
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Controlling Asynchronous Team Design
Environments with Simulated Annealing

Rich Quadrel, Robert Woodbury, Steven Fenves, Sarosh Talukdar
EDRC 48-29-92

Controlling
Asynchronous Team Design Environments

by Simulated Annealing

Richard W. Quadrel

Batteile Pacific Northwest Laboratories

Robert F. Woodbury

Department of Architecture

Carnegie Mellon University

Steven J. Fenves

Department of Civil Engineering

Carnegie Mellon University

Sarosh N. Talukdar

Department of Electrical Engineering

Carnegie Mellon University

The work reported in this paper was partially supported by the Engineering Design

Research Center, a National Science Foundation funded center.

1

Send correspondence to:

Robert Woodbury

Department of Architecture

Carnegie Mellon University

Pittsburgh, PA, 15213, USA

FAX: +(412) 268 7819

email: rw@globe.edrc.cmu.edu

Short title:

Controlling A-Team Design Environments by Simulated Annealing

The work reported in this paper was partially supported by the Engineering Design

Research Center, a National Science Foundation funded center.

mailto:rw@globe.edrc.cmu.edu

Controlling Asynchronous Team Design Environments
with Simulated Annealing

Abstract: An organizational strategy for design environments, asynchronous

teams, is reviewed. Simulated annealing is used to implement the necessary

contracting search behavior of asynchronous teams. An example of an

asynchronous team design environment controlled by simulated annealing is

given from the building design domain. The simulated annealing algorithm used,

which has been modified for distributed use and multi-criteria, non-preference

objectives, is described.

Recently asynchronous teams (A-teams), a model for the organizational structure of

design environments, have been proposed and partially explored by Talukdar et

al.[Talukdar 91]. A-teams stand on the conjecture that more appropriate organizational

models for computer-based design environments might be found by organizing simple-

minded computer tools into cooperative teams. A brief introduction to A-teams is given

below; comparisons of A-teams with other concepts in the distributed problem solving

literature may be found in [Quadrel 91] and [Talukdar 91].

1. Asynchronous teams (A-teams)

An asynchronous team is a distributed problem solving system that is organized as a

hetrarchical network of autonomous, asynchronous agents. Informally, an A-team is

characterized by five attributes:

Autonomous agents. Agents decide for themselves when to activate and how to

contribute to the design process. The agents are sensitive to events in the environment at

large, and activate primarily through stimulus-response conditions. But they are also

imbued with decision-making capability to decide their behavior based on the available

data, current state of the system and their own previous actions.

3

Broadcast communications. Information is broadcast throughout the environment

as a whole. Agents are fully capable of deciding how to respond to generally broadcast

messages. Broadcast communications have two advantages. First, they increase the

flexibility of the system: the environment is easily reconfigured, since point-to-point

communication needs no re-routing. Second, broadcast communications can improve

feedback and iteration: the developer of the design environment doesn't need to specify

pre-determined feedback points. Communication can originate from any agent and be

accepted by any other agent.

Network structure. A-teams have no managers. There are no agents that explicitly

activate other agents, although it is conceivable that agents change the state of the

environment, causing other agents to self-activate. The absence of managers and

controllers is a significant point of departure from the (human-based) organizations of

other design environments. It is no longer necessary to attempt building highly-

intelligent agents capable of control operations. Furthermore, it eliminates the need to

constantly update computer-based managers as the configuration of the design

environment changes.

Dynamic planning. A-teams do not impose a fixed or pre-specified sequence of agent

activation. Since agents are primarily data-driven, their activation occurs

opportunistically, resulting in an apparently dynamically planned behavior. Dynamic

planning is better suited to handling unexpected contingencies, since static planners fail if

an event occurs outside of their expectations.

Concurrent/asynchronous execution. The activation of agents is concurrent and

asynchronous. Agents are self-activating, and many agents can work on the same

problem simultaneously. In some implementations, the population of agents varies with

the pending tasks: as more data is generated, agents spawn "clones" of themselves to

handle the excess load. A-teams have no structural control bottlenecks, because solution

generation, evaluation and modification occur in parallel; bottlenecks in A-team

organizations are epiphenomena of system organization and problem type.

4

Without central control or a predefined plan of action, the key questions become, "How do

asynchronous teams coordinate their efforts? What prevents individual agents from

pursuing their own goals at the expense of other agents?" The answer lies in a key

performance feature of A-teams: information found while searching one part of the design

space can be used to influence concurrent search in another. When individual agents

broadcast their successes and failures, other agents respond to these reports by altering

their own behavior. Some agents may decide to abandon what now appears to be a

fruitless exploration, while others decide to commit their resources to deeper dives into a

promising region of the design search space. The search for satisficing solutions begins

with great breadth, but eventually "contracts" around regions in the space that hold

promising solutions.

2. A-teams and Design Search

Architectural design can be characterized as a search1 for one or more satisficing solutions

in the space of all possible design solutions [Woodbury 91]. The design space can be

represented as a graph whose nodes are solution instances and whose arcs are design

transformations that describe a path from one candidate solution to another. There is a

corresponding performance space to which nodes in the design space may be mapped. A

node in the performance space represents an evaluation of its corresponding solution in

the design space. In either space nodes have neighborhoods. In design space the 8-

neighborhood of node is the set of those nodes that can be reached by 8 or fewer design

transformations (and these transformations are the only means of creating or altering

designs). In performance space the 8-neighborhood of a node is the set of those nodes that

are less than 8 distant from the node (according to the metric of the performance space).

The 8-neighborhoods of a design taken from design and performance spaces do not, in

1 We use search here as a metaphor for moving through a space of possibilities. The

distinctions of the search vs. exploration debate, that is, whether the search is guided by

fixed or changing goals, the space is defined by a fixed or changing set of operators, or the

process is reflexive, are immaterial to this characterization.

5

general, contain the same designs. Small changes in a design may imply large changes in

performance. Likewise, different designs may perform in very similar ways.

A graph representation of the design space is useful for seeing the progression of a design

process. Design explorations can be followed by tracing through branches of the graph

and examining the effects of modifications on solutions. The performance space is also

useful for tracing the progression of design solutions, particularly the evaluations of those

solutions. The performance space can typically be understood as an N-dimensional

Euclidean space, where N is the number of performance variables. In this view, the

distance between performance nodes gives some indication the relative value of solutions.

In building design problems, the design space is combinatorially explosive. Exhaustive

exploration of the space is impractical, whether design is done by humans or computers.

As a result, heuristics are used to expedite the process of finding good solutions.

Heuristics commonly used by human designers often rely on reuse of previously found

solutions, hierarchical decomposition and iterative refinement. For example, humans

often design by first choosing a solution (node) in the design space that satisfies most of

the goals and constraints of the problem as it is currently defined. Perhaps this solution

is reminiscent of a solution from a previous project or perhaps it is simply the designer's

"best guess" as a starting place for exploration. From here, the designer applies a number

of transformations (arc-traversals) to the initial guess until satisfactory solutions are

encountered.

Computers, having different processing capabilities, have been programmed to use

different search methods. Specifically, with computers, large stocks of states may be

maintained and spaces may be systematically traversed. The well-known weak methods

provide formal but combinatorial algorithms for searching spaces. Numerous heuristic

methods have also long been employed. More recently parallel computation techniques

have been used both to implement the methods above and to introduce new methods of

search. Asynchronous teams present one approach to parallelism. In an A-team,

multiple nodes are explored simultaneously by teams of agents. Their findings are

broadcast to all team members, who may redirect their efforts based on the success or

failure of their co-workers. In this sense, search in one portion of the design space

6

influences search elsewhere. As the search matures, the net effect is that unfruitful

explorations are abandoned in favor of search in more promising directions, and the agents

tend to work in the same parts of the search space. We call this phenomenon of a multi-

agent system contracting search.

3. Simulated Annealing

Simulated annealing is a variant of a heuristic called iterative improvement (also known

as the steepest descent method). In iterative improvement, a (random) solution is initially

generated and its cost is calculated. One attempts to improve this solution by

"perturbing" or modifying it in some way. If the cost of the new solution is less

expensive than the first, then the new solution is accepted, otherwise it is rejected. This

process continues until no further solutions are accepted, in which case the procedure has

found a local optimal solution (in terms of cost). Simulated annealing also improves

solutions iteratively, but uses probability to accept some "uphill" moves, allowing it to

escape from local minima. The notion of simulated annealing originated in a paper by

Metropolis et ai.[Metropolis 53], and was more widely developed in the 1980's beginning

with a paper by Kirkpatrick [Kirkpatrick 83]. A relatively current overview and

comparison with other techniques is given by Rutenbar [Rutenbar 89].

Physical annealing finds an atomic arrangement that minimizes the amount of energy in a

substance. Simulated annealing plays on a metaphor to physical annealing to solve

optimization problems. Metropolis et al. describe this technique as applied to physical

systems:

Each state of a physical system has some unique energy E. Simulating the

behavior of the system then becomes a question of displacing a single particle in

it at each step; if the configuration that results from such a move has an energy

lower than E (i.e„ AE<0), then the move is accepted and further perturbations

are carried out from the new configuration. If however, the change in energy AE

is greater than zero, then the move is accepted with some probability P=e-

AE/kT, where T is the temperature of the system and k is Boltzmann 's constant

(1.38062x10-23 j/?K)." [Metropolis 53]

1

Using a landscape metaphor, one can describe the problem as follows: you are standing

on a hilly plot of land, and you wish to find your way to the bottom of the lowest valley.

Unfortunately, it is very foggy and you cannot see where the lowest valley is. If you take

a step downhill, you know that you are moving in the right direction - this is analogous

to an "accepted" perturbation in simulated annealing. Eventually you will reach the

bottom of some valley, although you do not know if it is the lowest valley. In this case,

you might take some uphill steps to extricate yourself from this valley, hoping that by

first going higher, you will eventually find a path that takes you to a lower valley. In

simulated annealing, this is analogous to "acceptance with probability." The likelihood

that you will take uphill steps decreases, however, depending on how far you have already

walked: it is much more likely early in your trek than later.

Simulated annealing presents one possible method of implementing contracting search.

This technique moves the search from a "high temperature" state to a "low temperature"

state, imitating the physical annealing process for transforming liquid materials to solids.

One of the key features of simulated annealing is that the character of the search changes

as the temperature decreases. At high temperatures, nearly all search explorations are

"accepted," meaning that most solution nodes are eligible for modification. The system

behaves somewhat chaotically here, indiscriminately operating on most solutions, both

good and bad. As the temperature is lowered, however, an increasing number of solutions

are "rejected" if they don't perform as well as their predecessors. Agents then dedicate

their attention to the most promising solutions, abandoning those that appear to be

fruitless.

In this paper we report an application of simulated annealing as a control strategy for an

asynchronous design environment. We use simulated annealing for three reasons: (1) the

complexity of building design demands heuristic, rather than exhaustive search; (2) the

operators used in building design are non-monotonic in the designs they generate, thus

making search that is formally based on pruning strategies (e.g., the A* algorithm)

problematic; and (3) the effect of the simulated annealing temperature schedule appears to

closely correspond to the contracting search behavior of asynchronous teams. However,

the classical formulations of simulated annealing are suited to neither asynchronous nor

8

design environments. They maintain only a single open search path, so cannot be

effectively used by multiple agents in an asynchronous environment. They use a single

measure of solution cost, so do not model well the realities of design, where multiple

incommensurable criteria are always at play. To respond to these issues, we have

modified the simulated annealing algorithm so that it maintains in the generation process

not a single design at a time, but a set (called the accepted set) of designs. Any design in

the accepted set is a candidate for perturbation by the algorithm. A subset (called the non-

dominated set or the ND set) of the accepted set contains those designs found so far that

are not unambiguously worse than other candidate designs (i.e., they are mutually non-

Pareto-dominant). We give the details of Pareto-dominance and of our algorithm in

Appendix A.

4. An example application

Anarchy [Quadrel 91] is a working prototype of an asynchronous design environment. Its

20 agents are capable of generating, evaluating and modifying designs of medium- and

high-rise office buildings. The construction of the agents allows them to activate and

execute autonomously, concurrently and asynchronously. The network organization of

agents, combined with distributed data stores and broadcast communication, makes the

environment flexible: components can be inserted or deleted with virtually no

modifications to other system components. Through its control via a simulated

annealing algorithm the environment's general behavior can be described as contracting

search: the search commences with an emphasis on breadth, then narrows its focus to

explorations of only the most promising solutions.

At the core of each agent in Anarchy is a computer program that accepts input, does

computation and produces output. Generator agents (9 in number) accept high-level

descriptions (e.g., specifications) and produce low-level descriptions (e.g., designs).

Evaluators (3 in number) accept low-level descriptions (e.g., designs) and produce high-

level descriptions (e.g., measures of performance). Modifiers (3 in number) accept and

produce descriptions at the same level of abstraction. The remaining agents (5 in number)

handle version control, the annealing schedule and human-computer interface. The exact

nature of the computer programs used is unimportant to the simulated annealing method.

9

For example, several of the generator tools in Anarchy were written for the Integrated

Building Design Environment [Fenves 92] and were used directly from that

implementation. Other tools are instances of a design-by-selection method, and are

programs written in the EDIC shell [Quadrel 91], itself a variant of the earlier EDESYN

[Maher 87].

The agents and the data sources (aspects) from which they accept input and to which they

write output are organized in a network. The organization of Anarchy that was used in

the example discussed here is partially diagrammed in Figure 1 (which, for the sake of

readability, shows the generator agents only). In this figure ovals denote agents and

rectangles denote aspect classes or templates that describe the data-structure of the aspects

actually used by agents.

10

Site

(S I T E)

Pkg Specs

I Garage""")^ Ç
i

I Footprint") Bldg Specs

PARKING

Constraints Soil Material I Mass Constraints

I Foundation ^ — (FOOTER) (FRAMER) Ç

Constraints

Figure 1 : Organization of generator agents and their aspects classes in Anarchy.

Agents in Anarchy are activated in a design system by the action of modules that control

the execution of individual agents and perform the roles of self-activation and modification

of the data environment in the system. Each type of agent (e.g., generator, evaluator,

modifier) has its own module structure; individual modules are instances of this structure.

11

Module structures in turn are constructed as sequences of building blocks from the set

{retriever, facilitator, deliverer, listener, executor, talker). A more complete description of

the Anarchy architecture, including its module structure, version control system and

interface, may be found in [Quadrel 91].

Design Problem Description

Anarchy was presented with a multi-story office design problem and produced 45

solutions in response. Five of these solutions are non-dominated, meaning that in terms

of performance evaluation, none of these solutions is dominated by any other. Given that

design solutions are evaluated by multiple criteria, these five solutions represent

Anarchy's best estimate of the Pareto surface.

SITE BUILDING PROGRAM
Location Pittsburgh, PA Functions office/commercial
Latitude 40.5° N Gross req. area 50,000 sf.
Longitude 79.9° W
EW dimension 160 ft CLIMATE
NS dimension 230 ft Ave. Dec. temp 25°
Land cost $15/sf Ave. Jun. temp 80°
Setbacks 20, 10,20, 10 ft Dec. solar rad. (0, 33, 66, 33)
Max. stories 12 Jun. solar rad. (0, 20,48, 20)

SOIL MATERIALS
type clay Steel 40,000 psi
consistency hard Steel (yield) 50,000 psi
obstructions sparse Concrete 4000 psi
vibration sens no Timber 800 psi
bedrock depth 70 ft
unit soil wt. 100
pore pres. 1248

Table 2: Input information for the design problem.

The building site is located on a flat 150'x80' lot in Pittsburgh. Soil conditions and

weather conditions are typical for this area. The building program specifies a mixed-use

office/commercial building of 50,000 square feet In general, the input information

12

required by the environment is defined by the site, soil, building program, climate and

material aspects. The information contained in these aspects is summarized in Table 2.

Methodology

Each agent is constructed with a listener module that awaits broadcast signals from other

agents within Anarchy. When the aspects listed in Table 2 are "entered" into the system,

appropriate signals are broadcast throughout the environment. Some of the agents find

these signals interesting and begin execution, using these aspects as inputs. Others

choose not to respond to these signals and return to a listening state, waiting for different

aspects to be generated.

The output aspects created by agents will activate other agents, who will in turn use these

for input. This sequence of events will result in all generative agents activating exactly

once, producing the aspects necessary to describe the first solution, called Solution 0.

Anarchy requires nine solution aspects to compose a complete building description: a

building footprint, mass, frame, core, parking area, structural system, foundation, panel

and roof system. Each of these aspects is inserted into its proper location in the 0th row

of the solution table, as shown in Figure 3.

As aspects of Solution 0 come into existence, the solution is evaluated by the three

evaluator agents: the thermal evaluator, lighting evaluator, and constructability evaluator.

The evaluators need not wait for all of the solution aspects to be in place - they can begin

their evaluations as soon as the appropriate partial solution is available. These

evaluations are also inserted into their proper places in Row 0 of the solution table, as

shown in Figure 3.

13

Solution 0

Solution 1

Solution 2

Solution n

I
4>

a o
U

c

1 00 £ o U

Figure 3: Row 0 of the Solution Table (after evaluations). A row must be

completely filled before it can be sent to the Annealer.

Once all evaluations have been made, an agent called the Solution Tool sends Solution 0

to an agent called the Annealer. Since this is the very first building generated, the

Annealer accepts Solution 0 without question. With all subsequent solutions, however,

the Annealer performs steps f l and tl of the multi-criteria simulated annealing algorithm

(see Appendix A). It also updates the target vector (a vector which is used by the distance

function - see Appendix A) if any of the evaluations of the candidate solution are an

improvement over the evaluations of the current target solution. In each step, a solution

can only become a candidate when all of its evaluation aspects are present.

The acceptance of a candidate solution implies that it is eligible for modification. If an

acceptance signal has been broadcast to the environment, the thermal, lighting and

constructability modifiers inspect the evaluations to determine if the solution needs

improvement. Each of these modifiers can make changes to the input aspects used by the

generators. For example, the thermal modifier adds constraints that are likely to cause the

generator to move circulation cores to the outside or to add an atrium to the building

design. If the solution is rated "satisfactory" in a particular category, the corresponding

modifier returns to its listening state. Otherwise, the modifier attempts to improve the

solution's performance by providing feedback to generator agents. The process of

14

supplying feedback is called problem restructuring: the modifiers change constraints and

input values, essentially preparing a new problem for the generators to solve.

Instantiations of these new input aspects will automatically cause the generators to

(re)activate and process the new information. The existence of multiple modifiers is

sufficient to guarantee that multiple candidate solutions will be generated. Each modifier

alters a problem description independently to produce a new problem description. The

actions of modifiers are not combined in a single problem description.

The process of design generation, evaluation and modification continues until one of the

following conditions becomes true:

• the annealing temperature of the environment has reached its "freezing point."

• the annealing temperature has decreased four times without any solutions being

accepted.

• every accepted solution is either satisfactory or has been already subject to at least

one modification.

At this point, the ND set (the solutions that remain in the accepted set and that are not

dominated by other solutions in that set) are the "best" solutions found by the

environment, and represent Anarchy's approximation of the Pareto surface for this

problem.

The First Solutions

Anarchy was presented with a design problem as specified in Table 2. After all of its

generators and evaluators activated once, Solution 0 (the first solution) was produced.

This design is a rectangular eight-story office building whose dimensions are 60 feet in

the east-west direction , approximately 105 feet in the north-south direction, and 120 feet

high. The building has eight stories, with a floor-to-floor height of twelve feet. Each

floor contains 4 EW bays and 7 NS bays. There are two vertical circulation cores,

approximately 22 feet square and located near the center of the building. The solutions for

the foundation elements, roof system, structural system and curtain wall panel selection

are given in Tables 4 and 5.

15

FOUNDATION ELEMENT ROOF SYSTEM
Applied load 118.295 psf Span 40 ft
Foundation type spread footing Live load 12 psf
Material reinforced concrete Available depth 12 in
Cross section square Low sound trans. yes
Load resistance end bearing Unfinished clg. yes
Construction cast-in-place High thermal cap. yes
Installation method excavated Roof type 1-way rib. cone, slab
Footing width 5.44 ft Slope flat
Footing thickness 23 in Service plenum between ribs
Steel ratio 0.004 Ave. dead load 73.33 psf

Fire protection 4 hrs

Table 4: Foundation and Roof system proposals for Solution 0.

STRUCTURAL SYSTEM PANEL SYSTEM
Occupancy commercial Dominance horizontal
3D lateral system orthogonal 2D Frame inserted
2D system rigid frame Facing aluminum sheet
Material steel Insulation fiberglass
2D horizontal concrete Fenestration fixed
Support type 2 y edges Joint type lap
Subdivide type none Fastener location horizontal

Panel width 8 ft

Table 5: Structural and Panel systems proposals for Solution 0.

Table 7 shows how the evaluators rated Solution 0. Thermal ratings are given in terms

of millions of Btuh's gained or lost during a typical winter and summer day. Lighting

ratings are given on a scale from 1 (best) to 5 (worst). Constructability ratings are

binary: either the solution PASSed or FAILed.

16

Figure 6: Framing plan and vertical circulation

cores for Solution 0.

T Winter day (MBtuh) -0.028244
1 Summer day (MBtuh) 2.53292

L Direct lighting 5
Natural lighting 4

c Structural PASS
Dimensional FAIL

T THERMAL

L UGHTING

C CONSTRUCT ABILITY

Table 7: Evaluations of Solution 0

As we might expect from a multi-story office building, thermal performance is

particularly poor in the summer, when the internal gain generated by people, lights and

equipment causes high cooling loads. In the winter, this internal gain offsets heat loss,

tending to stabilize interior temperatures. Lighting conditions for this building have been

rated as relatively poor: the narrow width admits little northern light, and the low

perimeter-to-floor-area ratio suggests that this building requires significant artificial

lighting. Since this building does not use "core" or "tube" framing systems, the

constructability evaluator need not search for conflicts between the framing plan and core

location, and consequently PASSes the candidate. The core dimensions, however do not

align with the bay dimensions, and the candidate solution is FAILed by the

constructability evaluator from a dimensional standpoint.

Solution 0 is automatically accepted, and is eligible for modification by all three modifier

agents. Their efforts will produce three new solutions, each of which will be evaluated

and sent to the annealer for acceptance or rejection. If accepted, these new solutions will

also be eligible for modification, producing yet another generation of solutions.

The next generation

17

Solutions 1, 2 and 3 are the direct descendants of Solution 0: they are new solutions that

have been modified based on thermal, lighting and structural compatibility, respectively.

Because of Solution 0's thermal performance, the thermal modifier "restructured" the

design problem for the Circulation Tool, which in turn contributed a new design for

Solution 1. This was done by adding a constraint to its input that prevented it from

locating the service core within the building. The Circulation Tool responded by keeping

two separate cores, but located them at the north and south ends of the building. The

thermal modifier selected this strategy "knowing" that the external core on the south side

would shade the building from summer solar radiation. This was a "radical"

recommendation that would be more likely to be suggested early in the design process.

As the search matures, the thermal modifier would instead tend to suggest small

modifications to the building's proportions - a strategy that does not have as many far-

reaching consequences.

The lighting modifier's suggestion was also relatively radical: it suggested that an atrium

be added to the building. To do this, the lighting modifier removed a constraint on the

input for the Framer Tool that prevented an atrium space to be allocated within the

building. The resulting solution (Solution 2) had better lighting performance than its

parent, Solution 0, but the new atrium decreased its thermal performance.

Solution 3 was the result of recommendations from the structural compatibility modifier.

This is the only modifier that is capable of making direct changes to the solution itself.

In this case, the compatibility modifier changed the dimensions of the vertical circulation

cores so that they would align with the existing bay dimensions. Since this change has

no effect on thermal or lighting performance, Solution 3 looks and performs exactly like

Solution 0, except for the fact that Solution 3's cores have a slightly different shape,

allowing it to PASS its structural compatibility evaluation.

Exploring the Search Space

Representation of the search space

18

The history of solution generation can be depicted as a directed, acyclic graph, in which

the square nodes are solutions and arcs are actions that transform one solution into another

(Figure 8). The root of the graph is Solution 0 and its children nodes constitute solution

points in the design search space. Solutions that remained in the ND Set after

completion of the experiment (the Pareto surface solutions) are shaded grey. Nodes with

"Xs" indicate that the Annealer rejected this solution.

Arcs represent the transformation from one solution to another, which involves both the

actions of the modifier (to restructure the problem) and the actions of the generators to

produce a new solution. Truncated arcs indicate that the solution received a satisfactory

evaluation, eliminating the need for that modifier to take action.

Search chronology

While Figure 8 shows the parent-child relationships between various solutions, it does

not indicate the chronology of solution generation. The order in which solutions were

generated is shown in the chronology diagram in Figure 9. Solutions in the same

column were generated (roughly) concurrendy. Those that appear above the horizontal

line were accepted by the Annealer, those below it were rejected. Anarchy uses the

Accept-Reject Count method for deciding when to decrease the temperature. The

annealing temperature was decreased by 15% when either four solutions were accepted or

eight were rejected. As the temperature T decreases, the probability that the Annealer will

accept dominated solutions also decreases (according the formula e'^C/T) The results of

the Anarchy experiment confirm this behavior: Figure 9 shows an increased number of

rejections and a decreased number of acceptances as the temperature is lowered.

19

performed satisfactorily

Figure 8: Exploration of the design search space. Numbers on the nodes are only

labels, they do not represent any sequencing information.

20

o
LU

t
LU

8
<

2 7

1 4

Q
LU

180.0°

11

10

3

8

5

6

153.0° 130.0°

26

15

9 13

14

35

25

34

22

23

110.5°

31

28

80

29

93.9°

42

32

96 201

46

47

106

107

85

86

79.8°

Figure 9: Chronology of solution generation.

Targets

Regardless of whether a solution has been accepted or rejected, the Solution Tool checks

the solution's evaluation to determine if it surpasses any of the values on the target

vector. The target vector contains the best possible evaluations in each category,

regardless of what solution they belong to.

In Table 10, the columns A...I refer to state of the system at successive points of time

(not necessarily spaced at equal intervals) in a run. In column A is shown that the target

vector is initialized by the evaluation of Solution 0. Solution 1, however, immediately

improves on Solution 0, as indicated by the improved thermal performance values in

column B. Solution 2 improves on Solution 1 in the natural lighting category (column

C). This continues until column I, where the best evaluations are found in a combination

of Solutions 96, 32, 200, 7 and 0. There is no single building that can match the

evaluations in column I: they are simply target values used by the Annealer to compute

distances in the performance space. As the problem solving process matures, the targets

improve.

21

Winter loss -0.28 0
Summer gain 2.533 0
Direct lighting 5 0
Natural lighting 4 0
Structural PASS 0
Dimensional FAIL 0

-0.07
2.517

1
PASS
PASS

2 80
7 1 7
0 PASS 0
7 PASS 7

G H I

Winter loss 0 96 0 96
Summer gain 2.368 32

Direct lighting 2 80 2 80
Natural lighting 1 7 1 7 I 7

Structural PASS 0 PASS 0 PASS 0
Dimensional PASS 7 PASS 7 PASS 7

Table 10: Modification of the targets list.

The N D Set

The Non-Dominated (ND) Set contains Anarchy's best estimate of the Pareto surface at

any given time. Solutions that appear in this set are those whose evaluations are not

dominated by the evaluations of any other solution. Initially, Solution 0 is the only

solution in the ND Set. New solutions can only join the set when they share a non-

dominating relationship with the other solutions already in the ND Set. There are three

possibilities that the Solution Tool must consider when a new solution is generated:

a. the new solution completely dominates a subset of solutions in the ND Set. In

this case, the subset is removed from the ND Set and replaced by the new

dominating solution.

b. the new solution does not dominate any of the solutions in the ND Set, nor do

any solutions in the Set dominate it. In this case, the new solution is simply

accepted and added to the set

22

c. the new solution is completely dominated by a subset of the solutions in the ND

Set. There is a probability that this new solution will be accepted by the

Annealer, but it will never appear in the ND Set.

The ND Set changes during the course of problem solving. New solutions are added if

they satisfy the non-dominated criterion, others are eliminated when they become

dominated by better solutions. Table 11 shows the changes to the ND Set during the

course of Anarchy's experiments.

Solutions in ND List TEMPERATURE = 180
0
1

1,2, 4 ,7

The ND list is initialized with Solution 0.
Solution 1 dominates 0, and replaces it.
Solutions 2 (lighting), 4 (summer thermal) and 7 (lighting) are added.

I, 2, 3, 4, 7, 8
I, 2, 4, 7, 8, 10

1, 4, 7, 8, 10, 11

TEMPERATURE = 153
Solutions 8 (dim. construct.) and 3 (summer thermal) are added.
Solution 10 dominates 3, and replaces it.
Solution 11 dominates 2, and replaces it.

1, 4, 7, 8, 10, 11, 13
1, 7, 10, 11, 13, 15

TEMPERATURE = 130
Solution 13 (lighting) is added.
Solution 15 dominates 4 and 8, which are replaced.

1, 7, 10, 11, 13, 15, 31, 80
TEMPERATURE = 110.5
Solutions 31 (summer thermal) and 80 (direct light) are added

7, 11, 13, 80, 96
7, 11, 13, 32, 80, 96

32, 42, 80, 96
32, 42, 80, 96, 201

TEMPERATURE = 93.9
Solution 96 is very successful, and dominates 1, 10, 15 and 31
Solution 32 (winter thermal) is added
Solution 42 dominates 7, 11 and 13
Solution 201 (direct lighting) is added to the ND list

Table 11: Evolution of the ND Set during the course of problem-solving.

The Non-Dominated Solutions

The five remaining solutions in the ND Set (32, 42, 80, 96 and 201) represent Anarchy's

approximation of the Pareto surface. They are, in other words, the "best" solutions

23

produced by the system. The following figures and tables give a description of each

solution.

As shown in Figures 12 and 13, Solution 32 performed best with respect to heat gain

during the summer, due to the shading benefits provided by the external core. Its compact

shape limits heat loss during the summer, but is a liability for natural lighting. The

constructability evaluator PASSed this building on both structural and dimensional

categories.

Figure 12: Framing plan and vertical circulation Table 13: Evaluations of Solution 32.

cores for Solution 32.

As shown in Figures 14 and 15, Solution 42's narrow proportions make it particularly

good for natural lighting. Its " 1 " rating is the result of a very high perimeter-to-floor-area

ratio.

24

T Winter day (MBtuh) -0.100127
1 Summer day (MBtuh) 2.52958

L Direct lighting 5
Natural lighting 1

c Structural PASS
Dimensional PASS

T THERMAL

L LIGHTING

C CONSTRUCTABILITY

Figure 14: Framing plan and vertical circulation

cores for Solution 42.

Table 15: Evaluations of Solution 42.

Solution 96, shown in Figures 16 and 17, is another narrow building, but unlike 42, its

cores are external on the east and west sides. 96 pays the price in the form of a reduced

lighting evaluation (compared to 42), but registers an improvement in both summer and

winter thermal performance.

T Winter day (MBtuh) 0
1 Summer day (MBtuh) 2.40347

L Direct lighting 4
Natural lighting 3

c Structural PASS
Dimensional PASS

T THERMAL

L LIGHTING

C CONSTRUCTABILITY

Figure 16: Framing plan and vertical circulation

cores for Solution 96.

Table 17: Evaluations of Solution 96.

25

Solution 80 (Figures 18 and 19) and 201 (Figures 20 and 21) are similar buildings: both

are elongated in the east-west direction, both contain single, central cores. Their only

difference is the proportion of their lateral and longitudinal dimensions. Solution 80 is

slightly "boxier," giving it a slight advantage in winter thermal properties while Solution

201 is slightly narrower, giving it slightly better northern lighting.

T Winter day (MBtuh) -0.009074
1 Summer day (MBtuh) 2.44564

L Direct lighting 2
Natural lighting 5

c Structural PASS
Dimensional FAIL

T THERMAL

L LIGHTING

C CONSTRUCTABELJTY

Figure 18: Framing plan and vertical circulation

cores for Solution 80.

Table 19: Evaluations of Solution 80.

26

Figure 20: Framing plan and vertical circulation Table 21: Evaluations of Solution 201.

cores for Solution 201.

It is interesting to note that none of the buildings with atriums appeared in the final ND

Set. According to Anarchy's evaluation, atriums are a thermal liability for which their

lighting benefits can not compensate.

5. Observations and Conclusions

Experiments with the Anarchy system demonstrate that simulated annealing is a

promising technique for implementing contracting search in an asynchronous design

environment. The experiments show that the search through the design space was

initially very broad (many solutions were accepted), then later "contracted" around a few of

the best solutions (as temperature decreases and solutions were more likely to be rejected).

The stochastic nature of the simulated annealing algorithm allowed Anarchy to find very

good solutions as a result of accepting some bad ones. For example, Solution 1 remained

in the ND Set for a relatively long period of time. Solution 4, a child of 1, was accepted

by the annealer in spite of its poor performance. Modifications to Solution 4 produced

Solutions 13 and 15, both of which were great improvements. Standard hill-climbing

approaches would have rejected 4, thereby eliminating the possibility of ever reaching 13

or 15.

The designer has some controls by which the behavior of the asynchronous design

environment can be altered. The most effective method is to change the annealing

schedule. By slowing the pace of annealing, the environment can explore more solutions

at a given temperature level, increasing its probability of finding an optimal solution (if

there is one). On the other hand, accelerating the annealing process will allow designers

to find solutions in a much shorter period of time, although these solutions may not be

the best. In many cases, the most appropriate annealing schedule is found through

experimentation, although there are some rules of thumb that may guide the designer.

It is a phenomenon of our simulated annealing algorithm that modifiers appear able to

"use" the current annealing temperature to choose their modification strategies. When the

27

annealing temperature is high, the radical suggestion of the lighting modifier to add an

atrium to the building to improve lighting performance likely would be accepted, even if

it reduces performance at first. As the temperature decreases, only less drastic modifier

recommendations, such as a slight modification to the building proportions, would be

likely to be accepted. The net effect is that sweeping changes are more probable early in

the design process, providing many different starting points for search. Later, as the

search contracts, modifiers appear to provide "fine-tuning" adjustments to the solutions.

A method of control that amplifies the above effect is to change a modifier's strategies for

selecting among modification options based on the current annealing temperature. When

the temperature is relatively high, the modifiers tend to choose more "radical"

recommendations than when it is low. If this policy were to be changed - that is, if

recommendations that have extensive consequences were chosen later in the design process

- it could theoretically have one of two effects. On one hand, the system may require

more time to find a "stable" set of solutions, since such drastic changes are likely to

require extended computation to determine downstream effects. On the other hand, one

could also argue that these radical recommendations are more likely to be rejected because

of the lower annealing temperature, leading to less, not more, computation. Which of

these two scenarios would actually occur is still an open question, and requires further

experimentation. One interesting possibility would be to change a modifier's strategy

based on the success or failure of past recommendations. A modifier would need to keep a

history of actions and their effects for a variety of problems, and it would require

sufficient intelligence to match this history against the current problem. Research efforts

in case-based reasoning and machine learning may provide some information on the

possibility of guiding an agent's knowledge based on previous experience.

A final "tuning" method is to change the modifier's thresholds, essentially making it

more or less "demanding" about the quality of the solution. Making such adjustments

allows the designer to trade off the amount of time required to arrive at a set of final

solutions against the overall quality of those solutions.

The present version of Anarchy provides no facilities for externally changing problem

specifications and constraints. In principle, the asynchronous execution of the Anarchy

28

environment makes external intervention trivial: a human would be simply another

agent, providing evaluations, solutions and modifications to problems at will. It remains

to be seen what the practical effects of supporting direct external change of system aspects

might be.

Simulated annealing is not an inherent part of asynchronous teams, it is simply one

technique for implementing contracting search. Contracting search is, however, a

fundamental property of A-teams: it is the means by which asynchronous agents

coordinate their efforts to find solutions.

6. References

[Donnett 87] Donnett J.G., "Simulated annealing and code partitioning for distributed

multimicroprocessors," Tech. Rep. 87-194, Dept. of Comp. and Info. Sci., Queen's

Univ., Kingston, Canada, July 1987.

[Fenves 92] Fenves S., Flemming U., Hendrickson C , Maher M., Quadrel R., Terk

M , Woodbury R., "Computer Integrated Building Design", Prentice-Hall, 1992, to

appear.

[Geman 84] Geman S. and Geman D., "Stochastic relaxation, Gibbs distribution and

the Bayesian restoration of images," IEEE Trans, on Patt. Anal, and Mach. Intell., vol. 6,

pp. 721-736, Nov. 1984.

[Hastings 85] Hastings H.M., "Convergence of simulated annealing," ACM

SIGACTy vol. 17, no. 2, pp. 52-63, Fall 1985.

[Huang 84] Huang M., Romeo F. and Sangiovanni-Vincentilli A., "An efficient

general cooling schedule for simulated annealing," Tech. Rep., Dept. of EECS, Univ. of

Calif. Berkeley, Berkeley CA., 1984.

[Kirkpatrick 83] Kirkpatrick S„ Gelatt CD., Vecchi M.P., "Optimization by simulated

annealing, Science, v. 220, pp. 671-680, May 13, 1983.

29

[Mäher 87] Mäher M.L., and Longinos P., "Development of an expert system shell

for engineering design," Int'l Journal ofAppl Eng. Education, Pergamon Press, 1987.

[Metropolis 53] Metropolis N.. Rosenbluth A.W., Rosenbluth M.N., Teller A.H.,

Teller E., "Equation of State Calculations by Fast Computing Machines," Journal of

Chemical Physics, v. 21, pp. 1087-1092, 1953.

[Naher 85] Nahar S., Sahni S. and Shragowitz E., "Experiments with simulated

annealing," 22nd Design Automation Conf, pp. 748-752, 1985.

[Quadrel 91] Quadrel R., "Asynchronous Design Environments: Architecture and

Behavior", PhD Dissertation, Department of Architecture, Carnegie Mellon University,

Pittsburgh, PA, September 1991.

[Radford 88] Radford A.D., Gero J.S., Design by Optimization in Architecture,

Building and Construction, Van Nostrand Reinhold, N.Y.C, N.Y., 1988.

[Romeo 84] Romeo F., Vincentelli A.S. and Sechen C , "Research on simulated

annealing at Berkeley," Proc. Int. Conf. on Computer Design, pp. 652-657, Oct. 1984.

[Rutenbar 89] Rob. A Rutenbar, "Simulated Annealing Algorithms: An Overview,"

IEEE Circuits and Devices Magazine, pp. 19-26, January 1989.

[Slagle 89] Slagle J., Bose A., Busalacchi P., Park B. and Wee C , "Enhanced

simulated annealing for automatic reconfiguration of multiprocessors in space," Tech.

Rep., Dept. of Comp. Sei., Univ. of Minnesota, Minneapolis MN., 1989.

[Talukdar 91] Talukdar S.N., deSouza P.S., Quadrel R., Ramesh V.C., "A-Teams:

Multi-Agent Organizations for Distributed Iteration", in the EPRI-NSF Workshop on the

Application of Advanced Mathematics to Power Systems , Redwood City, CA, Sept.

1991.

[White 84] White S.R., "Concepts of scale in simulated annealing," in Proc. Int.

Conf. on Comp. Design, pp. 646-651, Oct. 1984.

30

[Woodbury 91] Woodbury R., "Searching for designs: paradigm and practice," Building

and Environment, vol. 26, no. 1, pp. 61-73, 1991.

31

Appendix A: The simulated annealing algorithm

The simulated algorithm itself is straightforward. To is the starting temperature, Tf is the

freezing temperature. T is the annealing temperature, which is initially set to To, and is

decremented by a factor of k3 during each iteration of the outer loop. A and R are the

number of solutions that have been accepted and rejected, respectively. The inner loop

repeats until either A > kl or R > k2 (kl,k2 and k3 are predefined constants).

a • Calculate To, the starting temperature, and Tf the freezing temperature.

b . SetT«-To.

c . S e t A « - O a n d R < - 0 .

d. Generate an initial solution S.

e . Calculate C <- Cost(S),

f. While T>Tf do

f 1. While (A < kl) and (R < k2) do

• Generate a new solution S' by perturbing S.

• Calculate AC <- Cost(S*) - Cost(Best S so far).

• If (AC < 0) or (random(0,l) < e ' A C / T)

then S <r- S\ A <- A+l, C <- C+AC

else R <r- R+l

end While

f2. Set A <— 0, R <— 0, T <— k3*T

end While

The function random(0,1) returns a real number on the interval [0,1]. The conditional in

statement f l allows a perturbation to be accepted with probability 1 if it generates a

solution with a lower cost than the current one. If the new solution has a higher cost, it

will be accepted with probability e'^C/T (f r o m [Donnett 87]).

The probability function

Nahar, Sahni and Shragowitz [Naher 85] have experimented with replacing the annealing's

probability function e~^C/T with other functions using C, AC and T. Instead of the

32

exponential function, they tried linear, quadratic and cubic functions of C. These were

attempted both with a static temperature as well as step-wise decreasing temperatures.

Their results show that the exponential function outperformed the other tested functions

by a factor of two. Their explanation was that particles in real physical systems exhibit a

statistical behavior that is closely modelled by the exponential function, implying that

simulated annealing may be a "natural" approach to optimization [Donnett 87].

Cost function

The cost function is domain-dependent function that measures the value of one solution

relative to another. The units of cost play an important role in the selection of a starting

temperature, an example is White's standard deviation method(White 84). The cost

difference in a move is also important. Examining the acceptance probability expression,

e-AC/T ^ shows that to guarantee an acceptance probability of at least .85 at the starting

temperature, we must use a temperature that has at least a 6:1 ratio to the "typical"

difference in cost (e ' 1 / 6 = 0.846). As the temperature:Acost ratio decreases, so does the

probability of acceptance. Beyond ratios of 1:6, there is an extremely low probability

that poor solutions will be accepted (e" 6 / l = 0.002) .

Starting temperature

The starting temperature should be relatively high, so that almost all perturbations will

be accepted. This allows for a broad sweep of the search space, since it will accept

solutions that have both low and high "costs."

Kirkpatrick suggests one approach for finding the starting temperature[Kirkpatrick 83]:

a • choose a starting temperature T at random

b . attempt a sample of perturbations at T, keeping track of the percentage of

accepted (A) and rejected (R) solutions.

c • if A/(A+R)<0.8, then double the temperature and go back to b. Continue until

system is "warm enough."

33

The problem is that this might give temperatures that are too warm, making the

algorithm more time-consuming than it need be. White shows that a good heuristic for

determining starting temperature can be derived from the standard deviation of the

distribution of problem state densities vs. the costs of these states [White 84]. This

requires performing enough sample moves to determine what the distribution is, however.

Annealing schedule

The annealing schedule determines both the conditions required for reducing the

temperature as well as the factor by which it should be reduced. Formalization of the

annealing algorithm has concentrated on annealing schedule, primarily because of its

strong effect on the performance of the algorithm. Although White has proposed a

general theory to decide the annealing schedule parameters [White 84], much of the

variation of annealing schedules is based on empirical tests. Donnett suggests that

schedules should be uniquely designed for the domain and the type of problem being

addressed [Donnett 87].

Geman and Geman developed a "worst-case" schedule (impossibly slow) that guarantees

convergence of the algorithm [Geman 84]. Hastings shows that annealing can converge

faster than the worst case [Hastings 85]. Romeo et al. have proved the algorithm to be

asymptotically optimal [Romeo 84]. The longer the algorithm runs, the better chances of

finding an optimal solution.

The two questions of the annealing schedule are: What is the temperature decrement over

time? What is the number of perturbation iterations at each temperature? Staying at the

same temperature for a long period of time ensures the best solutions possible (since

simulated annealing is asymptotically optimal, staying at each temperature for an amount

of time t, where t approaches infinity, guarantees the global optimum will be found), but

this is not feasible in practice.

Two methods are known which compute the number of perturbations at each temperature

interval: the cost-based function method and the accept-reject count method [Slagle 89].

34

a. The cost-based function method suggests that the number of iterations N for any

temperature T is given by:

N(T) = e(hm a x(T)-hmin(T))/T (1)

where h m a x (T) and h m i n (T) are the highest and lowest values of the cost

function obtained thus far at this temperature [Huang 84]. In practice however,

N(T) becomes too large as the temperature decreases, and requires the

introduction of an (arbitrary) upper bound.

b • The accept-reject count method allows either a certain number of acceptances (kl)

or a certain number of rejections (k2) at a certain temperature. These numbers

are usually determined empirically (Donnett uses an accept/reject count in a 1:10

ratio [Donnett 87]). At each temperature, either kl moves must be accepted or

k2 moves must be rejected before the temperature is allowed to decrease.

Once the number of perturbation iterations is reached at a particular temperature

interval, the temperature is decremented by some factor (k3). Choosing k3 to be

less than 1 gives an exponentially decaying temperature. As the search nears

completion, the temperature should decrease very slowly, giving the system the

chance to find the optimal solution. Values for k3 that are less than 0.5 "cool"

the system too quickly and results in less-than-best performance.

Donnett performed a series of annealing experiments in which k3 varied between

0.5 and 0.99 in increments of .01 His results show that values between 0.8 and

0.9 provide the best trade-off between execution time and achievement of optimal

solutions [Donnett 87].

Terminating conditions

Annealing stops when the temperature reaches Tf. White [White 84] has found that the

temperature at which no more improvement can be made is

Tf =(Cl -C0) / lns (2)

35

where CO is the absolute minimum cost, CI is the next largest cost, and s is the number

of state perturbations that can take the search from CI to CO. The freezing temperature

calculated by this formula represents the most pessimistic terminating conditions: when

using this value, even in the worst case, no anneal will stop too soon.

Another strategy for determining terminating conditions is the one used by a commercial

simulated annealing package called TimberWolf™. This strategy halts the anneal when

no new solutions have been accepted after four consecutive decreases in temperature.

Slagle [Slagle 89] has shown that this strategy may stop the anneal too early, however

Donnett [Donnett 87] has found that in many cases, his results "froze" before reaching the

pessimistic freezing temperature. We used this heuristic in our implementation.

Multi-criteria simulated annealing

Our implementation of the simulated annealing algorithm follows from the pseudo-code

given in above, but raises an important issue: How does one measure the "cost" of a

design solution that is evaluated by multiple criteria? One technique is to "weigh" the

various evaluations and sum them, but this introduces artificial and formally

insupportable measures of importance to various features of the design. Instead of

comparing designs on the basis of "cost," we use a dominance relationship.

Dominance relationships

The evaluation of a solution is given as a vector, where each vector element is a "score"

calculated by a unique evaluator agent. These scores may be continuous or discrete

values, but in either case there is a notion of a "better" or "worse" score (e.g., "the larger

the score, the better the solution" or "the scores range from 1 to 5, with 1 being the

best").

Rather than attempting to find a single, absolute value to represent a solution's quality,

these evaluation vectors can be compared to measure a solution's quality relative to

another's. There are three binary relations that exist between evaluation vectors (and

hence, their corresponding solutions).

36

SI => S2 SI dominates S2. For all scores i, as i ranges from the first evaluation to

the last, STs ith evaluation score is better than or equal to S2's ith

evaluation score.

SI <= S2 SI is dominated by S2. For all scores i, as i ranges from the first

evaluation to the last, S2's ith evaluation score is better than or equal to

Si 's ith evaluation score. Note: if SI => S2 AND S2 => SI then the

evaluations of SI and S2 are said to be equivalent.

S1 <=> S2 SI contends with S2 iff S1 neither dominates nor is dominated by S2.

Using these relations, we can say that a solution S is non-dominated in a set of solutions

X if there exists no solution x e X such that x => S. The set of all non-dominated

solutions (the ND Set) comprise the "best" solutions produced for a given design problem

(i.e, no solution can claim to be "better" than any ND solution). This set is commonly

known as the Pareto set [Radford 88, ch.8].

The "traditional" simulated annealing algorithm keeps the most recent solution which is

used to generate new solutions, and a single "best" solution against which these new

solutions are compared. We, however, keep a population of "accepted" solutions from

which further modifications may proceed. Also, instead of a single solution, we use the

ND Set (a subset of this population) as the standard against which new solutions are

compared. The following modified algorithm shows how we use simulated annealing for

search in a space where solutions are evaluated by multiple criteria.

37

f. While T>Tf do

f 1 . While (A < kl) and (R < k2) do

• Generate a new solution S' by

modifying an accepted solution

• If (S' =* any X, for all X € ND Set)

then accept S \ replace all X with S \ set A <- A+l

else

•If (S' <=> X), for all X e ND Set)

then accept S \ add S' to ND Set, set A <- A+l

else

D = distance(S\ ND Set)

•If (random(0,l)<e- D / T)

then accept S \ set A <— A+l

else R <- R+l

end While

f 2. Set A <- 0, R <- 0, T 4- k3*T

end While

The idea here is nearly the same: A new solution S' is generated as a result of the

recommendations of modifiers. If this new solution is as good (contends with) or is

better (dominates) than any that already exist, then accept it immediately. Otherwise,

compare it to the best solutions already obtained (using the distance function) and

compute an acceptance probability based on this comparison and the current annealing

temperature.

With the use of a an accepted set (of which the ND set is a subset), the issue of conflict

resolution that typically arises in multiple agent systems is skirted. Conflicts can be

thought of as being produced by design changes that make some evaluations better and

others worse. In the above algorithm such designs can readily be produced. Designs that

contain conflicts will either take a place in the ND set as designs that do not dominate

other designs or they will tend to be evaluated poorly, i.e., they are likely to be dominated

38

by other solutions in the accepted set and thus will only enter the accepted set under the

probabalistic criterion of the simulated annealing algorithm..

The distance function

The distance function provides a means to compare "how far off a candidate solution is

from the "best" solutions that are currently in the ND Set. Consider an N-dimensional

Euclidean performance space, where each axis of the space corresponds to a single

evaluation criterion. Each solution can be plotted as a point in this space, based on the

values listed in its evaluation vector. Now consider an imaginary solution in which each

element of its evaluation vector contains the best value found for that criterion after

examining all existing solutions. This imaginary solution is called the target solution

and its evaluation vector is the target vector.

The target solution is a reference point that can be used to determine "how far off the

candidate solution is from the ND Set. The distance function we used computes this

value as the difference between the distance from the candidate to the target, and the

distance from the ND Set to the target. This function reduces the estimated distance in

situations in which there is a large angle between a target-candidate vector and a target-

ND-set-element vector. It has the effect of making it more likely to accept a solution in

parts of the performance space that have been sparsely visited. The target-to-ND-set-

element calculation can become somewhat tricky: how does one compute a distance

between a point and a set of points? Again, we don't want to resort to a scheme that

selects some "average" point by introducing artificial weights.

In the current implementation, we simply choose a single solution from the ND Set that

is closest to the candidate, and performs the distance calculations using this solution. A

more accurate method would be to compute a Minkowski distance measuring the length

of a projection from the target solution to the Pareto surface defined by the ND Set. That

surface could be estimated by an N-dimensional hyper-plane that locally approximates the

Pareto frontier.

Perturbation functions

39

Solutions are perturbed by the actions of modifier agents. Given a candidate solution that

can be improved, modifiers can choose between two options: either modify the solution

directly, or modify an input to a generator that will, in turn, produce a new solution on

its own.

Although the first method seems most direct, it can lead to consistency problems. Once

modified, there is no way of knowing whether the new child aspect is consistent with

respect to its parent aspects. Agents could be constructed to verify these dependency

relationships, but since flexibility is a high priority for asynchronous design

environments, it would contradict the philosophy of A-teams to demand the existence of

such agents.

The second option, modifying the inputs to generators, is called problem restructuring.

The modifiers essentially create a new problem for the generators to solve. By adding,

deleting or modifying constraints, modifiers can guide the activity of generators to

produce better solutions; and at the same time avoid the consistency problem.

Annealing schedule

The annealing schedule to a large extent determines the performance of the simulated

annealing algorithm. The schedule specifies the starting temperature and how quickly that

temperature decreases. It also specifies (by using the accept-reject count method) how

long the environment remains at one particular temperature level. The values that were

used in the experiments described in Section 4 of this paper are:

starting temperature = 180* (estimated)

freezing temperature = 5* (estimated)

accept ceiling (k 1) = 4

reject ceiling (k2) = 8

temperature decrease factor (k3) = 0.85

The starting temperature was selected based on the results of tests performed before the

experiment began. By producing a number of solutions and computing their distances

40

from a target solution, we were able to estimate that "typical" distances ranged between

18 and 27 units. From this, we selected 180° as a the value for starting temperature to

match the desired 6:1 temperaturerdistance ratio described in above. By similar reasoning

we estimated the freezing temperature to be 5°.

The accept/reject ceilings were selected based on success with these values in previous

trials of the simulated annealing algorithm. After our experiments, however, it would

appear that these values may be too low - our suspicion is that the system may have

performed better if it were able to remain at each temperature interval for a longer period

of time.

The temperature decrease factor of 0.85 was chosen based on the empirical results of

Donnett's work [Donnett 87].

41

