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Abstract

In order to solve the production planning problem given in "Part I\ a successive
disaggregation algorithm is developed bated on extensive ieasitivky analysis for guiding
the decisions on how to repartition the aggregate probability space. The partitioning
algorithm is guaranteed to converge lo the exact solution in a finite number of iterations,
and has a highly parallel decomposition and computer implementation. Example
problems are presented to demonstrate the solution technique. Results are compared with
the alternative solution methods, variants of Benders decomposition schemes tailored to
the dynamic staircase LP structure.
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1 Introduction

As was shown in "Part I" (Clay and Grossmann, 1994), the optimization of two-

stage production networks (such as in Figure 1) with uncertain costs, supplies, and

demands can be formulated as the following fixed-recourse stochastic LP:

min mc^ + E^clxJ (1)
s.t. Alxl =£i

4*+4*2 =*2

where 02 is the stochastic parameter vector defined on the (stage-2) probability space

(©,?",/>), and &2(02) and c2(02) are stochastic linear functions with constant coefficients.

The triple (0,J,P) defining the probability space is composed of the (non-empty) event

space ( 0 ) , the a-ficld in 9 ( J ) , and the probability measure on f (P). As discussed in

"Pan I", problem (1) has been extensively studied (e.g., Birge, 1982,1985,1992; Dantzig

1 Email address: ic3l@andiew.cmu.edo (Internet).
2 Email address: igQo@andrew.cmu.edu (Internet).
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and Glynn, 1989; Infangcrf 1991; Wets, 1989; Gassmann, 1990). In this paper, we
propose a successive disaggregation approximation method for problem (1), reformulated
as the certainty equivalent problem (P0) below.

Raw materials Intermediates Products

Figure 1. Simple production network with multiple feeds, intermediates, and products, all or part of
which depend on uncertain market conditions governing supply, demand, and pricing.

2 Basic Sub-problems

Deterministic Equivalent Problem

Applying the certainty equivalent transfonnation (see Dantzig, 1987) to problem (1)
with stochastic parameters c2 and b2 expanded over the stage-2 discrete probability index
keKy and rearranging leads to the following formulation.

(PO) min z = c[xx + 2*pnc\kxlk (2a)
k*K

s.t. \xx = bx (2b)
= bu VJfeeAT (2c)

(2d)
V*eAT, (2c)

where matrices Bx and A^ are fixed (i.e., £,* = ^ and Au = ^ VkeK). The dual vari-
ables associated with LP (P0) are given in Table 1.

Table 1. Two-stage MSLP certainty equivalent dual variables.

Constraints

(2b)
(2c)
(2d)
(2e)

Dual Variables

K

Pu >Puk (

Dimension

m,xl

(mjXl)x|An
n,xl, n,xl

n2xl)x\K\An2xl)x\K\
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While the certainty equivalent formulation is straightforward, in practice (PO) can be
intractable due to the exponential growth in variables and constraints (see Dantzig, 1987).
This growth effect is exacerbated as additional time periods art included, making exact
solution to die multi-stage equivalent of (PO) generally intractable.

Aggregate Model

As shown in Tart I", the idea behind the disaggregation algorithm is to circumvent
the solution of (PO) with an aggregated LP, defined as:

(PA) min ^ - c f t + Yft-ZL** (3a)

s.t. Aft =1^ (3b)
VqeQ (3c)

(3d)
(3e)

where Pu~ ^$Ptk • Q^Q* K< C^» (4)

^ = X P A / P V (6)
*«*•

2*2* / V (7)
*«*, /

Here qeQ denotes the set of disjoint partitions containing events k e Kq, whose union
comprises the entire stage-2 (discrete) event space K. Additionally, (stage-1) feasibility
"cuts" may be added to (PA) constraint set, as discussed below. As discussed in § 4,
problem (PA) is solved with increasing resolution in the aggregate probability space to
produce approximate solutions for z* and x\y optimal for (PO).

A critical issue is the test for feasibility and optimality given any proposed solution
for the stage-1 activity, xx. To develop the partitioning algorithm we first consider the
feasibility and optimality test problems (PI) and (P5), respectively.

Feasibility Test Problem

We start by examining the problem which occurs when xx is assumed known (i.e.,
a value is obtained from the solution to (PA) which we need to test for feasibility). Starting
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with problem (PO) and assuming xx known leads to the following formulation, which

represents the stage-2 (recourse) component of (PO).

(PI) min z2 =

S.t. ^2*2* = bit "" ̂ 1*1 Vifc € K
VkeK.

Given any proposed stage-1 solution *,, (PI) can be used to evaluate the feasibility with

respect to all anticipated future outcomes. Solution to (PI) gives the following results: z2,

*2*> K* pu% POT, the A^{k) bases, and identification of any stage-2 infeasibilities.

Problem (PI) can be decomposed into NK «\K\ independent sub-problems, a

single-stage UP for each event keK y greatly simplifying its solution. Furthermore, this

decomposition suggests a natural parallel computing scheme with blocks of sub-problems

distributed across processors. The objective, z2, is the sum of the stage-2 objective

function terms over all sub-problems keK. In a parallel computer this summation can be

performed in log2 time. The overall speedup by parallel solution is expected to be nearly

linear in the number of processors (i.e., nearly perfect speedup). Using a computer such

as the Connection Machine CM-5 with 2048 processors, we would anticipate better than

three orders of magnitude speedup over a (serial) workstation.

While problem (PI) can be decomposed and solved in parallel, the number of UP

sub-problems can be exponentially large. We are therefore motivated to develop a variant

of the algorithm which tests for feasibility in a reduced space. Given any proposed

solution jCj and stage-2 RHS value b2, the feasibility can be determined by the following

sub-problem:

(P2) min u

S.t.
- j t 2 - u £ 0 PL***1

Xt-u-U^ZO Pue**2*

where a solution u > 0 ( u £ 0 ) implies (PO) is infeasible (feasible). In order to include the

most constraining RHS terms, problem (P2) is expanded to the full (PO) constraint space

by reformulating it as the following max-min problem which determines the worst potential

infeasibility over all RHS realizations:
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(P3) max min u

s.t.

where pL = minfe,}, pv = ma

Again, a solution u>0 (u £ 0 ) implies (P0) is infeasiblc (feasible). Let /T denote an
optimal solution to (P3). In order for /T to be a valid solution to die (P0) feasibility test
problem, it must correspond to an event in the probability space, such that:

k€K}. (8)

Since the "most infeasible" solution to (PI) will correspond to an extreme point (Swaney
and Grossmann, 1985), condition (8) is met implicitly when the joint probability space is
formed from the intersection of independent probability spaces. That is, when:

x N § , (9)

then P*=Pu°Tft=Pui Vf«lf...fni2i

and all PL I pv combinations e {fê  : k € K). Hence when condition (9) applies then
P* e{b2k: keK], satisfying3 condition (8), and problem (P3) is a valid feasibility test for
(P0).

When condition (9) (and hence (8)) is satisfied, problem (P3) can be reformulated
to eliminate the nested (max/min) optimization problem by explicitly representing the
optimality conditions of the min problem within the max problem (Grossmann and
Floudas, 1987). Recasting (P3) in this manner leads to the following mixed integer
formulation.

3 If condition (8) is not implicitly satisfied (i.e., non-independent probability space), then problem (P3) can
be reformulated by introducing integer variables to explicitly enforce (8). Alternatively, one may utilize the
result that (P3) (minus condition (8)) is a relaxation of the feasibility test problem such that a feasible
solution to the "reduced" (P3) implies feasibility for (P0). We have restricted our attention to the solution
to independent probability space problems.
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(P4) max u
s.t.

sL-UH(l-yL)ZO

X unrestricted

where pL = min{fr2ik}, ^ = max{b2k],

and conditions (9) and/or (8) hold. Note that evaluating the bounds fiL and pv is greatly

simplified by the assumption of independent probabilities in (9).

When only the feasibility of a proposed (stage-1) solution xx is in question (and

condition (8) holds implicitly), then the reduced-space problem (P3) or equivalently (P4)

can be solved We use this approach to generate the feasibility "cuts" which augment (PA)

and enforce feasibility for subsequent aggregate solutions (see also § 4). To generate a

feasibility cut for problem (PO) we first examine the (KKT) optimality conditions for

problem (P2). The Lagrange function for (P2) is defined as:

forany fie{b2k: k

The stationarity conditions imply that:
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and ^
dx2

Hence the Lagrange function reduces to:

J :fi specified.

Bom constraint feasibility and complementary slackness conditions, we know that C = u

at some optimal j£. And since feasibility requires that u £ 0 , we define the *,-space

feasibility cut as:

By analyzing the dual solution of (P3) or (P4) we can ascertain the most violating

constraints, and hence set /J, A, and pv for the feasibility cut. As discussed in § 4,

problem (PA) is augmented as necessary with the feasibility cuts until (PO) either becomes

feasible or is determined to be strictly infeasible.

When an exact upper bound (zUB = z\ + z\) and /or the complete (stage-2) solution

are required, problem (PI) must be solved VkeK. However, since that is in general

prohibitive, alternative methods of generating the upper bound are of interest. Among the

alternatives are the methods proposed by Birge and Wallace (1986,1987), Birge and Wets

(1985), and Edmundson-Madansky (Madansky, 1960). One might also consider a

sampling-based approach to solving (PI), such as that suggested by Dantzig and Glynn

(1989) or Infanger (1991). For case-1 or -2 problems (see MPart I" for discussion on

classification) we propose another alternative based on a reformulation of problem (PI).

When both costs and RHS terms are stochastic (i.e., case-3 problems), the reformulation

does not lead to an upper bound on (PI). In the reformulated problem (Rl) an aggregate

stage-2 activity vector is used, thus avoiding the \K\ LP sub-problems associated with

(PI).

(Rl) max min z'2 =

s.t.

pe[b2k:keK)
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where pL = mn{b2J, ft, = a
jCj known

(PI) is a case-1 problem.

Note that (Rl) can be reformulated as an MILP problem similar to (P4), and then solved

with conventional methods. Additionally, we can define the (independent) "event" sub-

problems associated with (PI) and (Rl) as follows:

(PU) min

s.t.

where (PI) is a case-1 problem.

(Rl*) min z^

s.t.

where /T is optimal for (Rl).

The following relationships tie the feasibility test problems with their sub-problems as

defined above:

k€K

We note that in practice solving (Rl) by the decomposition to (Rl*) is unnecessary. We

present the sub-problem (Rl*) here to facilitate the following discussion.

Theorem 2. Let i\ and i^ denote feasible / optimal solutions to problems (PI) and

(Rl), respectively. For case-1 problems (i.e., fixed cost, stochastic RHS), the solution to

(Rl) is a valid upper bound on (PI), such that z'2* £ z\.

Proof Far both (PI) and (Rl) the cost vector is fixed such that cn =c2 = c2. Let z\k and

z2k denote the feasible / optimal solutions to sub-problems (PI*) and (Rl*), respectively.
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The RHS vector /T in (Rl) corresponds to the selection of one particular value blk\ keK
that defines the "worst" objective function value for (Rl), and correspondingly for (PI)
and (Rl*). It therefore follows that 3 x*u for each (PI*) VkeK such that z^C*^) <
zu(V*)- Inductively applying this inequality over all keK along with equation (10)
relating the sub-problems to the non-decomposed problems (PI) and (Rl) gives z\ £ z'2\
//Q.E.D.

Corollary 4. For case-2 problems (i.e., stochastic cost, fixed RHS), the solution to (Rl)
is a valid upper bound on (PI), such that z£* £ z\.

Proof Since Afe* =6fe =/*\ problem (Rl) then reduces to an aggregate model (with
|Cl = 1) of (PI). By application of Corollary 2 (see "Part I", § 8), it follows that z'2

m £ z2\
/ /Q£.D.

Qptimalitv Test Problem

We now consider the problem that results from (P0) by assuming xlh known and
Xj unknown, leading to the following formulation which represents the stage-1 component
of(P0).

(P5) min zx = c[xx
*1

s.t.

Solution to (P5) gives the following results: zp xlf / i , Xkf cxL, Gu% and the % basis.
Given any proposed stage-2 (feasible) solution xlk> (PS) can be solved to find the stage-1
contribution z, to the objective z = zl+z2. Furthermore, any feasible solution set zx and
z2 defines an upper bound on (PO) such that zUB = zx+z2t z\

Since the (P5) constraints are reproduced over all events keK it can become
intractably large. When the transition matrix £> is fixed (i.e., fl^B, V * € # ) the
problem can be reformulated to reduce the problem size. The approach (similar to the (P2)
reformulation above) comes from the realization that the solution to (P5) will correspond to
a vertex or extreme point, dictated by the most constraining RHS terms. The alternative
formulation for (P5) follows.
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(P6) max min z, =c[xx

s.t. Alxl = bx

where

Thus the limits on 5 are the minimum and maximum terms over the RHS vector from the
set of events k e K.

In order to avoid having to specify all x^ Vife € K prior to solving (P6), we
propose an alternative formulation which circumvents this specification.

(P7) max min z, = C,TJC,

s.t. i4,x, = bi

where fiL = min{fc2t}, pv = max{fc2ik}.
* c *

Similar to problem (P3) above, (P7) can be reformulated to eliminate the nested
(max/min) optimization problem. Recasting (P7) in this manner leads to the following
mixed integer formulation.

(P8) max z,
s.t. z, £ c,rx,

- aL + av « 0
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/ i9 X unrestricted

where fiL = mjnfa*}, pu ma

Note that in this case we obtain a new estimate for xx which can be used to test conver-

gence.

Once we have solved problems (PI) and (PS), or their reformulated equivalents, an

upper bound on the exact solution is given by zUB-z^zl^z* or

z'UB = z* + %"*zm ^ z\ if (Rl) is solved in place of (PI). We note that the upper

bounding method via solution to (Rl) proposed above for case-1 and -2 problems may

result in a non-zero gap between the upper and lower bounds even at the exact solution x[.

Consequently, it may be necessary to refine the upper bound provided by (Rl).

3 Sensitivity Analysis Procedure for Partitioning

Central to the successive disaggregation method given in "Part I" (Clay and

Grossmann, 1994) is the means by which the aggregate model is repartitioned when further

refinement of the solution is required. In this section we consider sensitivity analysis of the

aggregate problem (PA) solution in the context of repartitioning. We propose a strategy for

repartitioning the aggregate probability space based on sensitivity analysis. The combined

sensitivity analysis and repartitioning scheme comprise the successive disaggregation

algorithm (SRO) presented in § 4.

Before developing the mathematics underlying the sensitivity analysis and

repartitioning scheme, it is helpful to consider the matter at a conceptual level in order to

place the development in context. The successive disaggregation algorithm can be viewed

as an adaptive strategy which refines the aggregate solution space according to the
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sensitivities of the aggregate solutions combined with analysis of the potential partition

splits along single (stochastic parameter) dimensions. With each solution to the aggregate

LP (PA), the sensitivities to RHS and/or cost partition-mean changes are updated from the

dual solution. Similarly, the potential partition splits (i.e., disaggregation steps) change

according to the evolution of the partitioning. With each subsequent solution to (PA), the

information is updated and the combined analysis guides the repartitioning to refine the

aggregate probability space so as to add resolution in the area projected to be the most

influential (i.e., projected to maximally change the next aggregate solution

To illustrate the matching of partition splits (i.e., disaggregation steps) to projected

changes in the aggregate solution, TQ% consider a single dimension of the stochastic vector,

0,, with four discrete values denoted 0n through 0f4. Assume that TQ = zu <> z (as per

case-1 problems), and that we therefore wish to repartition the 0 probability space so as to

maximally increase z*Q. Let the probabilities be such that the partition mean, 0^, lies

between the values of events 2 and 3 (i.e., 0n < 0% < 0/3), as shown in Figure 2. The

(ordered) set of 0 events can be delineated according to the values relative to 0^, forming

"positive" and "negative" subsets, K* = [0m0l4) and AT~ = {0n,0 /2}, respectively.

Projecting the split of the partition at the mean, 0k , leads to new partition "positive" and

"negative" means with corresponding differences from the previous mean, denoted A0£

and 40£, respectively. From the analysis of the solution to (PA), we know the sensitivity

of the aggregate solution, VQ, to changes in RHS terms and (via the chain rule) to 0.

Combining the projected change in 0^ with the sensitivity information leads to a predicted

(maximally increasing) change in ?g, denoted Al£ in Figure 2. Making the split

accordingly (forming a new partition) and resolving the disaggregated (PA) then leads to

results as shown in Figure 3. The sensitivity analysis, repartitioning, and (PA) solution

cycle is repeated, selecting partition q (and in general dimension /) so as to maximize Az^

until the algorithm converges to the exact solution within a predefined tolerance.

As discussed in "Part I", the strategy for solving (PO) by successive disaggregation

depends upon the type of uncertain parameters in the particular problem instance. We

restrict our attention to problems with uncertainties in cost coefficients and RHS terms, and

consider three cases delineated by the type of uncertain parameters. The subscript indicat-

ing stage-2 terms has been dropped to simplify the notation in the following discussion.

Unless otherwise noted, all terms in the sensitivity analysis denote stage-2 variables and

parameters.
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Stochastic paramter A

Figure 2. Geometrical interpretation of iepartitioning concept in single stochastic parameter dimension /
for single partition q.

Stochastic paramter ft

Figure 3. Geometrical interpretation of repartitioning concept in single stochastic parameter dimension /
after splitting partition indicated in Figure 2. New partition means are projected from previous analysis,
while sensitivities are updated from the solution of (PA) using two partitions.

Case 1 : Fixed cos ts , s tochast ic R H S

Let z* be the optimal solution to the certainty equivalent (full AT-space) problem

(PO). Further, let N§ and Nf denote dim(0) and |Q|, respectively. When costs are fixed

the aggregate sub-problems (PA) are convex and thus give a lower bound TQ = zu < z

(see Tart I" for discussion on aggregate bounds). We seek the change in partitioning (i.e.,

the disaggregation step) which induces the maximum increase in z^. We approximate the

change in the lower bound z^ relative to a change in the stochastic parameter vector 0

around a solution point of (PA) as:
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(11)

For the general case b = b(9) and the RHS mean is defined as:

* •« •

where P* = Z t t f f P* (13)

and ^C^LL*;-*. (14)

Applying die chain rule and expanding over (stage-2) row terms gives:

The sensitivity of the lower bound to the RHS mean (BzLMldbx) is available from
the solution to (PA). The sensitivity of the RHS mean to die stochastic parameter mean can
be obtained from the definitions of the partition means, where:

The corresponding sensitivity of the stochastic parameter mean to the discrete event values
is:

= £*-:*€*,. (17)

When the stochastic function bt(0) is linear with constant coefficients we have:

b^aje, (18)

where4 b e 9T*, 0 e 9iN'+x
 f and a e ftw*"*. Expanding terms gives:

fy = T ĉttf̂ / Vi = l,..Mm2» (19)
1*0

4 The stochastic vector 0 is augmented by 1 to account for the constant term, such that 80k • 1 and ai0 is
the constant for ta VkeK.
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and hence ^ = aiX * —-*- = constant VJfceAT. (20)

Substituting (19) into (12) gives:

where 60k = 1 and a l0 is the constant term for (stage-2) row i. Hence from (21) we have:

db db
jjL aa=-r-i- = constant V^eQ, / = l,..MAf#f 1 = 1,...,^. (22)

And thus for linear b{6) with constant coefficients the second term from (15) is constant

Combining (15) and (22) gives the formula fen* computing the sensitivities to the aggregate

solution required in (11) as follows:

Case 2! Stochastic costs, fixed RHS

For case-2 problems the aggregate sub-problems are concave and thus give an

upper bound TQ = zUB ^ z (see "Part I" for discussion). While case-2 problems can be

reformulated and solved as case-1 problems, we examine the cost sensitivities in order to

develop the complete sensitivity analysis which will be used for the general problem

discussed below. Similar in spirit to the case-1 analysis, we seek the change in partitioning

which induces the maximum decrease in zUB. We approximate the change in the upper

bound zUB relative to a change in the stochastic parameter vector around a solution point of

(PA) as:

The development parallels that for case 1 above. For the general case c = c(0) and the cost

mean is defined as:

~ r (25)
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Expanding terms and applying the chain rule to (3a) gives:

Si^ifH^ (26)

taking cf = / (0 f ) and xf = g{6,).

The sensitivity of the upper bound to die cost mean (<hUM/d?j) is obtained from the

aggregate problem (PA) objective function definition (3a), giving:

y/si,...,̂ , (29)
1-0

The stage-2 activity vector jcf = JC^ is obtained from the solution to (PA). And when c(8)

is linear witfi constant coefficients we have:

cy = yj0, (28)

where5 C€9T\ 0eft"'**,and y€3l(A'«+I>K"». Expandingtennsgives:

and hence

The sensitivity of the upper bound TQ to the aggregate solution xf is provided by the dual

solution of (PA). The sensitivity of xf to 0f is not readily available, but can be estimated.

For the purposes of the case-3 example problems presented in § 7 the authors used a

differencing method to compute the partials dxkfdl)k. Combining expressions gives the

formula for computing the sensitivities to the aggregate solution required in (24) as follows:

(31)

5 The stochastic vector 0 is augmented by 1 to account for the constant term, such that 00k • 1 and pi0 is
the constant for c^ VkeK.

- 1 6 -



Case 3: Stochastic costs, stochastic RHS

When both costs and RHS are stochastic the problem is convex in the constraints

and concave in the objective function. The sensitivities to changes in the stochastic

parameters are obtained by combining the results of cases 1 and 2 above. However, the

aggregate problem no longer has the property of simple convexity or concavity. Thus the

bounding properties (as for cases 1 and 2) no longer apply and the repartitioning strategy

must change accordingly. The sensitivity for projecting changes in the aggregate problem

based on changes in the stochastic parameter is similar in principle to cases 1 and 2 above,

which when combined give:

4?-§45 = ££-§-45,, (32)

v*r,££ (33)

assuming b(0) and c(6) are stochastic linear functions with constant coefficients defined

by (18) and (28) above.

Projecting min and max A0:

We now consider repartitioning the (stage-2) event space K in order to improve the

approximation of the exact solution i provided by the aggregate solution VQ. Each of the

three cases defined above has unique bounding properties, namely: (0 VQ = iu<t z for

case-1, iix) IQ = zm £ z* for case-2, and (ill) TQ does not bound z* for case-3 problems.

While the repartitioning strategy necessarily differs for each case, the essential goal of

finding the min or max change in 0 via a repartitioning of the event space is common to all

three cases.

To explore the potential changes in the partition means, we consider deviations

from the means resulting from splitting partitions along single dimensions, thus retaining

the rectangular structure of the partitioned even space. For each partition qeQ axis /

defined by the parameter 0, has mean 0^. Deviations from the mean for each partition

qeQ and event k e Kq are defined as follows:

• 0»-6|t:*cAv (34)

The cumulative positive and negative changes from the means are defined, respectively, as:

• 1 7 -



and

where

and

*« * ;
/ 06)

(37>

(38)

The authors note that alternative criterion to (37) exist The choice of (37) can be viewed as
a weighted-average approach, as opposed to the 1^ norm, for example.

Projecting min and max Az:

By combining the results from the above analysis we can project the rcpartitioning
which is projected to produce the desired maximal change in the aggregate solution VQ, per
(11), (24), or (32) for casc-1, -2 or -3 problems, respectively. The corresponding
sensitivities are computed from (23), (31), or (33), respectively. The change in the
partition means is independent of problem case, and is determined from (35) and (36),
using criterion (37) to delineate events into positive and negative influence subsets,
corresponding to the projected partition split given any pair (14).

For the most general case, the projected positive and negative changes in I for any
partition qeQ and stochastic parameter index / = 1,...,N# are defined, respectively, as:

(39)

and AI~

where b(0) and c(0) are stochastic linear functions defined by (18) and (28) above. Let
the maximum and minimum taken over all indices / = l,...,N$ and qeQ be defined as:

and

(41)

(42)
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Let AT denote the optimal choice from (41) or (42) for each of the three problem

cases. When (stage-2) costs are fixed and RHS's stochastic (i.e., case-1 problems), the

aggregate problems are convex in the constraints. As shown in Tart I", successive disag-

grtgation of (PA) provides a monotonically increasing lower bound zu on z . The algo-

rithm correspondingly selects AT = AS** in order to maximize the increase in the lower

bound zu^z^. Case-2 problems are reformulated and solved as case-1 problems (see

Tart I" for discussion). For the most general case with both costs and RHS's stochastic

(i.e., case-3), the aggregate problem is convex in the constraints and concave in the

objective function. Consequently, the aggregate problem solution provides neither a valid

lower or upper bound on z\ Furthermore, it can be shown that successive disaggregation

does not necessarily provide a monotonic decrease in the difference Izg-z'l. The

algorithm seeks the disaggregation steps projected to maximize changes in the aggregate

solution TQ. This approach is based on the assumption that maximal changes in TQ will

correspond to different bases for the true solution, and that grouping (via successive

disaggregation) these bases into probability-weighted subspaces according to their impact

on IQ will give an efficient approximation to the full-space problem (PO).

4 Successive Disaggregation Algorithm

With the above definitions and preliminaries aside, we now consider the question of

how to solve (PO) using successively refined aggregate problems (PA). The objective is to

successively disaggregate the problem in as few steps as possible until the aggregate

solution TQ approaches z within some predetermined tolerance.

Let the (stage-2) discrete probability space (&>T,P) have a rectangular support

defined by the intersection of independent stochastic parameter spaces. If we consider only

single axis cuts for splitting any partition into two sub-sections, then the rectangular

structure is retained through all subsequent repartitioning. Algorithm SRO is designed to

successively improve the estimate TQ of z* through repeated solution of increasingly disag-

gregated LFs approximating the full-space CET problem (PO). For cases 1 and 2 which

are convex and concave, respectively, each subsequent solution to the partition

approximation LFs provides a monotonic improvement in the estimate TQ of z*. For all

three cases solution to the aggregate problem (PA) provides updated sensitivity information

which is applied to project the repartitioning which is predicted to minimize the difference

\ZQ-Z*\. The general form of the successive disaggregation algorithm SRO is now

presented. A high-level flowchart of the algorithm is provided as Figure 4.
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Algorithm SRO

Step 1 Initialization.

Define problem parameters and discrete probability space. Initialize

e, = Yjir G « - { i } . ' ( ^ 4 - 0 .

Step 2 Aggregate LP solution.

Given Q and the set of feasibility "cuts", formulate and solve the aggregate LP

(PA) => £, %9 df/db^ ,and x^.

Step 3 Full-space (PI) feasibility sub-problem.

Solve the MILP(P4) using x , = j ^ as fixed input =^ u\ f}\ duals, and slacks.

Step 4 Full-space (PI) feasibility test

If u > 0 , then (PI) is infeasible for given xl. A feasibility cut is added to

aggregate model (PA). The term /T indicates the most violating constraints with

corresponding dual A. The feasibility cut ^ [ - / T + ̂ jeJ-pft/^ SO (see § 2

for discussion) augments the (PA) constraints for all subsequent solutions.

Return to step 2 with Q unchanged.

Otherwise u £ 0, and (PO) is feasible using xx = I*.

5rep 5 Stage-2 solution decision (optional).

If the stage-2 solution is required, go to step 9.

Otherwise, the stage-2 solution is not required. Continue on to step 6.

Step 6 Project changes in z from partition splits.

Compute 0V Ad^ A6^ from (16), (35), and (36), respectively, V/ = 1,...,N,;

qeQ. Compute Az^ and AS^ from (39) and (40) V/ = l,...,Af#; qeQ.

Compute Az£ and AS£ from (41) and (42). Select AT according to problem

type (see § 3 discussion) and determine the corresponding (/,?) pair representing

the partition q to be split along axis /.

Step 7 Aggregate model convergence test

If Az* £ to/j,. t then no further (significant) improvement is projected for dis-
aggregating. Stage-1 approximation solution is given by z* s I and x*x = x{.
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Otherwise, the projected maximal change Az* > tol^, and disaggrcgation as

determined in step 6 proceeds to refine the aggregate solution.

Step8 Repartition the probability space.

Let qt denote the partition to be split, and qf the partition formed by the split.

Using (/,?) pair corresponding to Az* from step 6, split partition q, along the

selected axis / at the axis mean according to (34)-(36). Update qt and qf

partition mean terms. Augment the partition sec Q«- Q yjqr Go to step 2.

Step 9 Stagc-2 (PI) sub-problem (optional)

Solve full-space (PI) using xx = x^ as
g ( ) p p

Solve full-space (PI) using xx = x^ as fixed input => Zj, x^* and duals.

Step 10 Full-space optimality test (optional).

Solve stage-1 MEP sub-problem (P8) =^ z, = u\ zUB = zx + z2, Xj, and duals.

Step 11 Full-space convergence test (case-1 or case-2 problems)6 (optional).

Compute the gap (Az = zUB - T) between the upper and lower bounds. If gap >

tolerance, return to step 6; otherwise stop with the approximate solution given by

The algorithm can be modified by substituting solution to (Rl) in place of (PI) in

step 3, and changing the upper bound computation in step 10 by replacing zUB = zx + z2

with zUB = zx + z'2. In the authors* implementation of algorithm SRO feasibility is tested

"initially" (i.e., Q = 1) and "finally" (i.e., Q = Q*)9 skipping the feasibility test (i.e., steps

3-4-5) intermediately for initially feasible problems. Our computational results indicate that

all example problems remained feasible once an initial feasible solution was found.

Furthermore, all problems we tested7 had converged to the exact solution JC* when the

Az* £ tol^. condition was true.

6 When either RHS terms (case-1) or cost coefficients (case-2) arr stochastic, but not both (case-3), the
aggregate problem can be solved to provide a lower boond. Solution to (PI) and (PS) provides an upper
bound. The objective bound gap test is applicable for case-1 and case-2 problems, but not for case-3
problems. For case-3 problems the aggregate convergence test can be used to terminate the algorithm,
unless another means of finding the lower bound is employed.
7 Only problems under 35k rows by 35k columns were solved exactly, due to limitations in the LP code
implementation and computer memory.
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Aggregate

Analyse aggregate LP
solution sensitivities and
disaggregation choices.

Repartition event space.

•
z s

SJC,

K-Soace Feasibility and
Optintaiitv Check

1

1 Initialization |

Formulate and solve
aggregate LP (PA).

Feasibility Subproblem

Solve MILP(P4)
m

\fi\duals

Staee-2 Subnroblem (PI) ^

I Qptimalifv Suhnroblgm (PS)

I Solve MILP (P8)

Z 9 Xj

Figure 4. Overview flowchart of the two-stage successive disaggregation algorithm (SRO), based on
problems (PO) and (PA). Algorithm "steps* are indicated by the numbers outside of the boxes.

5 Illustrative Example

Example problem (EX2P) is a simplified planning LP of the form (PO) which we

use to demonstrate the basic procedure for algorithm (SRO). We omit the slacks and retain

the inequalities to give the following certainty equivalent formulation.
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(EX2P) min z = a^4
UK

s.t. jc1+2x2ik£du

where d l ( 0 « { U , 3 } , p^(i) = {0.2,0.5,0.3},
<*,(/) = {1,2,3}, PdtU) = {0.2,0.6,0.2},

VJfceAT,

Here JC24 are continuous stage-2 variables expanded out over the discrete probability space
given by crossing demand 1 and 2 (independent) probability spaces, indexed by i € / and
j € /, respectively. The first stage variable is x,. The cost coefficients are 1.0 for stage-1
and stage-2 variables. Solving (EX2P) as formulated above gives the exact solution of
z* = 1.6333 and JC* = 0.6667, feasible for all nine possible events.

In order to illustrate algorithm (SR0), we now outline the solution method on
(EX2P). The aggregate sub-problems (PA) as defined in § 2 are given by the specification
of the probability space and the set of disjoint partitions Q conforming to (14). With the set
Q initially a single partition, the aggregate solution is VQ = z^ = 1.3667 and x* = 0.6333,
feasible for all events ke K. Analyzing the sensitivities (summarized in Table 2) and
projecting partition splits according to § 3 indicates the best projected repartitioning is given
by 0>qY = (2,1) and Az* = 0.3333, where At = AI** is the predicted maximal increase
in the lower bound. We note that for (EX2P) there is a 1-to-l mapping of 0^ to b^ such
that:

and

Splitting the single partition along probability dimension 1 = 2, updating the partition
means, reformulating and solving (PA) yields the improved solution TQ = 1.5333 and
x[ = 0.4666. Repeating the cycle gives a continuing reduction in the predicted increase in
the lower bound and a monotonic increase in the computed lower bound. The complete
results are summarized in Table 3 and Figure 5.
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Table 2.

1
2

(EX2P) initial <

0.333
0.333

Table

my &

;ycle sensitivity analysis summary (

A6£ A6^

0.9 -0386
1.0 -0.250

3. (EX2P) results

K
0.300
0.333

summary.

4z;

-0.129
-0.083

1
2
3
4
5
6

2,1
1.1
1.1
2.1
2,4
n/a

0.333
0.300
0.061
0.033
0.003

0

0.167
0.026
0.048
0.023
0.003

0

1.3667
1.5333
1.5591
1.6067
1.6300
1.6333

1.6476
1.6476
1.6476
1.6366
1.6366
1.6333

(EX2P) (EX2P)

Figure 5a/b. (a) Monotonic improvement in (PA) approximation to the (P0) objective as aggregate
probability space is successively disaggregated (Nq « # partitions). Exact solution is reached when 6
partitions are used, (b) In all cases the predicted maximal change in the aggregate objective (based on
sensitivity and repartilioning analysis) is greater or equal to that observed. Furthermore, the predicted
change monotonically decreases, and goes to zero when the exact solution has been reached.

The upper bounds generated from solving (P0) using fixed 3c* from the (PA)

solutions are reported in the last column of Table 3. These bounds were generated for

completeness, and were not used in the original solution to the problem. That is, the exact

optimal solution was found by successively disaggregated solutions to (PA), terminating

when no further improvements in the lower bound were projected (i.e., after forming 6
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partitions). The monotonic increase in the lower bound with successive disaggrcgation is

shown in Figure 5a. The exact solution (z • VQ = zu and xf = X)is reached when 6 (of

9) partitions are used. As shown in Figure 5b, the predicted maximal change in the

aggregate objective (based on sensitivity and rcpartitioning analysis) is greater or equal to

that observed at every step. Furthermore, the predicted change monotonically decreases

with disaggrcgation, and goes to zero when die exact solution has been reached. Similar

behavior has been observed for all case-1 (and case-2) example problems, although the

fraction of expansion necessary to get the exact solution tends to decrease significantly as

the cardinality of the probability space increases, as might be expected intuitively. The

disaggrcgation sequence is shown in Figure 6.

1 3 1
. 1 2

/fi/=6
3

4

1
6

5

2

Figure €. Partitioning sequence for solution to (EX2P) via algorithm (SRO).

6 Planning Example

The second example problem (EX11) is more representative of industrial planning

models, and is a variation of the refinery planning example in Edgar and Himmclblau

(1989, p. 254). A simplified representation of the refinery production network is shown in

Figure 7. We compare the performance of the partitioning algorithm with other methods

(namely, Benders decomposition, certainty equivalent transformation, and single-point

mean value approximation). The problem considers the purchasing, processing, storage,

and sales for a single refinery over two time periods. Five crude oils are available for

purchase subject to the supply limitations. The crude oils can be stored over time subject to

the tank inventory limits. The production model is a linear conversion of feeds to products

according to a fixed yield matrix, with limits on the production capacities. Four products
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are manufactured and available for sale according to market demands, each of which is

considered random with four states possible for each demand Thus there are 256 possible

events depending on the state of each demand. Products can also be sent to tankage for

temporary storage. A restriction is applied fencing a net balance of inventory in both feed

and product tanks over the time horizon, with accumulation allowed in intermediate stages.

Hence, all materials purchased must ultimately be processed and then sold as products.

The objective function is cost minimization which is formulated as the sum of crude

purchasing and operating costs minus the revenue from product sales. A 0.99 discount

factor is applied to all stage-2 costs and revenues. Stage-2 demands axe on average lower

than those of the first stage.

min cost = f(purchases, sales, operating levels)

Supply markets

crude oils

Refinery Production Model:
- linear conversion
- linear material balances
- feed and product tanks.

Demand markets
gasoline

heating oil
jet fuel
lube oil

Figure 7. Refinery production model for example problem (EX11).

The basic dimensions of the LP arc as follows. For the deterministic case (i.e., no

probabilistic expansion) there are 13 stage-1 constraints, 22 stage-2 constraints, and 1

constraint defining the objective function, giving a total of 36 constraints. With the

probabilistic expansion over all 256 events, the stage-2 constraints are reproduced once for

each event leading to 5632 stage-2 constraints, and a total of 5646 constraints. In the

deterministic case there are 55 variables, and 141 non-zero elements in the LP. In the

probabilistic case each stage-2 variable is expanded over the event space, leading to a total

of 6940 variables and 20286 non-zero elements in the LP.

We now consider the solution via the partitioning algorithm and compare the results

with the solution via alternate methods. The results of this problem solution are

summarized in Tables 4 and 5 below. The terms CET and SRO refer to certainty equivalent

transformation and partitioning algorithm, respectively. For the Benders decomposition

results we report the major iterations. A variation on algorithm (SRO) was used, whereby

the partition splits were not restricted to one split per partition. Thus the algorithm

progressed directly from Nf « 1 -» 4 -» 8 -> 16 partitions for (PA). In this manner fewer
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intermediate solutions were required. Each repartitioning is recorded as an "iteration" for
algorithm (SRO).

Note in Table 4 that with die SRO method, 16 partitions arc required to converge to
the exact optimum. The CET version was solved with OSL on an IBM/6000 using simplex
and interior point methods. In both cases the problem was initialized with ail activities set
to zero, except the inventory terms which were set at their starting values (Le., t*0). As
shown in Table 5 die simplex method took nearly 3000 iterations and about 2 minutes.
Solution using the interior point method took 21 iterations and about 30 minutes. Solution
by Benders decomposition took between 11 and 14 major iterations, depending on the level
of precision required Timing data for Benders are not reported since oor implementation
of die Benders method does not take advantage of die decoupled stage-2 LP sub-problems.
Each major iteration via Benders requires the solution of NK LP sub-problems. Solution to
these sub-problems can be prohibitive, as previously discussed. By comparison, using a
sensitivity-based successive disaggregation approach, the partitioning algorithm found the
exact solution to machine tolerance in 4 iterations (i.e., 4 different parritionings). The
maximum expansion of the variables and constraints for the SRO algorithm is in this case
Afe = 16, or 0.0625 of that required by GET or Benders methods. This reduction in
variable and constraint expansion is critical in making the problem more tractable.

Table 4. Partition algorithm solution to refinery planning example problem (EX11).

Method # partitions zu £ Zj» gap(%)

CET # , = 2 5 6 n/a -6522.8 n/a n/a
SRO 1 -6536.1 -6536.1 -6468.6 1.03
SRO 4 -6529.5 -6529.5 -6517.7 0.18
SRO 8 -6527.0 -6527.0 -6521.8 0.08
SRO 16 -6525.8 -6525.8 -6525.8 0

Table 5. Alternative algorithm solution to refinery planning example problem (EX11).

Method Comment CPU (sec) Iterations gap (%)

CET
CET

Benders
Benders
Benders

OSL/Simplex
OSL/Interior point
Complicating: x,
Complicating: x,
Complicating: x,

121
1872
n/a
n/a
n/a

2831
21
11
13
14

n/a
n/a
0.1
0.01

0.001
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7 Computational Results and Analysis

We now present the results of several computational experiments conducted to

examine the behavior of algorithm SRO on two-stage planning problems. Problem (EX11)

is a variant of die Edgar and Himmelblau (1989) as described in die previous section. The

number of events for each independent probability dimensions (i.e., stochastic demands) is

parameterized so as to change the total number of events in the joint probability space.

Increasing the total number of events, I ATI, results in a higher resolution definition of die

probability space. As shown in Table 6 and Figure 8 the ratio of expansicm for algorithm

SRO as compared to the GET solution is small, and decreases as 1X1 increases. For the

largest problem instance (exl Ij) less than 300 partitions are needed to find the epsilon-exact

solution, versus 160,000 for the GET equivalent problem. Correspondingly, the maximum

sized SRO LP is 7,450 rows by 7,750 columns versus 4,160,000 rows by 4,320,000

columns for the GET equivalent problem.

In Table 6b the solution times reported correspond to solution of the problem on an

alpha workstation with 64 MB RAM memory (athena.nectar.cs.cmu.edu). It should be

noted that our implementation of algorithm SRO is relatively unsophisticated from a

performance standpoint. Reading and writing files to disk consumes substantial time, and

could be greatly reduced by using memory reads and writes. Also, no storting basis is

used for each new LP for successively disaggregated problems (PA), resulting in a "cold"

start to each sub-problem. Modifying the previous bases for each subsequent solution

would no doubt greatly improve the efficiency of the implementation. Another obvious

extension to the implementation would be to include a Benders-type solution to (PA) when

the LP sub-problems get large.

Table 6a. Partition algorithm solution to refinery planning example problem (EX11).

Problem

exile

exile

exl If

exllg
cxllh

exlli

exllj

Case

1

1
1

1
1

1
1

101

4

4

4
4

4
4
4

10,1

4
6
8
10
12
16
20

\K\

256
1296

4096

10000

20736

65536

160000

Ni
16
36
56
90
103
208
286

N'Q/\K\

0.06250
0.02777
0.01367
0.00900
0.00497
0.00317
0.00179
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Problem

exile
exile

exllf
cxllg

exllh
cxlli

exllj

(PA) max LP size
(rows x cols)

430x460

950x1000

1470x1540

2354x2458

2692x2809

5422x5644

7450x7750

CETLPsize
(rows x cols)

6670x6940

33710x35020
107kx111k

260kx270k

539kx560k

1704kx 1770k

4160k x 4320k

SROtimc
(elar/sed sec)

34

179

474

1632

2093

16286

49756

1000

100-

1 0 -

Nk

Figure 8. The number of partitions (required to get the exact8 optimal solution) NQ versus the number
of events I ATI for problem EX11 with 4 stochastic demands. Increases in \K\ represent higher resolution of
the discrete probability functions. Increasing resolution in the full space requires fractionally fewer
partitionings to reach the exact solution.

The second example problem (EX30) is taken from the two-stage planning model

of Ierapetritou and Pistikopoulos (1994). Two instances of the model are solved, each

with stochastic RHS's (demands) and costs (sales costs) making (EX30) a case-3 problem.

There are four events for each independent probability dimensions (i.e., stochastic

demands or costs). In both instances, two stochastic costs were included. Problem

instance 'a' has three stochastic demands, and vb' has two. The fully aggregated problem

has 13 stage-1 constraints, 33 stage-2 constraints, 26 stage-1 variables, and 39 stage-2

8 Problems with \K\ > 3000 were not solved to with the GET formulation due to their size. The SR0
algorithm terminated for all cases when the predicted change in the objective was below the tolerance which
was set at 10"*.
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variables. The results for the problem solutions via the SRO algorithm are summarized in

Table 7. Figures 9 and 10 show the progression of the solution through disaggregation for

problem instances V and fb\ respectively.

In both instances, the SRO algorithm selected the partitioning sequence according to

the maximal absolute predicted (positive or negative) change in the objective. The

sensitivities dx/dd were computed numerically by perturbing the (PA) sub-problems. As

might be expected, calculating die numerical derivatives dominated the computing resource

requirements (ca. 98%). Both as a subset of the numerical derivative calculations and as a

component of the SRO algorithm, the primary computing resource users were the solution

to the LP sub-problems via Minos 5.1 (ca. 2/3 of the total) and the expansion and writing

of the MPS files (ca. 1/3 of the total). Clearly, there is considerable room for

improvements in the implementation, including parallelization. Our primary motivation

was to test the method, as opposed to the computing implementation per se.

As shown in Table 7 - and as was observed for case-1 problem (EX11) - the ratio

of expansion for algorithm SRO as compared to the GET solution is small, and decreases as

IATI increases. As shown in Figures 9 and 10, the aggregate problems (PA) produced

solution values below the upper bound values (generated by substituting the stage-1

solution to (PA) into the CET problem (P0)). While in general for case-3 problems the

aggregate model solution does not provide a lower bound, in this instance the aggregate

models behave similarly to that of a case-1 problem and terminate at the exact solution

when the aggregate solution is equal to the upper bound.

Table 7a. Partition algorithm solution to Imperial planning example problem (EX30).

Problem

ex30a

ex30b

Table 7b.

Problem

ex30a

ex30b

Case 101

3 5

3 4

10,1

4

4

\K\

1024

256

Ni
22
13

K/\K\
0.02148

0.05078

Expansion and timing for solution to example problem (EX30).

(PA) max LP size
(rows x cols}

740x885

443 x 534

CET LP size
(rows x cols)

33806 x 39963

8462x10011

SRO time
(elapsed sec)

44179

990

9 Time reported was divided by 2, since machine was loaded with another job using 1/2 the CPU during
this run.
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cx30adata(dt=10)
-40350.00*

-40375.00-

-40400.00-

-40425.00-

-40450.00

\
z_ub

^ 1 I I I I I I I I I I
N t «• ON t «00ON t

# partitions, Nq

Figure 9. Imperial planning example (ex30a) with 3 stochastic demands and 2 stochastic costs, each with
4 independent events.

ex30bdata(dt=10)

z_ub

r.cet*

# of partitions, Nq

Figure 10. Imperial planning example (ex30b) with 2 stochastic demands and 2 stochastic costs, each
with 4 independent events.

While Acre are numerous obvious improvements in the computing implementation,

the qualitative results from the examples run by the authors indicates that the successive

disaggrcgation algorithm may be a useful addition to the tool set for solving both two-stage

and multi-stage stochastic linear programming problems.
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8 Conclusions

Extending linear planning models to include probabilistic representation of pa-

rameter uncertainties is required for a complete solution to the problem. The resultant

stochastic programming problems can be intractable due to the exponential growth in the

problem size (variables and constraints). We have proposed a successive disaggregation

algorithm which refines the solution to a desired tolerance level, reapplying the mean value

approximations over partitions. Early results on two-stage examples indicate that the algo-

rithm finds the optimal solution in a much reduced expansion, as compared to the CET

formulation, and also requires considerably less work than Benders schemes. Work is

underway to further investigate extensions to multi-stage stochastic linear programs.
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