solution is obtained (see Fig. 22).

Example 12

Thisis a 6 component 4 products problem and the data are given in Table 8. The objective
function is:

*=508S! +3.0Sj +2.0S;+25S, + 4.0 Ss (57)

Theinitial lower bound is$ =362 and the initial upper bound is<4$ = 415.6. The global
-solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent
streams has been proposed. The basic idéa relies on a relaxed LP model that is obtained
through reformulation-linearization techniques that establish a clear relation between the
compohent flow and the composition models for mass balances. The reformulated model
combines both of these providing tighter lower bounds than other relaxations proposed in the
previouswork. Theredaxed linear modd has been embedded in a branch and bound procedure
to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of
the particular structure of sharp separation networks with single feed and mixed products.
Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model
can be obtained without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter
~ lower bound.

Twelve examples for both general process networks and for sharp separation networks
have been presented to illustrate the performance of the algorithm. As has been shown, only a
small number of nodes are commonly needed in the branch and bound search to identify the
global or e-global solution. Moreover, in many cases the initial lower bound is either the exact
solution or avery good approximation to the global solution.
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Appendix A. Reformulation-Linearization to obtain the no;nl_i'_rilear
constraintsin model M F

The nonlinear equations,in model MF that can be expressed elther as (8) or (9) can also be

generated from model MX. For this purpose take the concentration model MX and consider
equation (5), L ‘

LI o o A1)
multi ply by the valid bound constraint Xj¥ £ O . . _
xfxfmxfzp (A.2)
‘Use equation (5) for component j\ _ T :
x Kyl gk S A
Multiply by thevalid bound constraints F< = 0 and Fl >0,
FAIPN-FAF* A tA.41
that it is linearized to yield. | - o
fffJsfj'ff (A5

which is precisely equation (8) for the splitters in the individual flow model MF.

Consider again equation (5).

XK = x! (A.S)

multiply by the valid bound constraints F< >0 and F* > 0,
K 1IAL7)

FextF'=Fix'F .
that can be linearized to yidd,

fEFEN/F* A8
Define the split fraction ?to be,

=~ A9

Equation (A.8) can then be expressed as
fl = 21

which corresponds to equation (9).

(A.10)

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear
approximations in general are also redundant in the linear reformulated modd MR Consider
equation (A.10), smilarly to (15) one of its linear approximations is given by.

l]‘zf,“'l]"-i- BIEeL - BIL gkt (A.11)

If there are no particular restrictions in the splitters, then the bounds for the split
fraction variable are 0 <” < 1 and using them in (A. 11) yields.
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£ 2 L E (A.12)
The bound for the individual component flow is given by fi“ =xf" F*": alsox,“ =x‘and £ =
o |
pt, which Ieadsto?u ,

f ZﬁLFF _ {A.13)

The estimator (15) for the same conditions (F* = 0) is given by
L faxle L h - (A.14)
Since thefactor -*r is always less or éqUaI than 1, equation (A.13) is redundant. A similar
analisis can be performed for the other estimators. Only when more specific bounds over the

-split fractions or the individual component flows are known, will these additional estimators be
non redundant.
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Figure 5. Network and branch and bound search for example 1
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Abstract

This paper deds with the globd optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides avdid lower bound to the globa optimum. This formulation is then
used within a spatial branch and bound search. The application of this method is considered
in detail for sharp separation systems with single feed and mixed products. Numerica results

are presented on twdve test problems to show that only fev nodes are commonly required in
the branch and bound search.




_Int_roduction _

A common source of-noneonvexities in the synthesis and design of processes, as well as in
flowsheet optimization, are-the-material flow equations for multiccmponent streams. These
nonconvex equations involve bilinear terms and they arise in the mass balance equationswhen
the compositions are unknown. There are different equivalent formulations for this type of
networks. One alte_rhati&é’is to formulate the mass balance equations in terms of component
concmtratibns. In thisform bilineér' terms are present in the equation* for the mixer units
and the different process un-i'ts'(e.g. sharp '%paratdrs).' A second altérnative is to express the
mass balancesin terms of flowsof individual components. This option hasthe advantage:that
it involves a "n_au__mr number of nonlinear eguations. However, the rmodélling-ofthe splitter
units involves bilinear terms that arise due to the condition-that the proportions of flows
between comp_onmfs have to be the same for the differerit streams.

The difficulty with the nonconvexities noted. above is that they may give rise to
optimization problems Involving several local optima and numerical singularities that may
produce failure in the NLP algorithms. Recently there have been important efforts in the area
of gI'obaI _optimizatio'n. Examples of algorithms are the ones proposed by McCormick (1976).

Floudas and Viswewaran (1990)'and Sherali and Alameddine (1992) which can be used to solve
bilinear programming problems like the ones that arise in networks with multicomponent
streams. For arecent review in the area of bilinear programming see Al-K hayyal (1992). -

Asfor previous work-in the design and synthesis of multicomponent process networks
Mahalec-and Matard (1977) and Nath (1977).developed evolutionary techniques that are based
- on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of
separation networks with mixed products in which only sharp.separators are considered. A
super structure of the process network was proposed and modelled in terms of concentrations.
The resulting model is nonconvex and solved with a standard NLP algorithm with no guarantee
of global optimality. Floudas and Aggarwal (1990) solved small pooling and blending problems
and sharp separation networks problems using a strategy based on Bender s decomposition.. In

. this approach only convex subproblems are solved but there is no guarantee of obtaining the

global optimum.  Kocis and Grossmann (1989) modelled process networks with
multicomponent streams in terms of the individual component flows. They included a set of
_.bounding constraints with binaxy variables to approximate the nonconvexities that are present
in splitterswith multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp
~separation networ ks with mixed products. They proposed a search procedurethat involvesthe




enumer ation of the different separation sequences. The nonconvex equations are dropped and
constraints that are valid for each particular sequence with a set of bounds over the'key

“componentsare included to obtain tighter .UP relaxations for.each configuration. However, the
number of sequences'to be examined grows rapidly: and there is.no guarantee of global
optimality.

In. some partlcular cases the nonconvexities in the mass balances can be avoided
through the introduction of binary variables. One of these cases is When srngle choice splltters
are present in the flowsheet .(Koors_and Grossmann, 1989). Here, itis posableto have a mixed
integer linear formulation for the mass balance equations in terms of the individual oomponer]t
- flows.. Another restricted case for which some nonconveX|t|es can be reformulated is when
mixing within the network is.only allowed for streams of the same concentration. In this form,
larger network superestructures must be proposed and the concentratlons of the streams are
known beforehand. Integer variables are introduced to model the existence of the different
streams (e.g. the mixed integer linear formulation for sharp separation networks by Floudas
and Anastasiadis, 1988).

- The objective of this paper is to present an eff|C|ent global optlmlzatlon method that

exploits the particular structure that is present in process networks with multlcomponent
- streams (e.g. pooling and blending systems, sharp separatron networks). First a relation is
established between formulations based on concentrations and individual flows. Thls is done
following the Reformulation-Linearization technique proposed by Sherall and Alameddine
(1992).. As will be shown, a linear relaxation Is obtained that is in the space of the

concentrations and individual flows which can be used in a branch -and bound search isto find
the global optimum. Application to the optimal design of sharp separation systemswith single
feed and mixed products isconsidered In detail. Different preprocessing techniques that allow
tightening of the relaxation problem are presented. The performance of the algorithm is

* reported on a total of twelve problems. '

Modeling with concentrations and indi_\ridual_ flows -

Consider a process network that consists of splitters, mixers and process units that are
interconnected with multicomponent streams (see Fig. 1). ‘The process iinits that are
con_sidered in this paper are units in which the output flows of the components can be
expressed as a linear relation of the inlet flows (e.g. sharp separators, reactor with*known
conversion). It is possible to formulate the mathematical model of the process network in
terms of the concentrations of the streams. X_jk. Another possibility is to model the network

.
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using flows of individual components. The former has the advantages that it prowdes a
convenient-framework for the evaluation of therxnodynamm propertles, and |n ‘many casés
bounds can be expressed in a more natural form. A major disadvantage is that many
nonconvex terms (bilinear) are involved in the mass balances for the components. "The
individual component flows formulation is often chosen since it givesrise to a larger number of
linear equations and the only nonconvexities are involved in the modelling of the splitters. In
these untisit is necessary to enforce that the components maintain the same concentration in
each of the streams leaving the splitter. These constraints can be expressed as relations
between the different components (Wehe and Westerberg, 1987). One deficiency .of this
representation is that since many flows can take values-of zero, singularities may arise with
which conventional nonlinear programming methods may have difficulties to converge.
- Another alternative.isto introduce additional variables that represent split fractions (Kocis and
Grossmann. 1989).. This involves a larger number of constraints but tends to yield a
formulation that numerically is better behaved. ‘

Following axe the'équations that apply to the mixers, splitters and units using the two
alter native representations.

Mixer
A mixer k'consists of a set of Inlet streams, My, and an outlet stream K (see Fig.2).

a)Concentrations

The total mass balance for a mixer k is given by:

Fr« X.F : D
t«Mfc

where F! isthe total flow in stream i. The mass balance for each component j is given by the
nonlinear equations. '

N i i
FAxfc thMkFXJ» for allj ()

wherexf isthe concentration of component j in the stream |

b)I ndividual Jlows

Here it is only nec&sary to erte a mass balance for each component j, given by the
linear equations:

Ul “%kfj - " for all j ‘ 3
wherefj istheflow of componentj In stream i.
=plitter |

A splitter k hasan inlet stream k and a set of outlet streams S, (see Fig. 3).




| qI[ConcentraU ons
The equations for a splltter in terms of the concentratlons are glven by the following
Ilnear equations

I'P=P* ' )
1€sfic - ) ) ’

TS . for alli 6 Sca$sdj (5

S | ©©

J

“b) Individual_flows :
- Themass balance for each componentj isgiven by

117afA | foralj (@
t€Sfc

Here, it is also necessary to enforce the condition that the'streams leaving the splitter
have the same proportions in flow for each component. These relations between components,
which are nonlinear, can be expressed in terms of the inlet stream k and a given component j'

i sfi 0 for all i € l,andj *j' (8)

A different approach consists of introducing as additional variables the split ratios §|
that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear
equations are given by

ff«ofj ' ~for alii € I andj ©9)
withO£?£l.

Process units : - o

In this paper it will be assumed that the outlet streams, i € Oy, in the process unitscan
be expressed as linear relations of the inlet streams, i e I (see Fig. 4). Thisis for instance the
case of sharp split separators, separations in which the recovery level is known, or r_éactors
that have a fixed conversion. |

a) Concentrations coom
The overall mass balance for process unit k is given by,

| Pa IP (10
1€1 €0
Themassbalance for each componentj |sg|ven by the nonllnear equations;
3 By Fxf =Px,’ for all ie Oxandj  (11)
fely

where PJr is a constant for process unit k that gives the distribution of componentj in the
stream i e O, coming from streamsi' e I;. For aseparator unit it |sreqU|red tllat 2 vx =1

and £ P,r“‘ a 1. A sharp split separator is one for which Il = 1 and 10yl —.2 (top and

i"€ Iy

bottom streams) and for all the componentstheéonstant p,-r‘k areeither O-or 1.




“‘b) Individual flows

Only themas balancefor emh component IS neceleary and it isgiven by:
gl Byff forallie Okandj (12

I*€ Ik

A model interms of individual flows MF consists of the linear equations (3), (7) and (12)
plus the nonlinear equations (8) or (9). The model in terms of the concentrations, MX, includes
the linear equations (1), (4), (5), (6) and (10) plusthe nonlinear equat’i_on;s__(Z)'and"(ll). '

Reformulation and Linearization

In order to avoid the direct use of the nonconvex models MX and MF, there is arelation that

can be established. between them using the reformulation and linearization technique for

bilinear_programming models proposed by Sherali and All'ameddi'ne (1992). This techniqué ¢an

be applied to the model MX. First, conS|der the bounds over the varlables present inthe
- bilinear terms (total flow, F! and concentrations x,)

FLSPSFY - |  (13)
xftsxisxe | - 14

Using the bounds in (13), (14) the following constraints can be generated for the bilinear
termsin (2) and (11), B

Fixl2Filx)+xLFl-Fily't (15)
PN Pe 1 M tu i Fruu (16)
FHojs £ F* %, + Xt B - FrU Xt (17)
Fix<Filyl+xuP-Ftly - (18)

In fact, McConnick (1976) has shown that the constraintsin (15)-(18) correspond to the
convex and concave envel opes of the bilinear terms over the given bounds.. The formulation is
linearized by the definition of the following variables:

fl=Px;' : (19)

Tile resulting model which involves equations UK -(3). (4). (5), (6). (10). (12) and the
constraints in (15M18) is a linear relaxation of the original nonconvexconcentration model,
MX, in which the nonlinear equations (2) and (11) have been replaced by the linear equations
(3 and (12) from the individual flow model. MF. It is possible to generate additional linear
constraints that are redundant to the origina nonlinear model, MX, but that can be
nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sherali et




al*. 1992). In particular, consider equation (7) that is the linear component. mass balance:for
the splitters in model MF. "This linear equation is not present-in the linearrelaxation of the
concentration model. MX. Take equation (4) and multiply by the valid bound constraint x,* £0

to get
L B PeeE S ™
Using equation (5) ylelds ) :
’ £;f**| >)|E*Ak . (21) .
L |
that can belinearized to. KL :
, 'Z&tf,‘ =f o (22)

_yiel'di'ng equation (7). Hence, the linear equatlon for the splitter isvalid and'it isincluded. The
nonlinear equations (8) or (9) can alsobe generated in‘a similar fashion but theif linearizations
are in general redundant (see Appendix A) They are only useful when the formulation &f the
problem provides non-trivial bounds over certain c'o"mponents in the outlet streams of a
splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that relate the total flow and the individual flows of a stream can
be generated for the splitters. Taking equation (6) and multiply by F* yields. )

P Sxp =K S | @
1

Using the constraintsx,! = ¥ in equation (23) and linearizing with fj'« F* x* yields,

P = 5ff | - (24)
J . .

Based on the above it is possible to-obtain a reformulated model MR that involves
concentrations, total flows and component flows, and which bounds,the solution of the original
problem. The following equations are given for-model MR: " .

a) Objective function. <= which is expressed in terms of individual or total flows,

b) Mixer equations, which are expressed in terms.of the total and individual component flows.

oF*« £ F* o o @
O tEMy
fe= If/ _ forallj . NN
icMfe , . .
6
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c) Splitter equations, that are expressed in terms of the individual component flows and the

froncditi® tnff of the streams
Y, p-pk o @
t€S,
Xj =Xk for alii e 3*'andJ e
Xxd<=i : | ®
EaJf «ff for ail 0
d) Processunitsequations, that aregiven in termsof the total and individual gomp_orienf flows
Fl= F (10)
laly ie
fike I pl'fl foraUie Oxandj (12
l'c-ik.

e) Rdation between the total flow and the individual component flows _
Fl=£ f/ for all streams (24)

J

f) Linear estimators, relate the individual component flows with the total flow and
concentrations. |

{,i &piqui-ﬂa*l* pi.piLjIjiL _ (15)" -

fi AEIAAAAUEI_ElUATY for alii e S (16)_
f <EAl4 AlLpi_plualL i sk € splitters ~~ fIT)
' AFAXJ + XAF-F'-XJ*" foralljel R (18)

f) Boundson flowsand concentrations
FLgFI<Pin S (13 .
leLlelsxllu (14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)
IoOser'approximatiOns'ofthe nonlinear ter mswere used. In both cases, the nonconvex problem
(MF) wasreaxed to a linear model by dropping the nonlinear equations (8) or (9).- Equations
that approximate the difference relation between the components were considered (Kods and
Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter
between theflowrateof the components and required the introduction of binaiy variables.




Outline of global opttmization method

- Modd MR can be applied to predict lower bounds to the global optimum in the optimization of

pooling and blending problems and in the synthesis of separation systems. The reason is that
model MR provides a valid relaxation of the original feasible region since the nonlinear
equations (2) and (11) in modd MX are not considered, and the valid linear equations (3), (7),
(12) and (15)-(18) are included. The proposed global optimization algorithm relies on the
solution of the relaxed problem MR within a spatial branch and bound enumeration. The

outline of the algorithm is as follows (for a more detailed description of step 4 see Quesadaand -
Grossmann (1993))

0. Preprocessing (optional)
Determine bounds on the variables involved in the nonconvex terms, that istotal flows,

F, and concentrations, x{. Apply any additional preprocessing specific to the structure of the
problem in order to further bound or fIxvariables.

1. Lower Bound

Solve model MR over a given subregion (initial subregion is the complete feasu ble region)
minimizing aconvex objectlve function $. 1f < islinear the model Is an LP. :

2. Upper Bound

Any feasible solution to the nonlinear model prowdes an upper bound. Heuristic
techniques can be employed to obtain good feasible solutions or the original problem, MF. can
be solved using the solution of model MR as agood initia point. If the solution of problem MR
isfeasible it provides an upper bound.

3.Convergence
If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper
bound. '

4.BranchandBound

Partitionithe remaining subreglons into a set of d|5_|0| nt subprobl ems. Repeat steps 1-3
for each of the new subregions.

Remarks |

The preprocessing step plays an important role in the above algorithm. - It is during this step
that initial bounds for the variables involved in nonconvex terms are obtained. The quality of
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these bounds affects the tigthness of the lower bound since they are part of the estimator
equations (15)418). Additionally, these bounds affect the performance of the algorithm because
they define the search space over which the-branch and bound_ procedure may have to be
conducted.

In some cases, -as described later in this papier, it is possible to exploit the particular
structure of the process network and generate boundsfor the.variables without having to solve
any subproblems. Furthermore, during this preprocessing step additional constraints can be
generated for predicting a tighter lower bound:- of the global optimum can be obtained.

Some of the linear mass balances and.the estimator equations are redundant in the
nolinear formulations, MF and MX. These equations become nonredundant in the
reformulated mode, MR. and for that reason it is important to write a.complete formulation of
the network. However, thismode can present some redundancies that can be easily identified
and diminated-to reduce the size of themodel. Thisisthe case for the concentration variables
used in the splitters. Modd MR uses different sets of concentrationsvariables for theinlet and
~ outlet variables of a split unit. --In practice, it isonly necessary to define the concentration of
the component in the splitter and use the same variables for all the splitter streams. Also,
some redundancies can occur with the total flow variables. These ones are necessary for the
streams in the splitters but they might be redundant and diminated in the other untis if they
do not appear in other part of the mode or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it
corresponds to the global optimal solution. When the solution to the model MR I's not feasible
it isnecessary to follow a blanch and bound procedure to search for the global optimum. This
- procedurerequires avalid upper bound on the global optimum. This can be generated through
heuristics or by solving directly the nonconvex model. For this purpose, the process network
mode is formulated in terms of the individual component flows and the nonconvex equations
for the splitters are included. Equation (9) was also used in this work to modd the plitters
due to it is better numerical behavior. The solution to the model MR was used for the good
initial point. In many instances, it was not possible to solve these nonlinear problems with
MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is generated. Of the set of open
nodes, these are the nodes that have a lower bound that is esrhaller than the_cUrrent upper
bound, the node with the smaller upper bound is selected to branch on. The splitter unitsare
the units that are approximated, and of these, the splitter that has the largest difference




between its approximated and actual individual component flows is. selected. The
concentrations are used as the branching variables since.a change in them affectstheinlet and
outlet streams of a splitter. The branching is done in the selected splitter over the

~ concentration of the component that has the largest difference.

Firgt, the actual concentrationsfor the individual component flaws in the LP solution () -
for the splitters are calculated by,

r,"=%;‘r for all theinlet streamsto splitter  (26)
Thésplitter unit m isthen selected according to the-equation.

 m= AR R Py _
m ugmc mitt ( % jg; ty-z"FH) - 27)

Equation:(27) representsthe total difference between the LP_squtioh___fpr' fhe flows after
the splitter and the actual value of these flows considering the concentrations before the
splitter. ‘Once the splitter has been selected, the component in that splltter that hasthelargest

- difference. J\ is selected by,

J--aigma” ( JL;Lf/- 2P F* 11 | ()

The following branching constraints are then used;
X Szmand X2z . | (29) -

To improve thé upper bound it might be necessary to solve additional nonconvex
problems. These can be solved after a given number of nodés using the solution ofithe node
with the smallest upper bound as the initial point. In thiswork:if there was no significant

| c'hange‘in'the'lower bound 6f the new nodes with respect to the lower bound of the parent node

(< 1%) anew nonconvex problem was solved.

Examplel - -

Consder the following . poollng and blending problem by Harveley (1978). Two streams that
have components A and B are mixed in ainitial mixer a then go through a splitter to obtain two
streams than can be mixed with an additional stream (see Fig.-5a). Two different products can
be obatined and there are constraints on the concentration of component A in these products.
The objective function consists of niimizing the cost that is glven by the total 'flow of the
streams times the cost coefficients, ¢, given in Fig. 5.
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This problem has two local solutions. One has an objective function 0 = -100 and
- consists of only producing product 2. The other local solution, that corresponds to the global
optimum, has an objective of + « -400 and hereonly product 1 is produced.

Modd MR isformulated for this problem and the initial lower bound isQ_. = -500. The
nonlinear model. MF, is solved using the solution of model MR asthe initial point and an upper
bound of $ s -400 is obtained. Sincethereisagap between the bounds of the global solution a
partition is performed. Thereisonly one splitter that needs to be approximated and since there
axe only two componentsit is irrdevant which one is selected since the composition bounds are
rdated (eg. xg- = 1 * x*"). The actual value of the composition of A in the solution of model MR
is used as the branching point (x* = 0.0166) to generate two new subproblexns. The first
subpraoblecm (x4 £ 0.0166) has a lower bound of 4y = -100 and the second shbproblem (x* £
0.0166) has a solution of fa.= -400 (see Fig. Sb). Both of these bounds are greater or equal
than the upper bound, therefore the global solution has been found (x = 0.01).

Example 2

- The next example is a separation problem taken from Kocis and Grossmann (1987). The
original problem has binary variables in the formulation and they have been fixed to 1 for this
 example (see Fig. 6). ‘

*

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream
‘has 80% of the inlet flow of compohent B. In the column. 97.5% of the inlet flow of A goesto
the top whereas 95% of the inlet flow of B goesto the bottom stream. Hietotal flow to the flash
unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of
each of the two feed streams hasto be lessthan 25. The objectivefunétion isgiven by,

$ =52+ 10F! +8F,+F,+4F;-35Pj"-30P,° (30)

The initial lower bound for this problem is O, = -513.22 and it is infeasible for the
original NLP model. A nonconvex problem is solved using CONOPT with the solution of model
MR as the initial point obtaining an upper bound of ¢ = -511.87 and the relative gap isonly
0.3%. Again only one splitter is present in the network and a partition can be performed using
the concentration of component A in this splitter. The lower bounds for the new two
subproblexns are fa = -511.87 (X £ 0.5121) and <t = -511.80 (X5 > 0.5121). Both solutionsare
greater or equal than the upper bound and the global solution has been obtained. In the global
solution Fi =8 and F, = 25, and 11% of the inlet flow lo the splitter is directed to the flash.
76% to the column and therest bypassed to P,.

11




Example3 - :

TIUs example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

>«4Si+ 1552 +4S3 : @D

The initial lower bound is 4y = 138.18 and the nonconvex problem MP is solved
obtaining a solution of $ = 138.7. The gap between these bounds is less than 0.4 %. The
globa optimum for thistolerance is shown in Fig. 8. '

Sharp separation networks

In order to illustrate the application of the above algorithm to a specialized case where the
structure can be further exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
sp_ecifiéd multicomponent product streams. The components are-ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9)). The superestructure consist of N-I separators. Separator i performs the
task of removing compénent number 1 to number! at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-|
streams, F, that go to the separators and K streams, a,. that bypass the network to go to the
products. Each stream F is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i,

The outlet streams of separator i are the top, T(, and the bottom, B.. These streams, T,
and B,. are each split into streams, PT{ and PB” respectively, that go to the K products and
into streams, KIV' and.RBf. that are redirected to the other separators. The top stream of
separator i, Ty can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaller flows  KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, B,, can be redirected only to separators i+1 to N-I since it can only
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contain components that are separated by these sharp separators. RB/ is the redirected flow
_from the bottom stream of separator i to separator i\

M odel

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
~ and total flowshas the falowing form:

oL, Nl .
min *="ZcS| (321
. | ] L
N-I K
st. reeole» 1 *i * m®k : 10Z.23
ti k*i
L SF|L, foraliandj (323
11 N-
Si»F|+ £RB'+ X Kiy forau i (329
t'«l I'«rel
11 LN :
Si xgq = flj +#8 RBf' x| + vdisKT,' xtrj  for all i and] (32.5)
Sis” + Bi S foralii (32.61
Ty xty = S, x5y for all i and ord(j) i (32.7)
Xty=0 for aU i and ord(j) > i (32.8)
B, xby = S; x3, ' for all i and ord() > i (32.9)
xby=0 for all i and ordQ) ~ i (32.10)
t-i K wl
Tim ERTi' + £FTX foral i . (32.11)
1*1 k«l
N-I K
Bi s rERBA" +BPB* for all i (32.12)
N N : L
Ph= TPT*+ TPI3n + 00 "~ Toratk $(3213)
N N . ' ' :
Py = £PT *xtg + £PB,“xbg+ acz ~ forall kand] (32.14) .
i*l i»l
1 .
azgt.,-—- 1 for alii (32.15)
N
Gkl = 1 for all i (32.16)
N
I xs,j=I for alii (32.17)
ovdijj=t

S, Ty B,. Fi. RT/. RBt*. PT{ PBI. ¢*. t xsj, Xty. xby 2 0
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The parameters Feed, zj, PX and py; répresent the total feed; composition of the feed,
total flow of product k and component flow of component j in product k, respectively. - The
variablesxsg, xty and xbg are the concentr ations of component j in the inlet stream to separator
1 top of separator 1 and bottom of separ ator i, respectively.

The objective function (32 1) is a linear function of the inlet flow to the separators
Equation (32.2) is the total mass balance in the inlet splltter and equatlon (32 3) is the
component mass balance. Equations (32.4) and (32.5) are the total and component mass
balances for the mixer i before the separator L The material balances for separator i are given
by equations (32.6)* that isthe total mass balance for the separator; equations--(32.7) and (32.8)
that are the component balances for the top stream and indicate that nothing from components
number 1+1 to N-l isin thetop of the separator, and equations (32.9) and (32.10) that are the
component mass balances for the bottom streams. Equations (32.11) and (32.12) are the
overall mass balances for the splitters of the top and bottom streams alter separator 1. The
equations that state that the concentrations of the outlet streams should be the same that the
inlet stream in-a splitter have been already substituted. Finally, equations (32.13) and (32.14)
arethe overall and component mass balances for the mixer for product k.

Modd (32) correspondsto a formulation.of the type of mode M X where the distribution
coefficients are known and restricted to 0 or 1. Some smplifications have been made to avoid
including many irrelevant variables (e.g. not to define concentrations for the streams that go
the top i to product k). Although, some of the linear constraints in this formulation are
redundant, they can become nonredundant in the linear relaxation as will be shown in
Example 4.

Equations (32.5). (32.7). (32.9) and (32.14) involve nonconvex terms. This model can be
reformulated as in model MR by introducing individual component flows and the linear
equations (15M 18) and (7) according to the approach illustrated earlier to obtain a modd in the
form of model MR The resulting reformulated model is as follows,

min¢:"§'c<8i | | (33.1)
st Feed :N|-||: 1+ |K<><k . _ (332
i=Fg M' for all i andj (33.3)
S=fi+ZT RB.-t+p§;Frf' S - for alii (33.4)
=i+ Z by + 1> for all i andj (335)
el
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Sr-TV+'B, - for alii - : (33.6)

t, = gj forall i andord(jJ£ i - (33.7)
t*0 for all i and ord(j) > i (33.8)
b,jssSg : for all i and ord(j) > i (33.9)
tj=0 ' for all i and ordfl) £i (33.10)
’ t= K .
T, = sW + IPT, for all i (33.11)
191 k«|
N-I
Bim £RB, "+ £PB k for all i (33.12)
p* = Tl-—rt " +'£PB| +ak - for all k : (33.13)
>M riti : L
Pki * ._Sljtt," + XpbN* ok z, for all k andj (33.14)
= ! i=]
*1 K )
te= Z "/ + Zptij* foraUiandj (33.15)
i'»l k «l
N-I K o
bg = Zrbij* + £pb«* for all i andj (33.16)
I'*t+] - k>l
Ext.. =1 for alii ) (33.17)
| Exbu-l | forall i (33.18)
= 5 for alii 33.19)
T l:all | ( )
B,s Ib« for alii . (3320
udlll-i
PTi*= _pt<*k for alii and k (33.21)
0|><|(])>>| .
= Ip_’b _ for alii and k - (33.22)
RT/ = ]DV _ foralliandif <i (33.23)
ord(l) |
RBf = I|l rb/ o foralliandr > i (33.24)

Equations (15-18) for ty, rtyy' and pty* in terms of xty
-andthe total flow of its respective stream.
- Equations (15-18) for bq, rbg* and pbe in tennso{xl:,,
and the total flow of its respective stream.

S Tt Bt. Fa. KTf, RBY, PTX. PB". ac. fj. xs,jt Xty xbjj ~ 0

Sy, ty. Dy Dty*. phyj . rt,/. ly* 20




It is not nécessary to include equations (15)-(18) for the inlet component flows to the
separator, . since the variables xsy only appear in these equations. Also, the component
flows, g only appear in mixersand sharp separators unitswhich can be exactly represented in
terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-
(33,16) that are the component mass balances for the splitters of top and bottom streams have
been included accordingly to the reformulation previoudy presented. Equations (33.19M 33.24)
relate the total flow and the individual component flows for the splitter streams.

Preprocessing

The proposed Superstructure (Fig. 9) allows to bypass certain amount of the feed to the product
k. Ok, without having to go through the separation network. The amount of the product k that
is not bypassed has to be processed I'n the separation network and it will be denoted as the
'residual product*. Hence, the total 'residual product k' is given by (P* - a) and has the
component flows given by (p* - d'Z )(seeFig. 10).

The global optimal solution of model (32) is a network in which all the ‘residual
productsl,ha\/e at least one component with a zero flow. The reason that it is not optimal to
separate a stream in the network and later to remix it. The same degree of separation can be
achieved using a bypass that does not incur any cost in the objective function.

Consder the second separator in the solution obtained by Floudas (1987) to his second
example (see Fig. 11). For this subnetwork of the complete structure the"upper 'residual
product’ hascomponents B and C present. The components are being separated and remixed
again. The same outlet flows can be obtained with a smaller input flow to the separator asit is
shown in Fig. 11. Notethat both ‘resdual products have componentswith zero flow.

It should be clear that if there was not a component with zero flow in the 'residual
product’, thenthereiis part of this stream that could have been obtained by just bypassing the
network. Thisin turn does not incur in any cost, whereas going"'through t‘h'e network has a
positive cost. The above condition gives a lower bound for the bypass to each product. This
also correspondsto the largest amount that can be bypassed sinceall thisflowsin the ‘resdual
flow® have to be positive. In this form the bypass can be precalculated without affecting the
global optimality of the solution. '

The bypassto product k is given by the maximum amount that can be sent to product k
without having a negativeflow; that is.

a* =minj t"4 (34)

' 1

16




- Where Zjis the feed composition and py; -is.the flow of componentj in product k. The
-component flewsfor resdugl product k, y# are given by.

=Dy - Ok | . . | (3s)
Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the flow of the key
componentsin separator i. These bounds are based on the fact that separator i isthe only unit
that can perform the task of separating component number i from component nutaber i+1.
They are reduhdant for the nonlinear formulation (32) but they are relevant for the linear
relaxation in (33). To calculatethem itis nece&laryto determine in each product what isthe
differ ence between the two key components of separator 1 with respect to the concentrations.in
the feed. The lower bounds in separator i* for the flow of the key components in the top
(component JI) and bottom (component j2) streams are given by:

thi* | I{T\Mi - 7ji nitowi;, ) for all i (36)
bw2 I (g - 2 ity o () foralli (3

wherey™ isgiven by (35). It isimpartant.to include both bounds in the relax mode (33) since
thereisno guarantee that the inlet flow to separator i hasthe same prdpoftion between the key
components as the feed. It is not known in which part of the sequence separator 1 will be
placed, and it can be after a splitter that is not being approximated correctly.

The bounds in (36) and (37) can be extended to separation of components that are not
adjacent in the feed. Consder-component number i and component number i+3. There are
three separators that can perform this task, separatorsi. i+1 and i+2. Cuts of the following
form can be obtained,

K
0+t t+ teai Z | {TKE - Z, miaonHH o *5 12F1) forali (39)
K y

X
bey + Diaz g + Diazi zél{‘huoa = Zyo3 MR yrei(jim or i +3 Ejl;'j} -~ forali (39

Equations as the ones in (38) and (39) can be redundant compared to equati.ons (36)
and (37) and it is possible to detect this before solving the problem. |

Relativeflowrate constraints
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These constraints aré used when the relation between the flowrates of two components
isknown. In particular, consider component A in the last column of the network ((we Fig. 12).
None of the redirected streams contains component A. Therefore, the relative flowrate of
component A with respect to the other components in the top stream hasto be smaller than in
the feed. This relation should remain valid after the top stream is split to the products and
redirected flows. -

.Inthe separator pr__evioust(_)'the last bne, N-2; all the streams do not have component A
except the one coming from thetop .of the last column. For this’_on‘é it is\al'__ready known that
the relative flow of component. A with r@mmﬁ to the other comp'onents_istsmaller than in the

.feed. - Thistype of-analysis can be done for corhpbnent A and cOmenent N in all the columns
yielding th$ following linear constraintsfd the splitters.

for alii and k

ZAPYij*-ZjPt«A O forj * Aandord(j)<i (40)

zypb,j* - z, pr*a“ £0 ~ forord() * N andord() >i  (41)
foralliandi'>i :

ZArt]'=ZjrtiA%n0 forj x Aandordyy a x wW2)
for alii and f<i

Zy byl - 2, thy' 2 O -7 forord(J)* Wandord(j)>i -~ 143)
- Boundson concentrationsand total flows . -

The approXimations '(15-18) réqUire bounds for the total flows and component
concentrations-in the splittefs. The lower bound. for the total flow of the top and bottom
streams is given by the lower bound of the key components obtained in equations (36) and (37).
For the outlet streams of the splittters, that are the redirected streams and the streamsthat go
to the products, the lower bound is zero. The upper bound for the total flow of the top and
bottom streams is given by the feed to the network of the components that can be present in
each stream .that is, | -

t
TY= Z(Feed-Xak)z, - for ail i ‘ (44)
ard(l=1 ‘K B :
N
- Bl«= " ItFeed-10fcJz, forallj 45
or{fimie] k

The upper bound for the streams after the splitter are given by.
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RTf " =T - _— forailiandi' <i (46)

RB.‘“=B;“ - I foraliandi'>i - - (47)
PR 2 _.g.-{"’ B foralliandk : ‘(48)
PB = ..?:.“? : for alii and k (49)

The lower bounidsfor the concentrations are zero except for the-key componentsin the
separator for which the lowér bounds are given by the lower bound of its flow-divided by the
upper bound of the total flow of that stream. The upper bounds in the concentrationsare given
by one minus the lower bounds of the other components. '

The solution of the linear programming‘mode (33) provides a lower bound to the global
optimum since thismode is a valid relaxation of the nonconvex model (32).  This lower bound
" isobtained by solving the LP model for the ‘residual products' in 135) with the addition of.the
valid constraints (36)-(43).

The upper bounds are generated solving mode} (32).in terms of the individual flows for
the 'residual-products. When additional noncanvex problems are solved to improve the current
upper bound it can happen that very similar initial point are generated. In thiscase, a new
nonconvex NLP is solved in which bounds over the total inlet flows to the separators (S] are
included. For this purpose the values of these variablesin the LP solution (§*) areused such
that the current incumbent solution isno longer feasible.

Exampled

Consider the 3 component example proposed by Floudas and Agganval (1990). An equimolar
- feed has to be separated into two products as show in Fig. 13. The objective function is given
by '

4+ =0.2395+0.00432 S, +0.7584 + 0.01517 &* (50)

- The bypass to products 1 and 2 can be calculated according to equation (34) and the
'residual product’ component flows are obtained through equatlon (35) (see F|g 14). Thetotal
bypass to product 1 isa, = 90 and the bypass to product 2 is ctz = 190 and the feed has a
concentration of zx = 1/3, zQ = 1/3and Zc = 1/3. In thisform the 'residual product' 1 isYIA =
0, YiB = 20 and y,. = 0 and the residual product’ 2 is Y, A =20, Yz = 0 and Y = 20.
Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35)-(36). The key components in separator 1 are component-A in-the top and
itsflow has to beat least 20 and component B in the bottom has to have at least a flow of 20.
In the top stream of the second separator at least 20 units of component B have to be
separated from 20 units of component C:in the bottom stream. It is important to note that
after preprocessing the network several suboptimal solutions have been cut off. One of these
suboptimal solutions for this particular data is a parallel configuration of both separators
(there are situations in which a parallel configuration can correspond to the global solution as
will be shown in example.5). .In this example the direct or indirect sequence have a lower
objective function. . Both of these configurations are local soluti'ons with an objective function
value of 4 » 1.8639 for the direct sequence and 4 = 2.081 for the |nd|rect one In some
instances, MINOS 5.2 had problems conver ging even in this small example. '

The LP (33) isformulated for this problem, giving a lower bound of (* = 1.8639. The

. approximations are exact and therefore this solution is a feasible solution of mode! (32) proving

~that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.

The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted
that if the linear mass balances for the mixer for product 2 were not considered since they are
redundant for the nonlinear formulation, a lower bound in the relaxed modd of <3 = 1.12 is
obtained, thisshowsthat it isrelevant to include all the mass balancesin the linear modd in
order to tighten the lower bound.

- Example5

In the approach proposed by Wehe and Wester berg (1987) for the case of 3 components only
the direct and indirect sequences are considered and both options can be modeled as LP
problems since no mixing is required for these separation networks. However, this example
shows that paralld configurations can be also'globally optimal and that they are not excluded
by the method proposed in this paper. To be able to consider parallel configurations or any
combination of parallel with direct or indirect sequences it is necessary to model a
superstructure in which mixing is allowed (like in the structure used in Fig. 13) Here,
nonconvexities arise in the mass balance equations after the separators.

Consider that an equimolar feed is to be separated into the two different products given
inFig. 16. The objectivefuncti'on is to minimize the sum of the total flowsinto the separators.
The same procedure that in the previous example is followed and the bypass can be

_precalculated by equation (34). The solution to the mode (32) yields <t = 12 and sinceit isa

feasible solution of modd (32) it corresponds to the global optimum (see Fig. 16). Notethat the
solutionsfor thedirect or indirect sequences have an objective function of ¢ =16.
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Branch and Bound

Ifthereisa gap between the lower and upper bound a branch and bound search is performed.

It isonly'necessary to do the.search over thevariables involved in the nhonconvex terms. The
concentrations.are used asthe branching variables since a change in them affects the |nIet and
outlet streams:of a splitter* In thisway. it is necessary to check the apprOX|mat|on for the
concentrationsin-the splitters of the top and bottom streains.of the separ ator . Equations (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound
search. )

- Results

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation
network examples 4 to 12. The number of variables is the total number of variables that are
included in the reformulated and relaxed model (33) for that example. The lower bound isthe
initial bound that fs obtained by solving model (33) over the entire feasible space. The inital
gap represents the percentage diflerence between the initial lower and upper bounds. When
there is a zero initial gap it means that the first relaxed solution is feasible in the original
problem thereby corresponding to the global solution. The column for nodes gives the total
number of subproblems that wher e solved before converging to the global solution. A reative
tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after
branching and example 12 for which a tolerance of 0.02 was used. It isimportant to note that
the initial lower bound is tight and that it corresponds to a good estimation of the global
solution. The largest differences are for example 1 with a 25% of difterence and for example 12
with a 7% diflerence. The LP time refersto the time used to solve each relaxed modd and the
NLP time isthe time used for solving a nonconvex.model. It is possible to do updates using the
previous LP solution and in this form have a more efficient implementation. The times are in
seconds and the problemswere solved on an IBM RS600/530 using GAMS 2.25 (Brooke,et al.
(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP
problems. A brief description of the example problems 6 to 12 is given below. It includes the
specific data for the problem, the objective function and the topology of the network that is the
global solution.

Example6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

$=259 +3.02+15S;’ (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is <t = 54.25 and an-upper bound of 0 ='55.5 is obtained by

' solvmg the nonconvex problem A partition of the feasible region is performed using the

compostlon of component D in the bottom stream of separator 1. The first subproblem (x £

) 166) yields a lower bound of 4L ='55.45 and the second subproblem (x< 0.166) hasa solution

of 4= 55.8. Thelatter isgreater than the upper bound iand the former isless than 1% of the
global solution (see Fig. 17). =

Exajnple7
This example istaken from Floudas (1987). The data for this problem is given in Table 3 and
the linear.objective function is glven by

4>=2.5S,+3.0S,+L2s3 = - (52).

Theinitial lower bound is <J¢ = 32.7 and it provides a feasible solution to the nonconvex
problem. In this form the global solution (see Fig. 18).is obtained in one iteration;, It is
interesting to seethat this solution also provides a better objective function for the concave
objective function used by Floudas (1987) ($ = 10.65 versus$= 13.68 which is 28% higher)

Example 8 . _
Tills four component problem is taken from Wehe and Westerberg (1987) The data for the
. productsisgiven in Table 4 and the objectlve functlon has the foIIovvmg form

$=50+05Si +4.0+0.3S2+6.0+0.7S; - - (53)

The first relaxed subproblem has-a-solution of 0. =26.76 and it is infeasible.for the

nonconvex problem. A nonconvex problem is solved using CONOPT with the LP solution as the

“initial point. An upper bound of 4> = 26.79 I sobtained corresponding to the global solution (see
- Fig. 19) withina 0.1%.

Example9
This example corresponds to example 1 from Wehe and Wasterberg (1987) Table 5 prowdes
the data for the product flowsand the objective function is given by:

$=50+05Si +9.0+ 1.0S2+3.0+0.4S;+6.0+0.6 S, (54)

A initial lower bound of € = 85.16 is obtained and the upper-bound Is$ « 85.65. The
difference is 0,5% and the global solution (see Fig. 20) isobtained in one iteration.
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Example 10 . _ _
This problem is taken from Floudas (1987) and the data is given in Table 6. The objective
function isgiven by,

4«12S +3.0S) +25S;+ 15S, (55)

The.l;l;l_];gjll lower bound is<* = 156.56 and the upper bound is< = 179.08. After 5 nodes
the global solution of $ = 159.48 (see Fig. 21) is obtained.

Examplel1l
The data for this 6 component problem are given in Table 7 and the objective function hasthe
following form:

4»1.5S +3.0S +20S3+ [0OA+4.0S5 . | (56)

The initial lower bound isO. = 173 and the upper bound is4 » 179.11. After fivenodes
the global solution is obtained (see Fig. 22).

Example 12

Thisisa 6 component 4 products problem and the data are given in Table 8. The objective
function is:

$m50S +3.0R+20S;+255,+4.0S; (57)

Theinitial lower bound is<¢ =362 and the initial upper bound is0 = 415.6. The global
solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent
streams has been proposed. The basic idea relies on a relaxed LP model that is obtained
through reformulation-linearization techniques that establish a clear relation between the
component flow and the composition models for mass balances. The reformulated model
combines both of these providing tighter lower bounds than other relaxations proposed in the
previouswork. Thereaxed linear model has been embedded in a branch and bound procedure
to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of
the particular structure of sharp separation networks with single feed and mixed products.
Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model

can be obtained’ without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter
lower bound.

Twelve examples for both general process networks and for sharp separation networks
have been preéented to illustrate the performance of the algorithm. As has been shown, only a
small number of nodes are commonly needed in the branch and bound search to identif'y the
global or e-global solution. Moreover, in many cases the initial lower bound is either the exact
solution or avery good approximation to the globa solution.
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Appendix A. Reformulation-Linearization . to obtaih_,-t_h,e‘ nor‘l!_i'rflear
constraintsin model MF

The nonlinear equations,in model MF. that can be expressed eifher as (8 or 9), Can also be
generated from model MX. For this purpose take the concentration model MX and consider
equation (5), % '

L oXe=x . A1
multiply by the valid bound constraint Xj L O o S '
xfvfm xf | (A.2)
~Use equation (5) for component A Lo
XEXF* * XtXFX . . (A3)
Multiply by thevalid bound constraints F" 20 and F= O
P SEXE = FralFxnk : - (A4
thatitlsllnearlzedtoyleld. ' S
fe €2 = gk (A.5)

which is precisely equation (8) for the splitters in the individua flow model MF.

Consider again equation (5),

X, =1 1A.6)
multiply by thevalid bound constraints F =0 and F* = 0,-

FAXFFAFR'X) FY A7)
that can be linearized to yield.

ql: F=f F* (A.8)
Define the split fraction £ to be,

? ) £ <A_9J
Equation (A.8) can then be expressed as

fjtntff (A. 10

which corresponds to equation (9).

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear
approximations in general are also redundant in the linear reformulated model MR.  Consider
equation (A. 10), smilarly to (15) one of itslinear approximations is given by.

ﬁ'ZE”'gk-i- E)igkl._ g!l.ﬁkl. {A.11}

If there are no particular restrictions in the splitters, then the bounds for the split
fractionvariableare 0 £ £ < 1 and using them in (A. 11) yields.
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gy (A.12)
The bound for the individual component flow is given by fi" = x,*" F*"; alsox, = x,"and £ -
Fo |
pE which leadsto

23t Fl__l‘-‘"il _ (A.13)
The estimator (15) for the same conditions (F*" = 0) is given by

[ axitr ; : (A.14)
: pkL -

Since thefactor -pg-'® always |ess or equal than 1. equation (A.13) is redundant. A similar
analisis can be performed for the other estimators. Only when more specific bounds over the
-gplit fractions or the individual component flows are known, will these additional estimators be
non redundant.
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Figure 1. Process network with units, splittersand mixers.
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Figure 2. Mixer module
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Figure 3. Splitter module.
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(b) Treesearch
Figure 5. Network and branch and bound search for example 1
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Figure 6. Network for example 2.
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Figure 7. Network ‘or example 3.
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Figure 8. Optimal network for example 3.
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Figure 9. Superdructure for separation with sharp splits and mixed products.
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Figure 14. Resdual products and key component boundsin example 4. -
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Figure 15- Global optimum solution of example 4.
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10A
10B -
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Figure 16. Global optimum solution of example 5.
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Figure 17. Solution of example 6.
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Figure18. Solution of example 7.
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Figure 19. Solution of exam"ple 8.

36

B T P S

d .ﬁl

o BEIEL G M i 1 ool S S D, A 50 R BB TR e ot ot S s




iy g—

51.675

Y

Figure 20. Solution of example 9.
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Figure 21. Solution of example 10.
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24C
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Figure 22. Solution of example 11.
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Figure 23. Solution of example 12.
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Table 1. Computational results

Comp. * WocL ™ Var. Lower  Initial Globa Nodes LP  NLP
- : bound gap splution fime _time !

Examplel } — = . - 29 -500 20' -400 3 005 01
Example2 § — 35 -513.22 0.3 -511.87 3 0.26 0.3
Example 3 - 113 138.18 0.4 138.7 1 034 04
Example 4 3 2 65 1.8639 0.0 1.8639 1 0.13 -.
Example 5 3. 2 65 16 0.0 16 1 0.13 ..
Example 6 4 - 2 107 -54.25 2.3 55.5 3 097 04
Example 7 4 2 107 32.7 0.0 32.7 - 1 0.17 .
Example 8 4. .3 1125 26.76 0.1 26.79 1 0.23 0.3
Example 9 5 4 281 - 8516 0.5 85.65 1 3.08 28
Example 10} 5 2 225 -~ 156.56 124 159.48. 5 259 23
Example 11} - 6. 2 350 173 3.5 179.11 5 998 8.8
Example 12 6 4 430 362 14.8 388 . 33 - 198 132

Table 2. Datafor example6. - ... .

Component A B . . - D" F-Tota |

Productl | "5 10 % 10 29

| Product 2 10 10 6, 5-¢1 31

Leed 15 20 10 15 1 60

i

Table 3. Datafor exa'rhple 7.

Component. A B g D ITloa
Product 1 - 75 100 -~ -.10 1 315
Product 2 75 10 6 [ 28.5
Eecd 15 20 10 15 | 60
Table 4. Datafor example 8.
Component A B C D Total
Product 1 2 3 T 3 9)
Product 2 1 4 1 5 11
Product 3 3 1 3 1 8
Feed 6 8 5 9 , 28
40
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Table 5. Data for ex ple9.

omponen A B C D E _Tlod]
Product 1 7 8 3 9 8 | 35
Product 2 10 3 5 5 4 27
Product 3 5 5 6 7 3 26
Product 4 10 0 6 4 9 29
{Eead 32 16 20 25 24 117
Table6, Datafor exam_p__ e 10,
Component A C D E {Tota
uct' 1 2 2.4 16 8 1 29.4
Product 2 8 5.6 4 8 9 34.6
Eeed 10 8 20 16 10 64
Table 7. Datafor example 11. ~
omponen A B C D E - F T otal
roauct I 3 yJ 16 8 4 10 43
Product 2 8 10 8 8 6 5 | 4%
Eeed 11 12 24 16 10 15 88"
Table 8. Datafor example 12. .
| Component A B C D E__ F | lotd]
Product 1 3 2 6 8 4 10 33
Product 2 8 10 8 8 6 5 45
Product 3 5 4 10 3 11 4 37
Product 4 7 3 1 2 2 7 25
EFecd ' 23 19 25 21 ‘26 26 140
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From product' k Product k

- separators———>>@ > i —> P
o / F*-a,) .'

Bypass
from feed | &%

Figure 10. Definition of residual pfoduct'.
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0.666/f Fow to sparator = 5.0
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Figure 11. Example of solution without and with a zero component flow in 'residual ‘product” .
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Abstract

This paper deals with the globa optimization of networks consisting of splitters, mixers and
linear process units and which involve multicomponent streams. Examples include pooling
and blending systems and sharp separation networks. A reformulation-linearization technique
is first applied to concentration and flow based models in order to obtain a relaxed LP
formulation that provides avdid lower bound to the global optimum. Thisformulation is then
used within a spatial branch and bound search. The application of this method is consdered
in detail for sharp separation systemswith single feed and mixed products. Numerica results

are presented on twelve test problems to show that only fev nodes are commonly required in
the branch and bound search.




1 nt'roduction _

A common source of-nonconvexities in the synthesis and design of processes, as well as in
flowsheet optimization, arethe material flow-equations for multicomponcnt streams.. These
nonconvex equations involve bilinear terms and they arise in the mass balance equationswhen
the compositions are unknown. There are different equivalent formulations for this type of
networks. One alter natlve is to formuiate the mass balance equatlons in terms of component
concentr ations* In this form blllnear terms are present in tHE equationsfor the mixer units
and the different process units (eg sharp separators). A second alternative is to expressthe
mass balances in terms of flows of individual components. This option hasthe advantage that
it involves a smaller number of nonlinear equations. However, the modélling-of the splitter
units involves bilinear terms that arise due to the conditiont that the proportions of flows
between comp_onents have t6 be the same for the differerit streams. -

The difficulty with ‘the nonconvexities noted above is that they may give rise to
optimization problems involving several local optima and numerical singularities that may
produce failure in the NLP algorithms. Recently there have been important efforts in the area
of global optlmlzatlon Exammes of algorithms are the ones proposed by'McConnick (1976),

Floudas and Viswewaran (1990) and Sherali and Alameddine (1992) which can be used to solve
bilinear programming problems like the ones that arise in networks with multicomponent
streams. For a recent review in the area of bilinear programming see Al-K hayyal (1992). -

Asfor previous work:in the design and synthesis of multicomponent process networks
Mahalec-and Matard (1977).and Nath (1977).developed evolutionary techniques that are based
on heuristics to generate a network configuration. Floudas (1987) addressed the synthesis of
separation networks with mixed products in which only sharp, separators are considered. A
super &tructure of the process network was proposed and modelled in terms of concentrations.
The resulting mode is nonconvex and solved with a standard NLP algorithm with no guarantee
of global optimality. Floudas and Aggaiwal (1990) solved small pooling and blending problems
and sharp separation networks problems using a strategy based on Sender s decomposition. In

“this approach only convex subproblems are solved but there is no guarantee of obtaining the
global optimum. Kocis and Grossmann (1989) modelled process networks with
multicomponent streams in terms of the individual component flows. They included a set of
_bounding constraints with binary variables to approximate the nonconvexities that are present
in.splitters with multiple outputs. Wehe and Westerberg (1987) studied the problem of sharp
.separation networ ks with mixed products. Th!ey proposed a search procedure that involvesthe




enumer ation of the different separation sequences. The nonconvex equations are dropped and
constraints that are valid for each particular sequence with a set of bounds ovéf” the key

“‘components are included to obtain tighter LP relaxations for.each configuration. However, the

number of sequences’'to be‘examined grows rapidly and there is-no guarantee of global
op'timalitv* ¥

In. some partlcular cases the nonconvexities in the mass balances can be avoided
through the,introduction of binary variables. One of these cases is when smgle choice splitters

- arepresent in the flowsheet (Kocis and Grossmann. 1989). Here itis possb_leto have a mixed

integer Zryfd formulation for the mass balance equations in terms of the individual component

- flows.. Another restricted case for which some nonconvexities can be reformulated is when

mining within the network is only allowed for streams of the same concentration. In thisform,
larger network superestructures must be proposed and the concentratlons of the streams are
known beforehand. Integer variables are introduced to model the existence of the different
streams (e.g. the mixed- integer linear formulation for .sharp. separation networks by Floudas
and Anastasiadis, 1988). - -

The objective of this paper is to present an efficient global optimization method that
exploits the particular structure that is present in process networks W|th multlcomponent

. «streams (eg. pooling and blending systems, sharp separatlon networks). First a relation is

established between formulations based on concentrations and individual flows. Thisi is done
following the Reformulation-Linearization technique proposed by Sherali and Alameddine
(1992). As will be shown, a linear relaxation Is obtained that is in the space of the
concentrations and individual flowswhich can be used in a branch and bound search isto find
the global optimum. Application to the optimal design of sharp separation systemswith single
feed and mixed productsisconsidered in detail. Different preprocessing.techniques that allow
tightening of the relaxation problem are presented. The performance of the algorithm is

~ reported on-a total of twelve problems.

Modeling with concentrations and_ indi\)idual_ flows

Consider a process network that consists of splitters, mixers and pfrbeess units tliat are
interconnected with multicomponent streams (see Fig. 1). “The process iinits that arc
co_nsidered in this paper are units in which the output flows of the comporients can be
expreesed as a linear relation of the inlet flows (e.g. sharp separators, reactor with*known
conversion). It is possible to formulate the mathematical model of the process network in
terms of the concentrations of the streams, Xj. Another possibility is to model the network
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using flows of individual components. The former has the advantages that it provides a
convenient- framework. for the evaluation of therr_nddynamic properties, and i'n'ma_l_hy cases
bounds can be expressed in a more natural form. A major diéadvantage is that many
nonconvex terms (bilinear) are involved in the mass balances for the components. Hie
individual component flows formulation is often chosen since it givesrise to a larger number of
linear equations and the only nonconvexities are involved in the modelling of the splitters. In
these untisit is necessary to enforce that the components maintain the same concentration in
each of the streams leaving the splitter. These constraints can be expressed as relations
between the different components (Wehe and Westerberg. 1987). One deficiency of this
representation is that since many flows can take values of zero, singularities may arise with
which conventional nonlinear programming methods may have difficulties to converge.
- Another alternativeis to introduce additional variables that represent split fractions (Kocis and
Grossmann. 1989).. This involves a larger number of constraints but tends to yield a
formulation that numerically is better behaved.

Following are the equations that apply to the mixers, splitters and units using the two
alternative representations:

Mixer

A mixer Kconsistsof a set of inlet streams, My, and an outlet stream k (see Fig.2).

a)Concentrations

The total mass balance for a mixer k is given by:
F*= 2. @
where F* Isthe total flow in stream i. The mass balance for each component j is given by the
nonlinear equations,
Frxn £ Pxj! forallj )
e My '

wherex_,1 is the concentration of component j in the stream i

b) Individual flows
Here it is only necessary to write a mass balance for each component j, given by the
linear equations: ) ' “ : 3
An 2T C " forallj : €)

My

where fj* is theflow of componientj in stream i.

Splitter
A splitter k hasan inlet stream k and a set of outlet streams S* (see Fig. 3).
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~ cQConcentrations S _ _ _
'~ The equations for a’ splitter in terms of the concentrations are given: by the following
Ii_hear equations | |

F =Fk @
. a8y : . ) :
, : for alii 6 Scai*d] O .
X = x
_ ©)
L 350 |
7 |

’b)l ndividuualL Jlows
- Themassbalance for each component J is given by

2 [’1 Sff _forallj .. @)

i€Sfc

Here, it is also necessary to enforce the Iclondition that thetstreams leaving the splitter
have the same proportions in flow for each component. These relations between components,
which are nonlinear, can be expressed in terms of the inlet stream k and a given component J*

fi* tf =V . for alii 6 I andj*j' (8

A different approach consists of introducing as additional variables the split ratios *,

that represent the part of the inlet flow that goes to the outlet stream i. The nonlinear
equations are given by '

. §‘=§‘fj" _ . (braliie Iandj ©)
withOs& <1,

Process units |
In this paper it will be assumed that the outlet streams, i € O, in the process unitscan
be expressed as linear relations-of the inlet streams, i e I (see Fig. 4). Thisisfor instance the

case of sharp split separators, separations in which the recovery leve ‘is known, or reactors
that have a fixed conversion. '

a) Concentrations : : T

The overall mass balance for process unit k is given by,
IF*= £F a0
if 1k *«°k ' :

The massbalance for each component] is given by the nonlinear equations:
: £ PME*'N'sPX! forallie Okand] (1)

»* «lk

e p; is a constant for process unit k that gives the distribution of companent | in the

sream i'(§8§88miw§ from streams i~ € I,. For a separator unit it isrequired thatugkf’\* =1

and £ Pji_tk si. A sharp split separator is one for which Il = 1 and 10 =2 (top and
VEI,

bottom streamé) and for all the components the constant p,-t“c are either O'or 1.
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~-ffi Uvdiiikixialjlows : :

Only the mas balance for each component is necessary and it is given by:

' ‘lkﬁﬁlkfjl‘ _ _ foral I_ie Okandj (12)
A modd in terms of individual flows MF consists of the linear equations.(3), (7) and (12)

plusthe nonlinear equations (8) or (9). The mode in terms of the concentrations. MX includes

the linear equations (1). (4), (5). (6) and (10) plus the nonlinear equati on_j_s'___(TZ)""and (12).

Refor'.? Tl tottonand L inearization

In order to avoid the direct usé of the nonconvex models MX and MF, there is arelation that
can.be established between them using the reformulation and linearization technique for
“bilinear. programming models propo.sed‘by Sherali and AIa_mé_ddihe (1992). This techhiquié'éan
‘be applied to the model MX. First, consider the bounds over the variables present in the
bilinear terms (total flow, F* and concentrétiohsxf) ' o

FILSFgFe ' - (13
x,ll.s*’lSX’Iu o s : . - (14

Using the bounds in (13). (14) the following constraints can be generated for the bilinear
termsin (2) and (UK : e

Fixp2Plx + 5L F - PtLoxf (15)
Fixi2Flux!+xupli. Fluy ' (16)
FUXGE Pt + o Pro- PGt (17)
F'xf s B+ X" F - B X (18)

In fact. McCormick (1976) has shown that the constraintsdin (15M 18) correspond to the
convex and concave envel opes of the bilinear terms.over the given bounds., The formulation is
linearized by the definition of the following variables:

$k¥**{. o | . . . (19)

Tfte resultihng model which involves equations (1). (3), (4). (5), (6). (10). (12) and the
constraints in (15)4{18) is a linear relaxation of the original nonconvex concentration model.
MX. in which the nonlinear equations (2) and (11) have been replaced by the linear equations
(3@ and (12) from the individual flow model. MF. It is possible to generat'e'addi'tional linear
constraints that are redundant to the original nonlinear model, MX, but that can be
nonredundant in the linear relaxation of the model (Sherali and Alameddine, 1992: Sheradi et




al.. 1992). In particular, consider equation (7) that isthe linear component mass-balance:for
the sputters in model MF.  This linear equation is not present-in the linear:relaxation of the
concentration model, MX. Take equation (4) and multiply by the valid bound constraint xf £0

toget
- N * N B . ) .
us‘ij F - (20
Using equation (5) ylelds
tPxj~NEA 4
el

that can belinearized to,

£
‘5-; whik, ) N (22)

_yleldlng equatlon (7). Hence, the linear equatlon for the splltter isvalid and it i$Included. Hie

nonllnear equations (8) or (9) can alsobe generated in a similar fashion but theif linearizations
are in general redundant (see Appendix A) They are onIy useful when the formulation df the
problem provides non-trivial bounds over certain components in the outlet streams of a
splitter, or when there exist some restrictions over the split ratios for the outlet streams.

Also, the constraints that reate the total flow and the individual flows of a stream can
be generated for the splitters. Taklng equatlon (6) and multiply by F ylelds

Ft Txk = [es)
1

Using the congtraintsxf = xj* in equation (23) and linearizingwith fi* = F* xf yields.

F-1tf @

i

Based on therabove it is possible to-obtain a reformulated model MR that involves

‘concentrations, total flows and component flows, and which bounds,the solution of the original

problem. The following equations are given for-model MR: " .
a) Objective function. 0. which is expressed in terms of individual or total flows, ..

b) Mixer equations, which are expressed ta terms.of the total and individual component flows.

FE&=z ¥ F* - . o @
1a My

‘3- > " - for allj : RN
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c) Splitter equations, that are expressed in terms df the individual component flows and the

concentrations of the streams
 Ft=Fk (4
1 #Sy
Xy = x¥ for all i€ ScandJ (5)
Takel | | G
‘= for all
"Ests £k orallJ _ ()

d) Processunitsequations, that aregiven in terms of the total and individual ,(_:ompohent“ flows

T F= XF* (10
| €ifc | € Ofc
_'_r,lar:_“kg,,lkq‘ for all ie Oxand] (12

€) Reation between thetotal flow and the individual component flows _
= g, ff ' for all streams (24)

f) Linear estimators, relate the individual component flows with the total flow and

concentrations.

§ 2Plxf+xLF . Filx)L as’
fi SFA+xAP-Flrar foralli€s, (16
fi <jiuni™XtLpi.puxiL isk € splitters - 117)
ff SFLlxf+xiupi-FiLx foralljeJ @8

fj Bounds on_flows,and concentrations
FLSFISFe - | - (13 .
leLijl ijlll (14)

In previous approaches (Wehe and Westerberg, 1987; Kocis and Grossmann, 1989)
~ looser approximations of the nonlinear termswere used. In both cases, the nonconvex problem
(MF) wasredaxed to a linear model by dropping the nonlinear ‘equations (8) or (9).. Equations
that approximate the difference relation between the components were considered (Kocis and
Grossmann, 1989). They were based on the difference that exists at the inlet of the splitter
between the flowrate of the components and required the introduction of binary variables.




Outline of global optimization method

Modd MR can be applied to predict lower bounds to the global optimum in the optimization of
pooling and blending problems and in the synthesis of separation systems. The reason is that
model MR provides a valid relaxation of the original feasible region since the nonlinear
equations (2) and (11) inmodel MX are not considered, and the valid linear equations (3), (7),
(12) and (15)-(18) are included. The proposed global optimization algorithrh' relies on the
solution of the relaxed problem MR within a spatial branch and bound enumeration. The
outline of the algorithm is as follows (for a more detailed description of step 4 see Quesadaand -
Grossmann (1993))

0. Preprocessing (optiond)

Determine bounds on the variables involved in the nonconvex terms, that istotal flows.
. and concentrations, xf. Apply any additional preprocessing specific to the structure of the
problem in order to further bound or fix variables. -

1.LowerBound
Solve model MR over a given subregion (initial subregion is the complete feasible region)
minimizing a convex objective function <% If ¢ islinear the model is an LP. '

2. Upper Bound _

Any feasible solution to the nonlinear model provides an upper bound. Heuristic
techniques can be employed to obtaifn good feasible solutions or the origina problem. MF. can
be solved using the solution of model-MR as agood initial point. If the solution of problem MR
isfeasble it provides an upper bound.

3.Convergence
If the lower bound of a subregion is sufficiently close or above the upper bound discard

that subregion. If no subregions are left the global solution corresponds to the best upper
bound.

4. Branch andBound A o L 5
Partitionthe remaining subregions.into a sl of digoint subproblems. Repeat steps 1-3
for each of the new subregions.

Remarks

The preprocessing step plays an important role in the above algorithm. It is during this step
that initial bounds for the variables involved in nonconvex terms are obtained. The quality of

2t R A L & ek, . Dot kit ] bk st c ok R - g




these bounds affects the tigthness of the lower bound since they are part of thg estimator
equations (15)418). Additionally, these bounds affect the performance of the algorithm because
they define the search space over which the branch and bound_procedure may have to be
conducted.

In some cases, as described later in this paper, it is possible to exploit the particular
structure of the process network and generate bounds for the,variables without having |o solve
any subproblems. Furthermore, during this preprocessing step additional constraints can be
gener ated for predicting a tighter lower bound: of the global optimum can be obtained.

Some of the linear mass balances and.the estimator equations are redundant in the
nolinear formulations, MF and MX. These equations become nonredundant in the
refonnulated moddl, MR, and for that reason it isimportant to write a.complete formulation of
the network. However, thismodd can present some redundancies that can be easily identified
and diminated to reduce the size of themodel. This s the case for the concentration variables
used in the splitters. Modd MR uses different sets of concentrations variablesfor theinlet and
outlet variables of a split unit. ..In. practice, it is only necessary to define the concentration of
the component in the splitter and use the same variables for all the splitter streams. Also,
some redundancies can occur with the total flow variables. These ones are necessary for the
streams in the splitters but they might be redundant and eliminated in the other untis if they
do not appear in other part of the mode or in the objective function.

If the solution of model MR is feasible for the original nonconvex problem then it
correspondsto the global optimal solution. When the solution to the model MR is not feasible
it isnecessary to follow a branch and bound procedure to search for the global optimum. This
* procedure requires a valid-upper bound on the global optimum. This can be generated through
heuristics or by solving directly the nonconvex model. For this purpose, the pr(')cess'network
model is formulated in terms of the individual component flows and the nonconvex equations
for the splitters are included. Equation ( was also used in this work to model the plitters
dueto it is better numerical behavior. The solution to the modd MR was used for the good
initial point. In many instances, it was not possible to solve these nonlinear problems with
MINOS 5.2. The nonlinear models were solved using CONOPT in GAMS 2.25.

During the branch and bound procedure a tree search is g_enerated. ‘Of the set of open
nodes, these are the nodes that have a lower bound that is esrhall_er than the_cUrrer_n upper
- bound, the node with the smaller upper bound is selected to branch on. The splitter unitsare
the units that are approximated, and of these, the splitter' that has the largest difference




" between its approximated and actual individual component flows is. selected. The
concentrations are used-as the branching variables since a change.in them affectstheinlet and
outlet streams of a splitter. The branching is done in the selected splitter. over the
concentration of the component that has the largest difference.

Firgt, the actual concentrationsfor the individual component flowsin the L P solution O -
- for'the splitters are calculated by,

z,“=%;‘r for all theinlet streamsto splitter ~ (26)

the'splitter unit m isthen selected according to the equation.
- 1.k
- m ﬂm"’“{u}:éu P2 1-zk i} ; (27)

- Equation-(27) represents the total difference between the LP_sqution__,er'__'theflovvs after -
the splitter and the actual value of these flows considering the concentrations before the
plitter . ‘Oncethe splitter has been selected, the component in.that sputter that hasthe largest
difference. J\ is selected by. SR

i = - . ' ' (28
] —ar_gmax,("ls’lf/ 1£ FM] (28

Hie following branching constraints are then used:
.xmSzemand Xj."=>z," | ' | (29) -

To improve thé upper bound it-might be necessary to solve additional nonconvex
problems These can be solved after a given number of nodés using the solution of-the node
with the smallest’ upper bound as the initial point. In thiswork-if there was no significant

_ change in the lower bound df the new nodes with respect to the lower bound of the parent node
( < %) anew nonconvex problem was solved

Examplel : - ‘
Consder the following poollng and blending problem by Harveley (1978). Two streams that
have componentsA and B are mixed in a initial mixer a then go through a splitter to obtain two
streams than can be mixed with an additional stream (see Fig.-5a).” Two different products can
be obatined and thefe are constraints on the concentration of component A in these products.
The objective function consists of mimizing the cost that is giveh by the total 'flow of the
streamstimes the cost coefficients. ¢, given in Fig. 5. ‘
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This problem has two local solutions. One has an objective function ¢ = -100 and
- consists of otify producing product 2. The other local solution, that corresponds to the global
optimum, hasan objective of 4> = -400 and here only product 1 isproduced. '

Modd MR is formulated for this problem and the initial lower bound is4y = -500. The
nonlinear model, MF, is solved using the solution of model MR asthe initial point and an upper
bound of » a -400 is obtained* Sincethereisa gap between the bounds of the global solution a
partition is performed- Thereis only one $plitter that needs to be approximated and since there
are only two componentsit is irrdevant which one is selected since the composition bounds are
rdated (eg. xg" si - x*"“). The actual value of the composition of A in the solution of modd MR
is used as the branching point (x* = 0.0166) to generate two new subproblems. The first
subproblem (x4 £ 0.0166) has a lower bound of 4y = -100 and the second subproblem (x* <
0.0166) has a solution of fa = -400 (see Fig. 5b). Both of these bounds are greater or equal
than the upper bound, therefore the global solution has been found (x5 = 0.01).

Example2 _
- The next example is a separation problem taken from Kocis and Grossmann (1987). The
original problem has binary variables in* the formulation and they have been fixed to 1 for this
example (see Fig. 6). '

The top stream of the flash unit has 85% of the inlet flow of A and the bottom stream
‘has 80% of the inlet flow of component B. In the column. 97.5% of the inlet flow of A goes to
the top whereas 95% of the inlet flow of B goes to the bottom stream. The total flow to the flash
unit and the column have to be greater than 2.5 and smaller than 25, whereas the total flow of
each of the two feed sreams has to be lessthan 25. The objective function is given by,

& 52+ 10F! +8F,+ F,+4F;-35P,A-30P,° (30)

The initial lower bound for this problem is 4y = -513.22 and it is infeasible for the
original NLP modd. A nonconvex problem is solved using CONOPT with the solution of model
MR as the initial point obtaining an upper bound of ¢ = -511.87 and the relative gap isonly
0.3%. Again only one splitter is present in the network and a partition can be performed using
the concentration of component A in this splitter. The lower bounds for the new two
subproblemsareOL = -511.87 (X £0.5121) and O =-511.80 (xa> 0.5121). Both solutionsare
greater or equal than the upper bound and the global solution has been obtained. Inthe global
solution Fy ss8 and F, = 25, and 11% of the inlet flow to the splitter is directed to the flash.
76% to the column and therest bypassed to P,.
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Example3 : ,

This example corresponds to a separation problem with three feeds and three product streams.
The network configuration and product specifications are given in Fig. 7. The objective
function is given by

0=45,+1.55,+4Sg (31)

The initial lower bound is 4y = 138.18 and the nonconvex problem MP is solved
‘obtaining a solution of 4 « 138.7. The gap between these bounds is less than 0.4 %. The
globa optimum for thistolerance is shown In Fig. 8. '

Sharp separ ation networks

In order to illustrate the application of the above agorithm to a specialized case where the
structure can be further (exploited, the problem that will be considered is the synthesis of
separation networks with single feed and mixed products that consist of sharp separators and
bypasses. It is assumed that a single feed with N components must be separated into K
sp_ecifiéd multicomponent product streams. The components are ordered from the lightest to
the heaviest.

A modification of the superstructure proposed by Floudas (1987) for this problem is
used (see Fig. (9). The superstructure consist of N-I separators: Separator 1 performs the
task of removing cdmpénent number 1 to number 1 at the top of the separator and components
number i+1 to N at the bottom of the separator. The feed to the network is split into N-|
streams, F. that go to the separators and K streams, a. that bypass the network to go to the
products. Each stream F< is mixed before the separator i with streams that come from the top
and bottom streams from the other separators to obtain the inlet stream to separator i, S.

The outlet streams of separator i are the top. Tjg and the bottom, B;. These streams, T«
and B{, are each split into streams, PT{ and FB< respectively, that go to the K products and
into streams, KIV' and RB/\ that are redirected to the other separators. The top stream of
separator 1, T;, can be redirected only to the separators 1 to i-1 since it can only contain
components number 1 to i. It would not be optimal to send part of this stream to any
separator from i+1 to N since no separation would be achieved and a bypass of these
separators would achieve the same separation with smaler (lows. KTf is the flow redirected
from the top of separator i to separator i\ In the same fashion that with the top stream, the
bottom of separator i, B, can be redirected only to separators i+1 to N-I since it can only
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contain components that are separated by these sharp separators. RB,_]‘ is the redirected flow
. from the bottcpi stream of separator i to separator i'.

M odd

It will be assumed that the objective function can be expressed as a linear function that
depends on the total flow to each separator. The model expressed in terms of concentrations
' and total flowshasthe fallowing form

| m.n4>-;cs (321)
. |
sL’ Feed* g‘ F Yo , (32.2)
fy=Fiz for aliiandj ~ (32.3)
1 N-| . :
Si=F + tZ‘,l.RB.-‘ + .r_%lm',-* for alii (32.4)
-1 . N-I
S xs«af« + X RBf xb,-. + .};,ﬂRT.-' xty for alii and] (32.5)
S, =T, +B, o foralii (32.6)
Ty Xty = Sy X8y for al’i and ord() <i (32.7)
xty=0 for al-iand ord() > i (32.8)
By xby = S, x3 : for all i and ord() > i (32.9)
xby=0 for all i and ord()) £ (32,10)
. K !
T,= | RIS + SPTX for alii (32.12)
1w kel
N-I K
= SRB{ + £PB* for ail i (32.12)
{'wiel k«l
N-1 _
pk= TPTK ’;LIIpB,k 0 - fordlk - (32.13)
i=1 1 . .
N-I N-I ' o .
= l211"1‘1":&‘, + Il,PB," xby+ a,z, - for all k and] (32.149)
= = ' ) *
i .
-‘%_xt.j =1 for all 1 (32.15)
Exb,, =1 for alii (32.16)
C‘E‘.::su =1 for all i (32.17)

S, T, B, F RT", RBt", PT; PBt“. c* f,, xs;j, xfy xtx * 0
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The parameters Feed, zj, PX and py; répresent the totat feed; composition of the feed,
total flow of product k and component flow of component j in product k. respectively. The
variablesxsq, xt; and X are the concentrations of componentj in the inlet stream to separator
i. top of separator i and bottom of separator i, respectively.

The objective function (32 1) is a linear function of the inlet flow to the separators
Equation (32.2) is the total mass balance in the inlet splrtter and equatlon (32 3) is the
component mass balance. Equations (32.4) and (32.5) are the total and component mass
balancesfor the mixer i beforethe separator L The material balances for separator i are given
by equations (32.6). that isthe total mass balance for the separator; equations(32.7) and (32.8)
that are the component balances for the top stream and indicate that nothing from components
number 1+1 to N-I isin the top of the separator, and equations (32.9) and (32.10) that are the
component mass balances for the bottom streams. Equations (32.11) and (32.12) are the
overall mass balances for the splitters of the top and bottom streams after separator i. The
equations that state that the concentrations of the outlet streams should be the same that the
inlet stream in-a splitter have been already substituted. Finally, equations (32.13) and (32.14)
arethe overall and component mass balances for the mixer for product k.

Modd (32) correspondsto a formulation of the type of model MX where the distribution
coefficients are known and restricted to 0 or 1. Some simplifications have been made to avoid
including many irrelevant variables (e.g. not to define concentrations for the streams that go
the top i to product k). Although, some of the linear constraints in this formulation are
redundant, they can become nonredundant in the linear relaxation as will be shown in
Example 4.

+

Equations (32.5), (32.7), (32*9) and (32.14) involve nonconvex terms. This model can be
reformulated as in model MR by introducing individual component flows and the linear
equations (15)-(18) and (7) according to the approach illustrated eaiiier to obtain amode in the

form of model MR. The resulting reformulated modd is as follows,
“N-I

min § = £6S _ | (33.1)
N-I K
st Fed = ||-|Ft + Z0% : : (332
=F z for al i andj (333
t-1 N-I . . .
=Fj+ YRB!+ TR - forali (334)
1=l f'aiel
i-1 N-I
S|] = ﬂ] + izl rb‘]‘ + § lrt‘-]‘ fOI’ a” | andJ (335)
‘= Umie
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S, =T, + B, foralli ~ - (336).

ty = Sy for all i and ord() £ - (337)

ty=0 for all 1and ord(j) > 1 (33.8)

by = 8y i for all i and ord()) > i (33.9)
ty=0 " for all i and ord(j) < | (33.10)
T,= :;‘lnr.f . élm‘.k © foralli (33.10)
B = hi‘"mas.r ¢ PBE for all 1 (33.12)
Cpe=PTES S'fﬂpa. ra for all k - (3313
Py = I}‘Iptq" ’ Eipb.,“ ronz forallkandd  (3314)
ty= zrq,' }:ipt" ' for alii and] (33.15)
by = :%;b,,r + Zpb.," for all i and (33.16)
ugz(t _1 Cforalli @®17)
'_‘E_.xb., =1 ‘ for all i (33.19)
T,= _&1 - for all i (33.19)
 By= “&?q - Cforalii (3320)
l1::..," for all i and k (33.20)
PBk = “,ﬁmk _ for all 1 and k L (322
won '-IS-/I o foraliandi' <i (33.23)
" -‘irgur B foraliandi'>i  (33.24)

Equations (15-18) forty. rt,;' and pt,* in terms of xtg
‘and the total flow of itsrespective stream.
- Equations (1518) for by. rbg"and pby* mtermsoth,
and the total flow of its respective stream.

S.T..B,.F.RT,.RB. PT /. PB/, Ok f;. xs].xU..xby SO
Sytj. bj pti <. po,"rt,".rb,* 20
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It is not necessary to Include equétions (15)-(18) for the inlet component flows to the
separator, Xy, since the variables xsj only appear in these equations. Also, the component
flows, sj, only appear in mixers and sharp separators unitswhich can be exactly represented in
terms of the individual component flow equations (33.5). (33.7) and (33.9). Equations (33.15)-
(33.16) that are the component mass balances for the splitters of top and bottom streams have
been included accordingly to the reformulation previously presented. Equations (33.19M 33.24)
relate the total flow and the individual component flows for the splitter streams.

Preprocessing

Hie proposed superstructure (Fig. 9) allows to bypass certain amount of the feed to the product
k, a*, without having to go through the separation network. The amount of the product k that
is not bypassed has to be processed in the separation network and it will be denoted as the
'residual product*. Hence, the total 'residual product k' is given by (P* - &) and has the
component flows given by (p" - 0z )(see Fig. 10). "

The global optimal solution of model (32) is a network in which all the ‘resdual
products.have at least one component with a zero flow. The reason that it is not optimal to
separ ate a stream in the network and later to remix it. The same degree of separation can be
achieved using a bypass that does not incur any cost in the objectivefuh'ctioh.'

Consider the second separator in the solution obtained by Floudas (1987) to his second
example (see Fig. 11). For this subnetwork of the complete structure the‘upper 'residual
product* hasicomponents B and C present. The components are being separated and remixed
again. The same outlet flows can be obtained with a smaller input flow to the separator asit is
shownin Fig. 11. Notethat both ‘resdual products have componentswith zero flow.

It should be clear that if there was not a component with zero flow in the 'residual
product’, then there is part of this stream that could have been obtained byJust bypassing the
network. This in turn does not incur in any cost, whereas going through the network has a
positive cost. The above condition gives a lower bound for the bypass to each product. This
also corresponds to the largest amount that can be bypassed since all the flowsin the 'residual
flow* have to be positive. In thisform the bypass can be precalculated without affectlng the
global optimality of the solution.

The bypassto product k isgiven by the maximum amount that can be sent to product k
without having a negativeflow; that is.

a,=min, [ 4 (34)
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- where Zjis the feed composition and py; -is.the. flow of component j in product k. The
‘component:flows for 'residual product' k. T4 are given by. ' "

'Key component bounds

Wehe and Westerberg (1987) proposed using lower bounds for the (low of the key
componentsin separator L These bounds are based on the fact that separator i isthe only unit
that c__ah perform the task of %pér_atihg component number 1 from component nutaber 1+1.
They are reduhdant for the nonlinear formulation (32) but they are relevant for-the linear
relaxation in (33). To calculate them, it is necessary to determine in each-product what isthe
difference between the two key components of separator i with respect to the concentrations in
the feed. The lower bounds in separator i' for the flow of the key components in the top
(component JI) and bottom (component J2) streams are given by:

K . e
ty EEI{TI:]I - Zy1 Miilyeyy g7 {);‘;‘] } for alii (36)
X
b2 3 (9 - zeming o (1) foralli 37)

where YK isgiven by (35). It isimportant to include both bounds in the relax model (33) since
thereisno guarantee that the inlet flow to separator i has the same pro'por-tion between the key
components as the feed. It is not known in which part of the sequence separator i will be
placed, and it can be after a splitter that is not being approximated correctly.

" Theé bounds in (36) and (37) can be extended to separation of components that are not
adjacent in the feed. Consder component number i and component number i+3. There are
three separators that can perform this task/separatorsi. i+1 and i+2. Cuts of the following
form can be obtained.

tei +tyi+tFal2 £ {Dd - zt MiNggg)<orns [3‘?‘1]} for all i (38)
K Yy
byg+#busi + by 2 £ {Tki*3 - z*s minorsow*3 =) - foralli (39

Equations as the ones in (38) and (39) can be redundant compared to equations (36)
and (37) and it is possible to detect this before solving the problem. '

Relativeflowrate constraints
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These constraints aré used when the relation between the flowr ates of two components
isknown. In particular, consider component A in the lagt column ofthe'network (see Fig. 12).
None of the redirected streams contains component A. Therefore, the reative flowrate of
component A with respect to the other components in the top stream hasto be smaller than in
the feed. Thisrelation should remain valid after the top stream is split to the"p'r'od'ucts and
redirected flows.

1l the separator previousto the last o'ne N-2, all the streams do not have componentA _
except the one coming from thetop of the last column. For this one itis already known that
the relative flow of component A with respect to the other components is smaller than in the
feed. . Thistype of.analysis can be done for component A and component N in all the columns
yidding th$ following linear constrai ntsfor the splitters.

for all Land k
ZaDW* - Z DLk 20 forj* Aand ord(j) <i (40)
ZNpbgX-Zjpty 2 0 o for ord(j) * N and ord(j) >i  (41)
foralliand I >i
znnui' - % l'tmf >0 faril 4 A Aand Aardill < (42‘)

forj* A and ordtf) Si
toraU land1 <1

, z«rbu"-‘z, ibm*' 20 forord(J)"Wandord(J)>| (431
- Boundson concentrationsand total Jlows

The approximations (15-18) require bounds for the total flows and component
concentrations'In the spIitters. The lower bound for the total flow of the top and bottom
streams is given by the lower bound:of the key components obtained in equations (36) and (37).
For the outlet streams of the splittters, that are the redirected streams and the streamsthat go
to the products, the lower bound is zero. The upper bound for the total flow .of the top and
bottom streams is given by the feed to the network of the components that can be present in

each stream .that is. .
l -
T'= ItFeed-XoicJz, _ for alii (44)
ardijinl k _ . _ _
N . . ..
- BMhs - |£ lfeed-{.arazr, for alii- (45)

The upper bound for the streams after the splitter are given by.
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RT{f v =T <. fordliandit<i (46)
RB{'¢ = B,“ | for alii aridi'>i -~ = (47)

PTr =z - for all i and k . (48
s g o | 9

k;Jb’) for all i and k | ' | .(49)

The lower bounds for the concentrations are zero except for fee key componentsin the
separator for which the lowér bounds are given by the lower bound of its flow-divided by the
upper bound of the total flow of that stream. The upper boundsin the concentrationsare given
by one minusthe lower bounds of the other components.

The solution of the linear programming'modd (33) provides a lower bound to the global
optimum since thismodd is a valid relaxation of the nonconvex modd (32). This lower :bound
" is obtained by solving the LP model for the 'residual products1 in: (35) with the addition of.the
valid constraints (36)-(43).

The upper bounds are generated solving model (32) .in terms of the individual flows for
the'resdual-products. When additional nonconvex problems are solved to improve the current
upper bound it can happen that very similar initial point are generated. In this case, a new
nonconvex NLP is solved in which bounds over the total inlet flows to the separators (S) are
included. For this purpose the values of these variables in the LP solution (S*) arc used such
that the current incumbent solution is no longer feasible.

Exampled
Consider the 3 component example proposed by Floudas and Aggarwal (1990). An equimolar
- feed has to be separated into two products as show in Fig. 13. The obj_ec;ive function is given

by
4502395+ 0.00432 S, +0.7584 + 0.01517 S2 | | (50)

~ The bypass to products 1 and 2 can be calculated accordlng to equatlon (34) and the
'residual product’ component flows are obtained through equatlon (35) (see F|g 14). Thetotal
bypass to product 1 isa, = 90 and the bypass to product 2 |s<x2 = 190 and the feed has a
concentration of zy = 1/3, zo = 1/3and ZQ = 1/3 In thisform the residual product 1isYIA=
0. YiB = 20 and Y*C = 0 and the ‘residual product* 2 is Y ,A = 20, YB = 0 and Ya ° 20.
Additionally, lower bounds on the flow of the key components in both separators are obtained
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using equations (35M 36). The key component's“in separator 1 are component A inthetop and
itsflow has to be at least 20 and component B in the bottom has to have at least aflow of 20.
In the top stream of the second separator at least 20 units of component B have to be
separated from 20 units of component C:in the bottom stream. It is important to note that
after preprocessing the network several suboptimal solutions have been cut off. One of these
suboptimal solutions for this particular data.is a parallel configuration of both separators
(there are situations in which a parallel configuration can correspond to the global solution as

- will be-shown in example.5). In this example the direct or indirect sequence have a lower
objective function. Both of these configurations are local eol'utions with an objective function
value of 4 = 1.8639 for the direct sequence and $ = 2.081 for the indirect one In some
instances, MINOS 5.2 had problems conver ging even in this small example

The LP (33) is formulated for this problem, giving a lower bound of » = 1.8639. The
. approximations are exact and thereforethis solution is a feasible solution of model (32) proving
that it corresponds to the global optimum. Hence, convergence is achieved in one iteration.
The optimum solution corresponds to the direct sequence shown in Fig. 15. It should be noted
that if the linear mass balances for the mixer for product 2 were not consider ed sincethey are
redundant for the nonlinear formulation, a lower bound in the relaxed model of $ = 112 is
obtained. Thisshowsthat It isrelevant to mclude all themass balancesin the linear modd in
order totighten the lower bound. '

. ExompteS

In the approach proposed by Wehe and Wester berg (1987) for the case of 3 components only
the direct and indirect sequences are considered and both options can be moddled as LP
problems since no mixing is required for these separation networks. However, this.example
shows that parallel configurations can bealso globally optimal and that they are not excluded
by the method proposed in this paper. To be able to consider paralle configurations or any
combination of parallel with direct or indirect sequences it is necessary to mode a
superstructure in which mixing is allowed (like in the structure used in Fig. 13). Here,
nonconvexities arise in the mass balance equations after the separators.

_ Consider that an equimolar feed isto be separated into the two different products given
in Fig. 16. The objective function isto minimize the sum of the total flows into the Separators.
The same procedure that in the previous eXampIe is followed and the bypass can be
_precalculated by equation (34). The solution to the model (32) yields 4t = 12 and since it isa
feasible solution of mode (32) it corresponds to the global optimum (see Fig. 16). Note that the
solutions for the direct or indirect sequences have an objective function of $ = 16.
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Branch and Bound

Ifthereisa gap between the lower ai}d upper bound, a branch and bound sear ch is performed.

It isonly-necessary to.do the search over thevarlableslnvolved in the nonconvex terms. The
concentrationsare used asthebranching variables since a change in them affectsthe |nlet and
outlet streams of a splitter. In this way. it is necessary to check the a_tpproxmatlon for the
concentrationsin the splitters of the top and bottom strear*s of the separator. Equatlons (26)-

(29) for the splitters of top and bottom streams are used to perfom the branch and bound
search.

- Results

Table 1 summarizes the results of the earlier examples 1 to 3 and of the sharp separation
network examples 4 to 12. The number of variables is the total number of variables that are
included in the reformulated and relaxed model (33) for that example. The lower bound isthe
initial bound that is obtained by solving model (33) over the entire feagble space. The inital
gap represents the percentage difference between the initial lower and upper bounds. When
there is a zero initial gap it means that the first relaxed solution isfeasible in the original
problem thereby corresponding to the global solution. The column for nodes gives.the total
number of subproblems that where solved before converging to the global solution. A redative
tolerance of 0.01 was used, except for example 2 were exact convergence was obtained after
branchlng and example 12 for which a tolerance of 0.02 was used. It is important to note that
the initial lower bound is tight and that it corresponds to a good estimation of the global
solution. The largest differences are for example 1 with a 25% of difference and for example 12
with a 7% difference. The LP time refersto the time used to solve each relaxed modd and the
NLP time isthe time used for solving a nonconvex.model. It is possible to do updates using the
previous L P solution and in this form have a more efficient implementation. The times arein
seconds and the problemswere solved on an IBM RS600/530 using. GAMS 2.25 (Brooke et al.
(1988)). MINOS 5.2 was used to solve the LP problems and CONOPT for the nonconvex NLP
problems. A brief description of the example problems 6 to 12 is given below. It includesthe
SpeCIfIC data for the problem, the objectlve function and the topology of the network that is the
global solution.

Example6

This example corresponds to example 2 from Floudas (1987). In this case a linear objective
function with the same cost coefficients is used and it is given by,

(M2.5S!+3.0S,+1.5S; (51)
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The data for the composition of the products is given in Table 2.

The initial lower bound is ¢¢ = 54.25 and an upper bound of $ =55.5 is obtained by

“solving the nonconvex problem. A partition of the feasible region is performed using the
** comiposition of component D in the bottom stream of separator 1. The first:subproblem (x £

0.166) yields a lower bound of » = 55.45 and the second subproblem (x < 0.166) has a solution

of 44=55.8. Thelatter isgreater thanthe upper bound and theformer islessthan 1% ofthe

global solution (see Frg 17).

Exampie7
This example is taken from Floudas (1987). The data for this problem is given in Table 3 and

the linear.objective function is given by:. .

¢=258, +30S2+12% . (52)

The.initial lower bound is 4y = 32.7 and it prowd%afeasrble solutlon to the nonconvex
problem. In this form the global solution (see Fig. 18Ms obtained in one iteration. It is
interesting to see that this solution also provides a better objective function for the concave
obj ective function used by Floudas (1987) (4 = 10.65 versus0 = 13.68 which is28% higher)

Elxample8
Thrs four component problern IS taken from Wehe and Westerberg (1987) The data for the
products isgiven in Table 4 and the objectlve functlon has the followmg form

$55.0+0.5Si +4.0+0.32+6.0+0.7S; B CL)

The first relaxed subproblem has a-solution of ¢ =26,76_and it is infeasible for the
nonconvex problem. A nonconvex problem is solved using CONOPT with the L P solution as the

“initial point. An upper bound of 0 « 26.79.is obtained corresponding to the global solution (see

Fig. 19) withina0.1%. "

Example9
This example corresponds to example 1 from Wehe and Westerberg (1987) Table 5 prowdes
the data for the product flowsand the objective function is given by:

$=50+055+9.0+1.082+3.0+045+60+06S, G

A initial lower bound of 4y = 85.16 is obtained and the upper ‘bound Is0 » 85-65. The
difference is0.5% and the global solution (see Fig. 20) is obtained in one iteration.
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Example 10 ' _ : _
This problem is taken from Flotidas (1987) and the data is given in Table 6. The objective
function is given by,

3>*12Si+3.0Sj+25S,+ 15S, (55)

Thesrg_éffn lower bound is<t* = 156.56 and the upper bound is¢ = 179.08. After 5 nodes
the global solution of 0 m 159.48 (see Fig. 21) is obtained.

Examplell
Hie data for this 6 component problem are given in Table 7 and the objective function hasthe
following form:

**15S,+3-0Sa+2.0S3+ 1.0S,+4.0S5 . _ (56)

The initial lower bound is<f = 173 and the upper bound is0 » 179.11. After fivenodes
the global solution is obtained (see Fig. 22).

Example 12

Thisis a 6 component 4 products problem and the data are given in Table 8. The objective
function is:

*=508S! +3.0Sj +2.0S;+25S, + 4.0 Ss (57)

Theinitial lower bound is$ =362 and the initial upper bound is<4$ = 415.6. The global
-solution of 4> = 388 (with a 2% optimality gap) is obtained after 33 nodes (see Fig. 23).

Conclusions

A general procedure for the global optimization of process networks with multicomponent
streams has been proposed. The basic idéa relies on a relaxed LP model that is obtained
through reformulation-linearization techniques that establish a clear relation between the
compohent flow and the composition models for mass balances. The reformulated model
combines both of these providing tighter lower bounds than other relaxations proposed in the
previouswork. Theredaxed linear modd has been embedded in a branch and bound procedure
to obtain the global optimal solution.

As has also been shown, the algorithm can be further specialized to take advantage of
the particular structure of sharp separation networks with single feed and mixed products.
Here, it is possible to preprocess the problem to reduce the space over which the search is
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conducted. The bounds that are necessary for the estimator functions in the relaxed model
can be obtained without having to solve any subproblems. Different types of linear

approximations that are nonredundant to the relaxed model are included to obtain a tighter
~ lower bound.

Twelve examples for both general process networks and for sharp separation networks
have been presented to illustrate the performance of the algorithm. As has been shown, only a
small number of nodes are commonly needed in the branch and bound search to identify the
global or e-global solution. Moreover, in many cases the initial lower bound is either the exact
solution or avery good approximation to the global solution.
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Appendix A. Reformulation-Linearization to obtain the no;nl_i'_rilear
constraintsin model M F

The nonlinear equations,in model MF that can be expressed elther as (8) or (9) can also be

generated from model MX. For this purpose take the concentration model MX and consider
equation (5), L ‘

LI o o A1)
multi ply by the valid bound constraint Xj¥ £ O . . _
xfxfmxfzp (A.2)
‘Use equation (5) for component j\ _ T :
x Kyl gk S A
Multiply by thevalid bound constraints F< = 0 and Fl >0,
FAIPN-FAF* A tA.41
that it is linearized to yield. | - o
fffJsfj'ff (A5

which is precisely equation (8) for the splitters in the individual flow model MF.

Consider again equation (5).

XK = x! (A.S)

multiply by the valid bound constraints F< >0 and F* > 0,
K 1IAL7)

FextF'=Fix'F .
that can be linearized to yidd,

fEFEN/F* A8
Define the split fraction ?to be,

=~ A9

Equation (A.8) can then be expressed as
fl = 21

which corresponds to equation (9).

(A.10)

Hence, the nonlinear equations (8) and (9) are redundant to model MX. Their linear
approximations in general are also redundant in the linear reformulated modd MR Consider
equation (A.10), smilarly to (15) one of its linear approximations is given by.

l]‘zf,“'l]"-i- BIEeL - BIL gkt (A.11)

If there are no particular restrictions in the splitters, then the bounds for the split
fraction variable are 0 <” < 1 and using them in (A. 11) yields.
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£ 2 L E (A.12)
The bound for the individual component flow is given by fi“ =xf" F*": alsox,“ =x‘and £ =
o |
pt, which Ieadsto?u ,

f ZﬁLFF _ {A.13)

The estimator (15) for the same conditions (F* = 0) is given by
L faxle L h - (A.14)
Since thefactor -*r is always less or éqUaI than 1, equation (A.13) is redundant. A similar
analisis can be performed for the other estimators. Only when more specific bounds over the

-split fractions or the individual component flows are known, will these additional estimators be
non redundant.
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Figure 1. Processnetwork with units, splitters and mixers.
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Figure 2. Mixer module
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Figure 3. Splitter module.
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Figure 5. Network and branch and bound search for example 1
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Figure 6. Network for example 2.
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Product 1

Product 2
]

Product K

Figure 9. Superstructure for separation with sharp splits and mixed products.
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Figure 14. Resdual products and key component bounds in example 4. -
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Figure 17. Solution of example 6.
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Figure 18. Solution of example 7.
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Figure 19. SoluUon of exam-ple 8.
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Figure 20. Solution of example 9.
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Figure21. Solution of example 10.
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Figure 22. Solution of example 11.
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Figure 23. Solution of example 12.
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Table 1. Computational reqults.

Comp. ~ >rocL Var.  Lower Initiall Global Nodes LP  NLP
, - bound ___dap S%w_nmf_%m&

Examplel { =~ . 29 -500 20° - 3 0.05 -1
Example2 | ... 35 51322 03 ~.51187 3 026 03
Example 3 : 113 13818 0.4 138.7 1 034 04
Example 4 3 2 65 1.8639 0.0 1.8639 1 013 —
Example 5 3. 2 65 16 0.0 16 1 0.13 —
Example 6 4 2 107 54.25 2.3 55.5 3 097 04
Example 7 4 2 107 32.7 0.0 32.7 1 017 —
Example 8 4. .3 125 26.76 0.1 26.79 1 023 03
Example 9 5. 4 281 - 85.16 05 8565 1 308 28
Exarnpte 10| 5 2 225 15656 124 15948 5 259 23
Example 111 . 6. 2 350 173 3.5 179.11 5 998 838
Example12] -6 v ._4 132

.. 430 362 148 388 __.33 . 198

mm__m_m_m_*«<m_i —

Table 2 Déta or examnlelﬁ N .
Component A B . -C D< | Total [
ProductI .| D 10 4 10 29
Product 2 10 10 6, 5-4 31
Eeced 15 20 10. i5 60
Table 3. Data for example 7. )
Ccomponent. A B . O D T otal
Product 1 VAS) 10 - 10 | 31.5
Product 2 75 10 6 5 28.5
Feed 15 2 10 15 60
Table 4. Datafor example 8.
Component A B C D T otal
Product 1 2 3 I 3 9
Product 2 1 4 1 5 1
Product 3 3 1 3 1 8
Feed 6 8 5 9 , 28
40
e R kg &!!ﬂﬁﬂﬂ%ﬂﬂﬁmmh;u.;- B
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Table5. Data

mlg&
7

omponen C D . E -} lota
- 1 o > 9 3 35
Product 2 10 3 5 5 4 27
Product 3 5 5 6 7 3 26
Product 4 10 0 6 4 9 29
Feed 32 16 20 25 24 117
Table 6, Datafor example 10,
Camnaonent A B C D E
Product 1 2 24 16 8 1 | 294
Product 2 8 5.6 4 8 9 346
Eecd 10 20 16 10 1 64 |
Table 7. Datafor example 11. -
Comgonent A B C D E - F Total
roduct 1 S Z 10 o 4 10 43
Product 2 8 10 8 8 6 5 | 4S
Feed 11 12 24 16 10 15 38"
Table 8. Datafor example 12.
Component A B C D E F T otal
-FW&UCI T 3 2 — 0 . S i 10 >3
Product 2 8 10 8 8 6 5 45
Product 3 5 4 10 3 11 4 37
Product 4 7 3 1 2 5 7 25
Fecd 23 19 25 21 26 26 140
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from feed | &%

Figure 10. Definition of residual product™
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Flow to separator = 3.0
BO.O P
Cl0 >u

"G 10 _
Figure 11. Example of solution without and with a zero component flow in 'residualproduct™.
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