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Abstract

In order to solve the production planning problem given in "Part I\ a successive
disaggregation algorithm isdeveloped bated on extensive ieasitivky analysis for guiding
the decisions on how to repartition the:aggregate probability space. The partitioning
algorithm is guaranteed to converge lo the exact solution in a finite number of iterations,
and has a highly paralld decomposition and computer implementation. Example
problems are presented to demongtrate the solution technique. Resultsare compared with
the alternative solution methods, variants of Benders decomposition schemes tailored to
the dynamic gaircase LP Sructure.
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1 I ntroduction

Aswas shown in "Part I" (Clay and Grossmann, 1994), the optimization of two-
stage production networks (such as in Figure 1) with uncertain costs, supplies, and
demands can be formulated asthe following fixed-r ecour se stochastic LP:

mn mc* + E~clxJ 1)
st.  AX =fi

4%44%2 =%

0<x sU, ve=1,..,T,

where 0, is the stochastic parameter vector defined on the (stage-2) probability space
(©,?",/>), and &2(0;) and c,(0,) are sochagtic linear functions with constant coefficients.
The triple (0,J,P) defining the probability space is composed of the (non-empty) event
gpace (0), thea-ficld in 9 (J), and the probability measureon f (P). Asdiscussed in
"Pan I", problem (1) has been extensively sudied (e.g., Birge, 1982,1985,1992; Dantzig
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and Glynn, 1989; Infangcry 1991; Wets, 1989; Gassmann, 1990). In this paper, we
propose a successive disaggr egation approximation method for problem (1), reformulated
asthe certainty equivalent problem (P0) below.
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Figure 1. Simple production network with multiple-feeds, interrﬁediates, and products, all or part of
which depend on uncertain market conditions gover ning supply, demand, and pricing.

2 Basic Sub-problems

Deterministic Equivalent Problem

Applying the certainty equivalent transfonnation (see Dantzig, 1987) to problem (1)
with stochastic parameters ¢, and b, expanded over the stage-2 discrete probability index
keK, and rearranging leads to the following formulation.

(PO) min z= cfxX + 'Zp*'pnc\ki]k (2a)
k*K

st.  \x¢ = by (2b)

Byx, + Ayxy, =Dy VJfeAT (2c)

0<sx U, (2d)

0sx,sU, V*eAT, (2¢)

where matrices B, and A" arefixed (i.e, £* =" and A, =" VkeK). The dual vari-
ablesassociated with LP (PO) are given in Table 1.

Table 1. Two-stage M SLP certainty equivalent dual variables.

Congtraints Dual Variables Dimengon
(2b) 7 - mxl
(2c) K (mjX1)xJAn
(2d) 0;,0y n,Xl, n,Xl
(2e) Pu>Puk (N2X)X\KNAN X X\K\




While the certainty equivalent formulation is straightforward, in practice (PO) can be
intractable due to the exponential growth in variables and constraints (see Dantzig, 1987).
This growth effect is exacerbated as additional time periods art included, making exact
solution to die multi-stage equivalent of (PO) generally intractable.

Adgoregate _Model

Asshown in Tart I", the idea behind the disaggregation algorithm isto circumvent
the solution of (PO) with an aggregated L P, defined as:

(PA) mn A-cft+Yft-ZL** (3a)
e
st. Aft =11 (3b)
Bx, + Ax,, =by, VgeQ (3c)
0sx SU, (3d)
0sx, sU, VgeQ, (3¢)
where PU~~"$Ptk o Q Q*' K< Ch» | 4
ek,
U.
N=XPA /,P vV (6)
5= 2 P20 |V @
*e*, /

Here geQ denotes the set of digoint partitions containing events k e Kq, whose union
comprises the entire stage-2 (discrete) event space K. Additionally, (stage-1) feasibility
"cuts' may be added to (PA) congraint set, as discussed below. Asdiscussed in § 4,
problem (PA) is solved with increasing resolution in the aggregate probability space to
produce approximate solutionsfor z* and x\, optimal for (PO).

A critical issueisthe test for feasibility and optimality given any proposed solution
for the stage-1 activity, x.. To develop the partitioning algorithm we first consider the
feasibility and optimality test problems (PI) and (P5), respectively.

Eeasibility _Test Problem

We dart by examining the problem which occurswhen x, is assumed known (i.e.,
avalueisobtained from the solution to (PA) which we need to test for feasibility). Starting




with problem (PO) and assuming xx known leads to the following formulation, which
represents the stage-2 (recour se) component of (PO).

(PI) Min 2= Y. PuChXa
u Ak
St. A2¥2* = pit "t AR Vifc € K
0<x, SU, VkeK.

Given any proposed stage-1 solution *,, (Pl) can be used to evaluate the feasbility with
respect to all anticipated future outcomes. Solution to (PI) givesthefollowing results z,
*2> K* pyy, POT, the AMK) bases, and identification of any stage-2 infeasibilities.

Problem (PI) can be decomposed into Nk «\K\ independent sub-problems, a
single-stage UP for each event keK, greatly smplifying itssolution. Furthermore, this
decomposition suggests a natural paralld computing schemewith blocks of sub-problems
digtributed across processors. The objective, z, is the sum of the stage-2 objective
function terms over all sub-problems keK. In aparalld computer this summation can be
pérformed in log, time. Theoverall speedup by paralld solution isexpected to be nearly
linear in the number of processors (i.e., nearly perfect speedup). Using a computer such
as the Connection Machine CM-5 with 2048 processor s, we would anticipate better than
three orders of magnitude speedup over a (serial) workstation.

While problem (PI) can be decomposed and solved in paralle, the number of UP
sub-problems can be exponentially large. We aretherefore motivated to develop a variant
of the algorithm which tests for feasibility in a reduced space. Given any proposed
solution jJ and stage-2 RHS value b,, the feasbility can be determined by the following
sub-problem:

(P2) min u duals
St. Ax,=b—-Bx AeR™
-jt2-u£0 PL***
Xt-u-Uurzo Pue** 2

where a solution u>0(u£0) implies (PO) isinfeasible (feasible). In order to includethe
most congtraining RHS terms, problem (P2) is expanded to the full (PO) ‘condraint Space
by reformulating it as the following max-min problem which determinesthe wor st potential
infeasibility over all RHSredlizations:




(P3) max min u

st. Ax=p-Bx
B, sBsB,
-x,—u<0
x,-u-U, <0
Belb,: kek)
x, € R",

where o =infe}, p, = pax{en}-

Again, a solution u>0 (u £0) implies (PO) is infeasiblc (feasible). Let /T denote an
optimal solution to (P3). In order for /T to beavalid solution to die (PO) feasibility test
problem, it must correspond to an event in the probability space, such that:

B b, : kEK}. (8)

Since the "mog infeashl€" solution to (PI) will correspond to an extreme point (Swaney
and Grossmann, 1985), condition (8) is met implicitly when thejoint probability spaceis
formed from the inter section of independent probability spaces. That is, when:

K = 6 = OXX'N‘XSQ, (9)
then Py =P,°"ft=Pui Vils.. 1Ny

and all P_ | p, combinations e{fe* : k €K). Hence when condition (9) applies then
P* e{by: keK], satisfying® condition (8), and problem (P3) is a valid feasibility test for-
(PO).

When condition (9) (and hence (8)) is satisfied, problem (P3) can be reformulated
to eliminate the nested (max/min) optimization problem by explicitly representing the
optimality conditions of the min problem within the max problem (Grossmann and
Floudas, 1987). Recasting (P3) in this manner leads to the following mixed integer
formulation.

% |f condition (8) is not implicitly satisfied (i.e., non-independent probability space), then problem (P3) can
bereformulated by introducing integer variablesto explicitly enforce(8). Alternatively, one may utilizethe
result that (P3) (minus condition (8)) is a relaxation of the feasbility test problem such that a feasible
solution to the "reduced” (P3) impliesfeasibility for (P0). We haveredricted our attention to the solution
to independent probability space problems.




(P4) max u
st. Ax=5-Bx

l‘ipu"ipw=0

jml Jm1
Ajd-p, +p,=0
PL—My <O
py—My, s0
S, =u+x,
Sy=U, ~x;+u
S.-Un(l-y1)ZO
Sy =U, (1-y,)S0
Y, +yy sl
B.sBsB,
X unrestricted
Prs Pys Sus Sy 20
Y yy € (01)%,

where po = min{frad, ~ = max{bad,
and conditions (9) and/or (8) hold. Note that evaluating the bounds fi, and p, is greatly
samplified by the assumption of independent probabilitiesin (9).

When only the feasibility of a proposed (stage-1) solution X, isin question (and
condition (8) holds implicitly), then the reduced-space problem (P3) or equivalently (P4)
can be solved We usethis approach to generate the feasibility " cuts' which augment (PA)
and enforce feasibility for subsequent aggregate solutions (see also § 4). To generate a
feasbility cut for problem (PO) we first examine the (KKT) optimality conditions for
problem (P2). TheLagrangefunction for (P2) isdefined as:

L=u+A"[Ax, - B+Bx ]+ pi[~x, —u]+pt’;[x, ~-U, -—u],
forany fie{b: k€ K}.

The dationarity conditionsimply that:

%‘%=°=l‘ipu'ipw=

j=l j=1




and N=0=AlA -p, +py.
dX2

Hence the Lagrange function reducesto:
L= £{x)=A"[-B+Bx]-plU, fi pecified.

Bom congraint feasibility and complementary_slackneﬂsconditions, weknow that C =u’
at some optimal j£. And since feasbility requiresthat u£0, we define the *,-space
feagbility cut as:

AT[-B+Bx]-pU, S0.

By analyzing the dua solution of (P3) or (P4) we can ascertain the most violating
condraints, and hence st /J, A, and p, for the feasibility cut. As discussed in § 4,
problem (PA) isaugmented as necessary with thefeasibility cutsuntil (PO) either becomes
feagble or isdetermined to be grictly infeasible.

When an exact upper bound (z,s = 2 + 2\) and /or the complete (stage-2) solution
arerequired, problem (Pl) must be solved VkeK. However, since that is in general
prohibitive, alternative methods of generating the upper bound are of interest. Among the
alter natives are the methods proposad by Birge and Wallace (1986,1987), Birge and Wets
(1985), and Edmundson-Madansky (Madansky, 1960). One might also consider a
sampling-based approach to solving (PI), such as that suggested by Dantzig and Glynn
(1989) or Infanger (1991). For case-1 or -2 problems (see MPart 1" for discussion on
classification) we propose another alternative based on areformulation of problem (PI).
When both costs and RHS terms are stochastic (i.e., case-3 problems), the reformulation
does not lead to an upper bound on (PI). In thereformulated problem (RI) an aggregate
stage-2 activity vector is used, thus avoiding the \K\ LP sub-problems associated with
(PI).

(RI) ”@(mn12:ZJM$V=gV
Y Fors

st. Ay=p-Bx
B.sBspB,
Osy<U,
pe[bok:keK)
weR™,




where P =mn{byd, ft, = max{,}.
ig known

(Pl)isacase-1 problem.

Note that (RI) can bereformulated asan MILP problem similar to (P4), and then solved
with conventional methods. Additionally, we can define the (mdependent) "event" sub-
problems associated with (PI) and (RI1) asfollows:

(PU) MiN 2y = PpCiaXas = Pull Xu
st. Ax, =by-Bx,
0sx, sU,.
where (PI) isacase-1 problem.
(RI*) min 2* puci ¥ = Put; ¥
st. Ay=§-Bx
0<sysU,
yeRY,
where IT isoptimal for (RI).

The following relationships tie the feasibility test problems with their sub-problems as
defined above:

5= 2 (10a)
=Yz (10b)

We note that in practice solving (RI) by the decomposition to (RI*) is unnecessary. We
present the sub-problem (RI*) here to facilitate the following discussion.

Theorem 2. Let i\ and i”* denote feasible / optimal solutions to problems (PI) and
(RI), respectively. For case-1 problems (i.e., fixed cost, sochastic RHS), the solution to
(RI1) isavalid upper bound on (PI), such that Z,* £ 2.

Proof Far both (PI) and (RI) the cost vector isfixed such that ¢, =c, =C,. Let 2 and
Z5 denote the feasible/ optimal solutions to sub-problems (P1*) and (RI*), respectively.




The RHS vector /T in (RI) corresponds to the selection of one particular value by\ keK
that defines the "worst" objective function value for (RI), and correspondingly for (PI)
and (RI*). It therefore follows that 3 x*, for each (PI*) VkeK such that z*C*") <
20Vv*)-  Inductively applying this inequality over all keK along with equation (10)
relating the sub-problems to the non-decomposed problems (PI) and (RI) gives 2 £Z7,)\
//Q.E.D.

Corollary 4. For case-2 problems (i.e., stochastic cost, fixed RHS), the solution to (RI)
isavalid upper bound on (PI), such that £ £ 2.

Proof Since A =tfe =/*\ problem (RI) then reduces to an aggregate model (with
ICl = 1) of (PI). By application of Corollary 2 (see "Part 1", § 8), it follows that Z,™ £ z,\
IIQE.D.

Optimality Test Problem

We now consider the problem that results from (P0) by assuming x;, known and
X]j unknown, leading to the following formulation which represents the stage-1 component
of (P0).

(P5) min 2z, = c[ %
st. Ax,=b
Bx =b, ~ A, VkekK
O0sx <U,

Solution to (P5) givesthe following results: z, it /i, X o, G and the % basis.
Given any proposed stage-2 (feasible) solution x> (PS) can be solved to find the stage-1
contribution z, to the objective z= z+z,. Furthermore, any feasible solution set z, and
Z, defines an upper bound on (PO) such that z,z = z+zt 2

Since the (P5) constraints are reproduced over al events keK it can become
intractably large. When the transition matrix £> is fixed (i.e.,, fl*"B, V*€#) the
problem can be reformulated to reduce the problem size. The agpproach (similar to the (P2)
reformulation above) comes from the redization that the solution to (PS) will correspond to
avertex or extreme point, dictated by the most constraining RHS terms. The aternative
formulation for (P5) follows.




(P6) max rr’lin zZ, =C[X«

st Ax = bx
Bx, =6
0sx sU,
5,<8585,,
where 8}_ = lﬂl}!{sg}' 80 = ?‘a‘x{ag}-
O, =by ~Ax,.

Thusthelimitson 5 are the minimum and maximum termsover the RHS vector from the
sat of events k e K.

In order to avoid having to specify all x* Vie€K prior to solving (P6), we
propose an alternative formulation which circumvents this speciftcation.

(P7) max min z = ClC,

st i4x, = bi
Bx, =B- Ay
0<sx <U,
OsysU,
B.sBsB,
veR",

where  fi, :*I;n*in{fcm}, ¥ :rp.qrx{fcmk}.

Similar to problem (P3) above, (P7) can bereformulated to eliminate the nested
(max/min) optimization problem. Recasting (P7) in this manner leads to the following
mixed integer formulation.

(P8) max z,
st.  z £¢/X,
Ax =b
Bx,=p-Ay
G+Ap+BA-a +a, «0
o, —My, <0
o, —My, <0

5L =X
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s =U, —-x

5. -U,(1-y)s0
S5=-U,0-y,)s0
Yty Sl
0<sx,sU,
0sysU,
B.sBsBy

lig X unredricted
O, Oy, 5. Sy 20
Y yp €(0,1)>,

where  fii  =pjnfa*}, p, =mgX{tel-

Note that in this case we obtain a new estimate for x, which can be used to test conver-
gence.

Oncewe have solved problems (PI) and (PS), or ther refor mulated equivalents, an
upper bound on the exact solution is given by =p-z"d"z* or
Zyg =g +%"*z, ™ 2 if (RI) is solved in place of (Pl). We note that the upper
bounding method via solution to (RI) proposed above for case-1 and -2 problems may
result in a non-zero gap between the upper and lower bounds even at the exact solution X|.
Consequently, it may be necessary to refine the upper bound provided by (RI).

3 Sensitivity Analysis Procedure for Partitioning

Central to the successive disaggregation method given in "Part 1" (Clay and
Grossmann, 1994) isthe means by which the aggregate modd isrepartitioned when further
refinement of the solution isrequired. In this section we consder sengtivity analyss of the
aggregate problem (PA) solution in the context of repartitioning. We propose a drategy for
repartitioning the aggr egate probability space based on sensitivity analysis. The combined
sengitivity analysis and repartitioning scheme comprise the successive disaggregation
algorithm (SRO) presented in 8§ 4.

Before developing the mathematics underlying the sensitivity analysis and
repartitioning scheme, it is helpful to consder the matter at a conceptual level in order to
place the development in context. The successive disaggregation algorithm can be viewed
as an adaptive grategy which refines the aggregate solution space according to the

-11-




sensitivities of the aggregate solutions combined with analysis of the potential partition
splits along single (sochagtic parameter) dimensions. With each solution to the agoregate
LP (PA), the sensitivitiesto RHS and/or cost partition-mean changes are updated from the
dual solution. Similarly, the potential partition splits (i.e., disaggregation steps) change
according to the evolution of the partitioning. With each subsequent solution to (PA), the
information is updated and the combined analysis guides the repartitioning to refine the
aggr egate probability space so as to add resolution in the area projected to be the most
influential (i.e., projected to maximally changethe next aggregate solution I“,).

Toillugstrate the matching of partition splits (i.e., disaggregation steps) to projected
changesin the aggregate solution, Tqy, consider asingle dimension of the stochastic vector,
0,, with four discrete values denoted O, through Ors. Assumethat Tg =12z, <> z (as per
case-1 problems), and that we therefore wish torepartitionthe O probability space so asto
maximally increase Z*. Let the probabilities be such that the partition mean, 0%, lies
between the values of events 2 and 3 (i.e., O, < Oy, < 053), as shown in Figure 2. The
(ordered) set of O eventscan be ddineated according to the valuesréeativeto 0, forming
"postive" and "negative' subsets, K* =[0,04) and ATy ={0,,0,2}, respectively.
Projecting the split of the partition at the mean, ak, leads to new partition " pogtive' and
"negative’ means with corresponding differences from the previous mean, denoted AOE.
and 40E, respectively. From the analysis of the solution to (PA), we know the sensitivity
of the aggregate solution, Vq, to changes in RHS terms and (via the chain rule) to 0.
Combining the projected changein 0" with the sengitivity information leadsto a predicted
(maximally increasing) change in 7y, denoted AI£ in Figure 2. Making the split
accordingly (forming a new partition) and resolving the disaggregated (PA) then leadsto
results as shown in Figure 3. The sengtivity analysis, repartitioning, and (PA) solution
cycleisrepeated, seecting partition g (and in general dimension /) so asto maximize A2*
until the algorithm conver gesto the exact solution within a predefined tolerance.

Asdiscussed in "Part 1", the srategy for solving (PO) by successive disaggr egation
depends upon the type of uncertain parameters in the particular problem instance. We
redrict our attention to problemswith uncertaintiesin cost coefficientsand RHSterms, and
congder three cases delineated by the type of uncertain parameters. The subscript indicat-
ing stage-2 terms has been dropped to smplify the notation in the following discussion.
Unless otherwise noted, all termsin the sensitivity analysis denote stage-2 variables and
parameters.

- 12-
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Figure 2. Geometrical interpretation of iepartitioning concept in single stochastic parameter dimension /
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Figure 3. Geometrical interpretation of repartitioning concept in single sochastic parameter dimension /
after splitting partition indicated in Figure 2. New partition means are projected from previous analysis,
while sensitivities are updated from the solution of (PA) using two partitions.
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Let z* be the optimal solution to the certainty equivalent (full AT-gpace) problem
(PO). Further, let Ng and N; denote dim(0) and |Q|, respectively. When costs are fixed
the aggregate sub-problems (PA) are convex and thus give a lower bound Tq =2, <7*
(seeTart I" for discussion on aggregate bounds). We seek the changein partitioning (i.e.,
the disaggregation step) which induces the maximum increasein z*. We approximate the

change in the lower bound 2" réative to a change in the stochastic parameter vector 0
around a solution point of (PA) as:

-13-




Ry w2 O K, =
- — — .
4z, —"-aa A8 Zg—ﬂa 7 40, (11)

For the general case b =b(9) and the RHS mean isdefined as:

b= Y pba(6y) /p.. (12)
where P*%Z (P (13)
and ACALL™:-*. (14)

Applying diechain ruleand expanding over (stage-2) row terms gives:

Iz 02,3 0 = N, o N
._H.=i.__‘_‘._.L: KM b e KM,
00 = ob, 26 Ge » € s

The sensitivity of the lower bound to the RHS mean (Bz yldDB,) is available from
the solution to (PA). The sensitivity of the RHS mean to die stochastic parameter mean can
be obtained from the definitions of the partition means, where:

8,= . p.6, /p,. (16)

The corresponding sensitivity of the stochastic parameter mean to the discrete event values
IS:

e';,_‘l-z"*-:*e,. a7
When the stochastic function b(0) is linear with constant coefficients we have:
braje, - (18)

where' be9T*, 0e9i™+;and ae ftw*"*. Expandingtermsgives:

fy =Tt Vi=1,.um2» (19)
10

* The stochastic vector 0 isaugmented by 1 to account for the constant term, such that 8y 1 and a is
the constant for t, VkeK.




Ah
and hence N=ax* ab

- stant VJceAT. 20
. 30 constan (20)

Substituting (19) into (12) gives:
N, N, N,
Eq = Z Ptzaaog/Pg =2¢n Zplol/p' = 2“36. ’ V1))
tek, =0 =0 ek, int

where 6o« = 1 and &g isthe constant term for (stage-2) row i. Hence from (21) we have:

do db
3@},‘- .=, = constant V" eQ, /=1,.uAfy 1=1../- (22)

And thus for linear b{6) with constant coefficients the second term from.(15) is constant
Combining (15) and (22) gives the formulafat™ computing the sensitivities to the aggregate
solution required in (11) as follows:

2 %=g%§:a,,,. @3)

l'-l

Case 2! Stochastic costs. fixed RHS

For case-2 problems the aggregate sub-problems are concave and thus give an
upper bound To =2z, * Z (see "Part 1" for discussion). While case-2 problems can be
reformulated and solved as case-1 problems, we examine the cost sensitivitiesin order to
develop the complete sensitivity analysis which will be used for the general problem
discussed below. Similarin spirit to the case-1 analysis, we seek the change in partitioning
which induces the maximum decrease in z,s. We approximate the change in the upper
bound z,g relative to achange in the stochastic parameter vector around a solution point of
(PA) as:

o~ 2 48 = zz-gua 24)

i l'l

The development parallels that for case 1 above. For the genera case ¢ = ¢(0) and the cost
mean is defined as:

E'n = Eplcﬁ(ol )/P'I’ (25)
Ml’,
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Expanding termsand applying the chain ruleto (3a) gives:
#-SinifHA @
20, '

taking T = /(0;) and x; = g{B,).

The sengtivity of the upper bound to die cost mean (<hyw/d?)) is obtained from the
aggregate problem (PA) objective function definition (3a), giving:

oz
—tk =
3 2 P, | 27

The stage-2 activity vector jG = JC” isobtained from the solution to (PA). And when c(8)
is linear witfi- congtant coefficients we have:

o = Yjo, (28)

where® C€9T\ Oeft"'** and ye3®«'>K"» Expandingtennsgives:

N,
Cj=120?'jlal y/Si,---,A, (29)
g, oc oc
Ikt R dd 2P0
and hence 5#;— 36, Yp= 36, consiant. (30)

The sensitivity of the upper bound Tq to the aggregate solution x; is provided by the dual
solution of (PA). The sengtivity of x; to Or is not readily available, but can be estimated.
For the purposes of the case-3 example problems presented in § 7 the authors used a
differencing method to compute the partials dx,fdl),. Combining expressions gives the
formulafor computing the sensitivities to the aggregate solution required in (24) asfollows:

ip'x,ﬂ'ﬂ +i ax ao (31)

jul FL

® The stochastic vector 0 isaugmented by 1 to account for the constant term, such that Oy * 1 and po is
the constant for _c" VkeK.
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Case_3: Stochastic costs, sfochastic RHS

When both costs and RHS are stochastic the problem is convex in the constraints
and concave in the objective function. The sensitivities to changes in the stochastic
parameters are obtained by combining the results of cases 1 and 2 above. However, the
aggregate problem no longer has the property of simple convexity or concavity. Thusthe
bounding properties (as for cases 1 and 2) no longer apply and the repartitioning strategy
must change accordingly. The sensitivity for projecting changes in the aggregate problem
based on changesin the stochastic parameter is similar in principle to cases 1 and 2 above,
which when combined give:

47-845 = ££-§-45, (32)

and F g-;b:%*iv r*,§£" =~ (33)
assuming b(0) and c(6) are stochastic linear functions with constant coefficients defined
by (18) and (28) above.

Projecting min and max AO:

We now consider repartitioning the (stage-2) event space K in order to improve the
approximation of the exact solution i * provided by the aggregate solution V. Each of the
three cases defined above has unique bounding properties, namely: (0 Vo = i,<tZ" for
case-1, ii%) IQ =z, £z* for case-2, and (ill) T does not bound z* for case-3 problems.
While the repartitioning strategy necessarily differs for each case, the essential goal of
finding the min or max changein 0 viaarepartitioning of the event space is common to all
three cases.

To explore the potential changes in the partition means, we consider deviations
from the means resulting from splitting partitions along single dimensions, thus retaining
the rectangular structure of the partitioned even space. For each partition qeQ axis /
defined by the parameter O, has mean 0. Deviations from the mean for each partition
geQ and event k e K, are defined as follows:

4B, '« 0»-6|t:* cAV (34)

The cumulative positive and negative changes from the means are defined, respectively, as.
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4§+ ZP. 0 a:.)/ ZP& =“er:9./“ch: - au. (35)

for for
and AT, = Zp.(o -8,) / 3 p=2.p06s/ 300, 06)
where K;cK,:0,20, (375,
and K;=K,\K;. (39)

The authors note that aternative criterion to (37) exist The choice of (37) can beviewed as
aweighted-average approach, as opposed to the 1 norm, for example.

Projecting min and max Az

By combining the results from the above analysis we can project the rcpartitioning
which is projected to produce the desired maximal change in the aggregate solution Vg, per
(1), (24), or (32) for casc-1, -2 or -3 problems, respectively. The corresponding
sensitivities are computed from (23), (31), or (33), respectively. The change in the
partition means is independent of problem case, and is determined from (35) and (36),
using criterion (37) to delineate events into positive and negative influence subsets,
corresponding to the projected partition split given any pair (14).

For the most general case, the projected positive and negative changesin | for any
partition geQ and stochastic parameter index / = 1,..., N4 are defined, respectively, as:

ar = m?x{(g—aa+gp'xnyﬂ+g—-;§%:]oaﬁ} (39)
ad Alg= Eg?{(ig-:au +§:,P.1;.7,1 "'gg‘:?g:}da:}- (40)

where b(0) and ¢(0) are stochastic linear functions defined by (18) and (28) above. Let

the maximum and minimum taken over al indices / =1,...,Ns and geQ be defined as:
Ar =max{az,} (41)
and Ar- =min{az;]. (42)
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Let AT denote the optimal choice from (41) or (42) for each of the three problem
cases. When (stage-2) costs are fixed and RHS's stochastic (i.e., case-1 problems), the
agor egate problems are convex in the congraints. Asshown in Tart I", successive disag-
grtgation of (PA) provides a monotonically increasing lower bound z, on z°. The algo-
rithm correspondingly selects AT = AS** in order to maximize the increase in the lower
bound z"Z\T Case-2 problems arereformulated and solved as case-1 problems (see
Tart I" for discussion). For the most general case with both costs and RHS's stochastic
(i.e., case-3), the aggregate problem is convex in the congtraints and concave in the
objective function. Consequently, the aggregate problem solution provides neither avalid
lower or upper bound on z\ Furthermore, it can be shown that successive disaggregation
does not necessarily provide a monotonic decrease in the difference 17g-z'l. The
algorithm seeks the disaggregation steps projected to maximize changes in the aggregate
solution To. Thisapproach is based on the assumption that maximal changesin Tq will
correspond to different bases for the true solution, and that grouping (via successive
disaggr egation) these bases into probability-weighted subspaces according to their impact
on 1Q will give an efficient approximation to the full-gpace problem (PO).

4 Successive Disaggregation Algorithm

With the above definitions and preiminaries asde, we now consider the question of
how to solve (PO) using successively refined aggregate problems (PA). The objectiveisto
successively disaggregate the problem in as few steps as possible until the aggregate
solution Tq approaches Z within some predeter mined tolerance.

Let the (stage-2) discrete probability space (&>T,P) have a rectangular support
defined by the inter section of independent stochagtic parameter spaces. |f we consder only
single axis cuts for splitting any partition into two sub-sections, then the rectangular
dructureisretained through all subsequent repartitioning. Algorithm SRO is designed to
successvely improvethe etimate Tq of z* through repeated solution of increasingly disag-
gregated L Fsapproximating the full-space CET problem (PO). For cases 1 and 2 which
are convex and concave, respectively, each subsequent solution to the partition
approximation L Fs provides a monotonic improvement in the estimate T of z*. For all
three cases solution to the aggregate problem (PA) provides updated sensitivity information
which is applied to project therepartitioningwhich is predicted to minimize the difference
\ZO-z*\. The general form of the successive disaggregation algorithm SRO is now
presented. A high-leve flowchart of the algorithm is provided as Figure 4.
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Aloorithm, RO

Step 1

Step 2

Step 3

Step 4

S5rep 5

Step 6

Step 7

I nitialization.
Define problem parameters and discrete probability space. Initialize
,/36, =y, 3c;/d¢, = Yjir G «-{i}."("4-0.

Aggregate L P solution.
Given Q and the set of feasibility " cuts', formulate and solve the aggregate LP
(PA) => £, %, df/dd0* ,and X"

Full-space (PI) feasbility sub-problem.
Solvethe MILP(P4) usng x,=j” asfixed input =" u\ f}\ duals, and dacks.

Full-space (PI) feasbility test

If u®>0, then (PI) is infeasible for given x,. A feasibility cut is added. to
aggregate modd (PA). Theterm /T indicates the most violating congtraints with
corresponding dual A. The feasbility cut ~[-/T +"jeJ-pft/* SO (see 8§ 2
for discussion) augments the (PA) condraints for all subsequent solutions.
Return to step 2 with Q unchanged.

Otherwise u* £0, and (PO) isfeasbleusing x, =1%.

Stage-2 solution decision (optional).
If the stage-2 solution isrequired, go to step 9.

Otherwisg, the stage-2 solution is not required. Continue on to step 6.

Project changesin Zfrom partition splits.

Compute Oy Ad* A6~ from (16), (35), and (36), respectively, V/ = 1,...,N;;
geQ. Compute AZ* and AS* from (39) and (40) V/=1I,.,Afs; 0eQ.
Compute AZE and ASE from (41) and (42). Select AT according to problem
type (see 8 3discussion) and determinethe corresponding (/,?) pair representing
thepartition g to be split along axis/.

Aggregate mode conver gencetest
If AZ* £t0lj,.t then no further (significant) improvement is projected for dis-
agoregating. Stage-1 approximation solution isgiven by z* sl and x*,=%{.
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Otherwise, the projected maximal change AZz* >tol”, and disaggrcgation as
determined in step 6 proceedsto refine the aggr egate solution.

Step8  Repartition the probability space.
Let g denote the partition to be split, and ¢ the partition formed by the split.
Using (/,?) pair corresponding to AZ* from step 6, split partition g, along the
selected axis / at the axis mean according to (34)-(36). Update g and ¢
partition mean terms. Augment the partition sec Q «- Qyjg, Go to step 2.

Step 9 Stagc-z (E’b) sub-@'oblem (olgtional)
Solve full-gpace (PI) using x, =X asfixed input => Zj, x** and duals.

Step 10 Full-space optimality test (optional).
Solve stage-1 M EP sub-problem (P8) =" z, =u\ 7, =z +2z,, X|, and duals.

Step 11 Full-space convergencetest (case-1 or case-2 problems)® (optional).
Compute the gap (Az= z,g - T) between the upper and lower bounds. If gap >
tolerance, return to step 6; otherwise stop with the approximate solution given by
'=7, x =X ,.and x;, =x,,.

The algorithm can be modified by subgtituting solution to (RI) in place of (PI) in
step 3, and changing the upper bound computation in step 10 by replacing zjs =z + 2
with zg =z, +Z,. In the authors® implementation of algorithm SRO feasihility is tested
"initidly" (i.e., Q=1) and "finally" (i.e., Q=Q%)y kipping the feasbility test (i.e., steps
3-4-5) intermediatdy for initially feasible problems. Our computational resultsindicate that
all example problems remained feasible once an initial feasible solution was found.
Furthermore, all problems we tested” had converged to the exact solution JC; when the
AZ* £tol™. condition wastrue

® When either RHS terms (case-1) or cost coefficients (case-2) arr stochastic, but not both (case-3), the
aggregate problem can be solved to provide a lower boond. Solution to (PI) and (PS) provides an upper
bound. The objective bound gap test is applicable for case-1 and case-2 problems, but not for case-3
problems. For case-3 problems the aggregate convergence test can be used to terminate the algorithm,
unless another means of finding the lower bound is employed.

" Only problems under 35k rows by 35k columns were solved exactly, due to limitations in the LP code
implementation and computer memory.
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Figure 4. Overview flowchart of the two-stage successive disaggregation algorithm (SRO), based on
problems (PO) and (PA). Algorithm " steps* areindicated by the numbers outside of the boxes.
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5 [llustrative Example

Example problem (EX2P) is a smplified planning LP of the form (PO) which we
use to demonstrate the basic procedure for algorithm (SRO). We omit the slacks and retain
the inequalities to give the following certainty equivaent formulation.




(EX2P) min z=a'4 X, Puka
UK

s.t.  jei+2XaiEdy VkeK
2x, +x, 2d, ViekK
x5 20
x, 20 Viek,
where dl(0«{U,3}, p"(i)={0.2,0.5,0.3},

<.*’(/) = {1’2’3}’ PdtU) = {02,06,02},
P =P4 () P, ().

xeR,

1, eR VJfceAT,
iel, jel, K=1Ix/J.

Here JC, arecontinuous stage-2 variablesexpanded out over thediscr ete probability space
given by crossingdemand 1 and 2 (independent) probability spaces, indexed by 1 €/ and
| €1, respectively. Thefirg stage variableis x,. The cost coefficients are 1.0 for stage-1
and stage-2 variables. Solving (EX2P) as formulated above gives the exact solution of
z- =1.6333 and J§* =0.6667, feasblefor all ninepossible events.

In order to illustrate algorithm (SRO), we now outline the solution method on
(EX2P). The aggregate sub-problems (PA) asdefined in § 2 are given by the specification
of the probability space and the set of digoint partitions Q conforming to (14). With the set
Q initially a single partition, the aggregate solution is Vo = 2* = 1.3667 and X; = 0.6333,
feasible for all events ke K. Analyzing the sensitivities (summarized in Table 2) and
projecting partition splitsaccording to § 3 indicatesthe best projected repartitioningis given
by 0>qY =(2,1) and AZ* =0.3333, where At = Al** isthepredicted maximal increase
in the lower bound. We note that for (EX2P) thereisa 1-to-] mapping of 0* to B such
that:

38, /ob, =a, =1, d7/ob, =3E[B, =4, Vi=!
and 98, fob, =&, =0 Vil

Splitting the single partition along probability dimension 1=2, updating the partition
means, reformulating and solving (PA) yields the improved solution Tq =1.5333 and
X[ =0.4666. Repeating the cycle givesa continuing reduction in the predicted increasein
the lower bound and a monotonic increase in the computed lower bound. The complete
results are summarized in Table 3 and Figureb.
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Table2. (EX2P)initial <;ycle sensitivity analysis summary (N, =g =1)}.

i=1 A ABE N K 42
1 0.333 0.9 -0386 0300  -0.129
2 0.333 10 -0.250 0.333__ -0.083

Table 3. (EX2P) results summary.

N, my &';ﬁnu AL s % 2
1 2,1 0.333 0.167 1.3667 16476
2 11 0.300 0.026 1.5333 16476
3 11 0.061 0.048 15591 16476
4 21 0.033 0.023 1.6067 1.6366
5 24 0.003 0.003 1.6300 1.6366
6 na 0 0 16333 16333
(EX2P) (EX2P)
1.7 0.4
L -] observed
1.6+ 0.3+ ———  pradicied
" 154 3 0.2+
| i °
1.4 ~ 0.1+
y i .
137 0.0 == l'l%
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Ny Ny

Figure 5a/b. (a) Monotonic improvement in (PA) approximation to the (P0) objective as aggregate
probability space is successively disaggregated (Nq « # partitions). Exact solution is reached when 6
partitions are used, (b) In all cases the predicted maximal change in the aggr egate objective (based on
sensitivity and repartilioning analysis) is greater or equal to that observed. Furthermore, the predicted
change monotonically decr eases, and goes to zer o when the exact solution hasbeen reached.

The upper bounds generated from solving (PO) using fixed 35 from the (PA)
solutions are reported in the last column of Table 3. These bounds were generated for
completeness, and were not used in the original solution to the problem. That is, the exact
optimal solution was found by succvely disaggregated solutions to (PA), terminating
when no further improvements in the lower bound were projected (i.e., after forming 6
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partitions). The monotonic increasein the lower bound with successive disaggrcgation is
shown in Figure 5a. The exact solution (z * Vo =z, and xf = X)' reached when 6 (of
9) partitions are used. As shown in Figure 5b, the predicted maximal change in the
aggregate obj ective (based on senditivity and rcpartitioning analysis) is greater or equal to
that observed at every step. .Furthermore, the predicted change monotonically decreases
with disaggrcgation, and goes to zer o when die exact solution has been reached. Smilar
behavior has been observed for all case-1 (and case-2) example problems, although the
fraction of expansion necessary to get the exact solution tends to decrease significantly as
the cardinality of the probability space increases, as might be expected intuitively. The
disaggr cgation sequenceis shown in Figure 6.

10/=1 10/=2 /1Q/=3
=i g=1 —_— 12| —

f=2

10/=4 1Q/=5 ffi/=6

3 3 3

4 |2 — 4 |2 e 41612

1 115 115

Figure €. Partitioning sequence for solution to (EX2P) via algorithm (SRO).

6 Planning Example

The second example problem (EX11) ismorerepresentative of industrial planning
models, and is a variation of the refinery planning example in Edgar and Himmclblau
(1989, p. 254). A smplified representation of therefinery production network is shown in
Figure 7. We compar e the performance of the partitioning algorithm with other methods
(namely, Benders decomposition, certainty equivalent transformation, and single-point
mean value approximation). The problem considersthe purchasing, processing, storage,
and sales for a single refinery over two time periods. Five crude oils are available for
purchase subject to the supply limitations. Thecrudeoilscan be sored over time subject to
the tank inventory limits. The production mode isalinear conversion of feedsto products
according to a fixed yield matrix, with limits on the production capacities. Four products
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are manufactured and available for sale according to market demands, each of which is
congdered random with four states possible for each demand Thusthere are 256 possible
events depending on the gate of each demand. Products can also be sent to tankage for
temporary storage. A redriction isapplied fencing a net balance of inventory in both feed
and product tanksover the time horizon, with accumulation allowed in intermediate stages.
Hence, all materials purchased must ultimately be processed and then sold as products.
The objective function is cost minimization which is formulated as the sum of crude
purchasing and operating costs minus the revenue from product sales. A 0.99 discount
factor isapplied to all stage-2 costs and revenues. Stage-2 demands axe on aver age lower
than those of thefirst stage. ‘

min cost = f(purchases, sales, operating levels)

Supply markets Demand markets
—®| Rdinery Production Model: j—gme gasoline
crudecils ——jp| - liN€AY cONVErsion —» heating oil
—p| - linear material balances  [~—B» et fue
—pp| - feed and product tanks. P |ubeoil

Figure 7. Refinery production model for example problem (EX11).

The basc dimensions of the LP arc asfollows. For the determinigtic case (i.e., no
probabilistic expansion) there are 13 stage-1 condraints, 22 stage-2 congraints, and 1
congtraint defining the objective function, giving a total of 36 constraints. With the
probabiligtic expanson over all 256 events, the stage-2 congtraints are reproduced once for
each event leading to 5632 stage-2 congtraints, and a total of 5646 constraints. In the
deterministic case there are 55 variables, and 141 non-zero elementsin the LP. In the
probabilistic case each stage-2 variable is expanded over the event space, leading to a total
of 6940 variables and 20286 non-zero dementsin the LP.

We now congder the solution via the partitioning algorithm and compare theresults
with the solution via alternate methods. The results of this problem solution are
summarized in Tables4 and 5 below. Theterms CET and SRO refer to certainty equivalent
transformation and partitioning algorithm, respectively. For the Benders decomposition
results wereport the major iterations. A variation on algorithm (SRO) was used, whereby
the partition splits were not restricted to one split per partition. Thus the algorithm
progressed directly from Nf « 1 -» 4 -» 8 -> 16 partitions for (PA). In this manner fewer
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intermediate solutions were required. Each repartitioningisrecorded as an "iteration” for
algorithm (SRO).

Notein Table 4 that with die SRO method, 16 partitionsarcrequired to convergeto
the exact optimum. The CET version was solved with OSL on an |BM/6000 using simplex
and interior point methods. ‘In both.cases the problem wasinitialized with ail activities set
to zero, except the inventory terms which wereset at their sartingvalues (Le., t*0). As
shown in Table 5 die simplex method took nearly 3000 iterations and about 2 minutes.
Solution using the interior point. method took 21 iterations and about 30 minutes. Solution-
by Bendersdecomposition took between 11 and 14 major- iterations, depending on thelevel
of precision required Timing data for Bendersare not reported since oor implementation
of die Benders method does not take advantage of die decoupled stage-2 L P sub-problems.
Each major iteration via Bender srequiresthe solution of Nx LP sub-problems. Solution to
these sub-problems can beprohibitive; as previously discussed. By comparison, using a
sensitivity-based successive disaggregation approach, the partitioning algorithm found the
exact solution to machine tolerance in 4 iterations (i.e., 4 different parritionings). The
maximum expansion of the variables and constraints for the SRO algorithm isin this case
Af; =16, or 0.0625 of that required by GET or Benders methods. This reduction in
variable and congraint expansion iscritical in making the problem more tractable.

Table4. Partition algorithm solution torefinery planning example problem (EX11).

Method ~ #partitions Z_ £ Z)» gap(%)
CET #,=256 nfa -6522.8 nfa nla
RO 1 -6536.1 -6536.1 -6468.6 1.03
KO 4 -6529.5 -6529.5 -6517.7 0.18
RO 8 -6527.0 -6527.0 -6521.8 0.08
RO 16 -6525.8 -6525.8 -6525.8 0

Table5. Alternative algorithm solution to refinery planning example problem (EX11).

Method Comment CPU (sec) Iterations gap (%)
CET OSL/Simplex 21 2831 na
CET OSL/Interior point 1872 21 na

Benders Complicating: X, na 1 01

Benders ~ Complicating: x, na 13 0.01

Benders Complicating: X, na 14 0.001
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7 Computational Results and Analysis

We now present the results of several computational experiments conducted to
examine the behavior of algorithm SRO on two-stage planning problems. Problem (EX11)
isavariant of die Edgar and Himmelblau (1989) asdescribed in die previous section. The
number of eventsfor each independent probability dimensions (i.e., sochastic demands) is
parameterized so as to change the total number of eventsin thejoint probability space.
Increasing the total number of events, | AT, resultsin a higher resolution definition of die
probability space. Asshown in Table 6 and Figure 8 theratio of expanacm for algorithm
KO as compared to the GET solution is small, and decreases as 1X1 increases. For the
largest problem instance (exl 1) lessthan 300 partitions are needed to find the epsilon-exact
solution, ver sus 160,000 for the GET equivalent problem. Correspondingly, the maximum
sized RO LP is 7,450 rows by 7,750 columns versus 4,160,000 rows by 4,320,000
columnsfor the GET equivalent problem.

In Table 6b the solution timesreported correspond to solution of the problem on an
alpha workgation with 64 MB RAM memory (athena.nectar.cs.cmu.edu). It should be
noted that our implementation of algorithm SRO is rdatively unsophisticated from a
performance sandpoint. Reading and writing filesto disk consumes subgtantial time, and
could be greatly reduced by using memory reads and writes. Also, no sorting basisis
used for each new L P for successively disaggregated problems (PA), resulting in a ™ cold"
dart to each sub-problem. Modifying the previous bases for each subsequent solution
would no doubt greatly improve the efficiency of the implementation. Anocther obvious
extension to the implementation would be to include a Bender stype solution to (PA) when
the L P sub-problems get large.

Table6a. Partition algorithm solution torefinery planning example problem (EX11).

Problem Case ML 101 K\ \ N' K\
exile 1 4 4 256 16 0.06250
exile 1 4 6 1296 36 0.02777
exl If 1 4 8 4096 56 0.01367
exllg 1 4 10 10000 90 0.00900
exllh 1 4 12 20736 103 0.00497
exlli 1 4 16 65536 208 0.00317
exl|] 1 4 20 160000 286 0.00179
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Table 6b. Expansion and timing for solution to planning example problem (EX11).

Problem  (PA)maxLPsize CETLPsize SROtime:
(rows x cols) [OWSX cols (dar/sed se0)
exile 430x460 6670x6940 34
exile 950x1000 33710x35020 179
ex||f 1470x1540 107kx111k 474
cxllg- 2354x2458 260k x270k 1632
exllh 2692x2809 539k x560k 2093
cxlli 5422x5644 1704kx 1770k 16286
exllj 7450x7750 4160k x 4320k 49756
1000
100-
S, —
5 N

10-

1E+01 -
1E+02-
1E+03 -
1E+04 7
1B+05
1E+06

:

Nk

Figure 8. The number of partitions (required to get the exact® optimal solution) NG versus the number
of events | ATl for problem EX11 with 4 stochastic demands. Increasesin \K\ represent higher resolution of
the discrete probability functions. Increasing resolution in the full space requires fractionally fewer
partitionings to reach theexact solution.

The second example problem (EX30) is taken from the two-stage planning model
of lerapetritou and Pistikopoulos (1994). Two instances of the model are solved, each
with stochagtic RHS s (demands) and costs (sales costs) making (EX30) a case-3 problem.
There are four events for each independent probability dimensions (i.e., stochastic
demands or costs). In both instances, two stochastic costs were included. Praoblem
ingtance 'a has three stochastic demands, and *b' hastwo. The fully aggregated problem
has 13 stage-1 congraints, 33 stage-2 congtraints, 26 stage-1 variables, and 39 stage-2

8 Problems with \K\ > 3000 were not solved to with the GET formulation due to their size. The SRO
algorithm terminated for all caseswhen the predicted changein the ohjective was below the tolerance which
wassetat 10" *.
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variables. Thereaultsfor the problem solutions via the SRO algorithm are summarized in
Table7. Figures9and 10 show the progresson of the solution through disaggregation for
problem instances V and 'b\ respectively.

In both instances, the RO algorithm sdlected the partitioning sequence according to
the maximal absolute predicted (positive or negative) change in the objective. The
sensitivities dx/dd were computed numerically by perturbing the (PA) sub-problems. As
might be expected, calculating dienumerical derivativesdominated the computing resource
requirements (ca. 98%). Both asa subset of the numerical derivative calculationsand asa
component of the SRO algorithm, the primary computing resour ce user s wer e the solution
tothe LP sub-problemsviaMinos 5.1 (ca. 2/3 of the total) and the expansion and writing
of the MPS files (ca. 1/3 of the total). Clearly, there is considerable room for
improvements in the implementation, including parallelization. Our primary motivation
wasto test the method, as opposad to the computing implementation per se.

As shown in Table 7 - and as was observed for case-1 problem (EX11) - theratio
of expangion for algorithm SRO as compared tothe GET solution is small, and decr eases as
IAT increases. As shown in Figures 9 and 10, the aggregate problems (PA) produced
solution values below the upper bound values (generated by substituting the stage-1
solution to (PA) into the CET problem (P0)). While in general for case-3 problems the
aggregate model solution does not provide a lower bound, in this instance the aggregate
models behave smilarly to that of a case-1 problem and terminate at the exact solution
when the aggregate solution is equal to the upper bound.

Table 7a. Partition algorithm solution to Imperial planning example problem (EX30).

Problen Cae 101 101 \K\ Ni KAK\
ex30a 3 5 4 1024 22 002148
ex30b 3 44 256 13 005078

Table 7b. Expansion and timing for solution to example problem (EX30).

Problem (PA) max LP size CET LPsze ROtime

- (rows x cols} (rows x cols) (elapsed sec)
ex30a 740x885 33806 x 39963 4417°
ex30b 443 x 534 8462x10011 990

° Time reported was divided by 2, since machine was loaded with another job using /2 the CPU during
thisrun.
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cx30adata(dt=10)
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Figure9. Imperial planning example (ex30a) with 3 stochastic demandsand 2 stochagtic costs, each with
4 independent events.

ex30bdata(dt=10)
-40420.0
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4044504 0 f Q7T r.cet*
OO 090000
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t1e
127
134
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# of partitions Nq

Figure 10. Imperial planning example (ex30b) with 2 stochagtic demands and 2 stochagtic costs, each
with 4 independent events.

While Acre are numerous obvious improvementsin the computing implementation,
the qualitative results from the examplesrun by the authorsindicates that the successive
disaggr cgation algorithm may be a useful addition to the tool set for solving both two-stage
and multi-gtage stochastic linear programming problems.
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8 Conclusons

Extending linear planning models to.include probabilistic representation of pa-
rameter uncertaintiesis required for a complete solution to the problem. The resultant
stochastic programming problems can be intractable due to the exponential growth in the
problem size (variables and congtraints). We have proposed a successive disaggregation
algorithm which refines the solution to a desired tolerance level, reapplying the mean value
approximations over partitions. Early resultson two-stage examples indicate that the algo-
rithm finds the optimal solution in a much reduced expansion, as compared to the CET
formulation, and also requires consderably less work than Benders schemes. Work is
underway to further investigate extensions to multi-sage ssochadtic linear programs.
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