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Abstract

This paper addresses the problem of determining the optimal configuration and

cyclic operation of batch plants in which all the products require the same processing

sequence. In particular, the problem can be stated as follows. Given are demands of a

number of products, as well as technical information on the processing tasks (size factors,

processing times, clean-up times) which are not restricted to a zero-wait policy. Given are

also cost data for investment and product inventories, a list of candidate equipment and a

list of candidate storage vessels with standard sizes. The problem then consists in

determining the following items: number, type and size of equipment, as well as their

allocation to one or multiple tasks and possible parallel operation; location and size of

intermediate storage vessels; the length of the production cycle including the sequence of

production of the products; levels of product inventories. The objective is to maximize

the net present value. The major complication of this design problem lies in the many

trade-offs that are involved, as for instance the merging of tasks versus its impact on the

schedule, and length of production cycle versus inventory levels. By using a novel

representation for cyclic schedules and exact linearization schemes, it is shown that this

problem can for formulated as a mixed-integer linear programming problem, and solved

rigorously to global optimality. An efficient computational scheme is proposed for this

purpose. Compared to the previous work by Birewar and Grossmann (1990), the

proposed model provides a significant extension of the scope of the operational problem,

while at the same time yielding an optimization problem that does not involve

nonlinearities. Several example problems are presented to illustrate the capability of this

method.



Introduction.

Batch processing offers distinct advantages for the production of many specialty

chemicals. Of major importance is the flexibility to modify the product envelope and

introduce or remove products with short or medium life cycle from the production line.

Other advantages include the relative ease with which chemistry intensive processes can

be scaled up from the laboratory bench to the production line. Also, in case very stringent

quality standards have to be met by the products, batch processing is the preferred mode

of operation because potential contamination can be limited only to one batch. Because of

these characteristics most of the high value added chemicals are produced through batch

processes. In fact batch processing constitutes a significant fraction in the Chemical

Process Industries. For example 80% of pharmaceutical and 65% of the food and

beverage processes are batch processes (Reeve, 1992). In both of the above types of

processes quality is of crucial importance.

Because of the multiproduct nature of batch processes, the logistics of operation,

such as scheduling of the products and inventory handling, has to be considered in the

design stage making the problem of designing these processes significantly more difficult

compared to continuous processes.

Despite the recent development of design models and techniques for batch

processes (see Reklaitis, (1990) for a review) there is still a lack of comprehensive

design methodologies that can properly address the many aspects involved in batch

processes. This work is an attempt to expand the scope of systematic methods for the

preliminary design of multiproduct batch processes by integrating the synthesis, design,

production planning and scheduling problems.

This paper is a preliminary draft in which the following problem is addressed.

Given is a set of N products, the required processing steps for the production of these

products, the demands of the products and the time in which these demands have to be

satisfied which is referred to as the design horizon H. The overall objective is to find the

optimal flowsheet as well as the optimal operation of a batch process that will produce

these products. The following decisions are involved in this problem.

1) Synthesis decisions.

a) Allocation of tasks to equipment.

b Parallel units of equal size operating either in-phase or out-of-phase.

c) Location of intermediate storage.

2) Design decisions.

a) Selection of equipment of standard sizes.



b) Sizing of intermediate storage vessels with standard sizes.

3) Production planning decisions.

a) Optimal length of production cycle during which the optimal schedule is

executed.

b) Handling of inventory of final product.

4) Scheduling decisions.

a) Sequencing of products

The objective is to select the decisions so as to maximize the Net Present Value

(NPV) of the process, which is a projection of the profitability of the process during its

life span to the present.

Following are the major assumptions that will be made in this problem:

1) All products have identical task networks which are sequential, although some

more general cases can be treated.

2) Intermediate storage is considered only as a means to decouple neighboring no-

wait subtrains for which only one vessel of intermediate storage is considered.

3) Parallel units in a stage, operating either out-of-phase or in-phase are

considered in equal sizes. This assumption is preferred in grassroots design models like

the ones presented in this work. In case of retrofit models this assumption can be relaxed.

4) Flexible equipment operation is not considered: A set of parallel equipment is

exclusively operated in-phase or out-of-phase for all products. This assumption can

easily be relaxed.

5) The same sequence of products in the various subtrains is maintained.

6) Processing times are not dependent on the batch size.

7) Semicontinuous units are not considered.

In this paper an MDLP model will be proposed that can explicitly address the

decisions indicated under the above assumptions. The unique feature of this model will

be the capability of optimizing the length of the production cycle by accounting for the

inventories and the scale of integration among the elements of batch design. The outline

of the paper is as follows. A brief review of the literature is first presented. An outline of

the synthesis model is then presented in which the major aspects that define the space of

alternatives are explained. The importance of anticipating the effect of inventories is

highlighted by developing an MILP model for a simplified version of the general

problem. Numerical examples are given to backup the claim. Next, a nonconvex MINLP

model is given, which incorporates all the issues of the design problem. A novel

reformulation scheme is then applied that transforms the nonconvex MINLP to an MELP



problem and the equivalence of the two models is established. The solution approach is

presented next. Finally the solution of the proposed MILFs is illustrated with several

examples and the consistency of these models is verified.

Literature review.

Comprehensive descriptions of the design problem and discussions on the issues

that characterize the batch process design problem, have been presented in the literature

(Reklaitis, 1990, Rippin, 1993).

Among earlier work, Yeh and Reklaitis (1987) addressed the issues of storage

location, allocation of tasks to equipment, parallel units and vessel sizing. They proposed

a nonconvex MINLP model but because of computational difficulties a heuristic

procedure was used to solve the problem. Modi and Karimi (1989) also developed a

heuristic procedure that considers the storage location problem in a multiproduct batch

plant. Birewar and Grossmann (1990) proposed a nonconvex MINLP model with which

the synthesis, sizing and scheduling issues were integrated in the same model. This model

however did not address the issue of intermediate storage sizing and its location, in its

general form, inventory handling was not considered, and the equipment sizing problem

was solved with continuous instead of standard equipment sizes. Patel et al (1991)

proposed a simulated annealing method in which intermediate storage as well as parallel

equipment of unequal sizes were considered. Simulated annealing was also the solution

method that Tricoire and Malone (1991) used for their proposed model. These authors

considered among others the handling of final product inventories which was introduced

in the batch process area by Klossner and Rippin (1984). A significant limitation on most

previous mathematical programming approaches is the assumption that the sizing

problem is solved in a continuous space. This assumption gave rise to nonlinearities and

even further to nonconvexities. Voudouris and Grossmann (1992) have shown that the

consideration of standard equipment sizes allows the application of novel reformulations

schemes and thus remove the need to develop MINLP models in many instances. Instead

more robust and efficient MILP models that address the design problem for cases of

multiproduct and multipurpose plants have been proposed allowing the scope of

mathematical programming models to be expanded. Finally, Shah and Pantelides (1991)

and Papageorgaki and Reklaitis (1990) have developed MILP and MINLP models,

respectively, which can address particular cases of multipurpose plant design.
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Outline of alternatives for synthesis model.

Model building for preliminary design is still largely an art depending mainly on

the designers intuition and conception of the problem. Under this framework it is not

surprising that a variety of models have been proposed for preliminary design of batch

processes. This is mainly due to the different concepts attacked by the modelers. In other

words the space of alternatives is defined differently by various designers. One example

of this is the role of intermediate storage between two no-wait subtrains. One alternative

is to use intermediate storage only as a means to decouple the operation of the

neighboring subtrains. In this case the storage vessels will accommodate only a limited

number of batches and thus they can be of relatively small size. A second alternative is to

allow the use of relatively large storage vessels so that it is possible to store all the

batches of an intermediate produced in the upstream subtrain during a period of time.

This mode of operation allows equipment in the upstream subtrain to be utilized also in

the downstream subtrain in a subsequent period. On one hand savings in capital

investment are achieved by better utilizing the equipment, but on the other hand this

mode also means higher capital investment because larger storage vessels and larger

operating costs. Although it might be desirable to exploit both alternatives, to the moment

this is impossible since the models generated for both alternatives are radically different

to each other. Therefore, a decision has to be made beforehand about the role of the

intermediate storage.

Although the ideal model is one that considers all possible alternatives that might

influence the design decisions, this model by all likelihood will be impossible to solve.

Therefore, a preliminary screening of what is more and what is less important has to be

performed, and a clear definition of the restricted space of alternatives has to be given.

For this reason, the first step in our design approach is to explicitly state what the space

of alternatives is. Overall, the design approach will consist of the steps indicated in

Figure 1. The main issues that define the space of alternatives are:

1) Inventory considerations.

2) Allocation of tasks to equipment.

3) Use of intermediate storage.

4) Parallel units per stage.

5) Timing of the production cycle.

To highlight the importance of anticipating the effect of inventories in the design

stage, we first address this aspect and illustrate it with an example with fixed topology.



We then discuss the other aspects and derive the comprehensive synthesis model

addressed in this paper.

Inventory considerations.

In a batch process two kinds of inventories can be identified. First the inventory

held in intermediate storage (also called WIP for work in process) and the final product

inventories. WIP is usually relatively small compared to the final product inventories.

The level of product inside the inventory vessel can be illustrated by means of the

inventory triangles like the one illustrated in Figure 2(b). In a storage vessel there is a

incoming stream from the process and an outcoming stream to the market ( Figure 2(a)).

Even though in batch processes the incoming and outgoing streams are not continuous,

when the number of batches is relatively large it can be assumed that they are continuous.

It can be seen in Appendix I that the cost of inventory is proportional to the area of the

inventory triangle and can be given with a relatively simple equation. When the number

of batches is relatively small during a time period P then the assumption of continuity for

the incoming and outgoing streams does not hold and the actual inventory cost cannot be

linked to the area of the inventory triangle. In this case, though, the cost of inventory is

small and the impact it has on the design process is marginal.

Because of the high value of the products of a batch process the way the

inventories are handled significantly affects the flowsheet design. This can be understood

by means of a small example that is illustrated in Figure 3. Suppose that products A and

B are produced. One alternative is to use one single product campaign for each product.

This means that in campaign 1 product A is produced and in campaign 2 product B is

produced. Another alternative is to produce these 2 product in 4 campaigns. In campaigns

1 and 3 product A is produced, whereas in campaigns 2 and 4 product B is produced. In

other words, in the second case the optimal sequence of A-B is repeated twice. We say

that the Production Cycle in the second case is one half of the design horizon, whereas in

the first case it coincides with the design horizon. So the Production Cycle is the length

of time in which the optimal schedule is executed once. Going back to the example it can

be seen that although the inventory levels illustrated by the area of the inventory triangles

are lower in the second case, more cleanup time between the products is introduced and

thus the actual available time is reduced. In our model this means that the plant has to be

overdesigned to meet the demand specifications, leading to increased capital investment.

The decision how to resolve this trade-off will be included in our model.



To illustrate the impact of inventories, a small problem given in the literature

(Birewar and Grossmann, 1989) is expanded so that inventories are considered in the

design.

Incorporating inventories in a batch plant with fixed topology.

Consider the case of a multiproduct batch plant with one equipment per stage. The

tasks to be performed in each equipment have already been assigned and no intermediate

storage between the equipment is considered. It will be assumed that the plant operates in

single product (SPC) campaign mode. The design has to be such that the demands Qi of N

products have to be satisfied over a design horizon H. During this time horizon the plant

will operate in a cyclic manner such that demands qi = Qi / NC of N products have to be

satisfied over a production cycle time P = H / NC , where NC is the number of cycles

repeated in the design horizon H. It is clear from the previous equations that,

Hq i=PQi V i

The design of a plant under the new specifications can be treated with the

following MINLP model,

max NPV (Ml)

s.t.

Vk

Ti = (nj tjj. + (X NP i k SLikjO) j1 = M
k

X (n i tij + <X NPik SLikj"))
i k

V i



H q i = P Qi V i

O c = X ( f i i | ( P - T i ) ) + m i n t N C

V}° < Vj < V?p Vj

qi, Bi > 0 V i , NP& £ 0 V i , k , P > 0

ni = Integer V i, NC = Integer

The objective variable is the Net Present Value (NPV) which we want to maximize. The

Net Present Value is a linear function of the plant cost and the operating costs. It is

defined by the following equation,

NPV «-Pc + (R - Oc) (1-tx) (Prcoef)+(Pc/Ny) tx (Prcoef) (1)

where tx is the tax rate, Ny the expected life of the plant, R is the total revenue from

selling the products and is obtained by multiplying the price of every product by the total

demand for that product. Prcoef is the present value coefficient with which the future

profits are projected to the present. This coefficient is defined as

_ , / ( l+ in) N y- l
Prcoef = < —-

I in (l+in)Ny

where in represents the interest rate.

The plant cost Pc can be calculated by the following equation,

j
which is the capital investment required for equipment.
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The operating costs Oc are calculated by the expression (See Appendix I),

where the first summation is the inventory cost and the second term is the setup cost paid
every time the optimal schedule is repeated. NC is the total number of repetitions, mint is
the cost in $ per repetition and fij is the inventory cost per unit mass of inventory of

product i per unit time.

The second and ninth constraints are nonlinear and involve crossproducts,

whereas the tenth constraint is nonlinear and nonconvex. The first constraint in model

(Ml) assures that the volume Vj of every equipment can accommodate a batch of product

i of size Bi where Sy is a proportionality constant called size factor through which the

simplified mass and energy balances around the process equipment are considered. The

second constraint is the definition of number of batches n* produced in a production cycle.

The third and fourth constraints are aggregated assignment constraints analogous to the

TSP assignment constraints which define a sequence of products (See Birewar and

Grossmann, 1989). NPft represents the number of changeovers from product i to product

k in the optimal schedule. The fifth constraint is the definition of the time dedicated to the

production of product i whereas the sixth constraint is the horizon constraint which makes

sure that the production will be satisfied in the production cycle P that is to be optimized.

Note that the fifth constraint is defined only for the last stage. In these constraints ty is the

processing time of product i in equipment j, and SLay is the forced idle time generated in

equipment j when k is produced after i. For the Zero-Wait (ZW) case these slack times

can be calculated a priori as was shown by Birewar and Grossmann (1989). The seventh

constraint is needed for eliminating single product subcycles. By enforcing the equality in

this constraint the SPC policy during a production cycle is considered. The eighth

constraint is required to enforce the integrality of NC.

Let us consider that the equipment are available in discrete sizes. The following

binary variables are introduced,
_ | 1 if unit at stage j has size s |

y j s i 0 otherwise

and
I 1 if sv cycles are considered

rsv ~ 0 otherwise



Following the procedure in (Grossmann et al, 1991), the integrality of the number of

cycles can be enforced then with the following constraints,

sv

sv sv

Psv < H rsv V sv

By combining the first and second constraint in model (Ml) and by reformulating the

resulting model as shown in Voudouris and Grossmann (1992), the following model is

obtained.

max NPV (M2)

s.t n i 2 (
si J S

i V i ( 2)

ni v i (3)

nk V k (4)
i

T j = ( m tij- + (X NP i k SLikj.)) j1 = M (5)
k

X (n i tij1 + (X NPik SLikj-)) < P V j (6)
i k

NPii=ni- l Vi ( 7 )

H = X sv Psv (8)
sv
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(9)
sv

Psv < H rsv V sv (10)

j s y j s (11)
j s

svrsv (12)
SV

sv

j (13)

rsv = 1 (14)

qi £ 0 V i , NP& £ 0 V i , k , P £ 0 (15)

rii = Integer V i, y j s , rsv = binary (16)

a

where 6js = aj v?J represents cost of standard vessels and vjs represents standard volume

s for equipment j. The only nonlinear constraint is the first one. By substituting qi in the

first constraint according to equation (2) and by substituting the crossproduct P yjs with

the nonnegative continuous variable ejs the following MILP model is obtained,

max NPV (M3)

s.t n i ^ X ( ^ 7 § " ) ejs V i J

ejs ^ H yjs V j , s

V j

(3)-(16)
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Compared to model (Ml), model (M3) has the important feature of explicitly handling

discrete equipment sizes and even further, it incorporates linear constraints and a linear

objective function. By exploiting the structure of model (M3) we can enhance the

computational performance with procedures similar to the ones presented in a previous

paper (Voudouris and Grossmann, 1992).

It should be noted that model (M3) addresses a simple case of design of

multiproduct plants. The more general case in which parallel units in each stage as well as

flexible allocation of tasks to equipment and intermediate storage is considered, will be

addressed later in the paper.

From the analysis of the results which are presented in the next section it can be

seen that the NPV can be influenced significantly. This shows that inventories have to be

explicitly considered in the design stage of a batch process.

Numerical results.

The following numerical example will illustrate the interaction between sizing of

vessels, sequencing and product inventory handling as considered in model (M3). The

key parameter which is expected to affect the interaction between sizing, sequencing and

inventory handling is the cleanup times between products. This parameter is incorporated

in the precalculated slacks Slag. If for example, the cleanup times are relatively small,

then a schedule with many changeovers between products will lead to a more efficient

utilization of the available time horizon. In this case it is expected that the production

cycle time will be forced towards small values and the number of production cycles will

tend towards higher values. On the other side, if the cleanup times are relatively large

then the opposite trend towards large single product campaigns develops in order to get

efficient utilization of the design horizon or equivalently to minimize the cost of the plant

which is supposed to meet the demand specifications in the preassigned horizon. The last

trend though, is in conflict with the minimization of inventory costs. Large single product

campaigns mean that high levels of final product inventories should be maintained. To

complicate things even more, larger production cycles might be desirable in case the

demands are subject to significant uncertainty. In this case the possibility of not being

able to deliver a specific order is reduced because the level of inventory is not sufficient

to satisfy the need. Building up a significant level of inventory may result to high storage

costs but the buffer between market demand and plant production is then larger. Overall it

is clear from the previous discussion that all these interactions have to be captured in the

proposed model.
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Consider initially an instance of a plant consisting of 5 stages operating with ZW

policy. The equipment on those stages are available in the following 6 discrete sizes SVj

= {5000, 10000, 20000, 40000, 60000 liters }. A total of 4 products are produced.

Production data for this example are shown in Table I, the cost data are shown in Table II

and the results in Table III. The optimal value for the NPV is $1,451,262. The capital

investment is $1,626,900 and the inventory cost is 62,282.58 $/yr. The optimal sequence

is A-B-C-D and 5 batches of A, 2 batches of B, 4 batches of C and 8 batches of D have to

be produced in each cycle. The length of production cycle is P = 129.03 hrs and overall

the optimal schedule has to be repeated 62 times in one year. It is interesting to compare

these results with the results obtained if the integrality of the ratio (Horizon/Pc) is not

enforced In this case the optimal production cycle time is P = 100.2 hrs, the optimal

sequence A-C-D-B and 4 batches of A, 2 of B, 3 of C and 6 of D have to be produced.

The NPV is $1,496,337.0 the capital investment is $1,626,900 and the cost of inventory is

48.945 $/yr. These results are not surprising since the second case is a relaxation of the

first one. If one were to simply round this selection by forcing the number of cycles to the

next higher integer value, that is 79 cycles with P = 101.26 hrs, then the optimal NPV is

only $1,249,172. This value is 14% lower than the optimal value calculated if integrality

is enforced in model (M3).

In many cases a lower bound in the length of the production cycle may be

specified because by enforcing this bound the inventory that is accumulated acts like a

safety buffer to uncertain demands. If in the previous instance a lower bound of 400 hrs

(maximum of 20 repetitions per year) is considered, then the value of the optimal NPV is

$1,026,044 (see second column in Table III). It can be seen that a 29% decrease in the

NPV is the price that the designer has to pay for greater flexibility. Although a

quantitative treatment of finding the optimal tradeoff is possible, this is not addressed in

this work. In the last column of Table in the results obtained when the cleanup times are

all increased by 5 hrs, can be seen. As expected the production cycle as well as the

volume of the vessels increases. The size of the models and the computational

performance are shown in Table IV. It should be noted that in cases 1 and 3 a maximum

of 100 repetitions is allowed, and in some cases some extra TSP cycle breaking

constraints had to be enforced. The mathematical programs have been modeled with

GAMS (Brooke et al , 1988) , and Sciconic (SCICONIC/VM 2.11 , 1991) was used to

solve the models.
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Allocation of tasks to equipment.

Many batch processes are characterized by a sequential task network. In other

words, all the products require the execution of a sequence of processing steps which in

the case of multiproduct plants has to be identical for all products. Sequential networks

are shown in Figure 4. The processing steps might be tasks like mixing, reaction,

crystallization etc. The major characteristics of sequential networks is that there are no

diverging arcs from the task network. In case there are diverging arcs, the plant is

characterized as a multipurpose rather than multiproduct plant. In this work only simple

sequential networks are considered. Later it will be discussed how augmented sequential

networks can be treated. A major design decision that will be addressed is how the tasks

are assigned to the various equipment. This decision can be illustrated with the bipartite

graph shown in Figure 5. This graph represents all possible assignments for a specific

problem. The actual assignments are represented by a subgraph of the original graph. The

assignment graph can be transferred to the mathematical programming model be using

suitable subsets of tasks and equipment. Let t={l, ...., T} be the set of tasks and

j={ 1,...,M} be the set of equipment. Then the sets Jt £ j or Tj £ t fully represent the

bipartite graph of assignments. For example if tasks 1, 2, 3 can be performed in

equipment 2 then T2 ={1,2,3} represent the three arcs connecting tasks 1, 2,3 with

equipment 2. The restriction imposed in this work is that the entries of the subsets Tj have

to be consecutive. In other words, instead of the full allocation problem, only the problem

of merging or splitting of consecutive tasks is addressed. An alternative way to represent

the assignment graph is be using the following set of dyads; G = { (j,t): t e J t , V j} .

The selection of the actual assignments in the model is done using the following

binary variable.
I 1 if task t is assigned to equipment j

l^ I 0 otherwise

The domain in which this binary variable is defined is the set G.

Intermediate storage.

The use of intermediate storage is desired in cases that either time or capacity or

both kinds of bottlenecks exist in the process. By using intermediate storage the operation

of the upstream subtrain is decoupled from the operation of the downstream subtrain. In

this way the number of batches of the upstream might differ from the number of batches
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of the downstream. The potential advantages can be understood with the following

example. Suppose the upstream subtrain can produce one batch of a product every 5

hours and the downstream subtrain can process one batch every 1 hour. If intermediate

storage is not used then an idle time of 4 hours is imposed downstream. On the other

hand if intermediate storage is used, then it is possible to store the batch from the

upstream and to feed 5 smaller batches to the downstream from the storage vessel. In this

way no idle time is imposed to the downstream vessels.

The various alternatives concerning the use of intermediate storage can again be

represented with a bipartite graph similar to the one shown is Figure 6. In this graph the

upper part represents possible no-wait subtrains. The name of the subtrains indicates the

tasks that will be separated if the intermediate storage vessel between the subtrains is

selected. The lower part of the graph indicates the available equipment to be assigned.

The generation of the arcs in the graph is done with a simple procedure. This procedure

consists of identifying the set of required arcs for all possible combinations of storage

vessel existence. The union of those sets of arcs constitutes the final graph. For example

in the first phase it is assumed that storage between tasks 1 and 2 is the only one that

exists. The arcs al, a4, a6, a8 are the arcs required to express this. In the second phase it

is assumed that all storage vessels exist This is expressed by introducing the extra arcs a7

and a 10. So the decision whether to use only the first storage vessel or all the storage

vessels, is expressed by arcs al, a4ta6,a8,a7 and alO. By continuing in the same manner

the graph shown in Figure 4 is obtained. For modeling purposes the graph is represented

with a subset of the set of subtrains. Let q= { 1,...., T} be the set of subtrains. The subset

Qj £ q indicates the subtrains in which an equipment might be assigned. The graph can

also be represented with the set of dyads Q={ (j,q): qe Qj, Vj}.

The selection of the actual assignments in the model is done using the following

binary variable,
_ 11 if equipment j is assigned to subtrain q

Wjq \ 0 otherwise

The domain in which this binary variable is defined is given by the set Q.

Parallel units.

A production stage in this work is an equipment or a group of equipment in which

a task or a number of tasks is assigned according to the graph in Figure 5. The use of

parallel equipment in-phase for every production stage is allowed. These equipment are
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of equal sizes. By using parallel units in phase potential capacity bottlenecks can be

treated efficiently, while by using parallel equipment out of phase, potential time

bottlenecks can be eliminated. Although the general model can treat parallel units out of

phase, the timing constraints are not rigorous as was the case when only in-phase

equipment are considered, and therefore a verification step is necessary to identify the

feasibility of the schedule.

Tiniing constraints.

In model (M3) given earlier in this paper, constraint (6) is the timing constraint

which makes sure that the demand specifications are satisfied during the design horizon.

In case that parallel units out-of-phase or merging of tasks is considered, then the slacks

Slikj cannot be precalculated and they have to be considered as variables in the model.

This will introduce bilinear products NPikSlikj. The resulting model is therefore

nonconvex and cannot be convexified using exponential transformations. We therefore

propose alternative timing constraints, which consider the product changeover rigorously

as is done with constraint (6). Note that by using constraint (7) as an equality only single

product campaigns are allowed during a production cycle. In case the number of identical

batches is large the product changeovers can be ignored without significant error. In this

case the calculation of slacks is irrelevant and the timing constraint can be stated as a

function of the cycle time. Since the production cycle can be relatively small compared to

the design horizon, it is often the case that only a small number of batches from each

product are considered during a period. As is shown in Figure 7 in this case the

assumption to ignore product overlapping may introduce significant errors in the model.

In Figure 7 it can be seen that when changeovers are ignored and the production cycle is

calculated only from the cycle times, then 5 hrs are considered as a feasible Production

Cycle length. In case however the changeovers are considered the production cycle has to

be larger than 8 hrs. The above example shows that when the number of batches in a

production cycle is relatively small, the assumption of ignoring the product changeovers

can lead to infeasible schedules. The proposed timing scheme starts by decomposing the

production cycle in two parts, the single product part and the changeover part. The

timing constraint is thus expressed with the equation,

i + CP < P (17)
1



16

The single product part CTi is the time required for the production of all the batches of

product i during the production cycle minus one, whereas the changeover part is the

length of time that all stages require to interchange from one batch of every product to

another batch of the next product in sequence.

Proposition 1: In case parallel units out-of-phase are not considered then constraint (17)

is a rigorous timing constraint.

Proof: See Appendix II.

The main difference of equation (17) with equation (6) is that the nonconvexities can be

avoided and a set of linear timing constraints can be proposed as will be show later.

When parallel units are considered then equation (17) can still be used but a verification

step is required.

MINLP model.

Consider a multiproduct plant with potential equipment j=l,....,M in which N

products i=l,...N each one requiring tasks t=l,..,T, have to be produced. The equipment

can be assigned in q= 1,..., T subtrains. If two equipment are assigned in consecutive

subtrains then a storage vessel exists between those equipment. The meaning of the

various variables, if not defined directly, can be found in the nomenclature section. As

discussed before, a significant advantage of an MINLP model is the expressive power it

has. The expression of various concepts in terms of constraints is much easier when

mathematical characteristics like linearity and convexity are not considered. For this

reason the proposed design approach distinguishes between an initial step in which a

general mathematical programming model (usually a nonconvex MINLP) is developed

and a subsequent step where the MINLP is reformulated to simpler but equivalent

mathematical programs. The second step might consist of a convexification step (e.g

Kocis and Grossmann , 1989) or might go as far as replacing the nonconvex MINLP with

an equivalent LP. In this work the nonconvex MINLP will be transformed into an MILP

as will be shown in the next paragraphs. Theoretically (Sherali and Adams, 1989 , Lovacz

and Shrijver , 1989), it is possible to transform the MILP model to an LP. This step

however may require an exponential number of steps and therefore is not useful for

practical purposes.
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The mathematical program that will be developed will consist of constraints that

can characterized qualitatively as shown in Figure 8.

The equipment capacity constraints represent simplified mass and energy balance
for the process equipment and ensure that the proper equipment capacity is selected and
that the production demands are satisfied- More specifically first we have to ensure that
the capacities Vt dedicated to task t can accommodate all the products. This is enforced

by the following constraint,

j j q V i , t , q

j

The sum of the product of the binary variables is one when task t is actually assigned to

subtrain q and 0 otherwise. The capacity available for a task t is given by

X V ( j , t ) € G

where £j is the number of identical parallel units of equipment j operating in-phase. Since

for a particular task t* exactly one equipment is assigned, it follows that among the entries

of the sum in the left handside of the above equation, only one is nonzero. Therefore, the

capacity of that particular task t' is equal to the capacity of the in-phase equipment that

are assigned to it. The number of batches for a period P in a subtrain q is defined as

follows,

nbiq = ^- Vi

where qi is the amount produced of product i during a production cycle of length P. This

in turn implies that the following constraint must hold,

q i H = PQi V i

The capacity constraints for the storage equipment are also simplified mass balances

around the storage vessels. It has been proposed (Modi and Karimi, 1989) that a relatively

tight upper bound for the size of the storage vessels is given by the following constraint,

Vq> Siq(Biq + Biq+1)dq V i, q < T

The binary variable dq is defined as follows,
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, _ ( 1 if storage q exists 1
^ | 0 otherwise f

This expression is valid when semicontinuous units are not considered and gives an upper

bound for the vo lume of the storage vessel that is required to decouple the operation of

the neighboring subtrains. Another way to obtain an upper bound for the storage vesse ls ,

but not as tight as the previous expression, arc the following constraints,

V q >2S i q B i q d q V i , q < T

q V i , q < T

The horizon constraint for each subtrain can be stated as,

P Vq
i

where CPq is the cycle time of the changeover time for subtrain q and CTiq is the length

of time required for the production of the total number of batches of product i minus one.

The cycle time which is needed in order to satisfy the timing of the operations has

to refer to those equipment that actually arc selected In order to be able to calculate the

cycle times for every product, we need to introduce the equivalent processing time, etij,

which is defined by the following constraint,

(titZtj) V i , j
tGTj

or in case the existence of parallel units out of phase is considered,

^ij^rJ" X UtZtj) V i J
N j t e T j

where T j is the set of tasks t that can be performed on equipment j and Nj is the number of

parallel units out-of-phase of equipment j. The cycle time is then defined as ,

Wjq V i , ( j , q ) e Q
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or in case that parallel equipment are considered,

Tuq^etij Wjq V i, (j , q) e Q

The amount of time required for the production of the batches of product i in subtrain q

minus one batch is,

CTiq = (nbiq-l)TLiq V i , q

In order to calculate the term CPq it is necessary to introduce scheduling constraints since

this term is depending on the sequence in which the products are produced. One

alternative is to include constraints and variables similar to the TSP problem. We can

define the following binary variable,

( 1 if i is iimmediately before Id
0 otherwise /

Then the following constraints must be imposed for the optimal sequence (Pekny and

Miller, 1991),

= 1 V i

Vk

X Z Xfc-Xhh^lBl-1 V B c ( U N >, h€ {1,..,N }/B,2<|B| <N
i€Bk€B/(i|

Note that the TSP problem is solved in the space of products and not in the space

of batches which reduces the number of the above constraints significantly. The main

drawback of the above set of constraints is the fact that the subtour elimination

constraints (third constraint) increase exponentially with respect to the number of

products. An alternative way to represent the sequencing constraints is by defining the

following binary variables,



20

and

[ 1 if product i is before product k which is ordered in position 1
XZikl I 0 otherwise

I 1 if product k is ordered in position 1
0 otherwise

The sequencing constraints are then as follows,

1 = 1 vi

ki = 1 V k
l

= *ki V i , k

= Xki-i V i, 1
k

The last constraint is enforced cyclically. This means that for the first entry of 1, 1-1

corresponds to the last entry. It can be seen that the binary variable xziki can be treated a

continuous variable even though the integrality is not explicitly enforced (Sahinidis and

Grossmann, 1991). The above set of constraints offers the advantage that the constraints

are not increased exponentially, but it has the drawback of yielding a worse relaxation

compared to the initial TSP constraints (including the subtour elimination constraints)

that were presented earlier. Overall in case the problem to be considered is just a TSP

problem, the first set is superior since the overall computational requirements are smaller.

In case though a TSP problem is just a subproblem, as is the case in this work, then the

overall tightness of the model is influenced mainly by other constraints and thus the

second set of constraints might be considered. The dilemma that is emerging here cannot

be resolved in a general manner. For specific cases one has to choose which set of

constraints offers more efficient representation. This is the first of a series of points from

which the paths of model development might lead to different final models. CPq is then

defined as,

CPq > X (etij wjq + £ ((Slag + Clikj) W j q ( £ xz^)) ) V (j , q) e G
i k 1
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Where Clfcj is the cleanup time between products i and k in unit j. The slacks S1&J are

defined with the following equation.

Wjqw(j+l)q <eti (j+l) + S l k i k G+D + C 1 i k (j+l)) =W(j+l)qWjq ( e t i j

Vi,k, j

The slacks Slikj represent the idle time at stage j when i is immediately before k

whereas the cleanup times Cljkj indicate the idle time that is enforced in equipment j when

a product changeover from product i to product k occurs. Note that the crossproduct of

binary variables WjqWj(q+i) is one if both binary variables are one and zero in any other

case. This means that the above equality is activated only when both equipment j and j+l

belong to subtrain q and it is trivially satisfied in any other occasion.

A condition that has to hold for the storage capacity constraints to be valid is that

the productivity of the successive subtrains has to be equal. Or in other terms, the

production time Ti assigned to product i has to be equal to the production time that is

assigned to this product i in every subtrain, this is enforced with the following constraint,

T- = CT- + -L CP V i a
l x^xiq ' iky v - " r q v * » M.

where N is the number of products. For the above equation to truly represent the time

assigned to every product, the following condition must hold,

V i , q

This condition is not directly enforced in the model but is used for verification. Since CPq

is depending on the cleanup times between products, the above condition holds in most of

the cases when cleanup times are involved. In case no cleanup is required, the cleanup

time parameters have still to be nonzero but rather small numbers sufficiently large to

ensure the validity of the above condition. This is required for the proper operation of the

storage vessels.

The constraints that follow represent the layout and logical constraints. These

constraints involve only binary variables and enforce the logical consistency of the binary

variables in such a way that a feasible flowsheet is obtained.
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First we need to assign every task to exactly one appropriate equipment. This is

represented as,

z t j = l V t

where Jj is the set of equipment j capable of performing task t.

As noted by Yeh and Reklaitis (1987), we need to introduce cycle breaking

constraints which do not allow merging of non consecutive tasks. A logical statement

which treats this condition is " If task t is assigned to an equipment j and the next task t1 is

assigned to another equipment jf then task t" which precedes task t cannot be assigned to

equipment j 1 " . This is represented as,

ztj + z t - +zt-j' <2 Vt,j , t f=t+l , j f *j , j"<j , f<T

Every equipment has to be assigned in at most one subtrain

w j ^ l Vj

Only consecutive equipment arc allowed to the same subtrain

f *q , j"<j , j1 <M

The above constraint represents the logical statement:" If equipment j is assigned

to a subtrain q and the next equipment j1 is assigned to another subtrain q' then equipment

j" which precedes equipment j cannot be assigned to subtrain qf ".

If an equipment j is assigned to a subtrain q then a subsequent equipment j*

cannot be assigned to a subtrain q1 that precedes q,

Wjq + Wj'q' <1 Vj ,q , j f >j ,q f <q,j f <M

If an equipment j is assigned to a subtrain q then the next equipment j+1 has to be

assigned either to the same subtrain or to a subsequent one,

Wjq < wQ+i)q + WQ+i) q V j , q , q'>q , q'< N
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If some equipment j is assigned to subtrain q and some equipment j1 is assigned to
subtrain q+1 then the storage vessel exists.

wjq + Wj'(q+D ^ <*q V j , j V j , q , q < N

The NPV is defined in equation (l).The plant cost Pc can be calculated by the following

equation,

which is the capital investment required for equipment (index j) and storage vessels

(index q). The operating costs Oc are calculated by the expression (See Appendix I),

where the first summation is the inventory cost and the second term is the sum of the

setup costs paid every time the optimal schedule is repeated as was the case with the fixed

topology model. In this way the proposed model corresponds to the following MINLP

problem,

max NPV (M4)

s.t

(A.2)

Vt > Si t Biq 2, ztjwjq V i, t, q (A.3)
j

SjVjZt^V, V ( j , t ) € G (A.4)

V i , q (A.5)
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q i H = Q P Vi (A.6)

Vq>2SiqB i qdq V i , q (A.7)

V i , q (A.8)

Vq (A.9)

etij= 2 , (titZtj) V i , j (A.10)
teTj

V i , j (A.10a)

V i , ( j , q ) e Q (A.11)

CTiq = (nbiq - 1 ) Tliq V i, q (A. 12)

Xki = 1 VI (A.13)

xu = 1 V k (A.14)

xziki =Xki V i , k (A.15)

xziki = Xki-i V i, 1 < N (A.16)

1

k

CTq^£(etawjq + X((Slikj+aikj)wjq(£xzikl)) ) Vq (A.17)
i k 1

lik(j+1)) =w(j+l)qwjq ( ©tj j + Slkikj

V i , k , j < | J | - l , q 6 Q j

^ V q
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X ztj = 1 Vt (A-2°)

+ z^ j- + Zt- j- < 2 V t, j , t'=t+l, j1 *j , j"<j, f < T (A.21)

Wjq<l Vj (A.22)

Wjq + w| q- + Wj- q£ 2 V q, j , j'=o+l,q' * q , j"<j , j1 < M (A.23)

Wjq < wa+1)q + W ^ D q V j , q, q*>q, q'< N (A.25)

Wj q + Wj- (q+1) < dq V j , jVj , q, q<N (A.26)

tt = NC (A.27)

integrality constraints for Wjq, nbiq, Ztj, xjd , NC

Standard sizes for Vj, Vq

nonnegativity constraints for the remaining variables

Model (M4) is a highly nonlinear MINLP and cannot be convexified with

exponential transformations because many constraints are not in posynomial form. This

model refers to the case of simple sequential networks. In case augmented sequential

networks are considered then the binary variable denoting the existence of a storage

vessel in the point where arcs are converging (Figure 2), has to be fixed to one. Even

further more general layout constraints have to be addressed as will be shown in a future

paper.

Linearization of MINLP model.

The exact linearization scheme is based on introducing the binary variable,
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_ I 1 if stage j has configuration n of parallel equipment of size s
yjsn "I 0otherwise

which must satisfy the constraint,

l Vj (A.28)
s n

Note that the index n might represent parallel equipment out-of-phase or parallel

equipment in phase or both of them. More specifically consider that the maximum

number of equipment j operating in-phase that are allowed is 2 and the maximum number

of out-of-phase groups allowed is also 2. Then for n=l only one equipment is considered,

for n=2 two equipment in-phase grouped in one group are considered, for n=3 two

equipment grouped in two distinct groups operating out-of phase are considered and for

n=4 four equipment grouped in two out-of phase groups with the two equipment of each

group operating in-phase, are considered. The number of parallel equipment that

correspond to the index n is given by two parameters. Namely paripn represents the

number of parallel units in phase, and paropn represents the out-of-phase groups. The

volume of the equipment is given by,

Vj
Si n

si n

where VJS represents discrete size s for equipment j and the index si refers to nonzero

sizes. Constraint (A.4) then becomes,

5jVj ztj = X X X PanPnVjsYjsn ztj=Vt V t
j e J S l n

Similarly to the case 1 reformulation scheme (Grossmann et al, 1991) the inverse of the

task capacity can be .written as,
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By substituting (A.6) into (A.5) we get,

^ Vi ,q (T.la)
H nt>iq

By substituting Biq in equation (A.3) we get,

X t j W j q V i , t , q
.eJt

or with respect to nbiq t

nbiq > Sit § 7 7 - Z ztiwjq V i, t, q (T.2)
j

By combining (T.2) and (T.I) we get,

^ l ^ w ^ V i . t . q
H j e j S l „

It can easily be seen that the above constraint is equivalent to,

In (T.3) the crossproduct P y^ ztj w^ can be eliminated by using the following variable,

h . y j j
°qjsnt-j 0 otherwise

(T.3) then reduces to,

In order to satisfy condition (C.I) we have to introduce the following equivalence
constraints,
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X X bqjsnt ^ H T yjsn V j, s, n (T.4)
qeQjteTj

X X X bqjsnt <HTz t j V (j, t) € G (T.5)

X X X bqjsnt < n H wjq V (j, q) e Q (B.2)

X XX bqjsnt =P V t,q (B.3)
T si n

j e Jt

where II is the maximum number of tasks that can be assigned to an equipment j and T is

the number of potential subtrains where an equipment might be assigned. The

equivalence between (T.4), (T.5), (B.2), (B.3) and condition (C.I) can easily be proven.

An alternative set of equivalence constraints for (T.4) and (T.5) can be given if the

following pseudobinary variable is first defined.

_ 11 if yjsn and ztj are one
ajsnt | 0 otherwise

Constraints (T.4) and (T.5) can then be replaced by,

" (B.4)

(B.5)

(B.6)

(B.7)

Although the alternative set of constraints is a larger set, it considers explicitly the
crossproduct between the y and z variables. This information is required a later point.

Another nonlinearity appears in constraint (A. 10a). We can treat it as follows.
First we write Nj as ,

2* bqjsnt ^

X aJsnt^l

X X aJsnt :
si n

III
j(EJt

 Sl n

T_T HP

" * 3jsnt

^yjsn

< z t j

ajsnt =1

Vs,

Vj,

V ( j

Vt

n, (j, t) e G

s, n

j, t) e G

Nj X n
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Substituting this into (A. 10a) we get,

V i . j (T.6)

Again we have the crossproduct between z and y which can be treated by the

pseudobinary variable ajsnt which was defined earlier.

In case constraints (T.4) and (T.5) were used then the action of constraints (B.4)

(B.5), (B.6) is performed by the following constraints,

ajsnt ^ X bqjsnt V S, n, (j, t) € G (T.7)

Note that there are 2 sets of constraints that represent the same concepts but

mathematically are very different. The first set (SI) consists of constraints (T.4), (T.5),

(B.2), (B.3), (T.7) and (B.7) whereas the second (S2) of constraints (B.2), (B.3), (B.4),

(B.5), (B.6) and (B.7). Note that both sets of constraints employ the same number of

constraints and variables. Even further, we can prove the following proposition.

Proposition 2: The set of constraints (S2) is an equivalent and tighter representation of

the set of constraints (SI).

Proof: See Appendix in.

So the second set of constraint is going to be used since for the same number of

constraints and variables, it gives a tighter representation. In this case the decision to

chose set S2 can be supported with a formal mathematical explanation. In many other

points in the model, however, among the many alternative reformulations only one is

chosen without formal analysis. Coming back to the model constraint (T.6) can be written

as,

paropn
t ^ T- S1

substituting this into (A. 10a) we get,
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vjq V i , (j, q) e Q

and by substituting this into (A. 12) we get,

CTk,̂  X ESpar%raM«wjq(nbiq-l) Vi,(j ,q)€Q (T.9)
. T Sl n

An alternative way to express this constraint is as follows,

1)) - H (1-Wjq) V i, (j, q) e Q 0

t e T j s l n

This constraint is the one actually used for reasons that will be discussed later.

The product of a^t (nbiq-l) is replaced by the following variable,

I (nbiq-l) if ajsnt =
Piqjsnt I Q otherwise

Hence, constraint (A. 12) is written as,

-Hd-Wjq) V i , ( j , q ) e Q (B.8)
t e T j s l "

and the following equivalence constraints have to be enforced,

t ^ Ui ajsnt V s, n, (j, t) e G (B.9)
q e Q

(nbiq-l);>(X SZpiqJsnt)-Ylq(P- £ X S bqjsnt) V i, t, q (B.10)
J€J,sl n

 j e Q l s l «

S X bqjsnt) V i, t, q (B.ll)
jeJ, sl n J€Q,sl n

Note that the multiple choice character is not present in constraint (B.8) since the right

handside is summated with respect to the tasks t. It is always possible that two or more

tasks are assigned to the same equipment j. Because of this loss of the multiple choice

characteristic we cannot apply the usual reformulation scheme in constraint (T.9). For this

reason, constraint (T.10) was selected. Due to that same loss of multiple choice structure
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the equality of the nonzero values of piqjsnt with (nbiq - 1) is enforced through the

inequalities (B.IO) and (B.I 1). In these inequalities the domain first is defined over those

tasks t that can actually be assigned to a subtrain q. Whether a task is assigned to the

subtrain q is indicated by the difference,

V t , q

This difference is 0 when task t is assigned to q, and P otherwise. In the later case both

inequalities (B.9) and (B.IO) become redundant and no equality is enforced. The

parameters Y^ and Y-q which represent bounds, that have sufficiently large values to

ensure redundancy.

Constraint (A. 17) can equivalently be written as,

CTq > X (etij + X ((Slikj+ Clikj)wjq (2 nan)) ) - H (1-Wj,) V j , q
i k 1

(T.ll)

and the equality (A. 18) can be replaced with the following two inequalities,

(eti(j+i) + Slkik(j+i) + Clik(j+i))> (etij + SUqkj + Cl*kj) - W
1 ( 2 -w j q -

V j , q

(eti (j+i) + Slki k (J^D + Cli k Q+i)) < (eti j + Slki kj + Cli kj) + Wu (2-w jq -

V j , q

Where Wu and W1 are bounds that are sufficiently large.

The nonlinear term (Slug +Cliicj) w j q £ xz^ in constraint (T.ll) is eliminated as
l

follows. First we introduce the following variable,

=<
0

ikj) if both Wjq = 1 and 2^ xzya = 1
l

otherwise
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In order to satisfy these conditions we need to introduce the following equivalence
constraints,

]T Afcjq < U X xZiki V i, k, j (B.14)
i

^Uw j q V ( j , q ) € Q (
i k

Aikjq £ (Slfcj+Clfcj) - U (2- £ xzfc! - Wjq) Vi, k f (j , q) e Q (B.16)
1

where U has a proper value that will ensure redundancies. In this way (A. 17) can be

written as,

ikjq))- U( l -w j q ) V ( j , q ) e Q

The nonlinearity in constraint (A.27) is eliminated as in model (M3). First the set

sv={ 1, 2, ...., C} is defined where C is the maximum number of production cycles

allowed during the design horizon. The following binary variable is defined

fsv "
| 1 if sv cycles are considered 1
1 0 otherwise |

It is evident that the following constraint holds,

X rsv =1 (B.18)
sv

Following the procedure in (Grossmann et al, 1991), the integrality of the number of

cycles can be enforced with the following constraints,

sv

(B.20)
sv

P s v < H r s v Vsv (B.21)
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where Psv represents the crossproduct of P rsv. The size of the storage vessels is also

considered to be available in standard sizes. For this reason the following binary variable

is defined,

J 1 if storage q has size m
SXqm 1 0 otherwise

It is evident that the following constraint holds,

xqm=l (B.22)

Note that m=l represents size 0, or in other words that no storage is used.

The volume of a storage vessel is then defined as,

ml

or equivalently as,

Vq (T.12)
Vq ml vqm

Note that mi stands for the nonzero volume sizes.

The batch sizes Biq and Bi(q+i) can are given by equation (T.la). Taking into

consideration the equation (T.12), (A.7) and (A.8) we get the following linear storage

capacity constraints,

» vqm V i . q C

O

V i , q (T.14)

The crossproduct P sxqm is then replaced by the variable Pqm and the following

constraints are obtained,
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V i, q (B.23)
m vqm

--^-P,,™ Vi a (]
~ ^qm v L y 4 \J

(B.25)

Pqm ^ sxqm V q , m (B.26)

Constraint (A.I) and (A.2) can now be written as,

PC = X £ X 2Jsn yjsn + X X CSqm SXqn, (B.27)
j si n ^ ml

(B.28)

where cjsn = paripn paropn aj v?j and csqm =

The final MDLP model consists of the following constraints

max NPV (M5)

s.t (B.I)-(B.28)

(A.9), (A.10), (A.13) - (A.16), (A.19) - (A.26)

Nonnegativity constraints

Integrality constraints

Computational considerations.

Model (M5) is a large scale MILP. The solution method that was selected to solve

it was Branch and Bound (B&B) (Nemhauser and Wolsey, 1988). This solution algorithm

is very robust. The efficiency of the algorithm however is depending significantly one
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some particular characteristics of the model (e.g tightness of the LP relaxation,

dimensionality of the problem), as well as some specific characteristics of the algorithm,

(e.g branching rule). Since the proposed MDLP involves binary variables with a multiple

choice character, these variables were treated as SOS1 variables. The use of the

branching rule that this implies gives significant improvements is computational time as

was the case in previous batch processing models (Voudouris and Grossmann, 1992).

The first SOS 1 variable in our model is rsv which is used to indicate the number of

Production Cycles in a design horizon. Note that an alternative way to represent the

number of Production Cycles is through a binary expansion. This means that the variable

NC can be written as,

p

where \|/p is an unconstrained block of binary variables. Although the alternative way

seems to be superior because the dimensionality of the problem is reduced (considerably

fewer binary variables are needed to represent integer numbers), it actually performs

worse. That is mainly because in the case of binary expansions the SOS1 structure is not

exploited. The other SOS1 variable is yjsn. Note however that constraint (A.28) is a

double sum with respect to sets s and n . In order to retrieve the SOS1 character the two

sets have to be merged to another superset sn. In this way constraint (A.28) is written as,

j l Vj
sn

By doing so a whole series of changes in the domains of some parameters has to be

performed. For example the parameter vjs represents size s for equipment j. Since the set

s has been merged and no longer exists, the above parameter has to be changed to vjsn.

The parameters paripn and paropn are accordingly changed to paripsn and paropsn-

A very important characteristic is that model (M5) involves many disjunctive

constraints. In these constraints of particular importance is the tightness of the bounds

that are used. Significant savings in computational time have been achieved by tightening

the bounds for constraints (B.10) and (B.I 1) as well as for constraints (B.12) and (B.13).

Finally, we applied a tree decomposition method which exploits logical conditions

inherent in model (M5). Most disjunctive constraints are activated by means of the binary

variable wjq. This means that in case these variables are fixed, then many of the

undesirable disjunctive constraints are eliminated. The latter means that the relaxation

gap of the corresponding LP's in the B&B tree is improved, leading to computational

enhancement. Even further the domain of the binary variable Wjq can be easily
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decomposed yielding a relatively small Disjunctive Normal Form (DNF) for this variable.
For example the (DNF) for Wjq that fully describes the problem shown in Figure 9 is
DNFW = { ( Wi2=l , W22 = 1 , W32=1)V ( Wn=l , W22 = 1 , W32=l) V ( Wi2=l , W22 = 1 ,

W33=l) v ( w u = l , W22 = 1»W33=l)}. The first term in the DNF shows that no storage is

used, the second entry shows that only storage vessel 1 is used, the third entry shows that
only storage vessel 2 is used, and the fourth entry shows that both storage vessels are
used. Thus, by fixing the values of variable Wjq to any other 4 terms of DNFW , four
subproblems are generated. Each of those subproblems is considerably easier compared
to the full problem, because many disjunctive constraints are eliminated. Even further the
optimal solution of each of these subproblems is a lower bound to the solution of the full
problem meaning that each subproblem yields an objective function cutoff to the next
subproblem. Finally the overall number of nodes that is enumerated when all the
subproblems are solved, is going to be in all likelihood significantly smaller. This can be
understood by means of the example in Figure 9. When the logical condition that is
shown in the top of the figure is exploited by using the tree decomposition method, a total
of 6 nodes is enumerated. In contrast when the tree decomposition method is not used
then a total of 9 nodes is enumerated. It is possible to apply the tree decomposition
method by using in addition to the DNF of variable w, the DNF of variable z. As was
mentioned in the literature (Tricoire and Malone, 1991) the entries of this allocation
variable can be significantly reduced by using a simple screening procedure. The tree
decomposition method can be utilized even further by solving the subproblems in
parallel. By doing so the computational requirements are dictated by the largest and most
difficult subproblem. In case a sequential approach is adopted, then the sequence of
solving the individual tree partitions can be constructed according to the heuristic rules
proposed by Yeh and Reklaitis (1987).

Numerical examples and discussion of results.

The application of model (M5) incorporates many significant aspects of batch
process design, like availability of units in standard sizes, consideration of product
inventories, production cycle optimization, optimal sequencing, location and size of
intermediate storage, utilization of parallel units, and allocation of tasks to equipment. It
is clear that the representation of the interactions between all the issues mentioned above
requires a large number of examples which would make prohibitive the length of this
paper. Therefore, examples that illustrate interactions considered as most significant are
given. In example 1 it was illustrated how the cleanup times that are required in case of
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product changeovers, affect the optimal sizing and operation of the process. In this

example it is illustrated how decisions on the location of intermediate storage and its size,

decisions on the utilization of parallel equipment-in-phase and decisions on merging of

tasks, are interacting with each other. The data for example 2 are shown in Table V. In

Figure 10 the potential decisions of the synthesis of the process are illustrated. It is shown

in this figure that 3 levels are considered. The decisions in every level are going to be

made by means of the proper binary variable. In the first level the tasks are assigned to

one of the appropriate equipment. In the second level it is decided whether parallel units

in-phase are going to be used and how many. Finally in the third level it is decided

whether and where intermediate storage is going to be used and how large the vessels

should be. If for example the mixer and the reactor are assigned to subtrain 1 and the

crystallizer in subtrain 2, then one storage vessel is to be used between the reaction and

crystallization steps.

The prices for the products are in all cases 0.2 $/kgr for A, 0.3 $/kgr for B and 0.5

$/kgr for C. For every equipment a cleanup time of 10 hrs is required when a changeover

of products is occurring. No penalty is considered for setting up the optimal schedule in

subsequent production cycles. The inventory cost per ton of final product is l$/tn/hr for

all products. In order to verify whether the model captures the interactions between

various issues of synthesis and design it was intended to, 4 cases in total have been

considered.

In case 1 only one unit per stage is allowed and thus parallel units in phase arc not

considered. Intermediate storage is also considered. In case 2 the above restriction is

relaxed and up to 2 equal units operating in phase are allowed in every stage. It can be

seen in Figure 11 that the optimal flowsheet is drastically changed compared to the first

case. It turns out that the use of intermediate storage in the first case was not dictated

because of better time utilization, but rather by significant capacity bottlenecks in the

second and third stage. For this reason in case 2 all the equipment belong to the same ZW

subtrain, no intermediate storage is used and the capacity bottlenecks are treated by

employing parallel units in-phase. An interesting observation is that although the capital

investment in the second case is significantly higher, because of the increased throughput

of the plant the production cycle can be reduced from 153.8 hrs to 113.2 hrs and thus the

inventory cost can be reduced from 40,000 $/yr to 29,437 $/yr. This reduction of

inventory cost more than offsets the increase of the capital investment and thus the NPV

is increased. In the third case it was assumed that the storage vessel between reaction and

crystallization has size factors of 3 lt/(kg of product) for A , 5 for B and 4 for C. In other

words the volume requirements for this storage vessel are significantly smaller than the
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requirements in the previous cases. As can be seen in Figure 11, this turned out to have

also a significant impact on the layout of the flowsheet. As expected a storage vessel

between the reaction and crystallization steps is employed. Even more the third stage

requires only one equipment since by using the intermediate storage the capacity

bottleneck of the third stage was significantly alleviated. Finally, in the fourth case it was

considered that the equipment for mixing had a cost coefficient of 450$/lt rather than 250

$/lt as in the previous cases. The outcome of the optimization comes not as a surprise.

Since the reactor vessel can perform both the mixing and the reaction tasks, these tasks

are merged and assigned to the reactor vessels which now have larger volumes. Note that

in this case the number of stages of the plant has decreased from 3 to 2.

As mentioned before, because of the complexity of the model a verification step is

required to ensure the consistency of the results. In order to make more clear how the

results of the optimization runs are interpreted, a detailed table of the results (Table V) for

case 3 is illustrated. In this table under capacity available, the maximum batch size of

final product that can be accommodated in every particular vessel is shown. Under batch

size the actual batch size that is proposed by the optimization model is indicated. By

comparing the two above entries it can be seen by how much every vessel is actually

overdesigned. Under batch size for storage twice the largest batch size of the subtrains

neighboring a storage vessel is indicated. It can be seen that in case the sum of the batch

sizes was used, this would not have had any effect on the size of the storage vessel. There

were however many cases in which the overestimation of the size of the storage vessels

was rather significant. Under actual cycle time and required time for all the batches

minus one, the cycle time and required time respectively are shown that can be calculated

only from the synthesis data (parallel units, merging). It has to be clarified at this point

that the above variables in the model might have different values because of the many

timing constraints imposed to the model, (e.g equal productivities, integrality of ratio

Horizon/Production cycle). For example it can be seen the entries for cycle time assigned

are larger than the entries for cycle time required. That is because in the former idle times

imposed to secure equal productivities are considered. Interpretations like these are

necessary in order to construct the optimal schedule for case 3 (which is shown in Figure

12). For these reason it is clear why an interpretation and a verification step was

considered in Figure 1. Finally the optimal schedule for case 3 can be seen in form of

Gantt charts in Figure 12. In the first Gantt chart the schedule was constructed

sequentially by properly accommodating the next batch as soon as a vessel becomes

available. Under this approach it can be seen that the time required for the third stage

exceeds the time allocated for the production cycle making the schedule infeasible. The
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schedule thus, has to be modified to decrease the total time requirement of the third

equipment as was done in the schedule shown in the second Gantt chart. The schedule of

the second Gantt chart is feasible and is the optimal schedule. It has to be noted here that

in most of the cases more than one feasible schedules can be obtained. As shown by

comparing the two Gantt charts, the utilization of the storage vessel is significantly

increased in the second schedule. Thus a proper criterion in selecting among otherwise

feasible schedules is to consider the one that offers the best equipment utilization. It is

also interesting to note that for product C every single batch in the first subtrain is

separated in three batches in the second subtrain.

Summarizing, it can be said the values of the decision variables might not

represent exactly what they are supposed to represent, but rather values which will make

possible to construct a solution that satisfies the optimality conditions. Thus an

interpretation step is required in order to construct the optimal design.

As far as the computational requirement are concerned, an interesting point, is that

the size of the model does not increase exponentially when the number of tasks, products

or standard sizes are increased. The reason for this is the aggregation scheme (Grossmann

et al, 1992) that was proposed in the previous sections. As noted the result of the

aggregation is the reduction of the size of the LFs, but the relaxation gap deteriorates

significantly making the branch and bound tree significantly larger and the overall

computational requirement larger. If the computer memory available is large, then a

totally disaggregated model is advisable. From our computational experiments we found

out that a totally disaggregated model in which only constraint (B.9) is aggregated with

respect to the indexes i and q, offers the best alternative for computational efficiency.

Even further the results shown in Table VII indicate runs where the sequential tree

decomposition scheme was used. In the last line of this table computational results for

case 2 are shown when the MILP was solved without the tree decomposition method. It

can be seen that the tree decomposition method offers significant savings in

computational time ( savings are of a factor larger than 3).

Summary and conclusions.

It has been shown in this work that accounting for the effect of final product

inventories at the design stage has a significant impact on the profitability of a batch

process. For this reason the above issue has been considered in a comprehensive MINLP

model for synthesis and optimization of multiproduct batch plants. The model considers

the allocation of tasks to equipment, location of intermediate storage, sizing of equipment
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and storage vessels, optimal sequencing of products and optimal length of the production

cycle. It has also been shown that due to the availability of the equipment in discrete sizes

the MINLP problem can be transformed into an MILP using exact linearizations.

Alternative representations have been considered for some subsets of constraints and for

which their relative tightness can be established. A tree decomposition method has also

been outlined that can significantly decrease the computational cost for solving the MILP.

Finally, the results show that the advantage of the proposed model is that it can

systematically account for the many complex trade-offs involved in the problem of

synthesis, design, production planning and scheduling of multiproduct batch plants.
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Nomenclature.

Indexes.

i Index of products {A,B,C...} with cardinality N.

j Index of stages or potential equipment {1,2,...., M}.

q Index of subtrains and storage vessels {1,2,...., T}.

t Index of processing tasks. {1,2,...., T).

s Index of discrete sizes for processing equipment {1,2,...., nSj}.

m Index of discrete sizes for storage vessels {1,2,..., niriq}.

n Index of number of parallel units {1,2, , npj}.

sv Index of number of production cycles.

Variables.

Bjq Batch size for product i in subtrain q.

Clikj Cleanup time required in equipment j when product k follows product i.

CPq Changeover time for subtrain q.

CTiq Time dedicated for the production of nbiq-1 batches of product i in

subtrain q

H Time horizon in which the demand has to be satisfied,

nbiq Number of batches of product i in subtrain q during a production cycle.

NC Number of production cycles during the design horizon H.

NPjq Number of occurrences of the pair i-k in a MPC schedule during a

production cycle.

Oc Operating costs

P Length of production cycle time.

paripn Number of parallel units in-phase corresponding to index n.

paropn Number of parallel units out-of-phase corresponding to index n.

Pc Capital investment



qi Amount of production for product i during one production cycle,

Qi Market demand for product i.

Sy Size factor of potential equipment j for product i.

Siq Size factor of storage vessel q for product L

Slfcj Idle time (slack) imposed in equipment j when product k follows product i.

ty Processing time of product i at stage j.

Tu Cycle time in single product campaigns, for product i. TLi = max {ty}.

T{ Length of time which is dedicated to the production of product i.

Vj Volume of a vessel at stage j.

Vq Volume of storage vessel q.

Vjs Standard volume of size s for potential equipment j.

v q m Standard volume of size m for storage vessel q.

Greek Letters.

Oj Cost coefficient for equipment j.

pj Cost exponent for equipment j.

yq Cost coefficient for storage vessel q.

6q Cost exponent for storage vessel q.
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Appendix I

As seen in Figure 2a, for every product produced in a multiproduct batch process

there is one inventory vessel. The level of inventory in every vessel during a production

cycle can approximately be represented by the inventory triangles illustrated in Figure 2b.

As mentioned this approximation is satisfactory when a large number of batches is

considered, but for a small number of batches this doesn't hold. In this case a stepwise

profile will evolve instead. However, when a small number of batches is considered, the

overall cost of the inventory is small and it affects the objective function only marginally.

Since usually more than one production cycles are considered during a design horizon,

the actual inventory profile is consisting of many inventory triangles placed side by side.

The rate of incoming material in one production cycle can be averaged over all the

batches and is given by,

whereas the rate of the outcoming material is

Csout Qiri
 F

At every moment t the level of inventory is

Ii(t) = if t -r?utt for 0 < t < T i

and
^ = Imax -r?utt for Ti <

= J mKOdt

where Imax = Off1 - rfut) Tj = q* - -**—- is the maximum inventory level during a period P.

The cost of inventory between time ti and time t2 is given by the integral

C

thus the cost forO < t < T* is

P~ t~^l(~2T' 2P ^T " P

and for Ti <t<Pis



J fp fp

T2 Aj

S L ( P

The total cost of inventory for product i per production cycle is,

= HiSi-P ( 1 -

A total of NC production cycles are repeated for product i where,

Thus the total inventory cost during the design horizon for product i is,

The total inventory cost for all products is given by,

where mint is the setup cost per schedule repetition.

and the total operating costs are given by,

Oc = E ^ i y ( P - T i ) + mintNC (A.2)



Appendix II

Proof of proposition 1.

Note that in this appendix the indexes i, k and 1 refer to individual batches

whereas the index p refers to products. As discussed in Birewar and Grossmann (1991)

for the case of ZW subtrains with zero cleanup times the following constraint holds,

tij + Slikj = t k ( H ) + Slik(j.i) V i, k, j > 1 (D.I)

Note that i and k represent individual batches, and j represents a production stage. This

equation is referred to as changeover constraint.

The production cycle in a multiproduct line is defined by the maximum time that a stage

requires to produce all the batches of all products . This is expressed by the following

equation

P * ( t i j + Sli2j)+(t2j+Sl23j)+...+(tK|+SlNtlj) Vj (D.2)

We consider two particular cases

a) When changeovers between batches of the same product are considered.

In this case there is a stage j where the processing time t y is the maximum for all

batches i belonging to the same product. This stage is considered as the bottleneck stage

and its processing time is referred to as Cycle time for product i and is noted as Tu.

Because the optimization direction is to minimize P and thus to minimize the slacks Slikj

it follows from (D.I) that the slack for the bottleneck stage is zero. In Figure (A.I) for

example the third stage is the bottleneck stage for the 3 batches of product A and the

cycle time for product A is 4 hours. For these reasons equation (D.I) can be restated as

Ty = ty + Slikj V j, ( i , k) belonging to the same product (D.3)

In equation (D.2) the above term exists nbj -1 times for each product, where nbi is the

number of batches of product i. For example for product A the term in equation (D.3)

exists two times in equation (D.2). For this reason equation (D.2) can be restated as

P > X CTi + (ty+ Sljkj + ... + ty+ SIKJ ) V j (D.4)



where CTi = (nty-l) T^ . Note that the second sum in the right handside of (D.4) refers to

slacks between batches of different products. So i , k , 1 and 1 belong all in different

products.

b) When changeovers between batches of different products are considered.

In this case we will prove that the last term in (D.4) that is defined as,

CP = (ty+ S l ^ ) +(tfcj+

is constant for all stages j. First we will prove that the above statement is valid for stages j

and j+1. Equation (D.I) for stage j+1 can be written as,

ti(j+i) + Slfc(j+u = tk j + Sliy V j, ( i , k) belonging to different products

By solving this for Slikj and replacing it in the definition of CP we get,

CP = (Uj+ (ti(j+i) + Sliky+i) - tk j)) +(tfcj+ Slfaj) +... + ( ty+ Sliij) <=>

<=> CP = (ty+ ( ti(j+i) + 81*0+1)+ Slkrj)) +... + ( tij+ Sliy)

by continuing the substitutions and cancellations we get,

CP =

thus the term CP is the same for stages j+1 and j. Since j can be any stage it follows that

CP is the same for all stages. We refer to term CP as changeover term. Constraint (D.4)

can now be written as

(D.5)

In case cleanup times are considered the above approach can easily be extended and the

validity of (D.5) verified. As an example in Figure (A.I) the production cycle is 32 hours.

This can be decomposed for stage 1 as 32 = ( 2x4) + (1x4) + (2x5) + ( 3 + 0 + 2 + 0 + 5

+ 0 ) or for stage 2 as 32=(2x4)+(lx4)+(2x5)+(1.5 + 0.5 + 4 + 1 + 1 + 2 ) where the last

parenthesis represents the changeover term. The second, fourth and sixth number in this

parenthesis represent the slacks between products A and B , B and C and C and A

respectively.



In case parallel equipment out of phase and merging of tasks are considered then

the above approach can again be used but constraint (D.5) is not exact anymore. More

specific the changeover term is calculated as if only merging is considered, and the CPi s

are calculated with the consideration of both parallel units and merging. In most of the

cases this means that the production cycle calculated is an upper bound to the required

value. Because of the loss of the exactness however, a verification of the proposed

schedule has to be performed.



Appendix III

Let the first set of constraints (S1) be defined by the following constraints,

X V h < TT H T v V i s n (T A\
7, Dqjsnt ^s 11 n i yjSn v j, :>, n vi.*«7

q€Qjt€Tj

X 2 X bqjsnt ^ H T ztj V (j, t) e G (T.5)

ajsnt ^ ^ bqjsnt V S, n, (j, t) € G (T.7)

and the second set of constraints (S2) by the following set,

X b^nt <HTa j s n l V s, n, (j, t) € G (B.4)

X ajsnt < n yjsn V j, s, n (B.5)
t€Tj

X X aJsnt ^ Ztj V ( j , t) € G (B.6)
si n

Proposition 2: The set of constraints (S2) is an equivalent and tighter representation of

the set of constraints (SI).

Proof: Consider constraints (T.7) and take surrogates with respect to the tasks t. This

then yields,

ajsnt —

16 Tj t € Tj q e

From (T.4) this constraint implies that,

ajsnt ^ n H yjsn

teTj

This constraint is a weaker representation of constraint (B.5).

By taking surrogates of constraint (T.7) with respect to the sets si and n we get,

aJsnt —
si n s l n q e Q .

Because of constraint (T.5) this implies,



X X aJsnt ^ H Ztj
si n

This constraint is a weaker representation of constraint (B.6).

Consider now surrogates of constraint (B.4) with respect to the tasks t. This gives,

X X bqjsnt ^ H X ajjsnt

Considering (B.5) this implies,

X X bqjsnt ^ H n yjsn

which is the same as (T.4).

By taking surrogates of constraint (B.4) with respect to the sets si and n we get,

bqjsnt ^ H X X aJsnt
q e Q .si n q e Q . s l n

which combined with (B.6) implies that,

X X X bqjsnt ^Hztj
sl n

 q e Q j

which is the same to constraint (T.5).

In summary, we have that (T.7) through (T.4) and (T.5) implies (B.5) and (B.6)

respectively but is weaker to both of them, and that (B.4) through (B.5) and (B.6) implies

(T.4) and (T.5) and is the same to both of them. The second set of constraints is therefore

an equivalent but tighter representation of the first set of constraints.



Table I. Data for example 1.

Stgl
Stg2
Stg3
Stg4
Stg5

Slzii FAUIUKS (LT/KG)

A
7.57
15.14
26.49
7.57
7.57

I B
5.41
10.82
18.93
5.41
5.41

DEMANDS (kg/yr)

IC
11.08
22.16
15.84
11.08
11.08

I D
7.92
15.84
27.72
7.92
7.92

A = 400000,B

PKOCbSSING TIME (HRS)

A
45
25
15
3.75
0.83

1 B
5.5
2.5
1.5
1.5
0.83

1 c
3.75
2.5
1.5
5.75
0.83

|D
7.25
25
15
8.5
0.23

CLEANUP ilMES (HRSO

A
B
C
D

1 = 200000, C = 200000, D = 600000

I A
0
0.2
0.5
2

IB
0.2
0
0.5
2

1 c
05
05
0
05

\ D

2
2
05
0

HORIZON = 8000 hrs

Table EL Economic data for example 1.

Stage 1
Stage 2
Stage 3
Stage 4
Stage 5
Plant expected life

Fixed cost fj
105,000
82,000
48,000
65,000
150,000

Costcoeffaj

650
550
280
350
350

Cost exponent bj
0.6
0.6
0.6
0.6
0.6

Price of prod. S/kg
A = 0.6
B=0.65
C = 0.7
D = 0.55

Inv. cost ($An/hr)

A = l
B = l
C = l
D = l

slOyrs, taxation rate = 45%, Interest rate = 10 %, Setup cost pet interchange = 0 $

Table IIL Results for example 1.

NPV
Inventory cst
Capital Inv.
Cyde length

it 
si

ze
s

E
qu

ip

Stgl

StR2
Stg3

Stg4
Stg5

Small cleanup times
Optimal Cycle

$ 1,451,262.0

$ 62^82 per year
$ 1,626,900.

129.032 hrs

10,000 liters
20,000 liters

40,000 liters
10,000 liters

10,000 liters

5 2 4 8

.0 .0.0 0 .
A B C D

Bound in Cycle
$ 1,026,044.0

$ 4,7073 per year
$ 1,626,835.6

400.00 brs

10,000 liters
20,000 liters

40,000 liters

10,000 liters
10,000 liters

16 26 12 6

0 0 0 0
A D C B

Large cleanup times
Optimal Cycle

S 660.050.0
S 148.010 oervear
$ &320.000
307,692 hrs

20.000 liters
40,000 liters

60.000 liters

20,000 liters

20.000 liters

7 11 5 3

0 0 0 0
A D C B



Table IV. Computational results for example 1.

Model size
Constraints
Variables
0/1 variables
Nonzeroes

87

188
50
681

Computational perfonnance (GAMS 2.25/SCICONIC 2.11 on a VAX 6420)

CPU seconds
Nodes
Iterations

Casel
21.440
285
1253

Case 2
7.81
99
286

Case3
27.14
424
1359

Table V. Data for example 2.

Processing time (t,
| eq l

A 7
B 9
C 8
Cost exp 0.6
Costcoef 250
DISCRETE SIZES

DESIGN HORIZON

i)
| eq2

3
2
3
0.6
250

|cq3

8
7
2
0.6
250

Equipment SV; =
Storage vessels SV, =

= 6000 hrs

Size factors (S^)
eql eq2 |eq3

3 9 3
2 10 2
4 3 9

Qi
(Kg/yr)
260000
260000
260000

Storage cost exponent
Storage cost coefficien t

{3500,4500,7500}
{0,4000,10000,20000, 24000 }

Stor. size factors
storl

9
10
4
0.5
350

| stor2

9
10
9
0.5
350

Table VL Detailed results for case 3 of example 2.

Vessel volumes

Ieql 7500
eq2 15000
eq3 4500
Batch size for
storage (kg)

1 Storl
A 2988.4
B 2988.4
C 2988.4

Capacity available (kg)

eql | eq2 | eq3
A 2500 1666.6 1500
B 3750 1500 2250
C 1875 5000 500
Capacity needed
for storge (It)

Storl
A 8965.2
B 14942
C 11953

Assigned cycle time (hrs)

1 subtrl subtr2

A 7 8.408
B 9 10.408
C 8 2352

Available storage
capacity (It)

| Storl

A 20000
B 20000
C 20000

Assigned time for total
batches minus one (jrs)

subtrl | subtr2

A 14 16.816
B 18 20.816
C 16 18.816

Total number of batches
| subtrl | subtr2

A 174 174
B 174 174
C 174 522
ActuaUCycle time (hrs)

| subtrl |suhbtr2
A 7 8
B 9 7
C 8 2
Total assigned time for
each product (hrs)

| subtrl | subtr2

A 32.482 32.482
B 36.482 36.482
C 34.482 34.482

Batch size (kg)

| subtrl | subtr2
A 1494.2 1494.2
B 1494.2 1494.2
C 1494.2 498.1
Required time for total
batches minus one (hrs)

| subtrl | subtr2
A 14 16
B 18 14
C 16 16
Changeover time
(hrs)

subtrl 55.448
subtr2 47.000

Productivity (kg/hrs) A =138 , B = 122.87, C = 130
Total assigned time per subtrain (hrs) Subtrain 1 = 103.448, Subtrain 2 = 103.448



Table VII. Computational results for example 2.

Casel
Case 2
Case 3
Case 4
Case2*

Constraints
540
636
636
636
636

| Variables
468
576
576
576
576

| Discrete vars
119
128
128
128
129

| CPU time (s)
193.66
306.31
244.46
381.54
103935

| Nodes
391
647
516
687
1946

| Iterations
3065
5180
4830
6837
20183

* Tree decomposition has not been considered
+ GAMS2.25/SaCONIC2.11 /Vax 6420



Figure 1. Proposed design apporach.

Define space of alternatives

Nonconvex MINLP

+* Reformulate MINLP as MILP

| Prove equivalence between MINLP and MDLP |

No Is the
MILP a 'good1

model 1
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| General algorithm 1 Solve the MILP | — | Special algorithm j

I Interpret the solution |

Verify the solution



Figure 2. Final product inventory.

Product A

Raw
meterials

Buildup

a) Product inventory vessels

Depletion

Production Cycle P

Production time Ti

b) Inventory triangle

To market

Figure 3. Production cycle trade-offs.

x;
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X
TIME ~

a) One repetition of the production cycle

b) One repetition of the production cycle



Figure 4. Sequential networks.

a) Simple sequential network

b) Augmented sequential network

Figure 5. Task to equipment allocation graph.

Figure 6. Equipment to subtrain allocation graph.

storl stor2 stor3



Figure 7. Changeover consideration.

^ 8hrs
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QUA
Time

Figure 8. Qualitative representation of mathematical programming model.

0/1 variables: Standard sizes, Task allocation. Parallel units, Sequencing, etc

Integer variables: Number of batches

Continuous variables: Campaign lengths, Production cycle, Inventory costs etc.

s. t Cost constraints

Equipment capacity constraints

Storage capacity constraints

Layout constraints

Logical constraints

Timing constraints

Scheduling constraints

Max NPV

(NPV, inventories, operating costs)

(Mass and energy balances)

(Mass balances around storage)

(Flowsheet synthesis)



Figure 9. Tree decomposition method

Consider only (yi = 0 and y2 = l ) or ( yi = l M ( | y* = °) are feasible

IA total of 6 LFs is solved |

Usual branch and bound algorithm Tree decomposition method



Figure 10. Levels of decision in example 2

Subtrainl

Levd 1
Task to unit allocation

Subtrain3

Level 2
Parallel units
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Figure 11. Optimal flowsheets for cases of example 2

Case 1
NPV =560434$
Invest. = 253019 $
Inv. cost = 40000 $/yr
Cycle = 153.8 hr

Sequence = Any
Nodes =391
CPU =193.6 sees

Case 2

Mixing Reaction I Separation NPV =588047 $
Invest = 264208 $
Inv. cost = 29433 $/yr
Cycle =113.2 hr

Sequence = C - B - A
Nodes = 647
CPU = 306 31 sees

Case 3

NPV = 609134$
Invest. =246915 $
Inv. cost = 26896 $/yr
Cycle =103.4 hr

Sequence = A - B - C
Nodes = 516
CPU = 244.46 sees

Case 4

NPV =604932 $
Invest = 212746 $
Inv. cost = 35454 $/yr
Cycle = 136.36 hr

Sequence = A - B - C
Nodes = 687
CPU =381.5 sees



Figure 12. Gantt charts for case 3 of example 2.
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Figure A.I. Production Cycle decomposition.
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