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1. Introduction

In recent years, the search for economically viable process operating conditions has led

to the increasing importance of optimization techniques as a tool in the design, control

and retrofit of chemical processes. Since most process systems have an inherently

nonlinear structure, development of a robust and efficient nonlinear programming

strategy is a key issue. The two major methods currently used to solve nonlinear

programming problems are the linearized reduced gradient method (Murtagh and

Saunders, 1979) and Successive Quadratic Programming (SQP) (Han, 1977; Powell,

1977). The linearized reduced gradient method, as implemented in MINOS, for example,

is best suited for cases where all the nonlinearities are in the objective function and the

constraints are linear. SQP, on the other hand, has emerged as the algorithm of choice

for solving significantly nonlinear problems with a small to moderate number of

variables; it consistently requires fewer function evaluations per Iteration than other

methods.

Two main schools of thought have emerged for extending SQP to successfully handle

larger systems. A number of studies have concentrated on sparse full-space methods

and have developed efficient sparse successive quadratic programming solvers (Lucia

and Xu, 1990; Nickel and Tolle, 1989). This approach appears to be a quite natural and

general extension to SQP, but it also requires a more complex algorithm. The issues

that must be addressed for these algorithms include calculation or approximation of

the full Hessian matrix and treatment of indefinite Hessians and directions of negative

curvature. The second approach focuses on decomposition of the search space in order

to reduce the dimensionality of the problem. Given that a significant portion of process

engineering problems have relatively few degrees of freedom, a characteristic which is

exploited by decomposition, we find it useful to concentrate on reduced space or reduced

Hessian SQP methods. Such methods create and solve a reduced space quadratic

program with a reduced Hessian that is expected to be positive definite at the solution.

Consequently, this matrix can be approximated by positive definite quasi-Newton

formulae such as BFGS. In this study, we also show that these decomposition methods

are also much easier to intexlace with specialized Newton-based solution strategies for

existing process models. In this way, an SQP-based optimization procedure can easily

be tailored to particular classes of process problems.



Abstract

Process optimization problems are frequently characterized by large models, with

many variables and constraints but relatively few degrees of freedom. Thus, reduced

Hessian decomposition methods applied to Successive Quadratic Programming (SQP)

exploit the low dimensionality of the subspace of the decision variables, and have been

very successful for a wide variety of process application. However, further development

is needed for improving the efficient large-scale use of these tools.

In this study we develop an improved SQP algorithm decomposition with coordinate

bases that includes an inexpensive second order correction term. The resulting

algorithm is 1-step Q-superlinearly convergent. More importantly, though, the

resulting algorithm is largely independent of the specific decomposition steps. Thus,

the inexpensive factorization of the coordinate decomposition, which lends itself very

well to tailoring, can be applied in a reliable and efficient manner.

With this efficient and easy-to-implement NLP strategy, we continue to improve the

efficiency of the optimization algorithm by exploiting the mathematical structure of

existing process engineering models. Here we consider the tailoring of a reduced

Hessian method for the block tridiagonal structure of the model equations for

distillation columns. This approach is applied to the Naphthali-Sandholm algorithm

implemented within the UNIDIST and programs. Our reduced Hessian SQP strategy is

incorporated within the package with only minor changes In the program's interface

and data structures. Through this integration, reductions of 20% to 80% in the total

CPU time are obtained compared to general reduced space optimization; an order of

magnitude reduction Is obtained when compared to conventional sequential strategies.

Consequently, this approach shows considerable potential for efficient and reliable

large-scale process optimization, particularly when complex Newton-based process

models are already available.



For large systems, various decomposition strategies have been proposed which reduce

the dimensionality of the problem and thus allow for an efficient algorithm. A

decomposition strategy using coordinate basis matrices was used by Locke et aL (1983);

while the decomposition itself is efficient, it frequently leads to inconsistent

convergence results. To remedy this, Vasantharajan and Biegler (1988) investigate the

use of orthogonal basis representations. Here, although the computational effort per

iteration is higher, especially as the number of degrees of freedom increases, the

resulting SQP method is more robust. However, orthogonal projections are not always

easy to adapt to the sparsity structure of the process model. In section 2 we briefly

describe the concept of decomposition for SQP with details on the use of coordinate and

orthogonal bases.

While these reduced Hessian methods show much promise, they may still be inefficient

when faced with large, complex process engineering problems. The performance of SQP

for large-scale models can be improved considerably through a closer examination of

the mathematical structure inherent to individual classes of chemical systems; for

example, the tridiagonal structure of the Jacobian matrix for distillation problems. To

tailor the SQP algorithm to take advantage of this underlying structure we adapt the

reduced space SQP strategy so that the appropriate equation solver is used directly as

part of the optimization procedure, in order to eliminate the dependent variables. In

fact, any model specific structures and procedures used to generate the Newton step can

be exploited directly here. As will be discussed later, coordinate basis representations

are best suited for this task and thus we first discuss how to guarantee consistent

convergence results with this decomposition strategy. Section 3 covers the details of

our improved coordinate basis method and outlines three approaches for the

calculation of a necessary second order correction term. We also present a series of test

problem results using uncorrected orthogonal and coordinate bases as well as our

improved algorithm.

Finally, using the improved coordinate bases algorithm, we exploit the structure of

specific classes of process engineering problems in section 4. In particular, we consider

the optimization of distillation columns and interface directly to the UNIDIST and

NRDIST packages (Andersen et at, 1991). Here, the model equations form a block-

tridiagonal matrix, and are solved using the Naphthali-Sandholm distillation

algorithm. After making only minor changes within the interfaces and model solution

algorithms, we are able to realize up to an order of magnitude increase in efficiency over



the conventional sequential procedure. The final section of the paper summarizes this

work and briefly outlines future work.

2. Decomposition Strategies for SQP

In this section we discuss the background for successive quadratic programming and

various decomposition strategies. The nonlinear programming problem (NLP) to be

solved is formulated as.

h: SRn -»SRm (2.1)

Successive quadratic programming is motivated by a Newton method for the solution of

the Kuhn-Tucker optimality conditions; this can be shown to be equivalent to the

solution of a sequence of quadratic programming (QP) subproblems. At the kth

iteration, the QP subproblem has the form

Min

s.t. h(z)
Z L <

= 0

: z £ z u

Min V<Kzfc)Td + ^
d

s.L hfcj + Vhftzk) d = 0 (2.2)
L < zfc+d <* zu

where d is the search direction and Bk is the Hessian of the Lagrange function.

Convexity of (2.2) is guaranteed by calculating Bk using the BFGS matrix update formula

with Powell damping (Powell. 1977). At each iteration, the following first-order Kuhn-

Tucker optimality conditions must be satisfied (e.g.9 for bounds Inactive).

where v is the vector of Lagrange multipliers. As the size of the NLP in (2.1) increases,

the solution of the QP becomes increasingly expensive; B is a dense nxn matrix which

must be updated and stored at each iteration, and sparsity is often not exploited. It has

been demonstrated that the performance of the method can be considerably improved

through a suitable change of basis representation. The new basis vectors are obtained

by partitioning the search space into two subspaces, Z and Y, where the columns of Z

span the null space of VhT(zk). After decomposition, the matrix to be updated is a

projection of B onto a space whose dimension is given by the number of degrees of



freedom of the problem. This is suitable for many process engineering problems since

in many instances this number is conveniently small (10 to 100). Further, the actual

projected Hessian at the solution is expected to be positive definite at the solution,

which is sufficient to guarantee optimality.

2.1 Decomposition

As indicated above, Z(zk) is an wcfn-mj matrix whose columns span the null space of

VhT(zk). Y(zk) is an wan matrix chosen so that [Y Z] is nonsingular; Y and Z together

span the entire search space. Let Q be a nonsingular matrix of order (n+mh given by

Q J[YZI on

"L o i j
(2.4)

The search direction d is expressed as the sum of its components in the two subspaces.

d = YpY + Zpz

Premultiplying the system in (2.3) by Q, and substituting for d yields

PY

Pz
V

(2.5)

ZPBYZPBZ o

0 0
(2.6)

The Lagrange multipliers of the equality constraints are obtained from the solution of

+VIVhv = - Y^fy (2.7)

Since exact values for these multipliers are only required at the solution of the NLP,

once the algorithm has converged and Py = Pz= 0, (2.7) can be reduced to

Y^Vhv = -

The reduced QP to be solved at each iteration can be written as

Mln f =

S.t ZL

(2.8)

(2.9)
U

where IV = - -1 h (2.10)



Note that this QP is equivalent to (2.2) for any nullspace representation Z and any Y

that makes [Z Y] nonsingular.

In the objective function of (2.9). the matrix ZTBY, which is of dimension nx(n-m)

appears. It is usually "long and thin" and much larger than 2^BZ, which is of dimension

(n-m)x(n-ml. Hence, in most reduced Hessian SQP methods there is incentive not to

include this matrix. Moreover, if Ypy is uniformly small as compared to Zpz, we are

further justified in neglecting this term. Alternatively, 2^BYpY can be estimated using

a variety of approximations, as will be discussed later.

2.2 Choice of the basis matrices Y and Z

As long as Z spans the null space of VhT(zk), and [Y Z] is nonsingular, the choice of Y and

Z is essentially arbitrary. Previous studies have concentrated on three distinct basis

representations for Y and Z.

Orthonormal bases

Most references to SQP decomposition use orthonormal bases; the advantage here is

that that the search space is well-conditioned and well-scaled. Nocedal and Overton

(1985) have shown that this definition of Y and Z yields a 2-step Q-superlinearly

convergent algorithm. However, the subspace matrices are obtained from a QR

factorization at each iteration which makes this approach expensive and undesirable

for large problems.

Orthogonal bases

A computationally less Intensive decomposition uses orthogonal bases (Vasantharajan

and Biegler, 1988). The variables are partitioned into dependent variables, y e 9tm, and

independent variables, x € Stf1™)- z and Y are defined as

(Vyh)-n

Although PY and pz calculated from this method are different from those obtained using

orthonormal bases, it is easily shown that the actual moves, Ypy and Zpz, are

unchanged; hence the same convergence properties are observed. Compared to

orthonormal representations, the work to determine Y and Z at each iteration is

reduced considerably. However, the calculation of py and v using (2.8) and (2.10)



involves factorization of Y^h. Through the use of the Sherman-Morison formula, the

range space move, py. and multipliers, v, are given by:

Pr = -[I -

v = -(Vyh*1)-*1! I -

where V = (Vyh1)*1 Vxh
T. Since Vh is premultiplied by Y1, the sparsity inherent to Vh

cannot be exploited completely and, when (n-m) is large, this factorization can be

expensive.

Coordinate bases

Gabay (1982) and Locke et aL (1983) propose the following definitions for Y and Z.

Here the effort required to determine the basis vectors is reduced even further.

Moreover, factorization of Y ^ h is now equivalent to factorization of the model

Jacobian Vyh. Model sparsity is maintained and py and v are obtained directly from a

Newton step for solving h(z) = 0. Consequently, it is relatively straightforward to tailor

this algorithm to take advantage of the particular structure of certain problem classes

which can greatly improve the performance of SQP for complex problems.

2.3 Comparison of orthogonal and coordinate bases

A geometrical interpretation of the orthogonal bases and coordinate bases methods is

given in Figure 1 for a two-dimensional problem with variables, zx and 2fc. Hie initial

point at the kth iteration is given by z°. The Z space move Is Identical for both

decompositions and lies at a tangent to the space of the linearized equality constraint.

Using orthogonal bases yields Ypy1. which corresponds to a least squares projection: It

represents the shortest distance between the current point and the subspace defkied by

the linearized equality constraint, hence Ypy is minimized. Ypy2 and Yp?s are the two

possible Y space moves using coordinate bases; one or the other is obtained depending

on the choice of the independent variable.

Since coordinate bases result in the cheapest decomposition, and allow us to exploit the

sparsity, or even more importantly, the particular structure inherent to the process



model when calculating pY. it follows that this method would be the method of choice

for large-scale process optimization. However, other factors must be taken into

consideration. In particular, we return to the objective function of the quadratic

subproblem (2.9). The matrix Z?BY, of dimension (n-m}xm may be too large to store or

to compute when m is large. We would like to neglect the term ZTBYpY, reducing the

objective function to

f = V^zJ Zpz+ |pz
TZn3kZpz (2.13)

In the extreme, when all the constraints are linear, the Y space move, YpY, can be

nonzero only at the first iteration, as the algorithm moves to a feasible point. At all

subsequent iterations, any feasible search direction involves movement only in the Z

space. Hence, the term 2^3Ypy becomes zero after the first iteration and we are justified

in making the above simplification.

When using orthogonal bases, YpY is minimized. Although it may initially be larger

than Zpz, it has been shown that Ypy tends to zero faster than Zpz does. Hence, the

objective function (2.13) above can be used without generating significant error.

With coordinate bases, on the other hand, the situation is different. For the problem in

Figure 1, when zx is used as the independent variable, Ypy2 is obtained as the Y space

move. This move, parallel to the Z2 axis, is almost identical to that obtained with

orthogonal bases and the simplification in (2.13) is appropriate. However, if Z2 is

chosen as the independent variable, the Y space move, given by Ypy3 is much greater. In

the limit, the Y space move is almost parallel to the space of the linearized equality

constraint and Ypy becomes extremely large. Hence, the objective function (2.13) no

longer adequately represents the situation.

It follows that the performance of the coordinate method using (2.13) as the objective

function of the QP subproblem depends to a large extent on the partitioning of the

variables. We have observed inconsistent performance of the SQP algorithm with

coordinate bases when solving a variety of test problems. Results illustrating this

behavior are presented in the next section. Since it is difficult to determine a priori

which are the "best" independent variables, and indeed, this choice may vaiy from one

iteration to the next, it is essential to devise an alternate method to guarantee the

robustness of the coordinate method if we are to exploit its advantages when solving

large-scale nonlinear problems.



3. An Improved Coordinate Basis SQP Algorithm

In comparing orthogonal and coordinate basis methods, it is clear that the latter is

simpler and cheaper. The term Y^h , which appears in the calculation of both py and

the Lagrange multipliers of the equality constraints, reduces simply to Vyh. The

Jacobian is untouched and the structure as well as any sparsity inherent to the model

are maintained. The fact that the coordinate bases method requires less computational

effort per iteration provides an additional benefit. The reduction is due to the fact that

this approach does not require the matrix

[ I + V*V I where V = (Vyh1)-1 Vxh
T

to be factorized, an operation which requires O(n2) + O((n-m)3) operations. While the

dominant computational cost depends on the number of degrees of freedom in the

problem, the difference in CPU time per iteration between the two decomposition

strategies also becomes significant as the total number of variables becomes large. The

only real drawback to the coordinate method is that in some instances it can exhibit

poor convergence properties. If any of the linearized) constraints lies almost parallel

to a coordinate direction, an unfortunate partitioning of the variables can lead to a very

large Y space move which causes the simplification used to reduce the objective function

of (2.9) to (2.13) to become invalid. Hence, robustness of the coordinate method Is not

guaranteed. While the simplified objective function (2.13) is insufficient, exact

evaluation of 2?BY may require too much effort for large problems. We propose an

intermediate approach which utilizes an approximation of the term ZJBYpy- Through

incorporation of the correction term we hope to enhance the robustness of the

algorithm without compromising efficiency. We have studied three specific approaches

for obtaining an approximation to Z^BYpy.

3*1 Finite difference correction

A first order approximation of Z^Ypy is given by a Taylor series expansion about the

current point, x .̂

ZfcTBYp, = ZfcTVaUziJYpr - Z^VLbk+Ypy) - T^VU^ (3.1)

where VL = V<|> + Vh v . Since Z lies in the null space of VhT. VhT(Zk)Zk= 0, and (3.1)

becomes



Zk
TV(t>(zk+YpY) + Zk̂ Vhlzk+Ypy) v - ZjVQfad (3.2)

Tests on a wide variety of problems have shown that this correction almost invariably

improves the convergence rate of the coordinate method. However, the work involved

may be considerable since an additional gradient evaluation at zk + Ypy is required at

each iteration.

3.2 Broyden update correction

This method eliminates the need for an extra gradient evaluation. The rectangular

matrix Z^B is approximated using Broyden's matrix update method. Letting A = 2^Bf the

Broyden update is given by

A A ^ (yk - Aksk)sk
T , „ .

A«i = Ak + s /sk (3-3)

where sk and yk are defined as

k

(VL(zk+1) . VLfeJl (3-4)

The Broyden matrix is initialized as Ao = (I 0] which is consistent with the

initialization of the reduced Hessian approximation to Bo = I in the BFGS formula. The

extra term in the objective function is obtained directly by postmultiplying A by Ypy.

As long as the Broyden update formula yields a well-conditioned matrix, this method

offers a viable alternative to using finite differences. Note though that additional

overhead Is required for the storage of the matrix At.

3.3 limited memory Broyden update correction

Instead of using the Broyden update formula shown in (3.3) above, which requires

storage of the full matrix At at each iteration, an approximation to the current matrix,

A^!, can be obtained from a limited memory Broyden update (see Byrd and Nocedal,

1991). We define the update vectors St and yt.

Si =

yt =

The q most recent of these update vectors are stored as



Sk+1 = [So Sql

Yk+i = (yo yql
 (3*6)

Then A^ is calculated from

Ak+1 = Ao + (Yk+i - AoYk+i) Nk +r J Sk+1
T (3.7)

where

f Si.!7^.! if i < j
(Nk+l)« = 1 0 otherwise

As for the full Broyden update method, we set Ao = [I 0]. Post-multiplication of both

sides of (3.7) by Ypy allows us to approximate ^BYpy directly at each iteration without

ever needing to construct the full matrix A ^ . Further, experience shows that 3 update

vectors, i.e. q=3 in (3.6) above, are usually sufficient to obtain results comparable to the

full Broyden method. This approach thus allows us to overcome the storage

requirements of the previous method.

3.4 Update criterion

As mentioned above, using finite differences has the advantage of yielding consistent

results while the Broyden methods are computationally cheaper. A natural extension

is to include an update criterion which allows the algorithm to determine at which

iteration it requires the finite difference correction to yield satisfactoiy results, or if

the Broyden correction is adequate. We adopt the update criterion proposed by Nocedal

and Overton (1985) for the original, unconnected method.

J (3.8)

If (3.8) is satisfied, 11 Yp* 11 « 11 Zpz 11 and the Broyden update is used; otherwise the

finite difference correction is selected. Biegler et CLL (1992), proved that when this

criterion is used, the improved coordinate bases algorithm is 1-step superllnearly

globally convergent. Figure 2 gives an outline of the main steps of the improved

coordinate bases algorithm, including the update criterion.



3.5 Numerical Results

In this section, we briefly present sample results for three example problems. A more

thorough numerical analysis is provided in Biegler et oL (1992). The first example is a

2-dimensional problem, with two variables and one constraint. The results are used to

illustrate the effect of variable partitioning on the uncorrected coordinate bases

method as compared to the orthogonal bases method. The results also demonstrate that

this dependency can be largely eliminated through the addition of a second order

correction term to the coordinate bases method. Examples 3.2 and 3.3 constitute

generalizations of Example 3.1, allowing the effect of increasing the total number of

variables and/or the number of degrees of freedom to be studied. CPU times on a SUN3

workstation are also included to assess the efficiency of the various methods.

Example 3.1

Min \

s.t. Xjlx^-l) - 10X2 = 0 (3.9)

XJ° = 0.1 x* = 0.0

This two dimensional problem has one degree of freedom; either xx orxj can be chosen

as the independent variable. Table 1 shows the total number of iterations required for

convergence, using a tolerance of 10*15.

From the results in Table 1. it is apparent that the orthogonal bases method is

relatively independent of variable partitioning. The coordinate bases method, on the

other hand, requires almost twice as many iterations to converge when x^ is used as the

independent variable compared to using xx. When an approximation to ZTBYpY is

added, using either finite differences or a Broyden update, this trend is reversed and the

dependence of performance on variable partitioning is reduced. For all the test cases, 3

update vectors were used for the limited memory update method. This has proved to be

sufficient in most Instances to obtain results comparable to the full Broyden method.

Tlie results in Table 1 clearly show that in terms of the number of iterations required

for convergence, our improved coordinate basis algorithm is successful in overcoming

problems associated with the pure coordinate method. The additional curvature

information allows the algorithm to account for the fact that the Y space move may not

be negligible compared to the Z space move. The effect of a poor choice of independent



variables is greatly reduced and the results are similar to those obtained with the

orthogonal basis method.

Comparing the number of iterations required by the different correction methods, we

see that the results using the Broyden correction are as good as those using the finite

difference correction. For examples 3.2 and 3.3 we will see that in some instances the

Broyden method even out-performs the improved coordinate bases method using finite

differences. This trend is not true in general and may be attributed to the fact that, for

this set of problems, the actual reduced Hessian at the solution is given by the identity

matrix. A° = [I 01 thus provides a good initialization, favoring the Broyden update

method. For models without this special structure, the finite difference correction

tends to be more successful at resolving convergence problems caused by large Y space

moves. However, it also requires more effort per Iteration since an extra gradient

evaluation is required. To improve efficiency, we include the update criterion (3.8). If

the criterion is satisfied, the Broyden update is used to obtain the correction term; if

not, the algorithm resorts to finite differences. Thus, a compromise is met between the

effort per iteration and the total number of iterations so as to yield the best overall

results. In our experience, a good choice of the parameters r\ and v is given by

u at the starting point and 0;l£v£0.7

When the improved coordinate bases algorithm is applied to Example 3.1 with x^ as the

Independent variable, the update criterion is always satisfied. The Broyden update

correction is used at every iteration for a total of 7 iterations. When Xj is chosen as the

independent variable, the update criterion forces the algorithm to use a finite difference

correction at the first two iterations, after which the Broyden correction is used for the

remaining three. The total number of iterations is the same as when finite differences

are used, but the extra gradient evaluation is only required for two out of the five

Iterations. Consequently, using the update criterion yields a solution technique which

requires less effort than either a pure finite difference or Broyden update method.

Further, the inclusion of the update criterion Is necessary to prove that the improved

coordinate bases algorithm is 1-step Q-superlinearly globally convergent. Figure 3

shows results for Example 3.1 using x^ as the independent variable. The ordlnate gives

the ratio of the distance of the current point from the optimum to that of the previous

point We compare the original, unconnected coordinate method to the improved

method, using the update criterion. While the original method exhibits typical 2-step



superlinear convergence, the ratio for the corrected method decreases monotonically,

reflecting the 1-step superlinear convergent nature of this algorithm.

Example 3.2

Min 3 £ Xi2

s.t. h, = xj (xj - 1) - lOxj = 0 j = 2 ... n (3.10)

x,0 = 0.1 x* = 0.0

Example 3.2 is a generalization of Example 3.1 and is intended to demonstrate the effect

of increasing the total number of variables while maintaining only one degree of

freedom. Table 2 gives the total number of iterations and the CPU time on a SUN3, for a

total of 20 - 100 variables using y^ as the independent variable. The tolerance for

convergence was set to 10"15.

Example 3.3

Min l l x t 2

s.t. hj = J5 fcn/2+j- 1) - IOX^+J = 0 j = 1 ... n/2 (3.11)

Xj° = 0.1 Xj* = 0.0

Also a generalization of Example 3.1t this formulation allows both the total number of

variables as well as the degrees of freedom to be increased. Variables xn/2 + x to y^ were

chosen as the Independent variables, which comprise one half of the total variables.

The convergence tolerance was set to 10"15. Table 3 gives the total number of iterations

and the CPU time on a SUN3 for 20 - 100 variables.

The results reported in Tables 2 and 3 correspond to a poor choice of independent

variables (large Y space moves) for Example 3.1 and 3.2 respectively. In terms of the

number of iterations, the performance is very similar to that observed for Example 3.1.

independent of the size of the problem. Again, the coordinate basis method requires

significantly more iterations for convergence than the orthogonal method. When an

approximation to ZTBYpy is included, calculated either via finite differences or using

the Broyden update formula, the resulting improved coordinate basis method requires

approximately the same number of iterations as the orthogonal method. As mentioned

above, the Broyden method actually does slightly better than finite differences in some

cases due to the special structure of the problem.



Let us now consider the total CPU time on a SUN3 until the convergence criterion is

met. Even though the time per iteration is less for the coordinate method than for the

orthogonal method, the extra iterations result in a greater total time. The results in

Table 2 are for problems with only one degree of freedom. As expected, the Broyden

update method is less expensive than using finite differences. While there is a

significant improvement in total time as compared to the coordinate bases method, the

results are not quite as good as for orthogonal bases. For so few degrees of freedom, the

effort required to evaluate the correction term is comparable to the time necessary to

invert the matrix in the orthogonal method, resulting in similar CPU times per

iteration. As we increase the degrees of freedom, as shown in Table 3, the savings

become more pronounced and our improved algorithm does better than both the

orthogonal and uncorrected coordinate methods.

4. Tailoring the Reduced Space Algorithm

In the previous section, we demonstrated the effectiveness of a correction factor to

improve the robustness of the coordinate bases decomposition method. After extensive

numerical testing of the type outlined in section 3.5 above, we are confident that the

resulting algorithm is sufficiently efficient and robust to apply to large, complex

process engineering problems. In this section, we demonstrate how the optimization

procedure can be coupled to a suitable equation solver which takes advantage of model

structure. As will be shown, this results in considerable reductions In solution time. In

particular, we focus on distillation calculations.

Two distinct approaches can be used to optimize the operating conditions of a

distillation column; sequential or Integrated. This is illustrated in Figure 4. First, we

select the independent variables for the system. Typical examples are the reflux ratio,

the distillate rate, pressure and the flowrates of liquid and vapor side streams. In the

sequential approach, these variables are fixed at an initial value, allowing the system

of equations given by the material and eneigy balances on each stage to be solved. The

independent variables are then updated using a suitable objective function. This

procedure is repeated until optimality is achieved. The sequential approach requires

that the model equations be solved to completion at each iteration. With an integrated

approach, on the other hand, the process model is included directly as a set of equality

constraints in the formulation of the NLP. The nonlinear model equations are then



solved as part of the optimization procedure. At present, most distillation

optimization involves a sequential strategy since most existing optimization

algorithms are inadequate to drive the complex models to optimality directly. As will

be seen from the results presented below, our improved coordinate basis algorithm

performs very well when used to optimize the separation of binary and ternary

mixtures. We are able to obtain considerable reductions in the total number of

iterations, as compared to a sequential strategy.

We can still do better, however, at least in terms of the computational effort per

iteration. General purpose SQP algorithms obtain the Y space move by applying Gauss

elimination to the linearized equality constraints at each iteration. Instead, we

propose to exploit the special structure of the mass and enthalpy balances for each stage

of the column. Recalling the form of these equations, we realize that a relationship for

tray i can depend at most on the state variables for stages i-1, i and 1+1. As a result, the

Jacobian matrix for the model equations is quite sparse. The non-zero elements form a

block tridiagonal structure as shown in Figure 4. In fact a major reason for the success

of the sequential approach has been the development of highly efficient equation

solvers with a special pivoting sequence that allows this block tridiagonal structure to

be exploited. In particular, the Naphthali-Sandholm models UNIDIST and NRDIST,

which are part of the SEPSIM process simulator (Anderson et aL, 1991), employ an

efficient Thomas algorithm to obtain the Newton step for the distillation model. Our

goal is to Incorporate this existing approach within the SQP framework to obtain the

solution of the distillation equations. As discussed earlier, the coordinate basis

algorithm is better suited for this Integration than orthogonal bases decomposition,

since the Y space move is obtained directly from a Newton step for the solution of the

model equations. Consequently, the structure of the Jacobian and any tailored

procedure to calculate the Newton steps are fully exploited. Finally, coupling of the

Naphthali-Sandholm solver with the optimization routine Is relatively

straightforward. The UNIDIST and NRDIST Interfaces and data structures remain

virtually the same and the physical properties need not be modified at all.



4.1 Numerical results using the UNIDIST distillation model

Here, we observe the benefits of an integrated approach for the optimization of

distillation columns, especially if the SQP algorithm is tailored to exploit the structure

of the problem. We consider the separation of a binary benzene-toluene mixture and a

ternary benzene-toluene-xylene mixture. These chemical systems allow the

assumption of constant molal overflow. Hence, for an initial investigation of the

behavior of our algorithm, we can avoid the additional complication of energy balances

for each tray. The distillation model within UNIDIST (see Appendix A), considers only

the mass balances on each stage of the column and is sufficient to represent this

situation. Temperature and composition effects are taken into account in the

calculation of the equilibrium constants; we use the UNIFAC physical property

routines that are part of UNIDIST.

The problem formulations have (N*C+2) variables and N*C equality constraints, where

N is the number of stages and C is the number of components. As decision variables we

select the reflux ratio and the pressure within the column. The objective function to be

minimized consists of the utility requirements for the column. It also includes a

penalty term to ensure that the column pressure does not deviate excessively from 1

atm. The objective function is formulated as

Details of the model are described In Appendix A. Aside from the state equations, we

also include purity constraints on the overhead and bottoms products.

V N

<0.02

For both the binary and the ternary systems we look at two columns of different sizes

with different amounts of feed. For the 12 tray column, feed Is introduced at the 5th

plate while the 15th tray is the feed stage for the 36 tray column. No liquid or vapor side

streams are considered. Further details on the initial conditions for the various cases

may be found in Appendix A. Finally, the dependent variables were initialized at

infeasible points, using the existing UNIDIST strategy for all of the cases we considered.



In Tables 4 and 5, we present the number of iterations and CPU time, respectively,

required for convergence (tolerance = 10'6). We consider the sequential approach as well

as the integrated approach, both with a general dense Gauss elimination procedure and

using the tailored approach for determining the Y-space move. Let us first consider the

number of iterations. For the sequential approach, we include both the number of

major (SQP) iterations as well as the total number of iterations. Since the model

equations must be solved to completion for each major iteration, the latter number is

much higher. Obviously, the total number of iterations will decrease significantly

when passing from the sequential to the integrated approach. It is interesting to note

that for the four sets of results presented here, the number of iterations for the

integrated approach is even less than the number of major Iterations for the sequential

one. However, a comparison of iteration counts is not veiy meaningful since the effort

per iteration is far less for the sequential approach. Instead, we need to look at the total

CPU time, as given in Table 5. Here, even when a dense Gauss elimination procedure is

used within the simultaneous method, the total time for convergence is consistently

lower than for the sequential approach. When the algorithm is tailored to solve the

linearized equality constraints more efficiently within the UNIDIST solver, the

computational effort is reduced even further, especially as the size of the problems

increases. Overall, there is over an order of magnitude reduction in the total CPU time

and this savings increases with the size of the problem.

4.2 Numerical results using the NRDIST distillation model

While the distillation model in UNIDIST was suillcient for the systems discussed in the

previous section, here we will consider a system which requires the inclusion of the

enthalpy balances. In particular, we look at the separation of the ternary benzene-

water-ethanol mixture. The state equations are given by the model in NRDIST (see

Appendix B). Temperature and composition effects are taken into account in the

calculation of the equilibrium constants using the UNIFAC physical property routines

within NRDIST.

Given a column with N stages and C components, the problem formulation includes

(N*(C+2)+2) variables and (N*(C+2)) equality constraints. We again use the reflux ratio

and the pressure as independent variables. The objective function is similar to the one

used in Section 4.1; the utility requirements of the column are to be minimized, which

can be formulated as



• = Qcondcnscr + Qrcboilcr

The separation is carried out in a 22 stage column, with two feed streams; on trays 18

and 21. We also include a purity constraint on the bottoms product, given by

l l 'cthano1 > 0.9999

Further details on the initial conditions are included in Appendix B. The dependent

variables were initialized at infeasible points, using the strategy provided within

NRDIST.

Table 6 gives the total number of iterations as well as the CPU time on a SUN3 required

to converge this problem within a tolerance of 10"7. Results are given for both the

sequential and the integrated approaches. While the two approaches require almost the

same number of SQP iterations, the sequential approach requires an additional 543

Newton iterations in order to converge the state equations for the column at every

major iteration. Consequently, the total CPU time for the integrated approach is

considerably lower. When we use dense Gauss elimination to obtain the Newton step, we

observe a 69% reduction in CPU time as compared to the sequential approach. When we

tailor the SQP algorithm in order to exploit the special sparsity structure of the

problem, we are able to reduce the time further by almost a factor of three. Overall,

there is almost an order of magnitude reduction in CPU time.

5. SUMMARY AND CONCLUSIONS

In this study we develop an SQP-based algorithm which is both efficient and robust

when applied to existing complex, Newton-based process models. Here we develop an

improved coordinate bases SQP algorithm which includes an update criterion that

allows the method to determine whether a computationally inexpensive correction

term (calculated via a Broyden update) is sufficient, or whether it must resort to a finite

difference correction. This approach is 1-step superlinearly convergent and the results

obtained on a set of test problems are very encouraging.

We then consider a specific class of process engineering problems, the optimization of

the operating conditions of a distillation column. Our improved coordinate basis

algorithm is particularly well-suited for such tailoring since the correction term



ensures robustness, while the definition of the Y-space maintains model sparsity. Thus,

by coupling the optimization algorithm with an efficient equation solver developed to

take advantage of the block tridiagonal structure of these problems, we obtain a

tailored SQP algorithm which performs significantly better than existing methods.

Moreover, this simultaneous approach takes advantage of the structure of process

models and has the potential to consistently out-perform conventional "black-box" or

sequential approaches to optimization.

Finally, it is clear that this approach is not limited to the optimization of distillation

columns. In particular, future work will employ a similar strategy to develop a tailored

SQP algorithm for optimization of two point boundary value problems (using the

Newton-based COLSYS package) as well as larger problems involving process

flowsheets.
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Figure 1. Geometrical Comparison of Various Decomposition Strategies

Legend

zlt Z2 variables

f(z) objective function contours

h(z) = 0 linear equality constraints

z° current point

Zpz Z space move

Y space move for orthogonal bases

Ypy2 Y space move for coordinate bases
using Zi as the independent variable

Ypy3 Y space move for coordinate bases
using Z2 as the independent variable

Zpz and Ypy3 modified due to
addition of correction term
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Solve the system
(VhlYk)pY= -hk

using a general or tailored solver to obtain

(Evaluate the reduced gradients J

Ifk>0
Update A and evaluate wk
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Solve the QP subproblem
Min {V$Z + vtf p z + 1/2
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Figure 2. Improved coordinate bases algorithm
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Figure 4. Comparison of sequential and Integrated approaches

for distillation optimization



Independent
variable = xx

Independent
variable = Xj

Orthogonal
bases

5

7

No
correction

6

11

Coordinate bases

Finite
difference
correction

5

7

Broyden
update

correction

6

7

Limited
memory
Broyden

6

7

Update
criterion

5

7

Table 1. Iterations until convergence for Example 3.1



Number of
variables

(Degrees of
freedom)

20(1)

40(1)

60 (1)

80(1)

100(1)

Orthogonal
bases

Its Time

8

7

6

6

6

3.9

17.2

41.6

94.5

174.8

No correction

Its Time

10

11

11

11

10

4.6

26.1

75.9

168.5

287.8

Coordinate bases

Finite difference
correction

Its Time

7 3.7

7 18.0

7 51.4

7 112.4

T 209.7

Broyden update
correction

Its Time

8

7

6

7

T

3.7

16.7

41.7

107.5

201.9

Table 2. Iterations and CPU time on a SUN3 for conveigence
of Example 3.2

Number of
variables

(Degrees of
freedom)

20 (10)

40(20)

60(30)

80 (40)

100 (50)

Orthogonal
bases

Its

9

8

9

8

8

Time

5.5

25.3

73.4

160.3

299.8

No correction

Its

14

17

18

18

17

Time

6.5

39.1

119.1

232.0

458.8

Coordinate bases

Finite difference
correction

Its Time

9 5.1

9 27.4

10 90.4

10 221.0

10 377.2

Broyden update
correction

Its

9

9

9

9

9

Time

4.9

23.7

66.2

140.3

258.6

Table 3. Iterations and CPU time on a SUN3 for conveigence
of Example 3.3



Problem

2 components
12 trays

2 components
36 trays

3 components
12 trays

3 components
36 trays

Sequential approach

Major iterations

68

18

16

28

Total iterations

1760

196

222

302

Integrated approach

16

11

10

12

Table 4. Number of iterations for various distillation examples
using the UNIDIST model.

Problem

2 components
12 trays

2 components
36 trays

3 components
12 trays

3 components
36 trays

Sequential
approach

1022.8

337.5

210.1

853.2

Integrated approach

General

53.8

223.6

62.0

613.4

Tailored

42.9

87.3

42.5

147.4

Table 5. CPU time on a SUN3 for various distillation examples
using the UNIDIST model.



Example problem 1: Separation of benzene-toluene using a 12 tray column

Feed stream:

Distillate rate:

Stage Benzene Toluene

5 153.846 mol/s 195.654 mol/s

153.4 mol/s

Reflux ratio

Pressure

Purity of benzene on top

Purity of benzene in bottoms

Objective function

Initial point

3.5

1 atm

0.753

0.0266

10.919

Optimal solution

4.40

0.964 atm

0.980

0.0179

17.543

Example problem 2: Separation of benzene-toluene using a 36 tray column

Feed stream: Stage Benzene Toluene

15 400 mol/s 500 mol/s

Distillate rate: 394 mol/s

Reflux ratio

Pressure

Purity of benzene on top

Purity of benzene in bottoms

Objective function

Initial point

3.5

1 atm

0.776

0.013

28.071

Optimal solution

1.48

0.990 atm

0.990

0.020

20.516



Example problem 3: Separation of benzene-toluene-xylene using a 12 tray column

Feed stream:

Distillate rate:

Stage Benzene Toluene Xylene

5 153.846 mol/s 150mol/s 45.652 mol/s

153.4 mol/s

Reflux ratio

Pressure

Purity of benzene on top

Purity of benzene in bottoms

Objective function

Initial point

3.5

1 atm

0.759

0.0207

10.924

Optimal solution

3.59

0.972 atm

0.980

0.0179

14.944

Example problem 4: Separation of benzene-toluene-xylene using a 36 tray column

Feed stream:

Distillate rate:

Stage Benzene Toluene Xylene

15 400 mol/s 410 mol/s 90 mol/s

394 mol/s

Reflux ratio

Pressure

Purity of benzene on top

Purity of benzene in bottoms

Objective function

Initial point

3,5

1 atm

0.776

0.0130

28.073

Optimal solution

1.3498

0.991 atm

0.990

0.020

19.499



Iterations

CPU time on a SUN3

Sequential

approach

8 (543 Newton)

1815.3

Integrated

General

9

568.9

approach

Tailored

9

205.1

Table 6. Number of iterations and CPU time on a SUN3
using the NRDIST model.



Appendix A* Distillation optimization using the UNIDIST model

Given a column with N stages and C components, we have a total of NxC relationships.

At each stage, we have C-l component mass balances which may be expressed as

- £ l . 1 . f = o i = l , C-l

l01 and 1N+U are set to zero. The total mass balance on each tray is given by

^n " n̂.1 " *n.2 " — " V c = ^

The nomenclature u s e d in the above express ions i s as follows:

ln 4 molar liquid flowrate of component i on stage n

Ln total liquid flowrate on stage n

Vn total vapor flowrate on s tage n

fn4 feed of component i on stage n

Sn
L liquid side stream on stage n

S n
v vapor side stream on stage n

V
L, = Kn17^ where K^t is the equilibrium ratio



Appendix B. Distillation optimization using the NRDIST model

Given a co lumn with N s t ages a n d C componen t s , we have a total of Nx(C+2)

relationships. At each stage, we have C-l component m a s s ba lances which may be

expressed as

i.J - fn,J = ° i== l ' C'1

l0 4 and vN+14 are set to zero. At each stage we have a bubble point relation of the form

as well as an enthalphy balance

- V , H , - Q = 0
n-l **n-l «n

For the reboiler (n=l) and the condensor (n=N), the enthalpy balance is replaced by the

specifications of the product flows:

Z W - LN = o

= 0

The nomenclature used in the above expressions is as follows:

1^ molar liquid flowrate of component 1 on stage n
total liquid flowrate on stage n

Vn total vapor flowrate on stage n

K_ - 1
vnA - vn ^^—r^- molar vapor flowrate of component ion stage n

f̂ 4 feed of component 1 on stage n

Sn
L liquid side stream on stage n

S n
v vapor side stream on stage n

!£„4 equilibrium ratio

h^ enthalpy of liquid on stage n

H^ enthalpy of vapor on stage n

Qn heat added at stage n



Example problem: Separation of benzene-water-ethanol using a 22 tray column

Feed streams: Stage

18

21

Benzene

0.0 mol/s

59.5 mol/s

Bottoms product: 28.7 mol/s benzene

Top product: 114.43 mol/s total

Water Ethanol

5.1 mol/s 31.5 mol/s

20.92 mol/s 26.11 mol/s

Reflux ratio

Pressure

Purity of ethanol in bottoms

Utility requirements

Initial point

io-7

1 atm

0,999827

25.03

Optimal solution

3xlO'8

5.34788 atm

0.9999

24.34


