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Abstract
Thermal and mechanical modeling of the microcasting stage of Shape Deposition

Manufacturing is presented. Thermal modeling is needed because during the solidification

and subsequent cooling of deposited molten metal, thermal aspects determine important

effects such as substrate remelting, microstructure development, and build-up of residual

stress. Also, temperature control is needed to protect existing machined features.

Mechanical modeling is needed because thermally-induced residual stresses can lead to

detrimental effects such as part warping, debonding between deposited layers, and reduced

apparent strength or life. In this study, thermo-mechanical models of carbon steel

deposited onto an existing carbon steel substrate are described.

Current thermal modeling is centered on reliably predicting localized remelting of

previously deposited substrate material by newly deposited molten droplets. Temperatures

from a one-dimensional model are compared to those obtained at the axis of an

axisymmetric model. In this region, the axisymmetric model predicts temperatures that

agree with those from the simpler one-dimensional model for times less than that needed

for complete droplet solidification.

Current mechanics modeling is centered on the issue of residual stress build-up.

The effects of yielding and creep on the build-up of residual stresses are shown. Results

show that thermal cycling from newly applied droplets drastically changes the stress state in

the top of the substrate. Originally unstressed regions go through a cycle of yield in

compression followed by yield in tension. Residual stresses close to the yield stress are

predicted during part manufacture. It is likely that these stresses will be substantially

relaxed, however, after a part is completed and then separated from the pallet upon which it

is built.
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1. Introduction
Shape Deposition is a manufacturing process under development at Carnegie

Mellon which allows the creation of complex three-dimensional parts by the successive

deposition of layers of material. After each layer is deposited, it is machined to the required

dimensions before depositing the next layer (Merz et al.9 1994). Shape Deposition

Manufacturing combines solid freeform fabrication with other processing operations, such

as multi-axis CNC machining, thermal deposition, and shot peening. The benefits of

Shape Deposition Manufacturing include the ability to build parts with complicated

geometries, multiple materials, and embedded components. But unlike conventional solid

freeform fabrication processes, Shape Deposition Manufacturing can also directly build

fully dense, functional metal parts to high dimensional accuracy.

Within Shape Deposition Manufacturing, a process for depositing layers is

required. The principal deposition process currently in use is termed microcasting, in

which droplets of molten material are deposited onto a much cooler substrate. To

understand what happens when a droplet lands on a substrate, it is essential to know

droplet and substrate temperature histories, for it is the temperature history that determines

small-scale behavior such as how deeply the substrate remelts, what microstructures

develop in the droplet and the substrate, how strong a bond forms between the droplet and

the substrate, and how the droplet flows while it is liquid. Temperature prediction and

control are also intimately connected to manufacturing needs such as protection of existing

machined surfaces that may or may not be made of a lower melting alloy than the dripped

material, protection of embedded sensors, and control of warping and delamination induced

by thermal residual stresses.

Residual stresses arise when the hot droplet cools off while it heats up the material

underneath, causing differential thermal strains. Residual stresses can lead to reduced

apparent strength or life in manufactured parts. This is of particular concern in parts that

must withstand substantial mechanical or thermal applied loads. In addition, residual

stresses can lead to a number of undesirable effects that are of concern even for parts

without significant loading in their application. These effects include part warping, loss of



edge tolerance, and delamination. Residual stress build-up is inherent in any

manufacturing process based on successive molten material deposition. Ultimately, in

order to control the undesirable effects of residual stresses through process changes and

changes in part designs, it is necessary to understand how such stresses build up during

manufacture.

The goal of this work is to model Shape Deposition on a droplet or layer level. The

temperature distribution in the molten droplet and the substrate and the stresses that build

up in the droplet and substrate due to differential thermal strains are investigated from the

moment after the droplet spreads out until the temperature distribution becomes uniform. A

one-dimensional thermal model is first presented and verified, and then a comparison

between the one-dimensional thermal model and an axisymmetric thermal model is made.

A one-dimensional mechanical model undergoing thermal loads is checked by using an

assumption of pure elastic behavior. Then the effects of yielding and steady-state creep are

presented.

2. Numerical Models

Microcasting differs markedly from traditional solidification processes. The

several-millimeter-sized droplets are much smaller than typical ingots and castings and yet

are larger than the fine droplets (size on the order of 100 |im) used in plasma sprays. In

addition, the high-velocity mist of a plasma spray contrasts sharply with the individual

droplets of microcasting free-falling to a substrate surface at a rate of several droplets per

second. Prior casting models and spray models dealt with lower superheats than those

found in microcasting. Prior spray models do not consider substrate remelting, nor do they

track the freezing front. Also, the size of microcasted drops and their cooling rates do not

demand consideration of undercooling and recalescence, which are important in rapid

solidification models (Schmaltz, 1994).

Models have been developed to predict the temperature distributions of processes

related to microcasting, such as plasma spraying. For example, El-Kaddah et al. (1984)

based a one-dimensional analytical temperature solution of the plasma spray process on the

solution profiles for the Stefan problem, and then used a finite difference method to extend

the solution to reflect the two-dimensional profile of the spray front. Trapaga et al (1992)

modeled the heat transfer from the sprayed droplet to the substrate by using a heat transfer

coefficient. They do not account for heat diffusion or remelting in the substrate. Gao and

Sonin (1993) investigated the deposition of wax droplets; however, their use of a

Plexiglass target precludes a study of substrate remelting. In the next section, results from

a finite element model are compared to the results of Amon et al. (1994a), who developed a



one-dimensional finite difference model of the microcasting process in order to predict the

depth of the remelted zone in the substrate.

Residual stress modeling has both a thermal aspect and a mechanical aspect. The

solution strategy used here is to solve the thermal problem first and then use the

temperature solution as an input to the mechanical model. In the mechanical model, loading

comes from differential thermal contractions and differential thermal expansions. Because

the thermal effects of deformation are assumed to be negligible compared to the thermal

effects of heat conduction, the thermal and mechanical models are not coupled. The

AB AQUS finite element package was used in this study because of its capability to model

both the thermal and mechanical problems. This thermo-mechanical modeling strategy is

similar to the strategy employed by Zabaras, Ruan, and Richmond (1991) to model residual

stress during the solidification of a casting. Their model accounts for the variation of

thermal and mechanical properties with temperature and includes the computational expense

of rearranging the spatial mesh after each time step to place the freezing front on element

boundaries. Other researchers who link the stress analysis to a thermal analysis include

Thomas, Samarasekera, and Brimacombe (1987), who use a very detailed model of steel

ingot solidification which, on top of temperature-dependent properties, accounts for time-

temperature dependent phase transformations and the volume and property changes

associated with those phase changes. The time scale of their process, however, is much

longer than the time needed for a single deposited droplet to cool down.

The one-dimensional stress models in this work share some similarities with

existing one-dimensional models of solidifying slabs (Weiner and Boley, 1963) and free

plates (Landau et ai, 1960), and the numerical solution technique shares similarities with

the ingot casting work of Thomas et al. (1987) and Zabaras et al (1991). The solids in the

models start off stress-free. But future models used to study sequential droplet or layer

deposition will use solid substrates that contain initial stress distributions calculated from

the previous deposition. Also, the one-dimensional free plate models lack the protruding

feature of a droplet. Axisymmetric or three-dimensional models will be expected to show

high stresses and high stress gradients in the vicinity of the droplet.

This work describes the development and verification of two numerical models that

calculate the temperature distribution and residual stresses in microcasted carbon steel

droplets and a carbon steel substrate. The geometry and time scales used are typical of

those normally found in microcasting. The temperature model uses temperature-dependent

thermal properties, and the temperature solution is precise enough to determine the location

of the freezing front.



There is a need to improve bonding through remelting while keeping temperatures

below manufacturing limits and keeping thermal gradients low to decrease residual

stresses, for residual stresses cause loss of dimensional tolerance and encourage interlayer

debonding. Temperature prediction will be ultimately be used to find improvements in the

microcasting process. The predictive capabilities developed will also be integrated with the

design of shape-deposited parts.

3. Thermal Model

To accurately solve the problem of a hot liquid droplet landing on a cooler

substrate, then solidifying and cooling, requires the use of temperature-dependent

properties. It is also necessary to be able to accurately locate the freezing front in order to

study the problem of substrate remelting.

To gain confidence in thermal modeling, an ABAQUS model using one-

dimensional first-order elements is compared with an independent finite difference model

having the same geometry and mesh. Then an axisymmetric model is used to more

realistically model the problem of a droplet landing on a large substrate. Temperatures

from the one-dimensional model are compared to temperatures along the central axis of the

axisymmetric model to determine under what conditions the simpler one-dimensional model

gives results that are close to the axisymmetric model. The potential for large savings in

computer resources motivates this comparison. Next, the boundary condition at the bottom

of the substrate is changed from fixed-temperature to natural convection to determine how

sensitive the temperature solution is to the boundary condition at the bottom of the

substrate. In Shape Deposition, the substrate is bolted to a pallet, and the actual condition

between the substrate and the pallet is conduction across a small contact resistance. By

learning what portions of the temperature solution are not strongly influenced by the choice

of the boundary condition at the substrate bottom, we also learn when to neglect the

modeling error at the substrate bottom.

3.1. One-Dimensional Thermal Model

To gain confidence in the ability of ABAQUS to use temperature-dependent

properties and detect the freezing front, temperatures from an ABAQUS finite element

solution were compared to those of an independent finite difference solution developed by

Amon et al (1994a). The geometry of the problem solved consists of a 1 mm layer

deposited on top of a 7 mm substrate (see Figure 1). The typical size of an actual deposited

layer (prior to machining) would be 2 to 4 mm, although it is possible to deposit a 1 mm

layer by properly adjusting manufacturing parameters. The substrate thickness of 7 mm



represents a remote distance from the droplet-substrate interface for numerical modeling

purposes. If the droplet is part of the first deposited layer, then an actual typical substrate

is 12.7 mm thick. The mesh for the finite difference model contains 161 nodes while the

mesh for the finite element model contains 160 one-dimensional first-order elements. In

both cases, the mesh is uniform. The temperature-dependent thermal properties used in the

model (from Merz, 1994) and shown in Table 1 are those of a low-carbon steel. As

indicated in Figure 1, the base of the substrate is held at a constant temperature of 303 K.

While the dominant mode of heat transfer is conduction from the droplet into the substrate

(Amon et al, 1994b), loss of heat from the top of the droplet by natural convection and

gain of heat by radiation from the plasma arc are also modeled. Initially, the droplet (the

top 1 mm) has a temperature of 2573 K and the substrate (the bottom 7 mm) has a

temperature of 303 K. In the finite difference solution, the material is modeled as a pure

material with a melting point at 1773 K while in the finite element solution, the material is

modeled with a liquidus temperature of 1775 K and a solidus temperature of 1771 K. In

both cases, the latent heat of fusion is 270,000 J/kg. In the finite difference solution, the

latent heat released at the freezing front causes a discontinuous heat flux at the front:

k = P L

where
kg = conductivity of the solid at the freezing front

kj = conductivity of the liquid at the freezing front
dT
g- = magnitude of the temperature gradient at the freezing front evaluated on the

appropriate side of the front

p = mass density

L = latent heat

^r = speed of the melt front.

The description of the specific heat to ABAQUS incorporates the latent heat and the

liquidus and solidus temperatures:

{c0 for T < T s or T > T L

c0 + ( T L - T S ) f 0 r TS < T < TL
where c = specific heat described to ABAQUS

CQ = specific heat given by the specific heat correlation in Table 1

L = latent heat
TL = liquidus temperature

T§ = solidus temperature.



To compare a typical result from the two solutions, the temperature at a point

located 0.5 mm into the droplet (halfway between the top of the substrate and the top of the

droplet) is shown in Figure 2. Both solutions begin at the initial temperature, 2573 K, and

as time elapses, the temperature falls. Due to latent heat effects, the temperature history has

two points where the slope is discontinuous. The first one, at 1773 K, represents the

passage of the freezing front through the location under study. The second slope

discontinuity, near 0.22 seconds, occurs at the same time that the freezing front reaches the

top of the droplet. The temperatures in this problem range from 303 K to 2573 K.

Considering this large working temperature range, the discrepancy between the two

solutions is small, and the finite difference solution and the finite element solution agree

with each other.

3.2. Axisymmetric Thermal Model

While heat flows in only the axial direction in the one-dimensional model, heat

diffuses in both the axial and radial directions from a single droplet that lands on a much

larger substrate. To model this, a multi-dimensional model is needed. When the boundary

conditions are axisymmetric or when the substrate is much larger than the droplet, the

multidimensional model reduces to an axisymmetric model. Since experimental

thermocouple data from Amon et al (1994a) will be used for future verification of the

axisymmetric thermal modeling, the same geometry as that used in the thermocouple

experiments is here investigated numerically. The thermocouple data comes from a

specimen with a substrate thickness of 12.7 mm. The one droplet that was deposited on

the substrate spreads out to cover an approximately circular area 6 mm in diameter. The

solidified droplet has a height of 1.5 mm at its peak. Figure 3 shows the finite element

mesh used for the axisymmetric model. The mesh simulates a 12.7 mm high substrate and

a 6 mm diameter droplet. The substrate diameter was set at 10 times the droplet diameter

(60 mm). In the finite element model, substantial transient heating of the substrate occurred

within merely 1.5 droplet diameters around the droplet so the chosen substrate diameter is

large enough that its actual diameter does not matter during the time needed to reach steady-

state. Because the exact shape of the solidified droplet remains a topic for investigation, the

droplet is represented in the finite element mesh by a cylinder which has approximately the

same volume as the actual droplet. This results in a 0.8125 mm high simulated droplet.

By setting the simulated droplet volume to match the actual droplet volume, the simulated

droplet delivers the same amount of heat to the simulated substrate as the actual droplet

delivers to the actual substrate. However, the substantial height difference between the

simulated droplet and the actual droplet may introduce significant modeling error. In the



future, a mesh that more closely approximates the real droplet shape will be used.

Nevertheless, important features of the axisymmetric model compared to the one-

dimensional model will still be evident by meshing the droplet as a cylinder.

A one-dimensional model should most closely approximate the axisymmetric model

at the central axis of the axisymmetric model, but the one-dimensional model is simpler to

generate and converges much faster. Significant savings in computer resources are

achievable if conditions can be defined under which a one-dimensional model accurately

substitutes for an axisymmetric model. Figure 4 compares the temperature distribution at

the central axis of the axisymmetric model to the temperature distribution of a one-

dimensional model. Both models have the same droplet height, substrate height, and

boundary conditions at the top and bottom. The axisymmetric model also has convection

boundary conditions on the vertical walls. The solidification time (time needed for the

freezing front to reach the top of the droplet) is 0.084 seconds. The temperature

distribution in the one-dimensional model matches the temperature distribution along the

centerline of the axisymmetric model up to the solidification time. After complete droplet

solidification, the axisymmetric model cools down faster than the one-dimensional model.

The difference is due to radial heat conduction absent from the one-dimensional model.

If the temperature history is needed at times greater than the solidification time, or

at points near the edge of the droplet, then the axisymmetric model is more appropriate.

But when studying temperature-driven events that happen much faster than complete

droplet solidification, and which happen away from the edges of the droplet, a one-

dimensional model can be expected to give accurate results. For example, substrate

remelting, suspected to be a strong determinant of bond strength, occurs on the time scale

of microseconds. This is two orders of magnitude smaller than the droplet solidification

time. The predictions of the depth of substrate remelting by Amon et al (1994a) are thus

not compromised by the one-dimensional assumption on which those predictions were

based.

3.3. Convective Boundary Conditions in the Axisymmetric Thermal Model

Another thermal modeling issue is the correct boundary condition to apply to the

bottom of the substrate. So far, the temperature at the bottom of the substrate has been

fixed at 303 K. In Shape Deposition Manufacturing, the substrate is bolted down to a large

pallet. The pallet is not a perfect 303 K heat sink, and, even with bolts clamping the

substrate to the pallet, there likely remains some thermal contact resistance between the

substrate and the pallet. To see the sensitivity of the temperature solution to the boundary

condition at the bottom of the substrate, the models used in section 3.2 were re-run with



both the bottom of the substrate and the top of the substrate assigned the same natural

convection boundary condition.

Figure 5 compares the temperature distribution at the central axis of the

axisymmetric model to the temperature distribution of a one-dimensional model. As in

section 3.2, the two distributions agree well before complete droplet solidification. The

fixed-temperature boundary condition used in section 3.2 causes both the one-dimensional

and the axisymmetric model to reach a uniform temperature of 303 K. But the convection

boundary condition results in a very different uniform temperature. The one-dimensional

model achieves a uniform temperature of 577 K after 14.4 seconds while the axisymmetric

model achieves a uniform temperature of only 307 K after 14.8 seconds. Both models

continue to convect heat to the outside, but the temperature changes due to convection are

very slow compared to those due to conduction. Although radial temperature distributions

are not shown, the temperature becomes uniform both axially and radially.

When studying phenomena that happen faster than complete droplet solidification,

the boundary condition at the bottom of the substrate should have a minimal effect on

substrate and droplet temperatures. This conclusion might not hold, however, if the

substrate and the droplet have comparable thicknesses.

The axisymmetric and one-dimensional thermal problems capture two extremes for

the dripping rate. The axisymmetric problem represents slow dripping, giving the substrate

and the new droplet time to cool down. At the other extreme, the hypothetical case of zero

time between successive droplets is equivalent to laying down one layer of molten material

all at once, and this is a one-dimensional problem.

4. Mechanical Model

To study the build-up of residual stresses, a mechanical model has been formulated.

This model consists of a single column of 250 second-order axisymmetric elements that

represents a 3 mm layer of superheated material being deposited on a 22 mm room-

temperature substrate. The elements form a uniform mesh. Appropriate boundary

conditions are applied to render the problem one-dimensional. This one-dimensional

mechanical model is of a single layer on a thick substrate, as was the one-dimensional

thermal model. It is a reasonable initial model, corresponding to a flattened droplet on an

infinite substrate. 3 mm lies within the range of typical droplet heights. The substrate can

represent either one initial 22 mm substrate or an initial thinner substrate plus several layers

of deposited material, all of which have been annealed. The thermal problem with the same

geometry as the mechanical model has been solved using a mesh of first-order one-

dimensional elements. This thermal problem has the same boundary conditions and initial



conditions as the problem from section 3.1 used to verify the thermal modeling; only the

thicknesses of the droplet and the substrate have changed (see Figure 1). Figure 6 shows

the temperature distribution at various times for this droplet geometry. The previously

analyzed one-dimensional geometry (1 mm droplet on a 7 mm substrate) shows

qualitatively the same temperature distributions as those shown in Figure 6.

To confirm the level of mesh refinement, meshes of 125 elements and 500 elements

were also tested on the thermal model, the elastic model, and the elastic-plastic model.

(The properties of the elastic model and the elastic-plastic model are described later).

Negligible differences in the distributions of temperature and stress were found among the

three meshes. The heat transfer model of section 3.1 contained 20 elements in the droplet

and 140 elements in the substrate. This resolution lies between that of the coarse mesh (15

in the droplet plus 110 in the substrate) and the medium mesh (30 in the droplet plus 220 in

the substrate) used in this section. The results from the meshes used in this section were

independent of mesh density, suggesting that the mesh used in section 3.1 was also

sufficiently refined.

While axisymmetric elements are used for the mechanical model, the one-

dimensional nature of the mechanical model is maintained in two ways. First, the

temperature distributions imposed onto the mechanical model do not vary along the radial

coordinate (3T/3r = 0); the temperatures vary only with the axial coordinate (3T/3z * 0).

Second, periodic mechanical boundary conditions are applied.

In the microcasting process, bolts hold the substrate flat against the pallet and

droplets are deposited onto the substrate. The region near the center of a single deposited

droplet (away from the external surface) is indistinguishable from an infinite horizontal

slab. Such an infinite region can be modeled by imposing periodic boundary conditions

onto a finite domain. Periodic boundary conditions require straight edges (but not

necessarily vertical edges) on the finite domain to allow any number of the finite domains to

fit together as they deform. Some strain in the radial direction is normally expected unless

the bolts are extremely tight.

The finite domain used for all the mechanical results in this work is shown in

Figure 7. A condition of zero axial displacement is applied at the bottom of the model.

This corresponds to a flat substrate and also prevents rigid-body motion in the axial

direction. The body is still free to expand or contract in the axial direction. The centerline

undergoes zero radial displacement while the outer edge is constrained to expand (or

contract) uniformly in the radial direction. Because this model maintains straight vertical

edges, it allows no bending deformation.



Other one-dimensional type boundary conditions can be used, as shown in Figure

8. For instance, one can allow bending rotation of the outer edge of the model while

demanding that the outer edge deforms as a line. This would correspond to deposition onto

an unbolted substrate. Or one can demand both zero bending and zero radial expansion,

which corresponds to a very secure bolting condition. Regardless, the outer edge must

deform as a straight line to maintain the periodic boundary conditions and therefore the one-

dimensional nature of the problem.

4.1. Elastic Behavior
In this section, a mechanical model is presented which assumes linear elastic

behavior in the droplet and substrate. Results from an elastic solution are easy to interpret.

Effects of plastic yielding and creep will be added later. As an additional benefit, the purely

elastic material model has a steady-state stress solution obtainable from calculations that can

be easily done by hand. Thus, this model will detect incorrect use of ABAQUS to solve

the mechanical portion of the problem. For instance, if the finite element stress result

disagrees with the hand calculations, then perhaps the boundary conditions are not being

described correctly to ABAQUS, or the temperature history at a particular node in the

thermal model is being imposed onto a node in the mechanical model that has a different

position.

The development of stresses in this problem is shown in Figure 9, which plots

normalized radial stress as a function of depth. Although changing the mechanical

properties has no effect on the normalized stress, the mechanical properties used are typical

of carbon steel: Young's modulus E = 200 GPa, Poisson's ratio v = 0.27, and linear

thermal expansion coefficient a = 12 x 10^/K. In the model, these mechanical properties

are set to be independent of temperature, and the use of a constant linear thermal expansion

coefficient neglects phase changes. The initial temperature of the droplet is 2573 K and its

final temperature is 303 K, for a AT of 2270 K. The droplet extends over a depth of zero

to 3 mm while the substrate extends from 3 mm down to 25 mm. Initially, there is no

stress, but as the hot droplet cools, tensile stresses build up in the droplet. At the same

time, the top of the substrate heats up and compressive stresses build up at the top of the

substrate. As steady-state is approached, the top of the substrate cools and the magnitude

of the compression drops. Throughout the process, the mechanical boundary conditions

allow a net moment but zero net radial force (i.e., Jan-dz = 0). The requirement of zero

net radial force induces compression in the substrate in order to balance the tension in the

newly dripped layer.

10



By imposing equal uniform radial strains in the droplet layer and substrate, a force

balance predicts the final stresses to be
a d ( l - v ) 1

_E a AT fx + d \ E a AT (i + %

where a^ = final radial stress in the droplet

as = final radial stress in the substrate

d = thickness of the droplet = 0.003 m

s = thickness of the substrate = 0.022 m

The final normalized residual stress values are predicted to be 0.88 in the droplet and -0.12

in the substrate, which agrees with the finite element result.

4.2. Elastic-Plastic Behavior
In this section, the effects of plasticity are studied by assigning a temperature-

independent yield stress of 300 MPa to the carbon steel model used in section 4.1. 300

MPa corresponds to a typical yield stress for medium carbon steel. In order to learn what

features are due to the existence of a yield stress, a simple form should be chosen for the

yield stress, and the simplest form is a constant yield stress. Using the previous purely

elastic model, both the droplet and the substrate are capable of sustaining any stress, even

when the droplet temperature is higher than the solidus temperature. In this plastic model,

the material yields at 300 MPa when its temperature is below the solidus temperature.

Above the solidus temperature, the yield stress is set to 1% of the solid value, to 3 MPa.

Because the numerical solver for a solid material model requires a non-zero yield stress, the

liquid is treated as a material with a "yield stress" that is small compared to the yield stress

of the solid. This approximation should not hinder accuracy or interpretation of the results

because a stress of 3 MPa is small even compared to typical elastic stresses that build up at

early times in the substrate.

Figures 10a and 10b show how the stresses develop in an elastic-plastic material.

The yield stress of 300 MPa is apparent because all the curves flatten out when they reach a

magnitude of 300 MPa and they are contained inside ±300 MPa. An important feature not

seen in the purely elastic material is the cycling in the top of the substrate (just beneath the

droplet). First, the top of the substrate heats up and tends to expand, and compressive

stress builds up. The compressive stress becomes so large that the top of the substrate

yields in compression. The substrate then cools off, contracts, and yields in tension. At

steady state, high stresses are present in the entire droplet and the top portion of the

substrate. The entire droplet and the top portion of the substrate are yielded in tension. To

11



satisfy the boundary condition of zero net radial force, the bottom of the substrate is yielded

in compression.

4.3. Elastic-Plastic Behavior with Creep

To account for the effect of creep, a secondary (steady-state) creep law for a

medium carbon steel in the austenitic phase is chosen (Thomas et al.9 1987). The other

mechanical properties (yield stress, elastic moduli, and linear expansion coefficient) remain

the same as in section 4.2. This creep law assumes no phase changes.

where t = creep strain rate in reciprocal seconds

a = Mises equivalent stress in MPa (not Pascals)

T = temperature in Kelvin

A = 9O7xlO10

B = 0.0356

C = 41938

n = 6.9

This creep law is a secondary creep law applicable under the conditions of constant stress

and steady state. Because the temperatures, and therefore the stresses, in the droplet and

substrate continually change, a primary creep law should be used for greater accuracy.

Such a creep law will be used in future work, coupled with temperature-dependent material

properties.

The one-dimensional mechanical model with a steady-state creep law results in the

stresses shown in Figures l l a and 1 lb. At high temperatures, creep strains do not permit

regions of high stress to persist. This is evident by comparing Figure 10a to Figure 1 la at

early times in the top of the substrate. In the elastic-plastic case, stresses below the yield

point build up, but when creep is allowed, stresses that build up cause flow, which relaxes

the stresses.

The exponential factor in the creep law imposes a very steep drop in the creep rate

as the temperature is decreased. Thus, at later times (after the absolute temperature drops to

less than about half of the solidus temperature), creep becomes negligible, and the model

including creep behaves very much like the elastic-plastic model. Both the creep model and

the elastic-plastic model show a cycle of compression followed by tension in the top of the

substrate. In the steady-state, stress distributions in both models are similar (compare

Figures 10b and 1 lb). There is a difference in the elastic zone located near the middle of

both models, but the general trend is the same in both: There is a tensile zone which

12



encompasses both the droplet and the top of the substrate, then an elastic transition zone,

followed by a yielded compressive zone at the bottom of the substrate. Therefore, although

creep alters stresses at early times, it has a minimal effect on final stress distributions.

In both elastic-plastic models (with and without creep), a portion of the substrate is

compressed at early times but ends up in tension at steady-state. That portion extends from

a depth of 3 mm down to about 12 mm; it spans 3 droplet heights. The high stresses seen

in Figures 10b and 1 lb are likely to occur during part manufacture. It is likely that these

stresses will be substantially relaxed once the part is completed and removed from the pallet

upon which it is built.

5. Conclusions

In this study thermo-mechanical models have been presented for a single droplet or

layer of carbon steel deposited onto a thick carbon steel substrate, simulating the effects of

droplets of a manufactured part being deposited onto a thick pallet In thermal modeling, a

simple one-dimensional model gives temperatures that are very close to an axisymmetric

model, provided that: i) the comparison is made for times before the droplet completely

solidifies, and ii) the region of interest is close to the center axis of the droplet. Under

these conditions, the boundary condition at the bottom of the substrate also makes little

difference.

Residual stresses near the yield point are likely during the manufacture of carbon

steel parts. In particular, the newly deposited layer will reach the yield stress in tension. It

is likely that these stresses will be substantially relaxed, however, once the part is

completed and removed from the pallet. Creep plays an important role at high temperatures

in the qualitative development of the stress distribution, but the droplet and substrate stay at

high temperatures only for short times for the case of the first droplet. Due to the short

duration of exposure to high temperatures, the final stress distribution predicted from the

elastic-plastic model is similar to the final stress distribution predicted from adding creep to

the elastic-plastic model.

Future work in this area will include more axisymmetric modeling of the thermal

problem in order to obtain results for comparison with experimental thermocouple data

from Amon et al. (1994a). Future work will also include one-dimensional modeling of the

mechanical problem to account for temperature-dependent mechanical properties (Young's

modulus, coefficient of thermal expansion, yield stress, primary [transient] creep) and

axisymmetric modeling to better understand the mechanical constraints imposed on

deposited droplets. To make the models more realistic, the axisymmetric models will

assume the droplet to take on the shape of a portion of a sphere instead of a cylinder.
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Table 1. Temperature-Dependent Thermal Properties

Correlations used from 298 K to 3273 K:

T = temperature in Kelvins

Density in

T ~ 2 7 3 V 1000

Specific Heat i n « ~

(o.O6 + 0.000036 x (T - 273) + 0.12 x

Diffiisivity in —-s

(0.2 + 0.00003 x (T - 273) - 0.225 x expL ^ "73IV 1 0 0 0°

In this work, conductivity was defined as diffiisivity x density x specific heat. However, a

correlation that gives nearly the same result is:
W

Conductivity in ̂ | F
(0.1016 - 5.065 x 10-5 x (T - 273) + 2.2 x 1(H x (T - 273)2) x 418.4
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convection
h = 5.4 W/(mA2 - K)
ambient T« 323 K

radiation
120W/mA2

droplet
initial T - 2573 K

substrate
initial T - 303 K

initial interface
T - 1 6 7 2 K

fix bottom temperature at 303 K

Figure 1. Boundary conditions and initial conditions of one-dimensional thermal problem.
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Figure 1 la. Stress distributions for the creep model at early times.
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>ŝ .

" \ \
\ \

\ \ V
' • • • • . , \

vl(

1

2,37
17.6

i 70.8

•

V
1 v \ 7
\

/
/
./ —
/

///* _////////

0 .005 0.01 0.015
Depth (Meters)

0.02 0.025

Figure l ib . Stress distributions for the creep model at later times.

29


