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Abstract

We show how some simple logical constraints can substantially ac-
celerate the solution of mixed integer linear programming (MILP) mod-
els for the design of chemical processing networks. These constraints
are easily generated in a preprocessing stage and can be applied either
symbolically during a branch-and-bound search or as constraints in the
MILP model. Furthermore, they represent a new class of cuts, "logic
cuts," that generalize traditional cutting planes. A logic cut can cut
off feasible points but does not change the optimal solution. We es-
tablish some elementary properties of logic cuts and use them to show
that our logical constraints for processing networks exhaust all possible
logic cuts for these problems. Preliminary computational results are
presented, using OSL.

1 Introduction

Mixed integer programming models arise in many practical applications
(e.g. see Williams [13]). Unfortunately, the solution of these models can
be quite expensive with the LP-based branch and bound methods that are
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implemented in many commercial and academic computer codes (e.g. OSL,
MPSX, SCICONIC, ZOOM, LINDO, APEX, etc.). This has motivated in
recent years substantial research work for improving the computational effi-
ciency of MILP algorithms. These include the development of reformulation
techniques and cutting plane algorithms, as for instance in the work by Van
Roy and Wolsey [12], Sherali and Adams [11] and Balas, Ceria and Connie-
jols [2]. However, these new developments have concentrated on numerical
aspects, mainly on convexification and reduction of the integrality gap so as
to minimize enumeration with branch and bound.

Although these numerically based techniques are quite promising, an
alternate and complementary direction is to exploit the logical structure of
an MILP problem (see Jeroslow [8]). A problem may have logical constraints
that restrict the number of solutions that need to be enumerated, although
these constraints may not be explicit in the MILP model. Constraints of this
kind, once they are identified, can be used either as additional inequality
constraints within the MILP model or as symbolic constraints that restrict
the generation of alternatives in a branch-and-bound search.

This paper shows how some simple logical constraints can be used to
accelerate the solution of chemical processing network problems with fixed
costs. The object in these problems is to design a network of processing units
to yield desired outputs as profitably as possible. A network containing more
units than necessary is given, and integer variables are used to indicate which
units are actually installed. Each unit employed incurs a fixed cost.

In a problem of this kind it obviously makes no sense to install a unit
if nothing flows through it. We would therefore like to add constraints that

' prevent a unit from being installed if it carries no flow, so as to reduce the
number of alternatives examined. But no such constraint can be represented
in an MILP, because it would result in a feasible region that is not a closed
set. We can, however, include logical constraints that prevent the installa-
tion of a unit that cannot carry flow, either because upstream units from
which it could receive flow have not been installed, or similarly for down-
stream units. These constraints can have also the converse effect of forcing
the installation of downstream or upstream units if the unit in question is
installed.

Although it is a simple matter to identify constraints of this sort as part
of a preprocessing stage, they are not identified by any preprocessor of which
we are aware. In fact, we found that we can solve even fairly small problems



substantially faster than a state-of-the-art MILP code with a preprocessor
(OSL).

We believe that the constraints we identify are interesting not only be-
cause they help solve processing network problems, but also because they
represent a class of cuts that apparently has not been recognized before and
that could prove useful for other problems. Unlike traditional valid cuts,
they can cut off feasible solutions of the problem, although they do not
change the value of the optimal solution. We therefore provide a rigorous
definition for these cuts, which we call logic cuts, and establish some of their
elementary properties. These properties can be used to determine whether
one has identified all possible logic cuts for a given problem, and we illustrate
this for processing networks.

Whereas a cut in the traditional sense is an inequality, a logic cut can take
the form of any restriction on the possible values of the integer variables,
whether or not it is expressed as an inequality. Two logic cuts, however
differently expressed, are the same logic cut if they exclude the same values.
Thus logic cuts can be used to prune a search tree even when they are not
expressed as inequality constraints in an MILP model. But they can also
be imposed as inequalities within an MILP model, in which case they can
tighten the linear relaxation and cut off fractional solutions as traditional
cuts do.

We will define a logic cut to be a constraint on the values of the integer
variables that does not change the projection of the problem's epigraph onto
the space of continuous variables. Furthermore, a logic cut must have this
property for any set of objective function coefficients, provided the integer

'variables have nonnegative coefficients. Logic cuts therefore cut off integer
points that are dominated by others, in a sense we make precise below.

This definition is partially motivated by the work of R. Jeroslow [8], who
viewed integer variables as artificial variables used solely to define the shape
of the epigraph in continuous space. From this perspective it is natural to
admit cuts that leave the problem in continuous space undisturbed even if
they cut off feasible solutions in the original space.

We begin in Section 2 with a small illustration of logic cuts, define them
rigorously in Section 3, and prove some elementary lemmas in Section 4
that characterize them. In Section 5 we illustrate the use of logic cuts in
a small processing network problem. In Section 6 we provide, for a class
of generalized processing networks, a characterization of logic cuts that is



complete in the sense that the cuts we describe imply all (nonvalid) logic
cuts for the problem. These cuts are easily generated in polynomial time.
In Section 7 we solve several processing network problems to show the effect
that logic cuts have in reducing the number of nodes in the branch and
bound tree. We also make a comparison between putting the logic cuts in
the MILP and handling them symbolically. The final section suggests some
avenues for further research.

2 Illustration of a Logic Cut

To illustrate the idea of a logic cut, we consider a very simple optimization
problem on the network of Fig. 1. A flow of at most M is available at node
1, nodes 3 and 4 are sinks, and node 2 conserves flow. The flows on arcs
(1,2) and (2,4) are x\ and x2, and they generate revenues c\X\ and C2X2,
respectively, where Cj is any real number. But arcs (1,2) and (2,4) must be
constructed at a cost of d\ (> 0) and d2 (> 0), respectively, before they can
carry flow. This suggests the MILP,

max cxx\ + c2x2 - dxyx - d2r/2 (1)

s.t. x2 < £1

xj < Myj, j = 1,2,
* ; > 0 , y j€{O, l } , j = 1,2.

Obviously there is no point in constructing either arc unless it carries
.flow. Yet nothing in the constraint set rules out solutions with (XJ,VJ) =
(0,1). Nor can we rule out all such solutions with additional MILP con-
straints. This is because a set 5 of all points feasible for (1) except those
with (xjjijj) = (0,1) fails to contain some of its limit points and thus is
not a closed set. For instance, points with (xi,yi) = (0,1) are limit points
because S contains points arbitrarily close to them. But the feasible set for
any MILP must be a finite union of polyhedra (as pointed out by Jeroslow
[7]) and therefore must be closed. This means that S is the feasible set of
no MILP.

We can, however, add constraints that rule out some of these spurious
solutions. We can observe that the constraint x\ < My\ forces xi to zero
when t/i = 0. But x\ = 0 implies x2 = 0, in which case we can suppose
y2 = 0. We conclude that we can force y2 = 0 whenever yi = 0. It is easy



to write a constraint for this relation, since it is a logical relation between
two y/s:

Vi-y2> 0. (2)

If we regard yj as a logical proposition that is true when yj = 1 in (1) and
false when yj = 0, (2) can also be written as a logical formula:

Vi V -iy2, (3)

where V means "or" and -» means "not." Constraints (2) and (3) axe al-
ternate ways of formulating the same logic cut They do not exclude all
solutions in which (x2, VT) = (0* 1)* but they rule out (x2, y2) = (0,1) when
yi = 0 as well.

Also note that the above logic cut has the effect of forcing y\ to a value
of one if y2 is fixed to one. If such a cut is not present, then depending on
the value of M, t/i may take on a fractional value when y2 is set to one.

Although an existing preprocessor may conceivably generate cut (3) as
an implication y2 => Vi in this simple problem, no preprocessor of which we
are aware can generate the logic cuts we identify for processing networks.

3 Definition of a Logic Cut

We now use the concepts of an epigraph and its projection to provide a
rigorous definition of a logic cut. Consider a mixed integer programming
problem,

max ex — dy (4)

s.t. Ax + By < a
Xj > 0, j = l , . . . ,n ,
yj €{0,1} , j = l , . . . ,p ,

where A is m x n, B is m x p, and each dj > 0. (If dj < 0, replace yy
with 1 - yj.) The objective function can be viewed as a function defined on
the domain D described by the constraints. The graph G of this function,
which we refer to as the graph of (4), is the set {(*,y, *)!(£, y) € -D, z =
ex - dy}. The epigraph E is everything "on or below" the graph, namely
{(x,y,z)|(x,y) e D, z < ex — dy}. The optimal value of the optimization
problem (4) can be written max{z|(x,y,z) G E}.



The graph of (1) is the union of the following sets:

{(0,0,0,0,0)}
rfi)|0 < xj < M}

+ C2X2 - di - <f2)|0 < X2 < Xx < M]

The projected graph Gp is the projection of G onto the space of con-
tinuous variables, so that Gp = {(x,z)|(x,y,z) € G}. The projected epi-
graph is £p = {(x,z)|(x,y,z) € E}. Clearly the optimal value of (4) is
max{z|(x,z) € Ep}. This means that we can remove points from the epi-
graph E without changing the value of the optimal solution, provided the
projected epigraph Ep does not change.

The projected graph for (1) is the union of the following sets.

{(0,0,0)}
{(xj, 0, cxxx - rfi )|0 < X! < Af}
{(0 ,0 , -*)}

+C2X2 - dX - <f2)|0 < X2 < X! < M)

This set is depicted by the heavy points and line segments and the shaded
triangle in Fig. 2. The projected epigraph is the union of this set with all
the points below it.

A logic cut for (4) is a restriction on the possible values of y that, when
applied, has no effect on the projected epigraph Ep of (4). Thus we have,

lemma 1 The addition of a logic cut to the constraint set of (4) does not
change the value of the optimal solution.

For example, the cut (3) removes the point (0,0,0,l,-<f2) from the
graph of (1). Thus it removes from the projected graph Gp only the point
(0,0, -d2) (Fig. 2). The projected epigraph Ep is unchanged, since <f2 > 0
implies that the origin lies directly above this point. (3) is therefore a logic
cut and does not affect the optimal solution value.

4 Characterizing Logic Cuts

We can usefully characterize logic cuts as follows. If D is the feasble set for
(4), let us say that a point y € {0,1}P is feasible if (x,y) £ D for some x.



Also a point y' € {0,1}P is dominated by y if y < y1 and (x, y) € D whenever
(*,*)€ D.

Lemma 2 7/5 C {0,1}",
y € 5 (7)

is a logic cut for (4) if and only if every feasible j/ £ S is dominated by
some feasible y € S.

Proof Suppose first that (7) is a logic cut, and let y7 £ 5 be feasible. Then
removing any point of the form (x, y7) from D does not change Ep. This
means that the projection (x, ex — dy*) of any (x, y, ex — dx/) € G lies below
the projection (x, ex — dy) of some point (x, y, ex - dy) € (7 for which y € S.
Thus ex — d\f < ex — dy. Since if > 0, y < y', and it follows that j/ is
dominated by y.

Conversely, suppose every feasible t/ ^ S is dominated by some feasible
y € 5. Then since d > 0, the projection (x,cx—dy*) of any {x^yf^cx — dxf) €
G lies below the projection (x, ex — dy) of (x, y, ex — dy). It follows that (7)
is a logic cut. a

In the above example, we can note that (xi,X210,1) € D only if (xi,X2,-
0,0) € D. Thus y' $ {(0,0), (1,0), (1,1)} is feasible only if it is dominated
by a point y € {(0,0), (1,0), (1,1)}, namely (0,0). We therefore have a logic
cut,

y € { ( 0 , 0 ) , ( l , 0 ) , ( l , l ) } , (8)

.which is equivalent to (3).

If S contains all feasible points, the logic cut (7) is a valid cut. Cut (8)
is nonvalid because S does not contain the feasible point (0,1).

In pure integer programming (i.e., when the variables x do not appear
in (4)), y dominates y' if and only if y < y'. Lemma 2 therefore becomes
very simple.

Corollary 1 (7) is a logic cut for a pure integer programming problem if
and only if for every feasible y' £ 5, there is some feasible y € S for which



We now address the problem of determining whether all nonvalid logic
cuts have been identified. In the above example, it is dear from (5) and (6)
that no feasible values of y other than (091) can be cut off without changing
the epigraph. For instance, if we cut off (1,0), then we remove the set
{(xi,0,Ci£i — <fi)|0 < x\ < M} from Gp (represented by a line segment in
Fig. 2). This clearly alters the projected epigraph Ep.

In general we can check whether we have found all nonvalid logic cuts by
adding the known logic cuts to the constraint set and applying the following
corollary to determine whether any more nonvalid logic cuts exist.

Corollary 2 Problem (4) has a nonvalid logic cut (7) if and only if some
feasible y7 € {0,1}P is dominated by some feasible y

If we add logic cut (8) to (1), then no feasible t/ is dominated by an-
other feasible point. The only feasible points y' are (0,0), (1,0) and (1,1).
When X! > 0, (xi,0,l,0) € D but (xi,0,0,0) g D. When xux2 > 0,
(si*£2> 1,1) € D but (xi,X2,l,0),(xi,X2,0,0) £ D. So, no more feasible
points can be cut off.

5 Illustrative Example

We now illustrate how logic cuts can help solve a processing network de-
sign problem. Consider the simple processing network example in Fig. 3.
There are three potential processes that can be selected for manufacturing

jd> maximum of 10 tons/hr of chemical C. The maximum capacities of these
processes are 30, 30 and 50 tons/hr respectively. In addition, there is a
specification that processes 1 and 2 cannot be selected simultaneously.

The MILP model for the optimal selection of processes that minimizes
the total cost is assumed to be given as follows:

max Z = -Hyx - 12y2 - 10y3 - 3x3 - 2.8x5 + 9x7 - 2xx (9)

s.t. xi - x2 - x4 = 0

x3 - 0.9x2 = 0

x5 - 0.85x4 = 0

* 6 - x3 - x 5 = 0

x7 - 0.75x6 = 0



x3 - 30yi < 0
*5 - 30y2 < 0
x7 - 50y3 < 0

yi + y2 < i
*i , . . . ,*7 > 0; x7 < 10;

If this problem is solved using a standard branch and bound method, the
enumeration tree that results is shown in Fig. 4. A total of 8 nodes must be
examined. One could of course improve the formulation of the MILP model
given above. For instance, the value of the upper bounds (maximimum
capacities 30,30,50) of the logical constraints could be reduced to yield a
tighter LP relaxation. While schemes such as this one will undoubtedly help
the branch and bound method, the underlying problem is that solutions with
zero flows and active processes are enumerated as seen in Fig. 4. Specifically,
node 5 has process 1 active and zero flows, while node 7 has process 2 active
and also zero flows. Furthermore, nodes with fractional solutions (nodes 2
and 4) may be enumerated in the tree which unnecessarily postpone integer
solutions (nodes 6 and 8).

From the structure of the network in Fig. 3 it is clear that selecting
process 1 implies selecting process 3; likewise selecting process 2 also implies
selecting process 3. Finally, selecting process 3 implies selecting process
1 and/or process 2. The following logical relationships among the binary
variables can then be stated,

yi => V3 (10)

y2 "^ V3
y3 ^ yi v y2

or equivalently as

-y2 v y3 ( l i )
"̂ y3 v y\ v tfa

These relationships can also be expressed in the form of the following
inequalities,

y 3 ~yi > o (12)

y3-y2 > 0
yi + y2 - y3 > o



(10), (11) or (12) represent logic cuts for the MILP problem. These
cuts can be used either by directly adding the inequalities (12) into the
MILP constraint set, or else by performing symbolic inference on (11) when
performing a branch and bound search.

The branch and bound tree that results by adding the integer constraints
(12) representing the logic cuts for the MILP model is shown in Fig. 5. Note
that only 4 nodes must be enumerated, which represents a reduction of 50%
with respect to the tree in Fig. 4. Also note that apart from reducing
the integrality gap, the logic cuts have the effect of eliminating fractional
solutions in the tree (nodes 2 and 4 in Fig. 4), and eliminating nodes with
zero flow and active processes (nodes 5 and 7 in Fig. 4).

If symbolic inference is performed with the logic cuts in (11), the branch
and bound tree shown in Fig. 6 is obtained. Note that this tree also involves
the enumeration of only 4 nodes despite the fact that the integrality gap in
the LP relaxation is not improved. In this case the logic relations in (11) are
used as follows. Since at the root node in one branch we fix jfa = 1* w« can
also fix jfc = 1. Similarly, in node 2, since yi = jfa = 0 in one branch we can
fix jfc = 0; in the other branch since we set jft = 0 and yi = 1, we can fix
jte = 1. Thus, in this particular example processing the logic symbolically
produces an identical tree as when the logic cuts are included as constraints.

Finally, one can add violated logic cuts to the MILP model at the root
node before beginning branch and bound, during which the remaining logic
cuts are used symbolically. The LP relaxation at the root node has solution
y = (yi,y2*!ta) = (0,0.444,0.2), which violates the second logic cut in (12).
Adding this cut and re-solving the LP yields y = (0.244,0.2,0.2), which
-violates the first cut in (12). Adding this cut yields y = (0.222,0.222,0.222),
which satisfies the remaining logic cut. Branch and bound now generates
an identical tree as in Fig. 5. We will see that this strategy can be very
effective in some larger examples.

6 Logic Cuts for Processing Networks

In this section we identify a complete set of logic cuts for processing net-
works with fixed costs. Processing networks arise in applications in which
a subset of the mass balances are given by fixed proportions. These include
for instance industrial chemical complexes and distillation sequences (see
Andrecovich and Westerberg [1]). Fig. 7 presents an example of a chemical
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processing network. The objective in these problems is to find a subnetwork
that minimizes total variable and fixed costs incurred by the processing
units. For simplicity, we consider networks without recycles, although their
treatment is similar.

For our purposes, a processing network is a directed acyclic network
with two kinds of nodes: structural nodes and unit nodes. A structural node,
represented as a circle in Fig. 7, is a normal network node that conserves flow.
A unit node, represented as a square, is a processing node that furthermore
requires a fixed construction cost if it is to carry positive flow. We will
assume that every source node (node with no inputs) and every sink node
(node with no outputs) is a dummy unit node. Unit node t is a predecessor
of unit j if there is a directed path from t to j. Unit node j is a successor of
unit t if t is a predecessor of j. Unit fc is an immediate successor of output
j of unit t (or an immediate predecessor of input j of i) if there is a directed
path from output j of t to k (or from k to input j of t) containing no other
unit.

For each unit node t, there is an associated flow variable Zt. The flow
into each input j must be a,jZf-, and flow from each output j must be PijZi,
where a^,/?ij > 0. We associate each unit node t with a binary variable y,
such that yi = 1 if unit i is constructed, and 0 otherwise. d{ (> 0) is the
fixed cost of constructing unit i. This problem is formulated in the following
mixed integer programming model.

max cq - dy (13)

qij = PijZi, V(t\j)

Zi < Miyi, Vt

Zi>0, y , € { 0 , l } , Vi

This model has the form of (4) if we let x = (q, Z).

There is no point in constructing a unit that carries no flow. We may
therefore ignore solutions with y, = 1 and Z, = 0, even though they may be
feasible. As explained earlier, we cannot add mixed integer constraints that
rule out all such solutions, but logic cuts can exclude some of them.
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To find all logic cuts for a processing network, we begin with the following
lemma.

Lemma 3 The logical rule

y*=*(yuV...Vy fm) (14)

is a logic cut for (IS) if and only if y,, = •.. = ytm = 0 implies Z, = 0.

Proof. Let 5 in Lemma 2 of Section 3 be the set of points y satisfying
(14),andletx = (9 ,Z).

First assume ytl = •. . = ytm = 0 implies Z, = 0. Take any tf £ S, and
let y be the same as x/ except that yt- = 0. Then y € S and y < y'. Also for
any (x,y*) € -D, clearly (x,y) € Dy because Z{ = 0 implies that yt- can be
zero. So, (14) is a logic cut by Lemma 2.

Conversely, suppose (14) is a logic cut. Take an (x,^) € D for which
y'{i = .. • = y<m = 0. Then either y\ = 0, in which case we must have Z{ = 0,
or y[ = 1, in which case y' ^ 5. But in the latter case, there is a y € S with
y < y' and (x,y) € D. But y < y' and y € S imply Zt- = 0. a

Obviously, there is no flow through unit i (Zi = 0) if we close all the
immediate predecessors of some input to t, or if we close all immediate
successors of some output from t, because each otijy/3ij > 0. Let us say that
(14) is a premiere cut if t ' i , . . . , im are all the immediate predecessors of some
input to t, or they are all the immediate successors of some output from t.
We immediately have the following Lemma.

Lemma 4 Any premiere cut is a logic cut.

For example yu =» (yio V yn) is a premiere cut for Fig. 6, and it is also
a logic cut. Not all logic cuts are premiere, as for example the logic cut
!/i7 => (V2 V y4) .

We call a logic cut of the form (14) minimal if it is not a logic cut when
any variable in the consequent is removed. Obviously, a premiere cut is a
minimal cut. We have

Lemma 5 // (14) is a minimal logic cut, then either all units t'i,. •., tm are
successors of unit i, or they are all predecessors of unit i.

12



Proof. Suppose otherwise. Without loss of generality, let 11, . . . , ir be pre-
decessors of t and tr+i, • • . , i m successors of *, with r < m. Since y, =>
(ytl V . . . V y,r) is not a logic cut, setting y,-, = . . . = ytr = 0 does not (by
Lemma 3) block flow into t. Since y, => (yir+i V. . . V y,m) is not a logic cut,
setting y,r+1 = •. . = ytm = 0 does not block flow out of t. Thus by Lemma
3 (14) is not a logic cut, contrary to the hypothesis. Q

Lemma 6 Any logic cut of the form (14) is implied by a finite conjunction
of premiere logic cuts.

Proof. Any logic cut of form (14) is implied by a minimal cut obtained
by removing zero or more consequents. We suppose therefore that (14) is a
minimal cut. By Lemma 5, we can assume that all the units appearing in
the consequent side are predecessors of unit i. (The argument is similar if
they are all successors.) The following procedure generates a set of premiere
cuts that implies (14).

Let j i , . . .jjk be the immediate predecessors of any input to unit t, and
let the set F consist of (14). Then (14) is clearly implied by

Vi =* (!0 1V.. .Vy iJ , (15)

Vh => (ff.! V.. .Vy l m) , V/*€{i i , . . . , j*} \{ t i , . . . , t m } , (16)

where (15) is a premiere cut by Lemma (4). Add the rules (16) to F and
delete (14) from F.

For any rule in F, repeat the above. The procedure terminates when F
is empty. Since the network has a finite number of units, the procedure will
generate a finite set of premiere cuts that implies (14). D

As an example, consider Fig. 7 again, yn =* (y2 V y4) is a logic cut, but
not premiere. It is implied by premiere cuts yn =» (yi0 V yn), y10 => y2 and

Finally, we show that premiere cuts cut off all integer points that can be
cut off by logic cuts of any form.

Theorem 1 If all premiere cuts are added to (13), then there is no further
nonvalid logic cut

13



Proof. By Corollary 1, it suffices to show that no feasible xf is domi-
nated by a feasible y ^ y'. Consider any feasible y'. We wish to show that
there is some (x, y') € D for which no other point (x, y) 6 D satisfies y < y'.
To do this we suppose without loss of generality that y' = (0,e), where 0 is
a vector of k(< p) zeros and c a vector of p — k ones.

Claim. There are points (x*+^,I^ + 1 ) , . . M (x* ,0 , lP) € D, with x* =
(«\ Z1) and f = (y£ + 1 , . . . , y£), such that each Z\ > 0.

Pnoo/ o/ claim. Suppose the claim is false for some t € {fc + 1 , . . M p } .
Then yi = . . . = y* = 0 implies that Z{ = 0, which means by Lemma 3 that
Vi => (yi V . . . V yjb) is a logic cut. It is therefore implied by premiere cuts,
which contradicts the assumption that y7 (which has yj = 1 and yj = . . . =
y£ = 0) satisfies all premiere cuts.

Since t/ = (0,e) satisfies all premiere cuts, the claim implies that (x**1,-
0, c ) , . . . , (xp, 0, c) € D. Therefore we can let (x, 0, e) be their convex combi-
nation using equal weights, with x = (<7, Z), and note that (x,0,e) € D.
Since Zt* > 0 for t = k + l , . . . , p , there is no point (x,y) € D with
y < y' = (0, c) and y ^ t/. The theorem follows. D

7 Preliminary Numerical Results

In order to test the potential effectiveness of logic cuts, computational results
have been obtained for 5 processing network problems. Specifically, we have
compared for the first three problems solution requirements in terms of the
number of nodes, simplex iterations and CPU time for the following cases:

(a) Solution by Branch and Bound of the MILP model.

(b) Solution by Branch and Bound by addition of all logic cuts in the
form of linear inequalities to the MILP.

(c) Solution by performing symbolic inference on the logic cuts within
branch and bound enumeration. This was performed by converting the
logic cuts to their Disjunctive Normal Form representation, and using as
a branching rule the selection of the variable that potentially falsifies the
largest number of clauses in order to fix additional 0-1 variables whenever
possible [10].

(d) As in (c), but with the addition of violated logic cuts to the MILP
at the root node, as described in Section 5.
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For the other two problems we compared cases (a) and (c), in the former
case with and without a preprocessor.

The numerical tests were performed on an IBM POWER 530 with the
OSL optimization model. The symbolic inference method was implemented
in OSL with a FORTRAN program through the exit subroutines EKKBRNU
and EKKEVNU, for the branching rule and for the fixing of 0-1 variables,
respectively. For the case of the preprocessor the routine EKKMPRE was
used with the option nval = 1. The option performs preprocessing at each
node of the tree creating a new matrix with extra rows and tighter bounds
for the variables.

The first set of three problems involve the solution of an MILP model
for the synthesis of minimum cost distillation sequences for the separation
of multicomponent mixture (Andrecovich and Westerberg, [1]). The three
problems considered involve the separation of 4, 5 and 6 components. The
network for the 4 component system is shown in Fig. 8. The logic cuts that
relate the existence of units in the form of prepositional logic are shown in
Table 2.

The results for the first three problems, without using OSL's presolve or
preprocessing options, are shown in Table 3. Note that in the second column,
in which all the logic constraints are included in the model [case(b)], the
relaxation gap is significantly reduced, but at the expense of almost doubling
the number of rows. Interestingly, exactly the same effect is achieved in the
fourth column by adding a much smaller number of violated cuts at the root
node [case(d)]. While the branch and bound method with symbolic inference
does not require additional inequalities, it requires the largest numer of
nodes when compared to cases (b) and (d). Yet it requires significantly
fewer nodes than solving the problem without logic cuts. Adding violated
cuts to the MILP at the root node reduces the number of nodes still further.
For completeness, CPU times have been reported, although they are not
very significant given the small size of the problems and the preliminary
nature of the implementation scheme in OSL.

Table 4 presents results on two larger problems which are much more dif-
ficult to solve. These correspond to heat integrated distillation networks as
reported in [10]. Problem 2a only has non-zero fixed charges for the distilla-
tion columns, while problem 2b has fixed charges for both columns and heat
exchangers. Note that problem 2a could not be solved with OSL after 5000
sec without the preprocessor. With the preprocessor, the solution was ob-
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tained in 57.9 sec. In contrast by using the branch and bound with symbolic
inference only 14.4 sec were required, due to the reduction in the number of
nodes (from 153 to 103) and the number of simplex iterations (7900 to 750).
Interestingly in 2b, the solution with the preprocessor required more CPU
time than the direct solution of the MILP. However, in terms of number of
nodes, simplex iterations and CPU-time the symbolic branch and bound is
again the most effective. Although the results of this paper are preliminary,
they do suggest that processing the logic cuts symbolically within a branch
and cut method may be a promising approach to the optimization of process
networks with fixed charges.

8 Future Research

It remains to investigate whether logic cuts are computationally useful in
other problem classes, and to describe a complete set of logic cuts for these
classes as we have done for processing networks with fixed costs.

One possible application of logic cuts, also network-related, was brought
to our attention [4]. The problem is to build tree-shaped utility pipeline
network to serve a growing residential or business area. New links incur
fixed charges but earn revenue from customers served. Unserved customers
provide their own utilities. The solution technique in [4] exploits the fact
that building disconnected segments of the tree is feasible but dominated by
other solutions. The dominated solutions can be ruled out by logic cuts.

An interesting theoretical problem is to find an algorithm that can, in
.principle, generate inequalities representing every lope cut (up to equiva-
lence) for an arbitrary MILP. A first step toward achieving this goal might
be to find an algorithm that generates all valid logic cuts. In a classic paper
[3] V. Chvatal solved this problem for traditional valid cuts in pure integer
programming problems. J. Hooker [6] solved the problem for valid logic cuts
in pure integer programming problems. It is unsolved for MILP problems.
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Table 1. Logic cuts for the processing network in Fig. 8

V2
yi
yi
yi
ys
IT7
y?
ys
ys

+ y3

- y 2
- y 3
- y 4
+ ye
- y s
- y e
+ Sfe
+ y9

+ y4 - yi

+ yio - yi
+ yio - y7

> o
> o
> o
> 0
> o
> o
> o
> o
> o

Table 2. Logic cuts for a four component separation network
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ys =*•
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V
V

A

VA

yi

yio

ye
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yg
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Table 3. Separation Problems

Number of
Components

FOUR—31 va

Rows

LP optimum
MILP optimum

Nodes
Iterations
CPU time*
FIVE—61 var

Rows

LP optimum
MILP optimum

Nodes
Iterations
CPU time*

SIX—106 vans

Rows

LP optimum
MILP optimum

Nodes
Iterations
CPU time*

Original

Formulation

Lriables (10 bi

27

3601.6
3625.8

12
26

0.54
iables (20 bin

51

4262.7
4304.1

52
179
1.23

kbles (35 bina

86

18114.7
18170.3

141
386
3.46

Logic Cute
Added

to MILP

inary)

49

3625.8
3625.8

0
21

0.32
ary)

90

4278.1
4304.1

2
48

0.49

156

18161.6
18170.3

8
219
1.18

Logic Cuts
Used

Symbolically

27

3601.6
3625.8

8
20

0.75

51

4262.7
4304.1

8
35

0.92

86

18114.7
18170.3

14
50

1.44

Violated Logic Cuts
Added to MILP
at Root Node1

35 (8 cuts)

3625.8
3625.8

0
16

0.29

57 (6 cuts)

4278.1
4304.1

4
76

0.65

97 (11 cuts)

18161.6
18170.3

4
40

0.87

• sec on IBM POWER 530 with OSL.
f Remaining logic cuts are used symbolically.
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Table 4. Heat Integrated Distillation Network Problems

147 constraints
261 variables
(100 binary)

Problem 2a
LP Optimum
MILP Optimum

Nodes
Iterations
CPU time'
Problem 2b
LP Optimum
MILP Optimum

Nodes
Iterations
CPU time*

Original Formulation
without

Preprocessor

388.3
23627.5

>10 5

> 106

> 5,000

390.4
3655.8

448
1651
22.06

with
Preprocessor

388.3
23627.5

153
7900
57.95

390.4
3655.8

235
28883
169.39

Logic Cuts
Used

Symbolically

388.3
23627.5

103
750
14.4

388.7
3655.8

101
792

14.63

* sec on IBM POWER 530 with OSL.
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Fig. 7 Ewample of a processing network
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