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Section 1 Introduction and Cverview 1

1.- Introduction and Overview

This report describes the implementation of a compiler for preliminary Ada [15]. The compiler runs on
a DECsystem10 or DECsystem20 under TOPS-10 or TOPS-20 and produces code for a VAX-11/780
under UNIX,

This paper is intended primarity for others who intend to implement Ada. The reader is assumed to be
tamiliar with Ada, and with conventional compiler implementation techniques.

Two separate but related efforts are described in this paper. The Front End of the compiler was done
at Intermetrics, Incorporated; the Back End was done at Carnegie-Mellon University. Strictly
speaking, the name "Charrette” refers only to the Back End, but we have combined reports of the two
efforts in order to provide a complete description of the compiler. The Front End is written in
Simuia [2); the Back End is written in BLISS-10 {30].

Much of the material for this report was taken from four papers submitted to the Ada Symposium in
Boston in December, 1980 [12, 25, 26, 27]. These papers have heen reworked to fit together in a
unified report. We have also included a number of working notes from the Charretté effort that
examine aspects of the compiler not covered by the papers.

The remainder of this chapter introduces the goals of the two projects, the structure of the compiler,
and the intermediate languages used in the compiter. Chapter 2 describes the run-time represen-
tation of types and variables. Chapter 3 describes the Front End. Chapter 4 describes the phases of
the compiler that transform the output of the Front End (TCOLAda) into a lower-level intermediate
language (MIL). Chapter 5 discusses the transiation of MIL into assembly language. Chapter 8
contains a number of the Charrette working notes.

Alt of the Ada program examples in this document use the revised Ada syntax [14].

1.1 Goals and Non-Goals

1.1.1 The Front End

As a part of the Ada test and evaluation effort, Intermetrics developed a program to check the
semantic correctness of Ada prcgrams. This was done for several reasons: first, to develop an
operationai definition of the language semantics against which other transiators could be compared;
second, to determine the impact of the language rules on the design complexity of such a transtator;
and third, to understand better how to implement translators that could process Ada programs.
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Because changes to Ada were anticipated, the design had to be generai enough o handle Ada’s
semantic rules, and modular enough to incorporate changes in the language as they occurred.

1.1.2 The Back End

The Back End project had a muitiplicity of goals. Our primary intentions were to produce a compiler
for an extensive subset of Ada in a short period of ime, 10 explore the interactions among language
features. and discover where the implementation problems might lie. Despite our desire to get a
compiler running quickly, we wanted to produce a clean design. Some of us were interested in
eventually exploring strategies for implementing some of the novel aspects of Ada, such as separate
compilation, tasking, and generics.

The project was also characterised by a number of things we explicitly decided not to do. We did not
intend to produce a polished user-friendly compiler. The project was motivated by compiler
implementars and language designers rather than by a user community. This freed us from the need
to spend time on those areas that were not strongly related to language implementation issues.

We adopted the following guiding precepts:

e Choose implementation techniques that are as general as possible; avoid schemes that
require special case analysis.

¢ Avoid optimisations unless they can be obtained with little effort.

o Write straightforward compiler code; prefer readability of the compiler sources to
efficiency of the running compiler.

1.2 Compiler Structure

The Front End consists of five phases. They are typical of compilers built with the use of parser
generation systems. A biock diagram of the Front End is shown in Figure 1-1.

The Back End consists of seven phases. The phases can be grouped according to the language they
take as input and the language they produce as output. A block diagram of the Back End, illustrating
its phases and intermediate languages, is shown in Figure 1-2. The intermediate languages are
described in Section 1.3.

The first two phases (TYPEREP and XFoRrM) transform TCOL, . into MIL. The next three (BLOCK,
ACTREP, and CoDE) transform MiL into OBJECT. The seventh {Peer) performs peephaie optimisations
from OBJECT form into OBJECT form, and the last (OuTpPuT) transforms OBJECT into assembly

language.
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Semantic Analyzer

rarser
Lexical Jd Syntactic Trae Ly Semantic - TCOL
Analyzer A Analyzer Buildar Aralyzer M Gengrator
Figure 1-1: Block Diagram of Front End
Front En
1 ' &— TCOL Ada
TypeRep
Xform
| é— MIL
Biock |
ActRep
Code
| ¢~ OBJECT
Feep
Output

&~ VAX assembly language
VAX assembler

Figqure 1-2: Back End Phase Structure

1.2.1 LEXICAL ANALYSIS

The LExiCAL ANALYSIS phase usagd by the Front End is a finite siate machine that breaks saquences of

characters into tokens. It is automatically generated by a parser generator system,
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1.2.2 SYNTAX ANALYSIS

The SYNTAX ANALYSIS phase, sometimes termed a parser, is also produced by a parser generator .
system using an LALR(1} grammar. It produces a list of production rules, identifiers, and literals for
use in building a derivation tree,

1.2.3 TREE BUILDER

The TREE BUILDER acccepts the list of productions and identifiers and creates a tree that can be
manipulated by the semantic analysis phase. This is done by allocating a particular Simula class
(variant record) for each rule application and linking these classes {records) together with pointers.

1.2.4 SEMANTIC ANALYSIS

The design of the Front End revoives around the SEMANTIC ANALYSIS phase. This phase performs a
tree walk over the program, checking that all declarations, expressions, and statements meet the
restrictions in the language reference manual. All binding of names for separately compiled
programs, overload resolution, and type checking is done by this phase. Evaluation of static
expressions, as required for type checking, is also done at this time. '

This phase is described in detail in Chapter 3.

1.2.5 TCOL GENERATOR .

The last phase of the Front End, the TCOL GENERATOR, examines the program tree and translates it
into an equivalent TCOL format for use by later phases. Conceptually, this phase is the first code
generation phase since the original parse tree of the program is discarded and replaced by the
simpler TCOL representation.

1.2.6 TYPEREP
The name TYPEREP is an abbreviation of "Type Representation”. Its purpose is to represent Ada
types and subtypes in terms of MIL types'. It generates the compiler’s internal representation of the

gescriptors needed at run time.

Tvperep performs a recursive walk over the program tree looking for type and subtype information.
For each type or subtype, TYPEREP generates appropriate descriptors for information that must be

available at run time.
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1.2.7 XFORM

The name XFORM stands for "Tree Transform”. This phase has the job of transforming Ada variables,
operations, and statements inte MIL variables and expressions. By the end of XForMm, all of the
priginal TCOLAda farm of the program has been discarded.

XFORM is described in Chapter 4.

1.2.8 BLock and ACTREP

BLocCK's function is to identify the static nesting level of each piece of code in the MIL program. This
gives display levels for each variable, identifies the correct exception handler for each context, and
locates the targets of gotos and exits. BLOCK also determines the maximum nesting of blocks within
a subprogram, so that a vector of saved stack pointers may be allocated in the activation record for

the subprogram (see Section 5.1.3).

The name ACTREP stands for "Actual Representation”. In MIL, variables are represented as machine-
independent integers and locations. ACTREP decides how much actual storage to aliocate for each
object and decides on the layout of records and activation records. It also has the responsibility for
handling machine-dependent Ada operations and attributes such as *SI1ZE, 'BITS, and 'POSITION.

1.2.9 Cobe

CoDE produces machine code from MIL. 1t has two portions. One generates code to allocate and
initialise declared MiL variables. The other generates machine code from MIL expressions. Both
actions are performed in the same tree walk,

CoDE treats the VAX as a pure stack machine. This approach eliminates the need to do register
allocation, and allows this phase to ignore the context in which an gxpression occurs when
generating code.

CooE is discussed in Chapter 5.

1.2.10 Peep

Peep is a simple peephole optimiser: it is one of the few things we did to improve code quality. This
phase is driven by a database of optimisation patterns described in a notation much like VAX
assembly janguage. The patterns are converted by a SNOBOL program into BLISS code which
manipulates the OBJECT-form data structures,

PEEP is described more fully in a separate paper [19].
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1.2.11 OQuTPUT

OuTPUT transforms OBJECT notation into VAX assembly code. It performs a simple graph-to-text
transiation, and would be easy to modify to produce object files.

1.3 Intermediate Languages

It is possible to view the compiler as a set of transformations between intermediate languages. Each
transformation is accomplished by one or more compiler phases. This section gives an overview of
the intermediate languages. Discussion of our experiences with these languages is deferred to
Section 7.3.1. ‘

1.3.1 LGN

Each of the internal forms of a program is a graph. Nodes within the graph are typed. Each node
contains a number of attribute/value pairs. The type of a node determines what attributes it may
have. For exampie, in one form there are tree nodes representing the parse tree of the program and
several kinds of symbol nodes representing symbol table information.

In order for a human being to examine these internal structures they must have some textual
representation. The notation used is called LGN, for Linear Graph Notation [3]. The general shape of
the LG form of a node is shown in Figure 1-3. Each node has a label which is denoted by an identifier
followed by a colon. Each node also has a type that determines the set of attributes it may have. A
portion of a program tree and the correspending LGN are shown in Figure 1-4,

labsl: node type
(attribute-name-1 value(s))
(attribute-name-2 value(s))

Figure 1-3: Characterisation of LGN

1.3.2TCOL

TCOL 440 is an intermediate language used to represent Ada programs after semantic analysis. it was
designed originally for use in the PQCC project [21]. The TCOL form of a program resembies an
annotated parse tree together with symbol! table information. 1t differs from a parse tree in that
operatar identification, type checking, and other aspects of semantic analysis have been performed.
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/N
A := B*C; A *
/ A\
8 C
Li: TREE-NODE (OP assign) (SUBNODES L2: L3:)
L2: TREE-NODE (OP 1leaf) (DEFN symbol-node-for-A:)
L3: TREE-NODE (OP multiply) (SUBNODES L4: L5:)
L4: TREE-NODE (OP leaf) (DEFN symbol-node-for-B:)
LG: TREE-NODE (OP leaf) (DEFN symbol-node-for-C:)

Figure 1-4: TCOL For a Portion of a Program Tree

TCOL is a rather high-level intermediate form. lts principal advantage is that it retains maost of the
information provided to the compiler by the source program rather than reducing the program to
some simpler form in which much of this information is missing or must be painfully reconstructed.

Figure 1-4 shows the TCOL tree for a simple expression. T(.‘,Ol.ﬁ“ja is defined in the TCOLM‘?l
report {3]; a partial description is given in a paper by Brosgol [4].

1.3.3 MiL

MiL stands for Machine-independent Intermediate Language; it was designed as part of the Charrette
project. Like TCOL itis a tree-based language. It resembles implementation languages like BLISS or
C more closely than high-level languages like Ada. Our principal reason for choosing this form as one
of the intermediate steps in the compiler was to force a clean separation between the machine-
independent portions of the compiler and the machine-dependent ones. '

The data structures representable in MIL are integers, pointers, and contiguous blocks of
heterogeneous storage. MIL is an expression language; mast constructs return a value. MIL retains
fairly high-level control constructs such as if, for, and case. This aliows the machine-dependent
portion of the compiler to chose special instructions intended to be used for such constructs without
having to perform extensive analysis of a lower-level representation.

MIL is also discussed in Section 4.1. A complete definition of MIL is given in Appendix Vi.
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1.3.4 OBJECT

The OBJECT intermediate form is the compiler's internal representation of VAX machine instructions.
This form is a doubly-linked list of nodes representing machine instructions; nodes are linked together
in the order the instructions will appear in the assembly language program. This intermediate form is
based on the data structure used in the FINAL phase of the BLISS-11 compiler {31]. An example of a
machine instruction and the corresponding OBJECT form is shown in Figure 1-3.

ADDL2  (SP)+,RO

L1: OBJECT (MOP ADDL2)(OPERAND L2: L3:)(PREV LO:) (NEXT L4:)
L2: ADDRESS (MOP AutolIncrement){OPERAND SP)
L3: ADDRESS (MOP Register) (OPERAND RO)

Figure 1-5: OBJECT Form of a VAX Machine Instruction

1.3.5 VAX Assembly Language

We compile to assembly language primarily to aveid worrying about the details of object file formats.
This alse allows us to transfer text files to the target machines, avoiding problems of compatibility ot

binary file formats.
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2. A Run-time Representation for Ada Variables
and Types

This chapter presents a run-time representation for Ada variables and types. The type and subtype
facilities of the Ada programming language permit some subtype information to be determined
dynamically. This subtype information requires a run-time representation, and its dynamic nature
influences the representation of variables. [n this chapter, we first review Ada’s types and subtypes to
identify some of those aspects that affect run-time representation. We then present the particular
representation scheme used in the Charrette Ada implementation. The scheme is straightforward and
consistent in that a variable is represented the same way independently of whether it is on the stack,
on the heap, or a component of another variable. The design treats Ada’s discriminants and
discriminant constraints as a form of parameterised types, where the parameterisation permits
different instances of a type to have different variants and different sizes for array fields. Compaosition
of such parameterised types is supported. We explain how several Ada operations are handled by our
particular representation. We briefly discuss some allernative approaches to Ada representation,

comparing them to our design,

2.1 Review of Ada

This section reviews some aspects of Ada that impact run-time representations [15, 17].

2.1.1 Constraints and Subtypes

The Ada language has the noticns of type and subtype. A subtype is a type with constraints. Two
variables may have the same type, but different constraints, and thus, different subtypes. Constraints
may be run-time expressions; thus, in general, if an operation requires subtypes to match, the
checking must be done at run time.

There are several kinds of constraints. Scalar types may have range constraints. Arrays have index
constraints, which determine the array bounds. These bounds must be checked upon subscripting
and slicing and upon assigning and comparing entire arrays. Slices likewise have index constraints.
Records may have discriminant fields which are used as the array bounds on another field in the same
record or as the tag on a variant part. A record's discriminants may be restricted to specific values by
a discriminant constraint. Access types may have either index constraints or discriminant constraints,
depending on whether the accessed object is an array or a record, respectively.

In addition to requiring run-time checking, Ada permits a programmer to make attribute inquiries. For
example, the user may obtain the lower bound of an array via the ' FIRST attribute.
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2.1.2 Dynamic Arrays Within Records

in much of Ada, the subtype constraintslfor a particular variable are fixed upon allocation of the .
variable. This holds for allocation on the stack upon block entry and for allocation on the heap by
new. One exception occurs with an unconstrained record variable having a discriminant that is used
as an array bound. The variable Z in the example below is such a record.

subtype Natural is Integer range 1..Integer’LAST; -- repeated from
type String is array (Natural range <>) of Character; -- package STANDARD

type MyVStr(Len: Integer range 1..133 := 120) is
record
Sval: String(1..Len);
end record;

X: MyVStr{Len => 39},
Y: MyvStr{lLen => 15);
Z: MyvStr; -- Unconstrained. The discriminant
-- Len may take on any value in the range
-- 1..133, and the array field SVai may
-- become as big as 133 elements. Initially,
-- Len is 120 and SVa/ has bounds 1..120.

begin

Z =Y

=X

X := 17, -- Requires check that Z.Len = 39

Since it has no discriminant constraint, the record variable Z may have its discriminant Len changed
by an entire record assignment; this also changes the bounds (i.e., the index constraints) on the array
field SVal. Thus, we require some changeable association of the array variable with its subtype
constraints.

In the above discussion, we made such dynamic arrays within records appear to be an exceptional
case in that their constraints changed after creation of the variable. However, one may view an entire
record assignment that changes discriminants as re-creating the component variables. This re-
creation view is especially appropriate for an entire record assignment that changes variants, for such
a change conceptually destroys the component fields belonging to the old variant while creating the
components that betong to the new variani.

Implementations may strive for space efficiency in representing the constrained instances of a type
(e.g., the variables X and Y above). We can mix constrained and unconstrained instances of a record
in assignments, with checking in the appropriate cases. We can view such mixing as involving mild

changes of representation.
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2.1.3 Heap Objects and Constraints

For access types, the user may defer supplying index and discriminant constraints for the accessed
type until the object is actually ailocated via new. For example,

type PtrString is access String;
P: PtrString;

begin

P := new String(l..4000);

P new String{M..N);

1]

In general, the subtype constraint information for each heap object must be associated with that
particutar object, to make it feasible to access this information via a pointer to the object.

2.1.4 Subtype Constraints and Formal Parameters of Subprograms

For unconstrained array formal parameters, the formal inherits the bounds of the actual array
parameter. Thus, the bounds of the actual must be available throughout the call on the subprogram.

For unconstrained record formal parameters, the formal initially has the discriminant values cf the
actual. If the actual is constrained, then so is the formal. Furthermoere, the subprogram body may
inquire whether the actual parameter is constrained by applying the *CONSTRAINED attribute to the
formal parameter.

2.1.5 Camposition of Discriminants and Disc¢criminant Constraints

In preliminary Ada, a discriminant of a record could only be used as an array bound oras atag on a
variant part. in revised Ada, a discriminant may also be used in a discriminant constraint on another
field of the record. This feature permits composition of records with composition of their discriminant
constraints, since a discriminant constraint on an outer record may be used in a constraint on an
inner record. This allows two instances of the same outer record type to have different constraints on
an inner record field, for example, the variables ATS and BTS below have different constraints on their
S1 field.

type TwoStr(N1,N2: Integer range 1,.512) is
record
51: MyVStr(Len => N1);
S2: MyVStr(lLen => N2);
end record;
ATS: TwoStr{N1 => 39, M2 => 23);
BTS: TwoStr(N1 => 15, N2 =» 23);

Ada’s discriminant and discriminant constraint mechanisms can be regarded as a form of
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parameterised types, where the parameterisation permits ditferent instances of a type to have
different variants and different sizes for array fields [10].

2.2 A Particular Representation

This section describes our run-time representation scheme. We first give overviews of the
representations of types, subtypes, and variables, and then fill in the details in later sections. Section
4.2 covers the transiation of the Ada source program into these representations.

2.2.1 Overview of Representation of Types and Subtypes

As explained in Section 2.1.5, Ada's discriminants and discriminant constraints may be viewed as type
parameterisation. One may also view array types and index constraints as being a parameterisation of
arrays; the index constraints are the parameters. We employ this view in our implementation. Each
non-scalar type definition in the Ada source program is described at run-time by a type template. A
type template contains a tag to indicate whether it is for an array, record, or access type. A type
template for an array or record may take formal parameters. The formal parameters of a record type
template are simply its discriminants. The formal parameters of an array type template are the bounds
for the array plus any parameters to the element type.

When a type is used in an Ada source program, constraints may be supplied. In our run-time
representation, these constraints become actual parameters to a type template.

CRTag: one of CRConstrained, CRUnconstrained,
or CRParentsParam

CRvalue: depends on CRTag:

when CRConstrained, scalar value of constraint

when CRUnconstrained, pointer (absolute) to
scalar type descriptor for this type (if
known), or nil (if unknown),

when CRParentsParam, index of parent's
parameter to use, e.g., use the third
parameter of my parent.

Figure 2-1: Constraint-rep-block

An actual type parameter is represented by an entity called a constraint-rep-block (see Figure 2-1). 1t
handles three kinds of actual type parameters: {1) constrained, (2} unconstrained, and (3)
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constrained by a type parameter of the enclosing variable (the parent). A constraint-rep-block has
two fields: a tag indicating which of the three cases exists and a value whose interpretation depends
on this tag. '

All the type actuals in an index or discriminant constraint are packaged up in an entity called a call
block. A call block may be thought of as an actual argument list. It also contains a pointer ta the type
template to which it is being applied, and a count of the number of type actuals. Thus, a subtype
formed by an index or discriminant constraint is represented by a call block.

A record has component fields, each having its own subtype. For each field, the type tempiate for a
record type contains a pointer to the template or call block for that field. An array type template
contains a pointer to the template or call block for the component type.

Some of the goals of this parameterised treatment of Ada types are:

o Handling parameterisation and composition. For an instance of a composite type, actuat
parameters must be passed down from the top-level type into the component types. i

¢ Handling unconstrained instances of types. Just as other actual parameters must be
passed down, the special parameter value "unconstrained" must also be passed down so
that the correct amount of storage will be allocated for the components,

+ Handling discriminants being used in discriminant constraints on cther fields.

» Handling a constrained instantiation of a parameterised type T nested inside another type
T2 when this constraint is not a parameter of T2. Faor example,

type T2 is record A: T(3,M); end record;

(Here, the variable M is from a surrounding scope.)

2.2.2 Overview of Representation of Variables

Constraint information is stored in every instance of an array or record variable. Each array variable
has its own copy of the index constraints {the bounds) and each record variable has its own copy of
the discriminants, plus a single bit that tells if it is constrained.

The representation of both array and record variables consists of two parts, the fixed part and the
dynamic part. The fixed part has a size which is known at compile time, and is thus allocated at a
manifest (i.e., compile-time-known) offset in the enclosing record or stack frame. The dynamic part
has a size which must be determined at run time. The fixed part of a variabie contains a pointer {as an
offset) to the corresponding dynamic part.

Our representation uses offsets for internal pointers within variables rather than absolute addresses.
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Records are stored contiguously: the fixed parts for the fields is immediately followed by the dynamic
parts. These implementation decisions are intended to facilitate using block copying for assignment.
Our original motivation for block copies was that the preliminary Ada lLanguage Reference
Manual [15] and Rationale [16] imply that block copies are feasible. We wanted our design process to
check these implicit claims. As our design and implementation have progressed, we have never

encountered a reason for abandoning these representations.

2.2.3 Scalar Subtypes

The descriptor for a scalar subtype is shown in Figure 2-2. This descriptor also handles scalar types,
as a scalar type T has a range of T'FIRST through T'LAST. The tag may be either of two values,
StatScaiar or DynScalar. If the tag is DynScaiar, then the range is run-time determined, and variables
of this subtype are given a liberal allocation of one VAX longword (4 bytes). If the tag is StatScalar,
then the range was compile-time determined, and variables are given only as many bytes as this range
requires. The motivation for this special-casing is to allocate strings as one character per byte; this is
desired both for efficient storage utifisation and for compatibility with other software on the VAX.

Tag: one of StatScalar or DynScaiar

Hi: 'LAST for subtype

Figure 2-2: Scalar Subtype Descriptor

2.2.4 Arrays

The type descriptor for an array type is shown in Figure 2-3.

An array variable has two parts, fixed and dynamic. The fixed part is a fairly conventional array
descriptor, as shown in Figure 2.4, The dynamic part is the storage for the array elements
themselves. The VirtualZeroCrigin field of the fixed part is an offset to the array elements which has
had the lower bounds already subtracted off. For an n-dimensional array, we store n-1 multiptiers.
The extra multiplier field is used to store the size of an individual element. (These techniques are

discussed in Gries [9].)

We represent a slice as an array variable fixed part that has no dynamic part of its own. Instead, its
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Tag: always ArrayTemplateTag
NFParams: number of formai type parameters to
this type

NDims: number of dimensions

EltDesc: pointer {absolute) to type or
subtype descriptor for the element type

IndexTyp: pointer {absolute) to the scalar
subtype descriptor for the index type
for this dimension '

(Repeated for each dimension)

Figure 2-3: Array Type Descriptor

fixed part points into the middle of some other array variable's elements. This means that slices look
like ardinary array variables. We are able to take a slice of an array and then pass that slice as an
actua!l parameter without copying any elements. If our array variable representation were split such
that array bounds were assumed to be adjacent to the elements, then slicing would require some
copying of elements for the slice to become an ordinary array variable.

Tag: always ArrayVariableTag

OffsetBase: pointer (offset) to base of
dynamic part

NDims: number of dimensions

TotalESize: total size of elements

Lower Bound (These 3 fields are
---------------- repeated NDims times)

VirtualZeroQrigin: offset to virtual origin
of element (0.0,...,0)

Figure 2-4: Array Variable, Fixed Part
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2.2.5 Records

The descriptor for a record type is shown in Figure 2-5.

Tag: always RecordTemplateTag

NFParams: number of formal type parameters to
this type

NFixed: number of fixed (i.e., non-variant)
fields

NVariants: number of variants (is number of
when’'s). If zero, the next 2 fields,
though present, are meaningiess

PtrVariantMap: pointer to another structure,
that tells which case choices
apply to a variant (not pictured)

CasaParIndex: index of the formal parameter
to use for constraining this case

FieldTyp: pointer (absolute} to the type or
subtype descriptor for this field

(Repeated for each field of the record)

VariantTyp: pointer to a call block, which 1in
turn points at a record type descriptor
for this variant’s component list

(Repeated for each variant}

FormalParamF1d: indicates which field of the
record this formal parameter applies to

{Repeated for each formal parameter)

Figure 2-5: Record Type Descriptor

Figure 2-6 shows the record type templaté created for the record type MyVStr in Section 2.1.2. Also
shown are the call block created by the MyVStr(Len=>39) discriminant constraint, and the array
type template for the type String. ’

Variant records are handled by making each variant compenent list look like another record type
descriptor. There is one variant compenent list per occurence of when in the declaration. The ton-
IwamdeWd%mmmmwpwmammdemmummmﬁmmmmﬂd%m@msTMcw
block is interposed to allow discriminants (parameters) of the outer record to be used inside a variant
component list. For the variant record type VR in the example below,
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type MyVSir(len: Intager range 1..133 := 120) is

record

Sval: String(1l..Len);

end record;

Figure 2-6: Tempiatss anc Call Blocks for MyVStr and String
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-

type VR(N: Integer range 1,.4) is
record

case N of

when 2..3 => M: Integer;

S: String(2..N);

when 1 | 4 => T: Integer;
end case;
end record;

we get the type template structure shown in Figure 2-7,

In a variant record, we need a way of mapping a value of the discriminant (here, N) into an indication
of which variant is appropriate for that value. We number the variants starting at one, and use these
numbers to designate the variants. Let us call these designators variant indices. For the record type
VR, the variant indices are "1" and "2", designating the "when 2..3" and the "when 1 | 4" variants
respectively. The variant map is the structure that provides a mapping from the value of the variant
record's case discriminant into the variant index appropriate for that value. Thismapis a table with
one entry for each choice that occurred within the variants of this case; in the above example, the
table has three entries, for 1", "4", and "2..3". The variant map table also a distinguished entry far
“others", if it is present. The expressions used within choices are required by the language to be
known at compile time. In nested variants, the same discriminant may potentially be used with more
than one case; thus each case has its own variant map. The variant map is used during variable
creation, including the construction of record aggregates, for it provides the mechanism to determine,
from a value of the discriminant, which variant to create.

A record variable has two parts, fixed and dynamic. The fixed part is shown in Figure 2-8, and
contains an offset to the base of the dynamic part. The dynamic part is shown in Figure 2-9. The
storage for the dynamic part is allocated contiguausly. The dynamic part is subdivided into fixed and
dynamic parts for its fields. The fixed parts for all the fields come first. These have manifest sizes and
offsets. Then come the dynamic parts for the fields. If a field has a dynamic part, then its fixed part
contains an offset pointer to this dynamic part. Figure 2-10 shows the layout of a MyVStr record

variable.

The component lists of variants are treated as sub-records. Any nested case's become sub-records
of the sub-records. While it wouid have been possible to flatten variant component lists up into the
containing record variable, the sub-record approach reduces the amount of special-casing, since the
scheme must handle nested records anyway.

When accessing a field in a variant, checking must occur to make sure that the current variant
contains this field. This is easily done by comparing the variant index for that field (known at compile
time) to the CurVariantindex field of the record variable’s representation.
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CallBiockTa . C3template -
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—
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Figure 2-7: Templates for the Variant Record Type VR
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Tag: always RecordVariableTag

IsConstrained: true iff this record variable
is constrained

VarDynSize: total size of the dynamic part of
this record variable. Does NOT change
on assignment -

RecOffset: offset to the dynamic part

Figure 2-8: Record Variable Fixed Part

CurDynSize: current (i.e., in use) size of the
dynamic part of the record’'s value. May
change on assignment

CurVariantIndex: tells which variant is
currently valid for this record

First Field's Dynamic Part, if any
(Repeats for each field)

Figure 2-9: Record Variable Dynamic Part

2.2.6 Access Types

A variable of an access type consists of a fixed part that contains just the address of the referenced
heap object; it has no dynamic part.

The type descriptor for an access type consists of a tag indicating that it is an access type, plus an
absolute pointer fo the accessed type or subtvpe.

Ada allows declaration of subtypes of access types; this permits supplying constraints on which heap
obiects the pointer may reference. The constrdint on the access type means that anly objects that
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satisfy the constraint may be referenced by the pointer. The compiler represents this subtype by
keeping track of the address of the call block that was constructed during the staboration of this
subtype. This call block is used whenever a variable of this subtype appears in a context that requires
constraint checking. The compiler uses both the variable and the call biock, addressing them
independently. For example, in passing a variable of an access subtype as an actual parameter,
constraint checking may be necessary both before and after the call.

This implementation of access constraint checking is analogous to the implementation of subrange
checking for scalar subtypes. The scalar variable and the scalar subtype descriptor are addressed
independently, and the subtype descriptor (or, likewise, the cail block) is shared amongst all instances
of the subtype.

2.2.7 Variable Allocation and the Run-time Allocation Routine

Type templates and call biocks are used during the allocation of variables. A run-time routine
interprets them to allocate the dynamic parts of variables. The dynamic storage is obtained by
growing the stack. The routine also initialises the fixed parts of variables, filling in descriptor
information. The representation of a procedure's stack frame thus resembles that of a record
variable. For example, if the procedure has a local array variable, then its fixed part lies in the fixed
part of the stack frame and contains offsets into the dynamic part of the stack.

The allocation of heap objects is handled by an alternative entry point into the allocator,

The run-time allocator could do default initialisation of variables if we were to augment record type
descriptors by having each field point at a variable giving its default value. At this writing, our group
has not yet decided how we wish to do such initialisation {see Section 6.4).

2.3 Support of Ada Operations

This section describes how several Ada operations are implemented.

2.3.1 Assignment

Consider assignment of records that contain dynamic arrays, such as the record type MyvStr in
Section 2.1.2. After constraint checking has been done, assignments of MyVStr record variables may
proceed by a block copy. using the size of the smaller variable (see Figure 2-10).

Now let us consider assignment of an array of arrays.
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70 myvStr x: myvSir(len = 39)

RzcordVariableTag RecordVariabieTag

IsConstrained =false IsCunstrained =true

VarDynSize =48 +133 VarDynSize =48 39

RacCfiset

RecOffset v .

i _ N\
RecordDynVariableTag RacordDynVariableTag
CurDynSize =48 +13 CurDyrSize =48+39
CurVariantindex (unused A CurVariantindex (unused
len =15 len =39

ArraryVariabieTag ArrayVariableTag

ofisetBase P S, offsetBase
sval
fixed ndims =1 ndims =1
totalEsize =18 totalEsize =39
lcwer =1 lower =1
upper =15 upper =39
mult =1 mult =1
virtualOorigin z__j virtualOorigin a—
Enough space for ™ Enough space for I
from 1 to 133 exactly 39
sval elements elements
dynamic

= wm we b

AN

Jus! after sval{39)

I e T

Figure 2-10: Assignment of the Constrained MyVStr Racord X
to the Unconstrained MyVStr Record Z
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declare
lype TOuter is array (Integer range <>) of String(a..b);
X: TOuter(1..10};
Y: TOuter(1i..20);
begin
X o= Y

We represent a variable of such a type as it is written: the outer array variable is a one-dimensional
array whose elements are array variables. This produces many inner array descriptors. 1t is a
property of Ada that the bounds on all the inner arrays must be the same for two variables of the outer
type, since these inner bounds must be given at the time of the outer type definitien. For the variables
to have different inner bounds, they would have to come from different type definitions and would thus
be of different types. We can salely copy the array descriptars far the inner arrays over each other, as
they all have the same representation. Therefore, the assignment X: =Y above may proceed by block
copying the dynamic part of Y into the dynamic part of X. it would have been illegat to copy the fixed
part of Y into X, since the bounds of X would then be wrong. if we had chosen to treat the array of
arrays as a two-dimensional array, then it would obvigusly have been legitimate to block copy the

dynamic part.

More remarks on array assignment, especially on constraint checking, are given in Section 4.3.1.

2.3.2 Aggregates

Aggregates are handied by treating them like temporary tocal variables. The constraints are those
given in the aggregate. For example, arecord aggregate of the record type MyVStr

{Len => 8, SVal => "Lovelace")
is treated like creating a local constrained record variatle TempMyVStra:
TempMyVStr&: MyVStr(ien => 8);

The run-time allocator is catled to create the dynamic part on the stack and to fill in the fixed part. The
values supplied in the aggregate are copied into TempMyVStr8 as in assignment,

The lifetime of the temporary variable TempMyVStr8 need be no longer than the statement that
contains the aggregate. The lifetime problem for aggregates is analogous to that of function results
whose size is not known at the time of the call, and thus may be approached in the same way. The
function result prebiem and its solution are discussed in Section 4.4.1.
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2.4 Design Issues and Alternative implementations

2.4.1 Attempts at Sharing Descriptors for Variables

It is often apparent that several variables have the same constraints. Variables may have been
declared together, or an explicit subtype name may have been introduced. Itis interesting to consider
storing the constraint information exactly once in a common descriptor, and sharing this descriptor
among the variables. Such techniques have been suggested for the implementation of Euclid, both in
the Euclid Report [20], and by Holt and Wortman [13]. The advantages to this approach are the space
savings and, more importantly, possible reductions in variable initialisation complexity and overhead.
However, the shared descriptor approach introduces complexities of its own. In passing an array
variabie to an unconstrained formal parameter, the shared descriptor must also be passed in order to
provide the bounds. A more difficult problem is that the representation of a variable depends more on
where it is allocated. For heap objects the constraint must be accessible via the access variable; this
suggests either that the constraint will be stored with the heap cbject itself or that the access variable
will be represented by two pointers. For dynamic arrays within records, each record variable will need
its own copy of the array bounds, for the bounds are changeable on a per-record basis. The non-
shared representations presented in this paper allow this kind of special casing to be avoided’.

2.4.2 Representation Specifications

Our variabie representations intertwine user-visible fields with user-invisible descriptor fields. It can
be argued that this has a detrimental effect on the utility of Ada's representation specification facility.
Our implementation does not support representation specifications, but, as a compromise, we could
document the representations the compiler will pick. An alternative scheme that kept user-visible and
user-invisible fields entirely seperate might allow users to comprehend more easily the compiler-
generated layouts of the user-visible fields. For composite variables, two seperate composite
structures wouid be built, one for each class of fields. Such a seperation would have its costs,
especially for programs that have little dependence on the layouts. Overheads would be imposed on
accessing a component of a variable, for two seperate address computation paths would be required.
Procedure calls would require passing the invisibie fields as an extra implicit parameter.

1Eu«:iid has a mechanism like dynamic arrays within records, but it requires alt instances of the record variable 10 be
constrained. Thus the bounds of the array cannot change.
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2.4.3 Block Comparison of Composite Variables™

Implementing equality and inequality for composite variables requires some strategy for coping with
unaliocated storage within the variable. A field-by-field comparison will of course work; it must be
prepared to "walk down" arbitrarily many layers of composition. A block compare implementation
must guarantee that the unused storage always contains an agreed upon value, such as zeros. Thisis
slightly harder than it seems, for the amount of unallocated storage might change. Consider the

program:

type Pair is record A,B: MyVStr; end record;
R,S: Pair;

X: MyVStr(Llen => 39):

Y: MyVStr(iLen => 15);

begin

R.A :=Y;

S := R;

R.A := X;

R.A :=Y; -~ Must be careful to zero unused
o -~ portions of R.A

if R = S then

When assigning a constrained variable Y to an unconstrained variable R. A, the unused space in R.A
must be filled in with zeros. This implementation in effect shifts part of the cost of comparison onto
assignment, with the obvious consequences for programs that contain many assignments and few
comparisons.

Qur representations can handle both the zero-fill and the field-by-field approaches. For the zero-fill,
the IsConstrained bit in each record variable, as well as the VarDynSize field (which gives the size of
the variable), woutd permit an assignment operation to discover that zeroing is required and to carry it
out.

For the field-by-field compare, a general purpose comparisen operation for records and arrays could
be written as a run-time routine. This routine would be passed the two variables alang with the type
template. The type template would provide the comparison routine with the knowledge of the internal
structure of the variables. The type template for a composite type points at the type templates for the
components; this would enable the comparison routine to call itself recursively on the components.
Censtraint information is no problem, for it is present in every variable.

2This section draws on a report by Hilfinger [11].
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3. The Front End

The Front End for Ada consists of two programs: a lexer/parser and a semantic analyzer/TCOL
generator. The first was created from an LALR(1) parser generator and a grammar derived from the
pretiminary and revised language reference manuals [15,17]. Both the parser and the semantic
analyzer/TCOL generator are written in Simula.

For the rest of the chapter, the term parser refers to the program that implements the lexical and
syntactic analysis phases, and the term semantic analyzer refers to the program that implements the
semantic analysis and TCOL generation phases. '

Section 3.1 discusses some semantic problems in Ada and how they were solved. Section 3.2
discusses the construction of semantic analyzers in Simula. An example illustrates the technique on
a simple expression language and how it is used in our implementation. Section 7.2 presents some
statistics on the working Front End.

3.1 Semantic Analysis Issues

The primary functions of the semantic analyzer are type checking, overload resolution, and name
binding. This can be difficult in Ada, where the same name can refer to a number of different objects
and the same syntactic structure can have a number of different meanings. The specific rules about
the visibility, overloading, and use of identifiers are compiex, changing subtly in different contexts,
Situations where identifiers can be redeclared, hidden, and later made visible, complicate the symbol
table facitity.

3.1.1 Syntactic Generality

There can be more than one meaning to the same syntactic structure. For example, F(X) can have
five possible interpretations:

Subprogram call. f is a subprogram; X is a parameter.

Entry call. Fis an entry; X is an entry family index or formal parameter.

Array index. Fis an array vartable; X is an index.

Parameterless entry in accept statement. F is an entry; X is an entry family index
(discrete range).

Conversion. Fis atype name; X is an expression.

AW~

pl

The grammar distinguishes statements (1,2) from expressions (1,3 4.5} and in (4) the F{X) comes

after the reserved word accept. Further resolution requires looking up F in the symbol table and
knowing more context. F{X)} is initially determined to be a general INDEXED_NAME. When the
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meaning is determined, this piece of the derivation tree is replaced with a more specific entity such as
ARRAY_ELEMENT.

3.1.2 Overioad Resolution

Because of overloading, even when F(X) is known t0 be a procedure or entry call, we still do not
know which F is denoted. The determination requires anatysis of the parameter X, which might itself
be a call. The preliminary language reference manuai requires:

The types, modes, and names of the parameters, together with the result type must be
sufficient for the identification. The contextual information is propagated both ways,
repeatedty until convergence [1 5].

It has been shown [8, 18] that four passes are sufficient for either a convergence or ambiguity to be
recognised. Other results indicate that two passes are sufficient [22, 23, 29].

In trying to resolve a complex overload, it may not be necessary to analyze all parameters in detail.
For example, consider the call F( X, (3.5) ,Y) ;. There may be several procedures named F that can
take 3 arguments. Rather than trying to determine the array or record type of the aggregate (3, 53, it

may be possible to determine F uniquely from the first and third parameters X and Y. Once this is
‘ dbne, thé tybe of the second parameter is known. With this context information the énalysis 6f thé
aggregate is much easier.

QOur experience with the overload resolver indicates that the complexity is not in gathering the
possible subprograms that could be used in a context or in the extra tree walks required for
convergence. The compiexity lies in determining the correct subprogram when the only distin-
guishing feature in the expression is the type of an aggregate. Ada's type equivalence rules are
generally classified as name equivalence, but the processing to determine the type of an aggregate
more closely resembles structural equivalence. Aggregates offer a very rich semantics with a minimal
syntax. This results in large amounts of compiler code and execution time to determine the type of an

aggregate.

Even if the user decides to avoid the complications of overload resolution by having unique names for
all subprograms, the use of derived types causes implicit overloading of subprogram names. If the
user additionally decides to avoid derived types, the predefined Standard package contains
Short_Integer, Long_Integer, Short_Float, and Long_Float, which are derived. Derived
types can aiso be inadvertently introduced. For example, neglecting to use the word Integer in

X: Integer range 1..5;

is interpreted as deriving a new type from Integer.
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3.1.3 Static Evaluation of Expressions

It is necessary that a construction such as

case X of
when 1+1 =»
when 2 =>

be recognised as illegal. This requires that the static expression 1+1 be evaluated. In addition to
arror detection, it is sometimes necessary to evaluate static expressions for type determination. For
example, in deciding whether an aggregate can be of a particular type, the discriminants must be

evaluated.

type R (X:Integer) is

record
case X is
when 1 => null;
when others => Y:Integer;
end case;
end record ;

{1) or {3,3) could be aggregates of type R above, but (3) could not.

Static values for numeric literals are computed when the literai is recognised. Other expressions are
flagged as static but are not calculated unless needed. This calculation is performed by a call o a
recursive expression evaluation procedure.,

3.1.4 Visibility of ldentifiers

Ada, along with many data abstraction languages, provides the pregrammer many ways to control the
visibility and use of identifiers in the program. Among the features of Ada that affect identifier visibility
are:

¢ block structured scopes

¢ modules, i.e., packages and tasks
¢ renaming declarations

¢ overloaded identifiers

® private types

s forward declarations

e use clauses

s separate compilation

Symbol tables are used to collect identifiers for blocks, packages. tasks, subprograms, records,
compound statements, and parameter lists. Thes2 symbol tables are linked togetier in the order they
are to be searched.
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Packages represent the first and probably most common departure from the Algcl-like block
struciuring of idantifier visibility. The implzmentation of symbol tables far packages must be able to
handle the different scopes in a package specification, in a package body, and in a program that has

opened a package with a use clause.

3.1.4.1 Symbaol Tables for Packages

During the processing of a package specification or body, the symbol table appears to be connected
in the same hierarchy as nested blocks. The problem is to permit the program inside of the package
to reference all symbcls in the specification and body but to restrict the program outside of the
package to using cnly identifiers in the specification. Cur implemehtation accomplishes ihe changing
of identifier visibility (in a package) by using a linked list of symbois with two starting pointers.

Consider the example below:

package Example is
A: Integer:
B: Integer;
end Example;

package body Example is
C: Integer;

D: Integer;
end Example;

A picture of the symbol table for this package is shown in Figure 3-1

Symol Table

npachage 1S5t

ws)'le Tist

L

j ) ]
-

Figure 3-1: Symbol Table for a Simple Package

The symbol table lookup routine uses a single pointer that points to the beginning of the list of visible
symbols. Package symbgol tables keep two additional pointsrs: one to the beginning cf the visible
symbols for the package, one {0 the symbois visible outside of the package. When processing the

body, the visible-symbol pointer is set to the entire list; cutside the body, itis set to the middle of the
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list where the identifiers in the specification begin. Because the list is built backwards, the forward
linear search finds only the permitted symbois.

3.1.4.2 Specifications and Bodies in the Symbol Table

Because packages, subprograms, and tasks can come in two parts, they are entered in a symbol table
as two parts - one for the specification, one for the body. This is useful for verifying that
respecifications of objects are consistent. Consider the example below:

package Exampliel2 is

procedure Init(X: in Integer := <exp>1);
end txamplel2;
package body Exampie2 is

procedure Init(X: in Integer := <exp>,) is

end Example2;

The ianguage permits {exp>, and <exp>, to be different texts as long as their expressions use the
same entities in the same order.

3.1.4.3 Use Clauses

Use clauses represent an interesting change in the identifier visibility structure of the program. To a
first approximation, the effect of a use clause is to copy the specified symbal table(s) and place them
just before the symbol table for the current scope. The semantics of the use clause are more
complex, and several additional steps must be taken. Three problems are present:

* No symbol in the current scope (or other open scopes) may be hidden by a symbol in the
module specified in the use clause.

¢ Symbols in several use clauses may not hide each other. Should a conflict occur, both
symbols must be removed from the duplicated symbol tables.

* The set of overloaded symbols within a package could be changed.

The first two problems are solved by checking that all duplicated symbols are not hiding other
symbols before entering them into the symbol table.

The overloaded symbol problem is more subtle. Overioaded symbols are normally chained together in
the symbol table. forming a list of permissible objects for an identifier. As a simple example, consider
the program fragment:
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deciare

procedure F(X:Integer} is begin null; end;
procedure F(X:Boolean) is begin null; end;

begin
null;

end; .

The cerresponding symbol table entries are shown in Figure 3-2.

Sybol Table

syl chains

R - o ISR LIV ER L RSP

overicsd chain

Figure 3-2: Symbo! Table for Overloaded Identifiers

This works quite well should the relative positions of the overloaded symbols never change. Use
clauses can change the available overloaded symbols. Consider the pregram fragment shiown in
Figure 3-3. Inside of the nested package, all three versions of procedure F are available because a
package inherits all the symbols from its enclosing scope. Therefore the overload chain has ail three
procedures tied togethér. Blindly copying the symbois for package Inner to the beginning of the
compound stalement erroneously copies the overload chain leading from the F with a boolean
parameter to the F with the character parameter. To avoid this, all overloading chains are broken

when copying over a symbol tabie and reestablished in the new context.

3.1.5 Derived types

The inherited subprograms for a derived type can be represented as copies of the original
subprograms. It may seem space inefficient to have multiple copies of predefined functicns, such as
= and /=, which difier only in the types of thair parameters. Without multiple copies of functions, the
symbol table aécess routines must be able to distinguish between predefined, declared, and derived

procadures. We chose not 1o complicate the lockup procedures. Our strategy has been to stress
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procedure Main is

procedure F(X:Integer);
package Cuter is
procedure F(X:Character);
package Inner is )
procedusre F(X:Boolean);
end Inner;
end Outer;

procedure F(X:Integer) is beginnull; end;
package body Outer is
procedure F(X:Character) is
begin null: end:
package bedy Inner is
procedure F(X:Boolean) is
begin null; end;
-- all three expressions
== F(3), F(True) and F("A")
-- are legal
end Inner;
end Quter;

bedin
declare
use Quter.Inner;
begin
== F{3) and F(True) are both legal
== F("A") is illegal
null;
end;
end Main;

Figure 3.3: Overloading and use Clauses

clarity and modularity and not efficiency. We have recoded critical maodules to be more efficient after
the algorithms and their implications ware understoad.

3.2 Implementation of the Semantic Analyser

TMssecﬁondescnbesthehnMemennnmncﬁthesemanncanaWsen An understanding of Simuia, and
especially the c/ass mechanism, would be beneficial. The relaticnship between Simula cfasses and
Ada records is described in Agpendix I,

We give several examples of class skaletons. A class skzleton is a class dafiniiicn with only the
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parameters and visible components listed. In general, boldface is used to represent Simula
keywords, italics to represent an English description of some omitted Simula code, and regular type
face to indicate Simula code. Liberties are taken when transiating grammar symbols into Simuia -
identifiers. Classes are labeled by the identifier following the keyword class. it a class is defined as P
class S, it is referenced as ciass 8 even though it is a subclass. Pis termed the parent class or prefix
class of S. In the descriptive text, SMALL CAPS aré used for the names of classes. More details about
Simula can be found in reference texts {2, 28). '

3.2.1 Representing Syntactic Entities

The heart of the semantic analyzer is its use of Simula classes to represent grammar productions and
Simula class instances to represent nodes in the derivation tree. Edges in the derivation tree are
represented by Simula reference values, i.e., pointers to class instances. Non-punctuation terminal
symbols are kept in class parameters. ’

The use of Simula to represent a derivation tree is illustrated with an Ada-like language of simple
variables, numbers, records, record selection, and addition. A grammar for this language is given
below: ' o '

<exp> i1 = <name exp>

{exp> i = <plus exp>

{exp> = number

<name exp> = <name exp . identifier
{name exp> = identifier

{plus exp> i1 = <exp> + {exp>

Start Symbol: <exp>

Nonterminals: <exp>, <name exp>, <plus exp>
Terminals: number, identifier, ., +
Punctuation: ., +

For each production A = XYZ, where Ais a nonterminal and XYZ is a sequence of terminals and
nonterminals, we write an empty class skeleton:
A class XYZ (X,Y.Z, ...):

begin
end;

Using this method for the sixth rule in the example grammar gives the class skeleton®:

3Only selected parts of the example are discussed. The final classes for each rule are given in Appendix il.
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plus_exp class add_exp{left_exp,right_exp);
ref(exp) left_exp, right_exp;

begin

end;

Here the Simula identifier exp corresponds to the nonterminal symbal <exp>, the identifier PLUS_EXP
to the nonterminal symbol <{plus exp>, the identifier ACD_ExP names the right hand side of the 6&th
production. The punctuation symbol + is discarded.

There is also a class to represent the root of the derivation tree. Because the root isn't derived, there
is no parent (superclass) in its class definition. The class skeleton for the start symbol <exp> is:

class exp;:
begin
end;

This class is defined as a parent class for rules that have the start symbol as their left hand sides.

Edges in the derivation tres are referencas (pointers) to class instances. These references are held in
the class parameters and represent the derivation rule that reduced the right hand side of the
preduction. For the class PLUS_EXP, the two parameters reftect the rules that were used to generate
the two right hand side expressions.

In the general case, each derivation in a parse produces a referance value o be stored in a class
parameter. Not all of these derivations are useful for semantic analysis. Extra references are
eliminated by the use of the subclass facility. When the right hand side of a production is a single
nonterminal symbol, the parameter list is omitted. For example, the class for the first rule is:

exp class name_egexp;
begin
end;

Ruies with <name exp> on the left hand side use NAME_EXP as a parent class. Derivations that include
the reduction <exp> = <name exp> do not create a reference from class NAME_EXP to the class that is
used for the next rule. Subclasses of NAME_EXP are automatically subclasses of <exp> so that an
instance of a subclass of NAME_EXP describes the application of two rules rather than one.

An example derivation tree is given in Figure 3-4. The figure illustrates the expression R.S + 3.
Boxes in the figure represent class instances of the class named at the bottom of the box. Lines
between boxes represent references to class instances held in parametars. Note the use of
subclasses and references to classes to represent edges in the derivation tree.
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Figure 3-4: Derivation TreeforR.S + 3

3.2.2 Operation of the Semantic Analysis Phase

Semantic checking is performed by walking the derivation tree and verifying that each production is
consistent with language semantics. The very nature of context free languages prohibits any prior
knowledge about the productions applied after a given rule is used. Therefore, a node cannot
explicitly name the correct procedure for nodes below it without examining its chitdren. This requires
placing information about possible derivation sequences in each ciass and distributes semantic
knowledge widely across the entire program. [nstead, we chose to confine all information about the
semantic checking for a production inside the class for that production. This was accomplished by

the use of virtual procedures in Simula.

Each class has a semantic check component which is a virtual procedure. This procedure encodes
the language semantics for that ciass's production. A ncde initiates semantic analysis of its subtrees
by calls on the SEMANTIC_CHECK procedures of its subtrees. Simula guarantees that the procedure of

the instantiated class is executed.
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Other properties of a nonterminal or production are represented as other class components. Far
example, the classes that represent the processing of expressions have a type component. In our A
small sample language, there are only three types: integer, real and record. These are represented as
integers. so the class component for a type is an integer variable.

Recall the program fragment R.S + 3 and the derivation tree in Figure 3-4. Assume that the
expression appears on the right hand side of an assignment statement, The semantic check in the
assignment statement analyzes the left hand side of the statement and determines the necessary type
for the right hand side. This type is passed to the SEMANTIC_CHECK fu_nction of the right hand side.
Since the right hand side of an assignment statement can be any expression, it is represented by an
object of class Exp. The use of virtual procedures causes the correct semantic processing to be done
for any subclass of ExP. In the example, the SEMANTIC_CHECK functicn for ADD_EXP objects weuld be
invoked, which in turn calls the necessary semantic checks for its constituents. if the expression is
semantically correct, all the SEMANTIC_cHECK calfls return True and the right hand side of the
assignment statement has been processed.

This technique allows for a very modular design with great fiexibility. Adding another type of
expression is trivial. One merely adds another subclass of Exp and the semantic analysis for this
expression. The call to check it semantically is exactly the same. The meaning of a particutar
construction is aiso well localised. For example, the requirement that the types of tha operands for
addition must be of the same numeric type, is manifested only in the class that handles addition
expressions,

3.2.3 Limitations of the Class/Virtual Procedure Technique

Creating classes for every production results in a tremendous number of useless classes and
duplicate attribute code. For example, many languages, including Ada, have a list of productions for
describing arithmetic expressions. One reduces EXPRESSION = RELATION — SIMPLE EXPRESSION =
TERM = FACTOR = PRIMARY = LITERAL = NUMBER = INTEGER NUMBER to derive a simple integer.
Eight subclasses are generated when only one is necessary. Arithmetic expressions also cause
duplicate SEMANTIC_CHECK code. Although there are two productions for addition and subtraction,
there is little difference in the processing of these expressions. The subclasses generated for the two
productions have the same code for semantic checks. Further, if a change is required in the
semantics of arithmetic expressions, the change would be required in both subclasses. This strays
from a modular breakdown of the language semantics.

Cur solution is to collapse subclasses when their semantics are sufficiently close. !n the implemented
system, LITERAL_EXPRESSION is an immediate subclass of EXPRESSION without any intervening
subclasses. These decisions are purely subjective. There are cases where we spiit a class that



38 Implementation of the Semantic Analyser Section 3.2.3°

embodied too many attributes, and cases where we combined two classes that did the same
processing. A table of the class structure as currently implemented is contained in Appendix |.

3.2.3.1 Private Types and Forward Declarations

Private types and forward declarations present unique problems in our implementation of the front
end because of Simuia’s lack of record assignment, or more technically, the inability to use "node-
overwrite" techniques for updating elements in list structures®. When a s;iecification is encourtered
in the program, a symbol is placed into the symbol table as a placeholder for the complete
declaration. It is quite likely that other pieces of the program will acquire a reference vaiue for the
placeholder’s class instance. This prohibits the discarding of the temporary place holder and
replacing it with the actual declaration once the complete dafinition has been processed. To
circumvent this problem, an indirect object, a "mimic" which can take on the appearance of another
type,isused as a placeholder. References to the actual object are passed on to the actual symbol by
means of virtual procedures. If for some reason a request is made for some attribute of the complete
obiect before it is defined, the piaceholder issues an appropriate diagnostic message.

4Slr;\ndard texts discuss node-overwrite vs. pointer-swing techniques for manipulating data structures [32].
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4. The Tyrerer and Xrorm Phases

In this chapter we explore some aspects of the translation of preliminary Ada into MIL. We give only
glimpses of the total translation process and many aspects of the language will be ignored, Features
that we will not discuss include: access, float and fixed types, tasks and generic definitions and
instantiations.

4.1 An Overview of MIL

MIL is a low-level system implementation language in the spirit of Bliss [30]. it is described in detail in
Appendix VI

MIL was designed as a tool for language translation and not as a general purpose programming
language. In fact, there is no source language representation for MIL: it exists only in a graph form
(LGN, see Section 1.3.1). In this chaptar we wilt present MIL in a synthetic source-like form.

Some of the cogent characteristics of MiL are:

e it is expression oriented. Most statements return a value and an expression can always
be used as a statement.

e Itis a typed language. The types are integer and jocation {pointer).
* Explicit dereferencing is required in all contexts. For a variable with name X, the
"address of X" is denoted by X and its contents by @X. @ is a general purpose

dereferencing cperator.

e Variables are fixed in size at compile time. There is no primitive dynamic allocation
mechanism.

e The only data structuring mechanism is similar to a Pascal record.

Throughout this chapter we will show how various Ada constructs are encoded in MIL.

The heart of MIL is its typing/structuring mechanism. Integer (int) and location (loc) are the only
types available. An int may be qualified with a range, as in

int 0,.127;

The code generator may use the range to optimise storage allocation.

Actual storage in MIL is described by the use of descriptors. A MIL descriptor {desc) is something
like a Pascal record, except that the fields are denoted positionally, rathar than named. For instance,
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desc(int, loc, int 0..127 := #C+3)

initialisation expressions {i.e., := @C+3} may appear in a desc and are evaluated by the code
generator and assigned t0 the corresponding fields at run time.

Descriptors are used to describe storage in a machine-independent manner, both for allocation and
access. For example, variables in MilL. are declared by associating a descriptor with them:

Tuple : desc(int, lec); 1 Define a descriptor
X : Tuple; ' Declare a variable

or, equivaiently

X : (int, loc); ! Implicit descriptor definition

This would cause storage to be allocated for an integer followed by storage for a location. One would
access the first and second fields of X by

access{X, 1, Tuple)
access(X, 2, Tuple)

respectively. The MIL access construct requires an explicit descriptor since the object being
accessed may be the result of an expression and have no associated descriptor.

The usuat complement of scalar operators is provided, including: the standard arithmetic, retational
and assignment operations of ints; equality, inequality and assignment of locs; addition of an int and
a loc returning a loc {used in offset calculation, see Section 4.3.1); coercion operators from int to

loc, and vice versa.

The primitive constructs provided in ML for manipulating composite objects are simple. Only simple
block copy and block compare operations are available. Manipulation of composite objects is done
by providing explicit instructions to perform the desired action.

The statement structuring facilities include routines and blocks. A MiL block or routine may
contain local declarations, a body, and an exception nandler. A routine is recursive and may have a
scalar return value. A formal parameter must have a descriptor that consists of a single field, thus
restricting formals to be scalar. Correspondingly, all actual parameters in a routine invocation are
expressions, and hence yield scalar values. Parameter passing is by value; other mechanisms must
be implemented within this framework (see Section 4.3.2.1).

A block also contains a tag to control the lifetime of dynamic objects (see Section 4.4.1). This tag
tells the code generator that at block exit it must restore the stack to its state prior to block entry. This
allows XFORM to control the lifetime of dynamic objects by the placement of deallocation indicators.
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4.2 Translating Declarations

MiL blocks and routines allow local MIL declarations which are used in the transtation of Ada
declaraticns. Because declaration elaboration in Ada can invoive computing compiex expressions,
MIL allows statements to be interspersed with declarations.

4.2.1 Type Declarations

All types except for scalar types are represented at run time. It is an important consequence aof our
type template design that the structure and contents of type descripters are known at translation time.
This is a fine point, and is due to the Ada language definition. The reader may be tempted to claim
that the type declaration

type T is array(N..M) of Integer;

defines a type that requires template information known only at run time. However, the Iangﬂage
definition states that this declaration generates two implicit declarations: an anonymous type
declaration of the form

type ancnymous is array{Integer range <>) of Integer;
and a subtype declaration
subtype T is anonymous(N..M);

The Front End performs this transformation and XrForM sees only canonical type and subtype
definitions.

Implicit type amd subtype declarations are created in many contexts in Ada. For éxample, variabia
declarations may construct a subtype explicitly5:

X : record Left, Right : Integer; end record:

As a tess obvious example, for loops generate both a type and a subtype deciaration for the range
of the index variable.

Upon encountering a type definition, XFORM creates a ML variable with a descriptor whose structure
corrésponds to that of the template for this type. The variable descriptor also contains initialisation
expressions that assign the required type information. This representation is satisfactory since the
structure of the templats 1s known and contains oniy a fixed part.

5This declaration is legal in preliminary Ada but iliegal in revised Ada.
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As én example of this translation, consider the following declarations

subtype El1t is <(some definition2;

type E1t_Array is array(Natural range <>) of E1t;

The MIL translation of this is shown in Figure 4-1.

1 &‘t.'-t’l".C‘."“."."I't‘.‘-'

' MiL descriptor and template for Elt

E1t_desc : desc(<descriptor for Eit>) ;
E1t_template : E1t_desc;

1 ?“It"*l'##’tlt"t‘l""’t"’t’.."*

' MIL descriptor and template for
! typeElt_Array is array(Natural) of Elt;

"E1t_Array_desc : desc(int := 3, | Tag indicating an array type template
o ' int := 2, 1 # "parameters” to this template
int := 2, ! # dimensions
loc := Ejt_templiate);:

| Pginter to component subtype descriptor

E1t_Array_template : El t_Array_desc;

Figure 4-1: Example of MIL for Type Descriptors

Notice the initialisation of the fourth field of E1t_Array_desc to the address of the subtype
descriptorfor E1t.

The MIL statements in Figure 4-1 are attached to the local deciarations of the smallest enclosing unit
at the point of the declaration. The translation of some Ada constructs (e.g., for loops) cause a local
block to be created expressly for the purpose of containing non-user-generated type and subtype

definitions.
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4.2.2 Subtype Declarations

Subtype declarations are handled similarly to type declarations in that the basic action is 1o create a
MIL variable and attach it to the local declarations of the enclosing unit. However, subtype
declarations may contain execution-time expressions. Extending the example in Figure 4-1, the MIL
tfranslation of the declaration

subtype EA is E1t_Array(A+B..C); )
is shown in Figure 4-2,

1 (A AR EEERESERENEERSERNNEFFM

! MIL descriptor for
! subtype EA isElt_Array(A + B..C);

EA_desc : desc(int := 4, ! Tag indicating call block
loc := ETt_Array_template,

! Pointer to type template

int := 2, ! & “actual parameters”

| The next two fields are the actual parameters.
! Note that they are initialised with run-tirme expressions.

int := GA+@EB,
int := @C);

1 A R R RN RSN N ERERFE SRR

! Descriptor (call block) for EA

EA_call_block : EA_desc;

Figure 4-2: Example of MIL for Call Blocks

4.2.3 Variabie Declarations

Translating a scalar variable declaration is straightforward since scalars have only fixed parts. A
scalar is reprasented by a MIL variabie with a descriptor of one field whose type is int and whose
range is defined as appropriate. For instance, the Ada variable
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Life : (Static, Local, Global, Register);
is translated into the MIL variable
Life : (int 0..3);

Composite variables contain a dynamic part which must be allocated via a call to the run-time storage
allocator. For the Ada declaration

A : EA; -- EA as in Figure 4-2

the process is indicated in Figure 4-3.

1 ITZ 23 EEA R R B

!\ Translation of
1 A EA;

A_fixed : (<descriptor for array dope vector>):

call alloc(A_fixed, EA_cal 1_block);

Figure 4-3: Allocation of a Composite Variable

The storage allocator, atfoc, is called with the address of the fixed part of A and the address of the call
block for EA. The allocator will obtain and initialise the storage for A on the dynamic part of the run-
time stack and initialise the fixed part. The dope vector for A wili have its bounds and multipliers filled
in and its offsets will be made to refer to the dynamic part.

4.2.4 Subprogram Dectarations

Ada subprogram declarations require transiation into executable code for two reasons: (i} default
parameter vaiues must he evaluated, and (ii) the subtypes of formal parameters, and any return value

if a function, must be elzborated.

The Front End transforms all constructs dealing with default parameters into a canonical form. The
details of the transformation are unimportant; it enables XFORM 10 work without knowing about default

parameters.
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Elaboration of formal parameter and return value subtypes presents no difficulties in general. Their
subtypes are translated as any other and the MIL declarations/statements become part of the local _
declarations of the unit enclosing the subprogram.

However, unconstrained array and record subtypes may occur as formal parameter and return value
subtypes. Unconstrained subtypes are easy because they require no transiation. An unconstrained
non-scalar formal parameter will obtain its constraint information from an actual parameter and needs
no run-time type descriptor. For return values, the subtype is only needed at compile time for type
checking at the call site and so we dispense with a run-time subtype de_scriptor. Since no constraint

values appear in an unconstrained subtype, no expressions need to be elaborated.

4.3 Translating Statements

Many Ada statements translate directly into MIL. Scalar assignments and if, for, and whiie
statements all have explicit MIL equivalents, for example. There are statements that require some

effort to implement correctly.

4.3.1 Array Assignment

The semantics of array assignment require that the number of elements in each dimension of the
source and destination arrays be equal. 1f the array lengths are unequal an exception is to be raised.
Preliminary Ada does not specify the appropriate exception. In revised Ada LENGTH_ERRQR is
provided for this purpose.

For singly-dimensioned arrays the test for equal lengths can be performed by comparing the size
fields stored in the fixed part of the array object (Section 2.2.4). This is true because our context-
independent implementation scheme guarantees that two arrays of the same type and same number
of elements will be represented identically. For multi-dimensional arrays the lengths of each
dimension must also be compared. This is only slightly more complicated since the dope vector
bounds multipliers gives this information almost directly.

Copying the array vatue can be done by a block copy operation since the array dynamic part, which
contains the value, is always allocated contiguously and contains no absclute pointers to subobjects.
MIL provides a copy statement for just such a purpose, the syntax of which is

copy{<spurce location>, <destination location>, (size>)

For array assignment, the source and destination iocations, which are the bases of the dynamic parts,
are computed using the offsets stored in the dope vectors. The lacation of the vaiue of array A, for
example, is computed by
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A_desc : desc(<descriptor for array dope vector>} ;

...R%access(A,2,A_desc) + access{A,2,A_desc)...

The addition expression computes the base location by adding the contents of the second field of the
dope vector to its address. This field was initialised as an offset from its own location by the storage
allocator at object-creation time.

The size of an array is found by accessing the size field within its fixed part. Since the length check
has already been performed the arrays have the same size and either array may be used for this
computation. '

4.3.2 Subprogram Invocation

Subprogram invocation translation is a complex issue. We will not attempt a detailed analysis but give
only an outline of the implementation. The primary sources of complication are parameter passing
and return values, The former problem is dealt with in the next section and the latter within the
section on expression transiation (Section 4.4.1).

4.3.2.1 Parameter Passing

The transiation of parameter passing is comgplicated by imprecise semantics in preliminary Ada.
There is much question about the desired effect of exceptions on out and in out parameters and the
legality of modilying the constraints of actual parameters. Lacking a full definition we have chosen an
implementation that (i} is relatively easy to implement, ang (ii) provides "reasconable"” semantics. In
revised Ada the semantics has been made precise and corresponds to the semantics of our

implementation.

Parameter passing is done with a call-by-reference mechanism in which formal parameters are
represented by MIL variables whose associated descriptors are

desc(loc)

This provides a variable with a single pointer as ils representation. All parameter accesses are
indirect through the MiL formal. The indirection is indicated expilicitly in MIL which provides only call-

by-value semantics.

An array or record actual parameter is passed by sending the location of its fixed part. This implies
that a!i checking on the vaiue occurs accaording to the actual subtype, not the formal. If an exception
causes execution o leave the subprogram out and in out parameters will have been modified.

Passing scalar parameters is more complex dué to our special casing of storage for scafar objects.
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I

Consider an Integer formal parameter whose value requires four bytes of storage. The code
generator has no information as to the size of an actual parameter, which may accupy one, two or
four bytes on the VAX. The size of the actual parameter must be known to enable proper
manipulation of its value. The following scheme allows a uniform reference o scalar actual
parameters.

For each scalar actual parameter a temporary MIL variable is created whose MIL descriptor is
identical to that of its corresponding formal parameter. If the binding is in or in out, the actual
parameter is assigned to this temporary with appropriate range checking. The address of the
temporary is then passed to the subprogram. This guarantees that all actual values are represented
identically to the formal parameter subtype. Upon return from the subprogram, all out and in out
actual parameters ars assigned the value contained in their respective temporaries and appropriate
range checking is performed.

Constraint checking on scalars is done only at subprogram entry and exit. If an exception is raised
within the subprogram body. scalar out and in out parametars will not have been modified.

4.4 Translating Expressions

As with statements, many Ada expressions have obvious MiL equivalents. We discuss some of the
more interesting expression translations in this section.

4.4.1 Function Return Values

Manipulating array and record function return values is a difficult task as there is no convenient place
to allocate the return object. If it is aliocated in the called routine’s context then normal function
return will deailocate the stack frame and destroy the object. Storage for the object could be placed
in the caller's context if its size were known prior to invoking the function. The possibility of
unconstrained return values make this impossible since the size of such an object may not be known
until the function returns.

We have decided to use a hoie in the stack implementation which operates by leaving the return
object in the called routine's stack frame. The function returns in a special manner that leaves the
stack frame intact, and the object untouched. Normally the storage for the function stack frame
would rernain until the stack frame "abova" it was exited. This is unacceptable due to our run-time
machine model which utilises a single stack for expression evaluation and for dynamic allocation of
local variables (see Chapter 5). The run-time stack will become inconsistent if a return object "lives”
for too long.
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The mechanism for controlling object lifetimes in MIL is the block deallocation tag mentioned in
Section 4.1. This forces XFORM to be responsible for controliing the lifetime of return objects.
Obtaining the proper lifetime is tricky. Consider the following Ada statements, where A is an array, F
is an array-valued function and K and N are Integers.

A
N

F(K):
N + F(X)'FIRST: -~ Legal only in revised Ada

In the first assignment statement the lifetime of the return value of F is the entire statement. The
second statement requires deallocation of the value after the ' FIRST inquiry is complete. XFORM
operates by knowing in any particular context whether it is possible for the lifetime of a return object
to extend beyond the context.

A subprogram call must be treated carefully when one of its arguments is a function call having an
unconstrained return value. Consider the following call, where G is a procedure taking an array and
an integer as parameters.

G(F(K}.N)

The tran;slation of this is sketched in Figure 4-4. The storage for the inner MIL biock is nolt deallocated
when the block is exited, for this storage contains the array object that is being passed to the
procedure G. The deallocation tag on the outer MiL block will cause the stack storage for both the
inner and the outer blocks to be reclaimed once the outer block is exited.

BeginMiLblock, with deallocation_tag = yes
temp_loc := BeginMiLblock, with deallocation_tag = no
Calf F(K), leaving its frame allocated,
and yield the address of the returned array
as the value of this block;
EndMiLblock;

temp_integer := N;
G(@temp_loc, temp_integer);
EndMiLblock

Figure 4-4: Translation of G{F({5),N)
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4.4.2 Subscripting

MIL has a subsecript expression which renders the transiation of Ada subscripting trivial. A primitive
operation of this power may seem out of place in such a low-fevel language. it was included in MIL
because the VAX provides a machine operation, the INDEX instruction, which allows extremely
efficient machine language fo be generated for the Ada subscript operation.

4.4.2.1 Slicing

Slicing an array produces a new access path but not a new object. This new variable has the same

type as the sliced array but its subtype constraints are the expressions appearing in the slice,

To represent the new variable XFORM creates a MIL variable to represent the array's dope vector. A
call block is allocated for the new array subtype but the actual bounds values cannot be filled in until
the slice expression is evatuated. MIL statements are generated to elaborate the integer expressions
in the siice and to assign the appropriate constraint values to the call hlock.

The dynamic part of the new variable starts at the slement of the slicad array selected by the first
integer expression in the slice. (E.g., the first component of A{N..M) is A{N).) This location is
computed with a subscript expression. Next the fixed part of the new array variable is set to refer to
the computed dynamic part. This is identical o the function performed by the storage allocator,
except that the storage ailocator also creates a dynamic part. There is a second antry point into the
allocator that parforms exactly the desired actions. After the call to this entry paint, the ML variable is
the result of the slice.
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5. The Cope Phase

This chapter describes CODE, the final code production phase of the Charrette compiier. This phase
is concernad with the impact of the VAX architecture and Unix® operating system on the code

generation process.

5.1 Machine Modei

No compiler system treats the full hardware availabie as a monolithic resource. Instead, some basic
run-time modet for the architecture is adopted. Our abstract target machine is a stack maching, both
because the VAX supports a stack environment with its addressing modes, and because it is a
reasonable model applicable to many machines. This choice impacts

« Instruction set utilisation

¢ Expression evaluation

« Subprogram calling conventions
» Address space segmentation

The implementation of these abstract stack machine operations with VAX instructions is discussed
helow. When possible, the philosophy, architecture, and conventions of the VAX system as published
in the VAX manuais [5, §, 7] are followed.

5. 1.1 Hardware Utilisation

There are several sizes of cbjects on the VAX. VAX cbjects are defined as longwords (64 hits), words
{32 bits). halfwords (16 bits), and bytes (8 bits). This contrasts with Ada objects which include arrays,
records, tasks, and scalars. To simplify operations, every stack objects is a longword (4 bytes).
Convarsion to the correct size is performed when a datum is transfered to or from the stack by the CvT
instructions, of which the Mov instruction is a special case with no conversions performed. When no
conversion is necessary, it is possible to use the more efficient PUSH instruction. Technically, VAX
instructions contain a designator, such as L., W, H, or B, which indicates the size of the operands, For

simplicity, we omit these designators and assume that stack operands are always a lengword in size,

The VAX supports most stack operations in its addressing modes and register allocation. By
convention, register 14 is the stack pointer and like the PDP-11, the stack grows downward. Pushing
VAX objects on the stack is accomplished by using a Mov instruction with the autcdecrement
addressing mcde on the pradefined stack pointer. Popping the stack is accomplished by using the
autoincrement addressing mode in a MoV instruction.

6We use the Berkeley Paging Unix system, with local modifications for exception handling.
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5.1.2 Expression Stack

Arithmetic expressions are implemented with the autoincrement/autodecrement modes in three
address instructions. For example, addition is carried cut by

ADD3 (SP)+,(SP)+,-(SP)

which pops the first two operands off the stack, adds them, and pushes the result back onto the
stack’. Assignment is done by indirection through the top of the stack. For example, the Ada scalar
assignment statement

X =Y,

is implemented by the series of instructions:

PUSHA X ; push address of X
PUSH Y : push value of Y
Mov (SP)+,@(SP}+ ; place value at address

After pushing the address of X and the value of Y, the stack is popped twice and the value is stored at
the address. ‘

5.1.3 Call Stack

A stack machine does all of its calculations on the stack. Conceptually, a subprogram call is just
another expression calculation, albeit one with side effects. Activation records for subprogram calls
are allocated on the same stack as expressions. The actual linkage is shown in Figure 5-1 and is
partially generated by the CaLLS instruction.

The VAX architecture predefines several registers for maintaining the context of a subprogram call.

These conventions are used and extended as foliows:

PC Program Counter, register 15. This holds the address of the next instruction to be
executed,

SP Stack Pointer, register 14. This points to the last byte on the stack.
FP Frame Pointer, register 13. This points to the beginning of the current activation record.

AP Argument Pointer, register 12. This points to a block of storage that contains the actual
parameters passed to the current subprogram,

?There are some gptimisation routines in the code generator that recognise this situation and can replace. it with the more
efficient ADD2 (SP) +,(SP) instruction. Since these optimisations are a departure from the stack machine and are not always
applicable, they will not be discussed here.
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TP Task Pointer, register 11. This points to the current task control block for the executing
thread of control. This register is the only one whose use is not defined in the
architecture, but by the run-time system.

The first four registers (all but TP} are saved, restored, and loaded automatically by the CALLS and RET
instructions. The TP is manipulated by the run-time system and normally is unchanged between
subprogram calls.

In keeping with the stack machine philosophy, subprograms have their parameters pushed on the
stack, and are invoked by a CALLS instruction. The context is saved (old PC, FP, AP) on the stack and
replaced by the state of the current cail. Allocation of local variables and enabling of an exception
handler is performed by code at the beginning of each routine. The RET instruction, which
automaticalty pops the stack and restores the state registers, is used to return from a subprogram.

A conventional scheme is used to implement block structured name scopes [9]. Storage ailocation
for all packages and blocks is raised to the enclosing subprogram level. Disjoint blocks in a
subprogram share storage for their variables. Storage for static (size known at compile time) parts of
Ada objects is allocated on the stack when a subprogram is entered®. Storage for Ada objects that
have a combi'le-time-undetermined (dynamic} size is done during deciaration elaboratibn. Storage is
released on biock exit by resefting the stack pointer to its value before the block was entered.
Storage for subprograms is automatically released by the RET instruction.

5.1.4 Address Space Segmentation

We partition the address space as shown in Figure 5-2. The stack grows contiguously from the high
end of memory. The lowest part of the address space is filled with the machine language for the
program and run-time routines. The heap grows from the end of the program towards the stack.

5.2 Difficulties with Implementing Subprograms

There are several interactions between the simple stack model and Ada’s semantics that cause the
implementation to deviate from VAX conventions. These include:

¢ Uplevel references of variables

e Uplevel references of parameters

e Returning Ada objects from functions
e Sizes of parameters

e Heaps and secondary stacks

Each of these problems is discussed, along with the implemented solution.

8The layout of activation records is determined at compile time by the AcTReP phase.



5
n
w

im

<l

i

[
3
n
Ny
-

w

i
Hzap
(deta)

Machine Program
{text)

Low l.emory

Figure 5-2: Partitioning of Address Space for Execution Objacts

5.2.1 Upievel References of Variables

A cisplay is nrovided for refsrancing variables that are not in the current activation record. Display

rol biogck and are refzranced through the TP rzgistar. Variablzs in

-
—

ragisters are kapt in the lask co

the currant subprogram ars refgrenced through the PP register, gilowing sasy acczss. A variab!

-n!FF), an onsrand that can be usad dirsctly in VAX instructions. Address calculation Is not zs sasy

tarzncas to vanzblss in outer subprograms. Four sicps argreg

.

Qrr

i



56 Difficuliles with Implementing Subprograms Szction3.2.1-
i
N
« 32t address of task control block
+ Add in offset for correct display register
e Get contants of display reqister
e Add in offset for variable

This transiates into three VAX instructions:

PUSH i(TP) ; get address of display reg i
MOV @(SP)+,-(SP) :; get value of display reg -
ADD2 x,(SP) : add in variable offset x

Full stack machine suppert would allow variables to be referenced uniformly regardless of their lexical

level. Because of the imited number of registers on the VAX, the entire display cannct be contained

in registers.

5.2.2 Uplevel Parameter References

By VAX conventions, invocations using the CALLS instruction have the argument pointer register set

to a block of storage that contains the subprogram's actual parameters. This is shown in Figure 5-3.

High \lemory

Arg N
~ ”~
~r o
Arg 1
AP ==X Number of Args

Low Memory

Figure 5-3: Actual Argument Block for a Subprogram

This convention is {ollowed by nearly all VAX software®. Qur philosophy dictates that we remain

compatible with this convention.

One problem with parameters is uplevel referencing. The display can be used to calculate the

gThe Unix Shell does not use this convention when it passes arguments from a command line. Special code must be
generated when Ada programs are used as Shell commands.
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the current activation record, an overhead of one instruction per subprogram call and one longword
per activation record. The correct AP is found by the ardinary uplevel reference mechanism, and the
parameter is referenced by the standard parameter access mechanism.,

5.2.3 Function Return Objects

The stack machine model leaves the results of operations on the stack. However, function calls use
the stack for passing parameters and saving state. One cannot merely push the returned value on the
stack and leave; the function return pops the stack, including the returned value. The VAX
conventions circumvent this problem by keeping returned values in 'register 0. After the return
statement is executed, the contents of register 0 are pushed on the stack by the calling subprogram.
The function result appears to be left on the top of the stack correctly.

This technique fails for objects that cannot fit in a register. When a large object is passed as a
parameter, only the address is passed in the call by reference scheme, so it would seem that an
address could be returned as the value for a large object. When passing an address as a parameter,
the storage for the Ada object has already been allocated as part of the current activation record.
When a value is returned from a function, the object does not exist until after the function has been
cailed, and so is part of the function’s activation record. The address can be returned but the Ada
object to which it refers does not exist after the function call. Nor can storage be allocated before the
function call since the size of the returned object may not be known hefore the function returns. This
is an inherent property of Ada and not of the stack model or the VAX architecture.

A trick is needed to prevent the function’s activation record from disappearing when the function
returns. This allows the returned object to remain on the stack. The RET instruction, which is used to
return from a function call, automatically restores the stack pointer to its value before the function
was called. To move the SP back to its pre-ReT value, it must be saved in a location that will not be
altered by the RET instruction. Register 1 serves this purpose. The code sequence for leaving a

function is:
Mov (SP)+,R0 ; save object's address
MOV SP,R1 : save the SP value
RET

and the code fallowing the CALLS instruction at the caller’s site is:

{CALLS)
MOV Ri,SP : restore the SP to save object
PUSH RO ; place object address on top of stack

There is another aspect to the returned object problem: evaluation order is changed. Consider the

assignment statement:
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where M and P are arrays. The normal VAX code generated for the stack machine is:

PUSHA M
PUSHA P
MOVC3 <size of arrays>,{SP)+,(SP)+

that is, push the addresses of M and P, then do a block transfer (MOVe Characters with 3 arguments),
popping the addresses. This paradigm breaks down in the case of returned objects. Consider the
statement:

Moo= F{P)

where M and P are arrays, and F is a function that returns an array of unspecified size. The simple

VAX code sequence is'’:

PUSHA M : push address of array M (part of assignment stmt)
PUSHA P : push address of array P {param Lo F)

CALLS #1,F : call function F with 1 arg

MOV R1.SP : restore the stack pointer for returned object
FUSH RO . place reference to returned vaiue on 10p of stack

MOVC3 <size of array>,(SP)+,{SP)+

The biock move instruction at the end of the code sequence references the top two longwords on the
stack as the acidresses for the biock move, But the destination address is deep in the stack, below the
returned object. The second operand to the block move instruction is garhage. In these cases, the
Ada statement is rewritten (by XFORM) into the following pseudo-Ada statement:

F(M) =: A

which means reverse assignment. The semantics arz: push the left hand expression (the returned
object), push the right hand exprassion (the target for the assignment), and assign the ieft hand side
to the right hand side. Temporary variables and an extra statement to save the left hand side ensure
that the assignment statement is elaborated correctly.

The returned object problem is pernicicus. It affects many other parts of the abstract machine and
run-time system. It is ill supported by the VAX, and we speculate, by most other machines. The
ohvious solution is exciusive use of the heap for all such dynamic objscts. Heaps are not well

supported by most machines, which limits the effectiveness of the solution.

1O‘Fca simplify the exampte, all constraint checking is omit!éd.
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e

5.3 Implementing Exceptions

The VAX architecture provides a uniform exception handling mechanism, although it is not completely
consistent with the requirements in the Ada rationale. The rationale states:

One important design consideration for the exception handling facility is that exceptions
shoutd add to execution time conly if they are raised. [16]

In the rationale’s example implementation, no execution-time overhead is needed to enabie or disable
exception handlers.

The VAX architecture specifies that the address of the current exception handler is in the current
activation record, and since this data structure does not exist until run time, there must be some
execution overhead for the enabling of an exception handler.

The implemented system uses a small amount of run-time overhead. This is considered acceptable as
it effectively utilises the VAX hardware and architecture rather than producing convoluted code to
circumvent it. There are four parts to the exception handling mechanism:

e Translating the exceptions

¢ Translating the exception handlers

+ Enabling and disabling the exception handlers
¢ Raising exceptions and propagating raised exceptions

5.3.1 Translating Exceptions

Although exception names follow the same scope rufes as other names, the exceptions can be
propagated beyond the scopes in which they can be named. This requires exceptions to have unique
pregram-wide identification, even with separate compilation. This is accomplished by assigning each
exception a static location in memory. Because static variables have unique addresses, these

addresses may be used as unique identifiers.

5.3.2 Mapping Exception Handlers

Exception handlers are blocks of code. When an exception is raised, the run-time system will execute
a JMP instruction to the correct handler. Because all the environment registers are set to the correct
values before this transfer, the exception handier appears to be executing in the scope where it is
defined. Handiers finish their execution by either a uMmp, if they are attached to a block, or by a RET
instruction if they are attached to a routine.

The only subtle issue is changing the current exception handter. When an exception handler starts
execution, it first changes the pointer to the current exception handler in the activation record. If this
were not done, an exception raised in the currently executing exception handler would be routed
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hack to the exception handler that raised it, causing a infinite loop (in addition to being an incorrect

implementation af Ada).

5.3.3 Enabling Exceptions

The VAX architecture states that the location pointed at by the frame pointer (FP) should contain the
address of the current exception handler. Whenever a scope that has an exception handler is
entered, the code generator will generate an instruction that loads the address cof the current
exception handler. When the scope is left, the address of the enclosing exception handter (up to the
routine leve!) will be placed inte the specified location. Thase addressas are known at compile time,
<o the maximum overhead for having an exception handler that is never axecuted is two instructions
per block or routine. By conventicn, an address of 0 is taken to mean that no exception handler is
enabled for the current routine, Since the CALLS instruction automatically sets the predetermined
location in the activation record to 0 on routine entry, there ts no additional overhead for routines that

have no exception handlers.

5.3.4 Raising Exceptions

There are two ways that the implementation recognises exceptional conditions: hardware recognised
traps and software calculated values,

5.3.4.1 Hardware Exceptions

Hardware exceptions are communicated by the Unix signal mechanism. When a program starts
execution, cur run-time system enables a routine to catch all possible signals. When a hardware
exception occurs, the Unix system maps it into a specia! code and calis the designated routine, This
routine translates the Unix signal code into an Ada exception value, saves this value in the task
control block (where it may be interrogated by an exception handler) and then calls the run-time
routine for handting Ada exceptions. This run-time routine unwinds the stack. looking for an enabled
exception handler. The RET instruction is usad to perform the unwinding which guarantees that the
state is completely and correctly restored. By enclosing the entire program in a block that contains a

default exception handler, any uncaught exceptions will be procassed by the system.

This method works well, except that Unix does not relate all the possible exception information that
the VAX generates. For example, the underflow, overflow, subscript range, and divide-by-zero
exceptions are mapped into a single arithmetic signal. This is too imprecise a reporting machanism.
A modified signal routine is instailed in our Unix kernel to report the exact hardware axception that the
VAX finds.

We used the INDEX instruction both to perform subscript calculations and to check range constraints
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on assignment to discrete types. It caused us some difficulty to distinguish these two cases, since
both generate the same fault. 1t would have been possible to detect the difference between a
subscript caiculation and a range check by examining the INDEX instruction that generated it.
However, after a subscript fault the program counter points to the instruction after the INDEX that
caused the fault. The VAX has variable-length instructions, and lacks any form of "instruction length"
indicator that could be examined after a fault, This makes it very difficult to try to "back up" over ths
instruction. We finally decided to foilow each subscript-checking INDEX with a no-operation
instruction. The run-time routine that handles machine-check faults examines the instruction after
the fauit in order to determine whether to raise RANGE_ERROR or INDEX_ERROCR,

5.3.4.2 Software Exceptions

To make a uniform mechanism for handling exceptions, all software exceptions are made to look like
hardware exceptions by execution of a Unix signal. Because all software generated exceptions are
mapped into the same code by Unix, it is necessary to have some convention to indicate which
exception has been raised. This is done by storing the exception in the task controi block before
making the signal call. When a software signal is raised, the signal handling routine assumes that the
correct exception value is already present in the task control block.

5.3.5 Propagating Exceptions

Reraising an exception is juét a Unix signal call, like any other software exception. It is easier than
other software exceptions, because the current exception is already stored in the task control block.
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6. Working Notes

This chapter contains modified versions of some of the working notes created during the Charrette
design stages. They typically describe things not implemented by the end of the project. Because
they are working notes, rather than finished documents, they may not be completely accurate, and
may ignore important or subtle points. We present them solely in hope that they might save some
duplication of effort on the part of other implementors.

6.1 Generics

6.1.1 Expansion of Generics

Our original pians called for another phase before TYPEREP, t0 be called GeNerIC. GENERIC expands
Ada generic instantiations by a process similar to macro expansion. We chose this over more
ambitious schemes because of its simplicity. The remaining phases can igrore generics comnpletely,

thus simplifying their structure.

The generic expansion scheme is not reatly as simple as macro expansicn. When the body of a
generic program unit refers to an in formal parameter, for example. the instantiated body must use the
value of the actual parameter at the point at which the unit was instantiated. Thus for each in
parameter, GENERIC introduces a con stant variable declaration where the variable is initialised to the

actual parameter expression.

The distinction in TCOL , ,, between built-in operators and user-defined subprograms causes another
problem. In TCOLAda,
PLUS_OP for the built-in addition cperators. Calls on user-defined subprograms are all indicated via

a call on a built-in function is represented by a special operatdr, such as

the single CALL operator; additional fields within the tree node point to the symboi table entry for the
usar-defined function. Calls on a function parameter to a generic are represented in TCOLAda via
nodes containing a CALL operator. If an instantiation passes a built-in function such as integer

addition, the CALL operators to this parameter must be replaced by integer addition operators.

6.1.2 Other Schemes

There are a number of more clever schemes for handiing generics; we briefly considered some of
them during the sarly design stages of the Charrette, All of these schemaes are intended {o reduce the

number of code bodies produced by muttipla instantiations of a common genearic unit.

The basic notion is to generate a single code body for a generic procedure or package, and 1o pass
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some represeniation of the generic parameters as implicit parameters to the instantiated procedure,
or to each procedure in the instantiated package. Some generic parameters are easy to deal with in
this way. Expressions or objects, for example, are trivial. Procedures are harder, in that they require
some representation of the environment in which they are declared in addition to the address of the
procedure code body. However, there are well-known techniques for doing this [1, 24].

A more difficuit part is passing types as parameters. A type parameter to a generic behaves as a
private type or limited private type within the generic body'!. This means that the most the generic
body can do is declare, pass as parameters, assign, and compare for equality. Our type and subtype
descriptors provide all the information needed for these operations. Thus, a descriptor can be passed
to represent the type parameter.

Analysis of the body of a generic package may reveal that some procedures do not require ail of the
generic parameters. In this case, the parameters could be eliminated. Alternately, the entire set of
generic parameters could be heid in a record structure, and a pointer to this structure could be
passed as a parameter.

6.2 Block/Procedure Entry/Exit Code

This section gives some expianation of the code sequences generated for scope entry and exit. The
sequences shown represent'the worst case (maximal amount of code generated). There are many
cases where Cope will avoid generating unneceéssary code. There are other cases where a certain
amount of analysis in the code generator would allow substantial savings of code but the effort to
include such tests would not serve our purposes. Recall that SP is the stack pointer, FP is the frame
(current activation record) pointer, TP is the (currently active) task pointer, AP is the argument
pointer, RO is general register 0, and R1 is general register 1.

6.2.1 Block Entry Code

This is the sequence for entering a block.

MOVL SP,a(FP) :Save the stack pointer for Teaving the block
;Clear out the local storage with zeros

MOVCS 0,(SP),0,<block storage length>,<block storage offset>

<elahorate declarations>

MOVAL Addr1, (FP) ; enable exception handler

11This statement is true only in preliminary Ada. In revised Ada, the generic definiton may indicate the class of permissible
types for a particular parameter. In this case, the generic body may make attribute inquiries on the type.
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6.2.2 Block Exit Code
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Code for leaving a block, GoTo out of a block, or EXiT from a loop.

<push returned valueg,
MOVL {SP}+,R0O
MOVL b{FP},SP
PUSHL RO

MOVAL  Addr2,(FP)
JBRY  Addr3

6.2.3 Procedure Call Code

Subprogram call.

<push
CALLS
MOVL R1,35P
PUSHL RO

6.2.4 Procedure Exit Code

A return siatement,

if any,

onto stack>

;Save returned value (if any) in Reg 0
;Restore stack to before block allocations
:Restore the returned value from Reg 0
;Restore pld exception handler

:Transfer if not falling out of block

arguments in reverse order>
<#args>,<routine>

:The actual call dnstruction
:Restore stack pointer to find returned objact
;Restore returned value to top of stack

<push returned valus onto stacks

MOVL (SP)+.RO
MOVL c(FP).d(TP)
MOVL SP,R1

RET

6.2.5 Procedure Entry Code

;Save returned valus (if any)
:Restore old display value
:Save current stack pointer for returned object
:Pop stack and return to caller

in Reg 0

Subprogram definition. AR means Activation Record.

MOVL e{TP),f(FP)
MOVL FP,e{TP)
MOVL AP, g{FP)
SUBL2

MOVC5

old display pointer in current AR
current AR pointer in display

;Save current argument pointer in AR

; for uplevel addressing of parameters
:Allocate stack storage. Stacks grow downward

i Save
(Save

<#bytes required for all block>,SP
0,(SP),0,<block storage length>,<block storage offset>

;Clear out the local storage with zeros

<elaborate declarations>

MOVAL  Addrd,{fP)

12

:Set up exception handler

This is a UNIX asserrbler exiended mnemonic. I the destination of the jumo is within the range of a short-form branch, the
short form will be used. Ctherwise a long-form JMP will be used.
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6.3 Motivation for the Stack Frame Layout

'This section refers to the stack frame layout shown in Figure 5-1.

Everything from the word pointed to by FP up to the beginning of the AR is done by the CALLS
instruction. '

A display is used for uplevel references. The current level references could be made through the
frame pointer if we were willing to have the CoDE phase recognise this special case. The overhead of
display updates seems smaller than one uplevel reference via static links. Because no procedures are
being passed as parameters or variables, a single word of saved display is sufficient. To give a firm
number, | suggest we use 64 display registers.

Blocks internal to a subprogram are squashed to be on the same lexical level (in imptementation only).
This saves overhead of the AR from the (FP) to the beginning, updating display registers, and uplevel
addressing of the subprogram’s giobai variables within the block. Care must be taken to not leave
garbage in the fixed area between block entries as a nonpointer value in one block may be a pointer
storage location in the next. If not cleared, when the garbage collector is called in the inner block, the
pointer storage location could be interpreted as an address and destroy the program.

Because the VAX addressing modes only allow autoincrement/autodecrement on registers, the SP is
in a register. The old stack pointer values represent the top of stack before a block was entered. To
pop the stack of a block’é variable-sized storage, one resets the SP to the top of stack before the
block was entered.

Some obvious optimisations come to mind:

o If there are no access variables in a procedure, leave the Garbage Collection Temporary
Pointer zero and never update it.

« If no exception handler is declared in a block, do not update the exception handler entry.
o If a procedure does not call other subprograms, do not bother changing the display.

o If there is no variable part for a certain block level, remove its old stack pointer storage
and do not alter the SP on entry/exit from that level.
6.4 Default Initialisation

Our system currently handles default initialisation of access variables (i.e., pointers) to nuil by clearing
memory to zero when it is allocated, and using zero to represent null.
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There are two ways tc handle defauit initialisation of recards under our scheme:

» Augment the record type descriptor with initialisation information, and have the allocator
perform initialisation from this information. For each field of the record, we would have a
pointer to an auxiliary variable holding the initial vatue for that field. if the field has ro
initial value, the pointer would be null. Fora field that is a composite object, L.e., an array
or a record, the allocator would follow the pointer to the field’s type template to call iiseif
racursively.

¢ Build a procedure. at the same lexical level as the type declaration, that initialises the
fields. Far a composite object, the procedure wouid call the initialisation procedure(s) for
the component type(s). Such as scheme is described by Holt and Wortman for the Euclid
language [13]. :

In either case the actual initialisation expressions must be evaluated at the point of the type definition,

and stored in auxiliary variables.

The two approaches are functionaily equivalent. If we have the compiler build the subroutineg, we
should probably keep in mind what the structures would be like if the allocator were to do it. XFORM
might be able to generate code that mimics the way the aflocator would walk through the descriptor

structure.

It is tempting to ceonsider another potentially more efficient method for handling defauit initialisation of
records. Just after the record type declaration is elaborated, allocate a single auxitiary variable ¢of the
record type and fill it in with the initial field values. when a variable of that record type is allocated, we
would initialise it by block copying the auxiliary record variable into it. However, there are
complications for records with discriminants or task components. For records with dynamic arrays,
different instances can have different sized arrays. For variant records, fields in the variant
component lists may have initial values, thus the initial value of a record variable (and, of course,
possibly the size} will depend ¢n how the variable is congtrained. Record discriminants may also be
used as discriminant constraints on an inner record field (see Section 2.1.8). In revised Ada, tasxs are
activated implicitly, either iust after allocation for tasks on the heap or just after the "BEGIN" for a
tasks local to a block, subprogram, or package (see [17], section 8.3). Thus, the initialisation of a task

or of a record or array with task components must arrange for the activation of the task(s).

6.5 Heaps and Secondary Stacks

There is a problem lurking in the the VAX/Unix environment which we managed to avoid only
because tasking is not impleraented. Because interprocess communication using Unix pipes is far too
slow to allow intertask communication in Ada, it is necassary to execute all tasks in the same address
space. Such an implemantation requires one stack for each thread of contrel. Cne weuld iike the

hardware to check for stack overflow in the course cf normal instruction exscuticn. This is net
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difficult to do on the VAX. If the page registers are set to prevent any access at the stack boundary,
when the stack grows into that page, the hardware will catch it. Unix does not allow a process to
specify which parts of memory are to be used for what purposes. The process is restricted to data,
text (i.e., read only), and stack segments. Additional "stacks" may be grown from either the data or
stack segments. Every time data are pushed on the stack, the stack pointer must be checked to
ensure that one stack has not overlapped another. This is unacceptable overhead in a stack
machine. We do not have a good solution to this problem.

This problem should not impact the impiementation of heaps for dynamically allocated objects.
Because heap objects are allocated infrequently and at well defined places, the checks_ to ensure that
the heap has not overrun the stack are easy. By keeping the heap in data space and the stack in
stack space, Unix will guarantee that the two areas do not overlap. -

Naturally, one couid avoid the problems of multiple stacks by allocating each activation record for
each procedure from the heap. The size of the fixed pant is known at compile time, and the amou'nt of
extra space needed for expressions can be found by stack-height simulation. The dynamic portion of
the activation record would also be allocated from the heap. The problem of cactus stacks for tasking
vanishes under this scheme, and “stack overflow"” becomes runniné out of heap storage. We regard
this as excessively expensive and prefer to use the page registers in the VAX,

6.6 Optimisation

6.6.1 TCOL,  Optimisation

Ada
There is one form of the PQCC DELAY phase that performs TCOL-to-TCOL optimisation transfor-
mations. It should be relatively easy to incorporate into the Charrette; we wouid have to add a few
more fields to our TREE_NODES, to hold some extra information produced by this phase.

6.6.2 MIL Optimisation

We should be abie to buy a fair bit by adding a MIL optimiser phase following XForM. The type and
subtype descriptors are all constant, in the sense that once they are initialised they are not modified.
In MIL they look just like ordinary variabies. We can add a CONSTANT attribute to VAR nodes, and
have XFORM set this attribute to TRUE for descriptors and FALSE for other VARs. If the initial value
for a field in the descriptor is a compile-time constant, then the bptimiser can replace references to
the field by the actual constant. This would, in particular, altow PEEP to cplimise away range checking
on integers, since it would be able to see that the bounds on the INDEX instruction were the maximum
and minimum integers. Given the number of range checks, this particular optimisation would be very

useful.
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7. Conclusion

7.1 History

The original versions of the parser and semantic analyzer were developed in mid 1978. Beginning in
June 1979 these were extensively modified for the Ada language. At this tima approximately 1/3 of
the code and mest of the design philosophy was retained. In four months, with an average of three
people working full time (2000 person hours), a working version was released. Since that time more
and more language features have been implemented. In August 1580 cihanges for revised Ada were
started. Because modularity and flexibility were always part of the design, we needed no major
revisions when the final report on revised Ada was pubtished. As with any large eveolving program,
there are areas that could stand being rewritten. However, the emphasis on modularity has resulted
in good readability and maintainability. Improvements continue to be made in the user interface, error

recovery, capacity, and performance.

Work on the Back End began towards the end of QOctober, 1979. Most of November was spant on
design of MIL, the run time-system, and the phase brazakdown of the compiier. The project was
suspended in December because of end-of semester academic duties's. By the second wesk of
January, the Back End was procucing code for trivial programs. Work contirued unti! early May,
1980, when the project was terminated. The current system thus toeok four people six months,

working about half time, for a total of twelve person-months.

7.2 Performance

The compiler front end consists of about 260 Tops-20 file pages™ of source code. Both programs run
on DEC Tops-20 and Tops-10 systems. The parser can be run separately or as part of the entire front
end as a Tops-20 dependent fork. A sample 400 line program. which included approximately 20
procedures, required 150 seconds of CPU time on a Dec-System 20. A large amount, almost 1/3, of
this time was spent in garbage collection. Semantic analysis alone, without TCOLAda production,
speeds this up slightly because of extensive character string processing requirad for generating
TCOLAda. The executable version of the parser takes 50 Tops-20 memory pages and the semantic
analyzer / TCOL.ﬁ.da generator takes 210 pages. This does not include the symbol tables and symbaols
for the predefined STANDARD package which adds another 40 pages. nor those for TEXT_IO. The
current symbol table capacity is approximataly 1300 symbols beyond thosz in STANDARD and uses a

13Se\.-eral of the authors had teaching responsibilities.

M‘A Tops-20 file {and memory) page cantains 512 38-bit words.
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total of 400 pages. These statistics reflect the September 1980 version and are of course subject to
change.

Itis difficult to accurately measure the speed of the Charrette Back End. The present implementation
writes an ASCII version of the internal state into a text file between each phase. This imposes a huge
overhead on each phase that is an artifact of the support package we happened to be using. Ina
production version of the compiler, the data would have remained in core. -

The speed of the compiler is shown in Figure 7-1. The input in this case was a 12-page, 239-line desk
catcuiator program. AH times are in seconds. Times are shown as CPU time and corresponding real
time on a lightly-loaded system. The "run time" columns shows the performance of the phases after
elimination of 170 time. Times are given for both the debugging version of the compiler (the one we
used during development) and for a special version with the debugging overhead factored out. No
CPU time is shown for the QuTPUT phase, or for output time for other phases, since it was less than
the resolution of the timer {about 10 milliseconds}.

RBun Time Input Time OCutput
Phase Debug NoDebug Real CPU Real Tima
parser ' .01 9
semantic analyser 64.00 . 200
TypeRep .43 .11 4 32 157 35
Xform 1.81 .45 12 35 151 39
Block/ActRep .98 .25 5 21 92 51
Code 8.78 2.286 41 - 28 159 118
Qutput == =-- .- - ge 72t 83

Figure 7-1: Compiler Speed

These figures indicate that the Back End would process about 4600 lines per CPU minute for a
"production” version. Assuming a production front end of roughly equivalent speed would resultin a

2300 lines-per-minute compiler.

The size of the Back End is given in Figure 7-2. Code and Data sizes are given in terms of 36-bit PDP-
10 words; source code sizes are shown in Imes The first three entries show the size of the support
routines which are present in all phases The remaining entries show the sizes of phase-specific
routines; the last column for each such entry shows the total size of the phase, including the support
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routines. Other experience indicates that turning off debugging in the compiler cuts the size of the
code in haif, partty by removing debugging checks and partly by allowing the BLISS compiler
optimiser to work {33). Thus. a production version of the back end would be about 50K words in size,

Support Routines Size
Code Data
LG support 12879 3234
Debugger 12984 2840
Cther support 2613 334
28476 £408
Phases {without support) (with support)
Code Data Code Data Source
Typerep 9838 2457 38314 8865 2123
Xform 23583 1315 52075 7723 7188
Block/ActRep 5968 2040 34444 8448 2062
Code 23838 4090 52314 10498 4033
Qutput 7681 527 36167 8935 1100
99410 16837 16507

Figure 7-2: Back End Size

7.3 Retrospective

7.3.1 Intermediate Languages

7.3.1.1TCOL

We found TCDLF,‘da to be reasonably easy to use, despite the fact that we had little influence on its
design. We feel it is important for an intermediate language at this leval to accurately reflect the
original source program. Performing cancnicalisations is reascnable and desireable, but it should not
go so far as to destroy information.

There were some rough spets in the TCOLAda we got as input to the back end. In scme cases these
were TCOL problems, in some cases they were canenicalisations that TCOL permitted the Front End
to do. An example of a TCOL problem was that TCOLAda distingushes between buill-in operators and
user-defined subprograms. This caused difficulties in places where w2 would have liked 1o treat the

two uniformly. An example of a canonicalisation protiem was that at one tme the Front £nd
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expanded multidimensional arrays as arrays-of-arrays. Because of dope vector information, these
two are not equivalent in run-time cost, although they are functionally equivalent.

An example of a useful canonicalisation is having the Front End expand a type declaration into a type
declaration and a subtype deciaration; this transformation is mentioned in Section 4.2.1.

7.3.1.2 MIL

We believe that the decision to use MIL was correct for the needs of our project. it allowed us a clean
separation of work in the compiler, and made it possible to construct the two largest phases (XFORM
and CoODE) in parallel. It also ailowed us the possibility of retargeting the back-end to produce code
for another machine.

For a ionger-term project, it would probabily be better to retain and decorate the TCOL , . tree, rather

Ad
than translate and replace it as we did. MIL is too low-level to aliow the cade generator ?o emit high-
quality code. As we developed the compiler, we found that we had to keep adding more high-level
information to MIL to describe range constraints, exception handling, and function return results. We
had to embed in the CODE phase knowledge of the array descriptor layouts, in order to aIIovs{ it to
geherate reasonable subscripting code. We could have further improved the code by embedding
knowlege about record field accessing in MiL, such as by adding a field-access operator. At the
moment, field access is represented by combinations of addition and indirection; this obscures what

is going on from the code generator, and prevents it from finding better code sequences.

The one exception to this is for representing data structures. We believe that Mil's data layout
description is better for code generation than the correspending TCOL Ada Structures; this is primarily
because the TCOL da
closer to machine level without being completely machine-dependent.

structures were designed to be close to Ada, whereas the MIL structures are

7.3.2 Implementation Languages

The classes and virtual procedures of Simula provided a good basis fdr building the Front End
semantic analyser. They allowed a great deal of flexibility, and helped in hiding non-essential
information from the designer. Their disadvantage is that the resulting program is large and slow.

We chose BLISS-10 for the Back End primarily because of the existence of a package for
manipuiating the Linear Graph Notation in which TCOL , da is expressed. The LG package was of
great benefit to us. The ability of the reader/writer to handle all input and output automatically
depended on violating type safety, in a manner analogous to storage allocators; such a package
might be difficult to construct in a typed language like Ada. On the other hand, BLISS' lack of a type
system hurt us. We did not make the characteristic BLISS errors (missing a dot, adding an extra
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semicolon, violating typing, passing the wrong number of parameters to a routing) very cften, but

when they happened they required a great dea! of time to find.

The stowness of the BLISS compiler was often a problem. We would often tose an afternocn from one
of the phases because any bug fix would require several hours of clock time in recompilation and
relinking. We avoided using BLISS-36, a technically better language than BLISS-10. because at the
time we began the project the BLISS-36 compiler was bug-ricden and several times slower than
BLISS-10.

7.3.3 Tools

We feel that it is very important for even a medium-scale project fike ours to have a good set of tools.
The LG package was very useful, but the reader/writer was very slow. The ASClH form of the
intermediate languages allowed us to debug individual phases before their predecessors were
working, but the length of time it took to read in the input to a phase meant that debugging was slow

ang painful.

Towards the end of the project we developed a MIL pretty-printer that made the compiler output much
more readable; we would have saved a lot of debugging time if it had been written earlier. We
developed a peephole optimiser to reduce the size of the final assembiy language output, primarily to
help debugging.

7.3.4 Ada

We managed to confirm that many implementations suggested in the Rationale were reasonable.
There are, however, a number of places where things are more difficult than the Rationale leads cne
1o believe.

e It took us quite a while to design run-time representations that could handie full type
composition. We did manage to do so, without having to adld restrictions to the facility.
Cur design is described in Chapter 2.

e The ability of a function to return objects whosa size is not xnown at the call sitegave us a
great deal of difficulty. This particular problem permeates the whole compiler. We
discuss this problem in Sections 4.4.1 and 5.2.3.

e Biock comparison and copying of composite cbjects can essentially be done as
suggested in the Rationale. but "unallocated” fields of a composite structure cause
problems. We discuss this in Sections 2.3.1, 2.4.3, and 4.3.1.

s Exception handiing was guite easy, but the VAX architecture helped out. Ve describe
exception handling in Section 5.3.

e Default initialisation of records that have discriminants or that contain task components
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-

essentiaily requires building a procedure (or equivalent data structure to be interpreted
by the storage ailocator). This problem is discussed briefly in Section 6.4,
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Availability

For further information about the Intermetrics Front End, contact

Mike Ryer

intermetrics, Incorpeorated
733 Concord Avenue
Cambridge. MA 02138

The Ada Charrette compiler was developed at Carnegie-Mellon University to investigate the issues
involved in imptementing Ada; it was not designed to be used by a general user community. We do
not wish to assume the burden of maintaining it, and in many ways, we believe it would be unsuitable

for most prospective users. Hence, we do not intend to distribute it.

We are, however, willing to make special arrangaments with other implementors of Ada who are
interested in working with us and with whom there can be a usefu! coliahoration. Even in such cases,

however. there are a number of conditions we must impase to protect ourselves:

e In order to use the compiler, it is essential to first obtain a Front End that emits TCOLAda,
such as the one produced by intermetrics. CMU cannot distribute its copy of ths
program.

e The party with whom we make such agreements must agree to not distribute the
Charrette to other organisations or to use it for purposes other than those specifically
agreed upon. In effect, the Charrette is to remain the property of CMU and we will retain
control of its distribution and use.

e We request specific acknowledgement in any papers or products resuiting from the use
of the Charrette -- either its direct use. or the use of ideas gleaned from it.
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Class Hierarchy in the Semantic Analyzer

l. Class Hierarchy in the Semantic Analyzer

The following describes the structure of the classes in the semarntic analyzer for Ada written in

Simula. The main Simula classes are':

EMIT_BASE
A.NQDE

1.

Identifier

2. Exp

a. texp (type expression)
{1) type_denote_texp
{2) derived_def
(3) int_def
(4) real_det
{8) enum_def
(B} array_def
{7) record_def
(8) access_def
{9) private_daf

b. range_eaxp

c. lit_exp
{1) int_lit
(2) float_lit
(3) fixed_lit
(4) nuit it
{5) string_lit
(8) char_iit

{7) enum_lit

d. accuracy_cn

e. t_in_nect_in

f.or_in_not_in

g. others_exp

h. compon_assoc

i. name_exp
{1} invoke_exp
(2} array_slt_exp
(3) doi_select_exp
{4) name_all
(5) attr_select_exp

j. allocator_exp

k. convart_exp

I qualified_exp

m. paren_gel

n. record_agg_choice

0. when_exp

3. CCL_NODE

15

Paren_gel means parenthesised

index_corstraint

a, Cbj_dcl
{(1)formal_parm_dgl
b. Pragma_dc)
c. Exception_de!
d. Use_dcl
e. Unit_dci
{1) subprogram_dcl
{2) package_dct
f. Entry_dcl
g. Type_dcl
k. Subtype_decl
i. Rep_spec!
|- Renaming_dcl
BCDY_NODE
COMPIL_UNIT
. PRAGMA_NODE
STM_NCDE
. null_stm
. goto_iabelled_stm
. exit_labelled _stm
. assign_stm
. return_stm
f. goto_stm
g. exit_stm
h. raise_stm
i, call_stm
j. delay_stm
K. abort_stm
| code_stm
m. cmpd_stm
(1) if_stm
{2) block_stm
{3) case_stm
{4) loop_stm
(5) accept_stm
(6) select_stm
8. case_node
9. handler_node
10. list_node
11. stack_element
12, stack_head
13. integer_node
8. SYMBLOCK {Symbe! Tabie)

Naoh

® Q0T

general expression; i s trarsformed into convert_exp. aggregate, invoke_exp, or

1. Formals_symblock
a. Record_symblock
2. Med_symblock

C. SYMTHING (Symbol)

1. Vrbl_sym
a. reclield_sym
b. formal_sym
2. Unit_sym
a. Subprogram_sym
(1) entry_sym
b. Module_sym
Pragma_sym
Enumerzal_sym
Label_sym
Typemaster
a. private_tm
b. scalar_tm
{1Yint_tm
(2} fixed_tm
{(3) float_tm
(4) enum_tm
c.array_tm
d. record_tm
€. access_tm
f. task_tm
4. pseudo_typemaster
(1) ambig_tm
(2) unspec_tm

S

8. package_body_psym
9. exception_sym

10. hidden_sym

D. PRAGMA_INFO
E. TICK_INFO


http://accuracy_.cn
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ll. Complete Example of Simula Classes for a
Simple Language

A class skeleton (a class definition with only the parameters and visible {not hidden and not protected)
components listed) is given for each grammar rule. The semantics given in the SEMANTIC _CHECK
routines are not for Ada, but for a hypothetical Pascal-like language. Boldface is used to represent
Simula keywaords, italics to represent an English description of some omitted Simula code. and regular
type face to indicate Simula code. Liberties are alsc taken when transiating grammar symkbols into
Simula identifiers. '

{expy = {name exp>

Kexpr = {plus exp>

{exp>:= number

{name exp> = <name exp> . identifier
{name exp> .. = identifier

<plus expy o= Lexp> + {exp>

Hi

Start Symboi: <exp>

Nonterminals: <exp>, (name exp>, <plus exp>
Terminals: number, identifier, ., +
Punctuation: ., +

Start Symbol: <exp>

class exp;
virtual; boolean procedure semantic_check;
begin

integer this_exp_type;
end;

{exp> = {name exp>

exp class name_exp;
begin
end;

{name expr = <name exp> . identifier
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name_exp class dot_exp{left_part,identifier);
ref(name_exp) left_part; text identifier;
begin
boolean procedure
semantic_check(type_contaxt});
integer type_context;
begin
if left_part.
semantic_check(type_context)
then hegin
find identifier insymboltable
for left_part:
this_exp_type :=
found identifier symbol,
symbeol_type;
semantic_check :=
(type_context =
this_exp_type);
end
else semantic_check := false;
end;
end;

{name exp> :: = identifier

name_exp class identifier_exp(identifier);
text identifier;
begin .
boolean procedure
semantic_check(type_context);
integer type_context;
begin
find identifier incurrent symboltable;
this_exp_type :=
found identifier symbol, symbol1_type;
semantic_check :=
{type_context =
this_exp_type);:
end;
end;

{exp> :: = <{plus exp>

exp class plus_exp:
begin
end;

{plus exp> 1= {exp> + <{exp>

Appendix Ii
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plus_exp class add_exp(left_exp.right_gxp);
ref{exp) left_exp., right_exp;
begin
boolean procedure
semantic_check{type_context);
integer type_contexti:

begin
if left_exp.
semantic_check(type_context)
and
right_exp.
semantic_check{typa_context)
then begin
this_exp_type :=
Tefti_exp.this_exp_type;
semantic_check :=
{type_context =
this_exp_type)
and
{(left_exp.this_exp_type =
right_exp.this_exp_type);
end
else semantic_check := false;
end;

end;

<exp> = number

exp class number{number_text);
text number_texi;
begin
boolean procedure
semantic_chack(type_context);
integer type_context;

begin
convert text into internal numeric reprasentation;
this_exp_type := If fextisaninteger

then the_predefined_integer_typa
eise the_predefined_float_type;
semantic_check :=
{type_context = this_exp_type):
end;
end;
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111. Relationship between Simula Classes and Ada
Records

This appendix is intended to provide a simple explanation of the Simula class mechanism in terms of
Ada. itis not intended to be a complete description of Simula or Ada. The reader is assumed to have
some knowlecge of Ada. Many irrelevant details of both Simula and Aca are ignored. Full details of

Simula can be found in reference texts for the language [2, 28].

A Simula class is similar to an access type to a variant record in Adz. The compcnents of a ciass
(including its parameters) correspond with the fields of a record. Because these records exist anly
after they are explicitly allocated, the classes are actuailly access types. For example, consider the

following Simula and Ada declarations:

class Outer(X):
Integer X;
begin
Integer Y;
Y 1= 2
end

type OuterDummy(X:Integer) is
record
Y: Integer := 2;
end record;
type Outer isaccess JuterDummy; ~

In both languages, an object of type Outer must be explicitly allocated at run time and some initial
value filled in for the parametar. The values in the class instance/record object may ba read by tha

selector operation, i.e., by using th2 dot notation.

Subclasses in Simula provids a way to declare variant records. A class declaration of the form:

Quter class Inside;
begin

Boolean Q;
end

has a correspondence in Ada of
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"

type OuterSubclasses is
(NoSubclass, InsideSubclass);

type OQuterDummy(

Subclass: OuterSubclasses := NoSubclass:
X: Integer) is
record

Y: Integer := Z;
case Subclass is
when InsideSubclass =»
Q: Boolean;
when others =>»
null;
end case:
end record;

type RefToOuter is access OuterDummy;
subtype Outer is RefToOuter;
subtype Inside is
RefToOuter(Subclass => InsideSubclass);

Adding a new subclass in Simula corresponds with adding ancther variant record field in Ada. The
primary difference, for defining new fields, is that Ada requires all variants to be dectared with the type
while Simula allows new variants to be introduced in separate subclass declarations.

A difference between the two languages is the definition of procedures. In Simula, a procedure may
be associated with a class by defining it inside of that class as a component. An Ada record has no
such provision. In Ada, the same procedure may be written but must inciude a parameter by which a
record object may be passed.

There is less, but some, correspondence between Simuia virtual procedures and Ada overloaded
subprograms. When a virtual procedure is declared, it is a claim that there will exist a procedure by
the same name in every subclass. At run time when that procedure is called, the subclass (i.e.,
variant) is examined and the correct procedure is selected for execution. in Ada terms, this is a claim
that a procedure would exist for each different discriminant in the record type, and that the selection
of the procedure to call would be postponed until run time when the value of the discriminant would
be known, for instance, by combining all of the procedures into one procedure and selecting the

correct procedure in a case statement.
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V. Run-Time Routines

ARTC Start up routine, written in C, that enables all signals, initialises the storage
allocator, and resets the heap aliocator.

WRITECHAR C routine that writes out a single character.

WRITENUM C routine that writes out an integer.

READCHAR C routine that reads in a single character,

READCHAR C routine that reads in an integer.

HANDLER Assembly language routine that intercepts Unix signals, determines the appre-

priate Ada exception, reinstalis (if necessary) the signal catcher, unwinds the
stack as necessary, and jumps to the current exception handler,

ALLCC C routine that aliocates storags far dynamic Ada objects.

CATCHER Default exception handler for the outer-most block of the program. Written inC.

Figure V-1 shows the size of the run-time system. Sizes are given in 8-bit byies.

Routine Code Data
ARTO 236 0
input/output 284 8
HANDLER 116 12
ALLODC 2856 40
CATCHER 68 320

Figure 1V-1: Run-time Routing Sizes
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V. Sample Output

This example iflustrates the block and subprogram entry and exit code for a simple program,

V.1 Ada Program

ADA TRANSLATOR - 1980-05-02

procsdure small is
x: intseger range 1..10;

begin
X 1= 23
daclare
y: integer range 1..2;
bsgin
¥y = X
gxception
when overflow => x := 1;
end;

gand small;

NO PARSE ERRORS
NO SEMANTIC ERRORS
NO SEMANTIC WARNINGS

V.2 TCOI

L,,, Program

This listing omits the TCOL. for the package STANDARD, which itself raquiras considerable space.

NODES 58
RCOOT TREE 1
ROOCT TREE 73

1: TREE_MOCE (SOURCE "PRQLOG.RDP;0/1{26}") (OP SEQUENCE_OPH{XOFP NOT_OEFINED) (SUBNCDES 3. 4:

5067 100 110120 137 147
15: TREE_NGDE (SOURCE "TEST.RDP,G/1{8}"} (OP LEAF_CF} (XOP INTEGER_TYPE) (GEFN 16:)
17: TREE_NODE {SOURCE "TEST.RDP,0/1{12}") (OP LEAF_CP)} (XOF INTEGER_TYFE) (DEFN 201)

20: LITERAL _SYM (SOURCE "TEST RDP:0/3{12}") (LIT_SUBTYPE 21:) (LIT_KIND INT_LIT) (LIT_NAME "2")

{LIT_VALUE "2}

22: TREE_NODE (SCURGE "TEST.RDP:0/1{12} ") {OP ASSIGM_CP} (XOP NOT_DEFINED) (SUBMCDES 15: 173

23. TREE_NODE (SOURCE "TEST.RDP;0/1{15}"
25: TREE_NGCDE (SOURCE "TEST RCP;0/1{21}
26: TREE_NOOE (SOURCE "TEST.ROP:C/1{21}’
97: TREE_NODE (SOURCE "TEST.ROP0/1{23}
20: TREE_NOCDE (SOURCE "TEST.RCR.0/1{37}

(OF LEAF_CP) (XCP INTEGER_TYEE) (DEFN 241)
"} (CP LEAF_CP) (XCP INTEGER_TYPE) {DEFN 157
(OP LEAF_OF) (XCP INTEGER _TYFE) {DEFN 181
(OPLEAF_OP) (XCP INTEGER _TYPE) (DEFN 312

31 LITERAL _SYM (SCURCE "TEST ROP:0/1{37} "} LIT_SUBTYPE 210) (LIT_KIND INT_LIT) {LIT_NAME "17)

(LiIT_VALUE "1™}

32; TREE_NCOE (SOURCE "TEST RDP:0/1{37}") (OP ASSIGN_OP) (XOP NOT _CEFIMNED) (SUBNODES 27: 20
33: TREE_NODE {SOURCE "TEST.RDF:0/1{25} ") (OP SEQUENCE_CP) (XOR NOT_TEFINED) {SUENODES 32:)

24 TREE NCDE (SOURCE "TEST ROP;0/ 112871 (CP LEAF_CP) (XCP NOT_DEFNED) (DEFN 351}

35: TREE_NOCE (SOURCE "TEST.ROP,0/1{28}") (OP WHEN_CPj (XOP 1iGT_DEFINED) (SUBNCRES 33: 341)

)
)
} (0P ASSIGH_OP) (XCP NOT_DEFINED) {SUENQDES 23: 25)
}
)

89
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40:
42:
43:

44
45:

45:
41;

50:
51:
24:

52:
53

54.
55:
58:
57:

60:
61:

62:
21:

63:
B54:
16:

65:
66:

&87:

T2
71

73:
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TREE_NODE {SCURCE "TEST.RDF;0/1{12}"} (OP CASE_EXCEFTICN_QP)} (XOP NOT_DEFINED)
{SUBNCDES 36:)

NAME_NODE (SOURCE "TEST.RDP;0/4{37}"} (PNAME "--unique_name-5100"} (NAMES 41:)

TREE_NOQDE {SQURCE "TEST.RDP;0/1{34}"} (OP LEAF_OP} (XOP INTEGER_TYPE) {DEFN 43:}
LITERAL_SYM (SOURCE "TEST.RDP;0/1{34}") (LIT_SUBTYPE 3J;) (LIT_KIND INT _LIT) (LIT_NAME "1™}
{LIT_VALUE "1")

TREE_NODE {SOURCE "TEST.RDP;0/1{37}") {OP LEAF _OP} (XOP INTEGER_TYPE) {DEFN 45:)
LITERAL_SYM {SOURCE "TEST.RDP;0/1{37}") (LIT_SUBTYPE 3;) (LIT_KIND INT_LIT) (LIT_NAME "2"}
{LIT_VALUE "2")

TREE_NODE {SOURCE "TEST.RDP;0/1{37}"} {OF RANGE_OP) (XOP INTEGER_TYPE) (SUBNODES 42: 441)
SUBTYPE_SYM (SOURCE "TEST.RDP;0/1{37}"} (NAME 40:} {(PARENT_TYPE 47:} (CONSTRAINTS 46:)
(PARENT_SUBTYPE 3:) :

TREE_NODE (SOURCE "TEST.RDP;0/1{37}") (OP SUBTYPE_DECL _COP) (XOP NOT_DEFINED) (DEFN 41:)
NAME_NODE (SOURCE "TEST.RDP;0/1{18}"} (PNAME "Y") (NAMES 24:)

VARBL_SYM (SOURCE "TEST.RDP;0/1{37}") (NAME 51:) (VARBL_SUBTYPE 41:) (CONSTANCY
NOT_CONSTANT) (SPECIES VARBL) (1IS_PRIVATE FALSE)

TREE_NODE {SQURCE "TEST.RDP;0/1{12}") (OP VARBL_DECL _OF} {XOP NOT_DEFINED) (DEFN 24:)
TREE_NQDE {SOURCE "TEST.RDP;0/1{12}") (OP SEQUENCE_OP) (xOP NOT _DEFINED) (SUBNQDES 50: §2:
26:)

TREE_NODE {SOURCE "TEST.RDP;0/1{12}") (OP BLOCK_OP) (XOP NOT_DEFINED) {SUBNODES 53: 373)
NAME_NODE (SCURCE "TEST.RDF;0/1{30}") (PNAME "--unique_name-5053"} (NAMES 21:}

TREE_NCDE (SOURCE "TEST.RDP;0/1{26}") (OP LEAF_OP) (XOP INTEGER_TYPE) (DEFN 57)
LITERAL_SYM (SOURCE "TEST.RDP;0/1{26}") (LIT_SUBTYPE 3:) (LIT_KIND INT_LIT} (LIT_NAME "1")
{LIT_VALUE "1")

TREE_NODE (SOURCE "TEST.RDP;0/1{30}"} (OP LEAF_OP) (XQP INTEGER_TYPE) (DEFN 61:)
LITERAL_SYM (SQURCE "TEST.RDP;0/1{30}") (LIT_SUBTYPE 3:} (LIT_KIND INT_LIT) {LIT_NAME "10"}
{LIT_VALUE "10")

TREE_NODE (SOURCE "TEST RDP;0/1{30}"} (CP RANGE_OP} (XOP INTEGER_TYPE) (SUBNCDES 56: 60:)
SUBTYPE_SYM (SOURCE "TEST.RDP;0/1{30}") (NAME 55:) (PARENT_TYPE 47:} (CONSTRAINTS 62:}
{PARENT_SUBTYPE 3:)

TREE_NODE (SOURCE "TEST.RDP;0/1{30}") (OP SUBTYPE_DECL_OP) (XOP NOT_DEFINED) (DEFN 21:)
NAME_NCDE (SOURCE "TEST.RDP;0/1{8}") (PNAME "X") (NAMES 16:)

VARBL_SYM (SCURCE "TEST.RDP;0/1{30}") (NAME 64:} (VARBL_SUBTYPE 21:) {CONSTANCY
NOT_CONSTANT) (SPECIES VARBL) {IS_PRIVATE FALSE)

TREE_NODE (SOURCE "TEST.RDP;0/1{14}") (OP VARBL_DECL_OP) (XOP NOT_DEFINED} (DEFN 16:}
TREE_NODE (SCURCE "TEST.RDP;0/1{14}") (OP SEQUENCE_QP) {(XOP NGT_DEFINED) {SUBNODES 63: 65;
22: 54:}

TREE_NODE (SQURCE "TEST.RDP;0/1{14}") (OP BLOCK_QOP} (XOP NOT_DEFINED} (SUBNODES 66; 70:)
(DEFN 713)

NAME_NODE {SOURCE "TEST.RDP;0/1{14}"} (PNAME "SMALL"} {NAMES 71:)

SUBPROGRAM_SYM {SQURCE "TEST.RDP;0/1{14}") (NAME 72:) {KIND PROCEDURE_SUBPROGRAM)
(BODY 87:) {iS_BUILT_IN FALSE) (IS_SEPARATE FALSE) (LINKAGE "ADA™")

TREE_NODE (SOURCE "TEST.RDP;0/1{26}") (OP SUBPROGRAM_DECL_OP) (XOP NOT_DEFINED) (DEFN
713)

V.3 MIL Program

This is the output of a prettyprinter, rather than the actual LG form used in the compiler. The
prettyprinter suppresses certain details present in the full LG form. The comments were added by

hand.
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3t DECLARE
51:
51: ada ROUTINE SMALL() RETURNS NOTHING
B1: DESC_1: DESC -~ StatScatar subtype dascriptor for

-- intagar range integer’'first .. integser'last
53: INT RANGE -21474836848 .. 2147433647 <- 1
53: INT RANGE -2147433648 .. 2147483847 <~ -2147483648
53: INT RANGE -2147483848 .. 2147483647 <- 2147433647
76: DESC_2: DESC -- StatScalar subtype dascripter for

-- integer range 1 .. 10
53: INT RANGE -2147483648 .. 2147483647 <- 1
53: THT RANGE -2147483648 .. 2147483847 <- 1
53: INT RANGE -2147483648 .. 2147483647 <- 10
110: CAST QDESC_2.2 {@DESC_1.2, BDESC_1.3}

-= Chacks that 1 is within -2147483648 .. 2147483647

111; CAST @DESC_2.3 {GDESC_1.2, QOESC_1.3}

-- Chacks that 10 is within -2147483648 .. 2147433847
112: X: DESC

106: IHY RANGE 1 .. 30
51: BEGIN
113: X <- 2
117: DECLARE
122: DESC_3: DESC -- StatScalar subtyps descriptor
-~ for intager range 1 .. 2

53: THT RANGE -2147483843 .. 2147483647 <~ 1
53: INT RANGE -21474335438 .. 2147483647 <~ 1
53: INT RAMGE -2147483648 .. 2147433647 <- 2
134: CAST @DESC_3.2 {CDESC_1.2, @DESC_1.3}

-~ Checks that 1 dis within -2147433848 .. 2147483647
135: CAST BDESC_3.3 {0QDESC_1.2, GDESC_1.3)

-- Chacks that 2 is within -2147433848 .. 2147433647
136: Y: DESC
132: INT RANGE 1 .. 2
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117: BEGIN

142: CAST Y ¢~ @X {@DESC_3.2, @DESC_3.3}
-~ Assigns the valus of X to Y, after checking
-- that the value of X is within 1 .. 2

117: EXCEPTION

146: IF EXVAL = 9

146: ‘ THEN

143: BEGIN

144: X<-1

143: END

146: ELSE

13: RAISE EXVAL

146: END IF

117: END

61: END

a1: BEGIN

147: SMALL{)

31: EXCEPTION

161: catcher (EXVAL)
31: END

16:
15: allocator ROUTINE alloc() RETURNS NOTHING
15: END A

17: .
17: ¢ ROUTINE StatvVarSet() RETURNS NOTHING
17: END

21:
21: ¢ ROUTINE length() RETURNS INT RANGE -21474836848 .. 2147483847
21: END

23:
23: ¢ ROUTINE boolean{) RETURNS NOTHING
23: END

25:
26: ¢ dynamic ROUTINE rep() RETURNS LOCATION
25; END

27:
27: ¢ ROUTINE val() RETURNS INT RANGE -2147483648 .. 2147483647

27: END

160: ’
150: ¢ ROUTINE catcher() RETURNS NOTHING
150; END
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V.4 Assembly Code Program

Most of the comments were added by hand.

# VAX Assembly Languaga Fils
# Qutput from phase OUTPUT V1A(8) on 2 May 80
# Input file was: SHALL

.taxt
# Cods which makes the main program appear to be called by anothaer
# Ada program rather than the Shell

main:
.word 48152
calls $0,Lfakemain
chimk 51
Lfakemain:
.word 49152

calls 50, _art0
subl2 $231,sp
movl sp,ril
mov] fp,(ri1l)
mov1 ap,.-8(fp)

# Set up the predeclared package STANDARD

moves  $0,{sp),$0,$680,-64(fp) # Clear out local storage

movl 51,-16(fp) # Init type desc for integer
mov 1 $-32768,-12(fp)

mov] £32767,~8(fp)

mov £1,-28(fp) # Init type desc for short_int
mov ] $-128,-24(fp)

mavl $127,-20(fp)

mav] $1,-40(7p) # Init type desc for long_int
mov ] £-2147483648,-36(fp)

mov1 $2147483647,-32(fp)

mov1 31,-62(fp) # Init type desc for boolsan
cirl -48(fp)

mov $1,-44(fp)

mov] $1,-64(fp) : # Init typs desc for character
cirl -60(fp)

cvibl $127,-86(fp)

moval EXH8, (fp) : # Enable default ex. handlsr

calls $0,RTO
BLKE1:

clirl 0{fp)

ret
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RTO:
# SMALL
.word 49162
movi 4(rit),-4(fp) # Save ol1d display value
mov1 fp.4(ri1) # Update display w/ new value
mov1i ap,~-8(fp) # Save the current AP for
# uplevel refs
subT2  $48,sp # Allocate and clear local storage
clrq ~-33{fp)
movch  $0,(sp).$0,%6,-26(7p)
mov1 $1,-32(fp) # Init type desc for int 1,.10
mov1 $1,-238(fp)
mov1 $10,-24(fp)
pushalt -33(fp) # Push address of X
pushl  $2 # Push value 2

index  (sp),-28(fp),-24(fp).$1.%1.,r1
# Check range
cvtlb  (sp)+,.*{sp)+ # Do assignment

# Internal Block Starting

clirg ~44{fp) # Clear out local
movcd  $0,(sp).$0,$5,-38(fp) # storage (already allocated)

mov1 $1,-45(fp) # Init type desc for 1,.2
mov] $1,-41(fp) :
mov1 $2,.-37(fp)

moval EXH3, (Tp) # Enable block's sexc. hndlp
pushal -46(fp) # Push address of Y
cvibl -33(fp).-(sp) # Push vstue of X
index (sp).-41(fp),-37(fp).$1,51,r1 # Check rangse
cvtld  (sp)+.*(sp)+ # Do assignment

BLKE2: ' # End of internal block
cirl 0(fp) # Disable exc. hndir

# End of procedure

mov1 -4(fp),4{r11) # Restore old display value
ret # return from main program
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Sample Qutput

# Exception Handlsr in ianer block

EXH3:
cird
movl
pushi
pushl
cmpl
jeqgl
cird
BR4:
jibe

(fp) # disable exc. hadlr.

r0,128(r11) # Get the current axception

$1 # See if CVERFLOW
iz8{r11)

$9,(sp)+

BR4

(sp)

(sp)+,1TEB

# Yes, is OVERFLOW, do assignment

pushal

pushl

indsx

cviln
BLKEG:

jor
ITES:

# Not OVERFLOW,

mov

calls

pushl

pushl

calls
ITET:

jbr

-33(fp)

$3
{sp),-28(fp),-24(fp),51,81,r1
(sp)+,*(sp)+

ITE?7

do a re-raise of exception

128(r11),128(r11) # Save axcp. valus
§0,_getpid # Unix signal call
316

ro

32,_kiNM

BLKEZ2 # End of exc. hndlr, rat

# System Exception Handler

EXHS8:
cird
mov 1
pushi
calls
jbr

(fp) # Disabla exc. hndlr.
r0,128(r11) # Get excaption value
128{r11) # Call external rout, w/
$1,_catcher

BLKE1

to block

1 parm.

85
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V1. Definition of MIL

This appendix serves two purposas. First, it documents the MIL which is acceptable to the final code
generation phases. Any MiL input which mests these specifications will be transtated correctly into
VAX assembly language. In principle, other translator systems could produce MIL and use the
Charrette phases as part of their back end. Second. this appendix documents the tree transfor-
mations done on the MIL by the last several phases of the Charrette compiler. Thisis included to help
with the mainienance of those phases. Attributes flagged with with an asterisk (*) are intended for

documentation of the Charrette compiler and do not describe Isgal MIL input.

Vi.1 Notation

The TCOL for the MIL is presentad in a ENF-like form, which is self-explanatory.

For every non-terminaf of the form
{token List>
there is (implicitly) a production of the ferm

(token List)> = <token> | <ioken> <token List> | <empty>

Non-terminal symbols which are suffixed with a ™" indicate that, in fact, what replaces the non-
terminal is not a derivation of the right-hand side of its production, but the label of a node which is

such a derivation.

V1.2 <MIL Tree>

<MIL Tree> — <Block>

Until we consider separate compiiation, the only form an ADA program may take is a
procedure_declaration, which is represented in ML as a <Routine>. The BLOCK node, which is the
root (of any MIL tree). is the surrounding environment for the user-defined routine. Al MIL programs
which are passed 1o the Charratte compiler must have a single BLOCK node as their root,

Within MIL, scopes delimit the lifetimes of variables and exception handlers. The semantics of MIL for
block and procsdure elaboration ars as follows:

e Elaborate the declarations: evaluate each exprassion in the LOCALS list of the block or
routine, from lefi to right.



08 <MIL Tree> Appendix V1.2

-

¢ Enable the exception handler for this scope if present. A scope has an exception handler
if the HANDLERS field contains expressions.

e Elaborate the body: evaluate each expression in the BODY list of the block or routine,
" from left to right.

¢ Disable the current exception handler if present. if there was another exception handler
enabled when this scope was entered, ret_anable that handler,

The semantics of exceptions and their processing closely follows Ada. When an exception occurs,
the nearest dynamically enabled exception handler wiil be elaborated. The first action of an
exception handler is to disable itself and reenable the handler which was active when the current
handler was enabled. Therefore, if an exception is raised in the handler, it will be propogated up the
call stack, and not be a recursive elaboration of this handler.

Exceptions are raised by hardware conditions and by the MIL RAISE statement.

Untike Ada, there is no automatic reraising of an uncaught exception. When a handler is invoked, it
will elaborate whatever expressions are specified, and continue elaboration at the end of the scope in
which that handler is dectared. If it is desired to propogate an exception, the user must explictly place
a RAISE statement in the handler. (Note that the vaiue of the current exception is available as an
expression. See {Opr> nodes, section V1.8.3.)

Vi.3 <Routine>

{Routine> =

ROUTINE

{NAME <string>)

(PARAMETERS <Var List)>:)

(LOCALS <Decl List>:)

(TYPE <Typa>:)

(BODY <Stmt List>:)

(LINKAGE C | C_Dynamic | Ada | Ada_Dynamic | Algoi68 |
Asm | Allocator)

(HANDLERS <Stmt List>:)

{(LEXLEVEL <number>)*

(VAXLABEL <Label>:)*

(RETURNSIZE <number>)*

(LOCALSIZE <number>)*

(BLOCKSTOTAL <number>}*

(NESTINGBLOCKSMAX <number>)*

(MILHANDLER <{Label>:)*

(TOTALSIZE <pumber>)*

(BLOCKPARENT <Scope>:)*

(HANDLERPARENT <Scope>:)*
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NAME
PARAMETERS
LOCALS

TYPE

BODY

LINKAGE

HANDLERS

LEXLEVEL”

VAXLABEL"

RETURNSIZE"

LOCALSIZE®

BLOCKSTOTAL™

Definition af MiL 99

The name of the routine (optional. but useful for readability).
Formal parameters, if any, to this routine (vL5.1).

Nodes describing declarations local to this routine (V1.E}.
The raturn type of this routine (V1.4).

The executable portion of this routine.

The linkage conventions to be used when calis are made to this rouiine. Ses the
<Call> node, section V1.8.2, for details.

A list of statements which constitute the exception handler for this routine. This
may be empty.

The lexical ievel of this routina. Filled in by the BLOCK phase.

The label which will be generated for the VAX assembly language output. Thisisa
L ABEL nodse in the OBJECT language. Filled in by the CobE phase.

The size of a returnad value. if this is a function. Note that MiL requires a fixed
returned size. Filled in by the ACTREP phase.

The size of allocated local variables for this routine. This does not include space
required by nested blocks. Filled in by the ACTREP phase.

The total number of blocks contained in this routine. Filied in by BLOCK,

NESTINGBLOCKSMAX*®

MILHANDLER"®

The maximum nesting depth for blocks in this routine not including nested
routines. If there are no blocks in this routing, it will be zero. Filled in by BL QCK.

Label (a LABEL nodg in tha OBJECT language) at the start of the gznerated code
tor the exception handler attached to this routing, if any. Filled in by CCDE.

TOTALSIZE® This is the total size of the activation record for this routine. 1t includes the size of
the routine’s local variables. storage for nested biocks. saved stack pointers for
those blocks, and several words of constant overhead for linkage. Filiad in by
ACTREP.

BLOCKPARENT* A pointer to the enclosing block. For routines, this fielc is always NiL. Filled in by
the BLOCK phase.

HANDLERPARENT®

A pointer to the block or routine which containg the statically enclosing sxcepticn
handler. For routines, this field is always NIL. Filled in by the BLOCK phassa.

The DESC field {s2e V1.6) of each <Var> {see VI1.5.1) in the PARAMETERS fieid must te of the form
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{TYPES <Type>:)
(SIZES one:) ! Where one: is a subtree denoting
! the Titeral 1 (see VI.8.8)
{(i.e., each parameter must be a single unit in size). Passing of objects is by value. lf some other form
of passing is desired, it must be constructed by statements within the body of the routine or the caller.
See the <Call> node for an explanation of actual argument elaboration.

The intent of the LOCALS field is to describe the static portion of the run-time stack. All routines have
a return type, which is at most 1 unit in size. In the case of complex objects, this may be used to
return the address of the object.

V.4 <Type>

{Type> —

TYPE
{SUBTYPE NONE | INT | LOC)
{RANGE <Stmt>: <Stmt>:)
(VAXSIZE <number)>)*

SUBTYPE Indicates the MIL type: INT (for integer), LOC {for location) or NONE (indicating no
type).

RANGE Currently, the only values allowed in the RANGE fieid are two expressions which
describe the range of values a value of SUBTYPE INT may have. The expressions
in the range are not evaluated. They are given to the code generator as additional
information which may be used to determine the mapping between MIL integers
and the target machine’s integers. The RANGE is meaningless for SUBTYPEs

LOC and NONE. .

VAXSIZE* The amount of storage required for this type on a VAX. Itis filled in by ACTREP.

The code generator is free to choose any representation it desires for these types. For example, INT
and LOC may be represented identically.

For convenience in this appendix, we define the following TYPE nodes:

int: TYPE

{SUBTYPE INT)

(RANGE <Stmt>: <{Stmt>:)
foc: TYPE

{SUBTYPE LOC)
bool: TYPE

(SUBTYPE INT)
(RANGE zero: one:)
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{Note that int: is, in fact, a "template” node describing any integer type. Zaro: and one: are nodes

describing the literals 0 and 1. respectively (see section V1.8.8).

Vi.5 < Decl>

¢Dacl> ~» <var> | <Routine> | {Stmt>

¢Dech nodes denote deciarations of variables or routines. Note that statements may be interspersed

with declarations. This allows convenient implementation of complex Ada declaration elaboration.

VI.5. 1 Nar>
Var> —=
VAR
{NAME <string>)
{(DESC <{Descr:)
{LIFE STATIC ] LOCAL | PARAMETER)
(DOT-NODE <Exp List>:)*
(OFFSET <number>}*
(LEXLEVEL <number>)*
(SIZE <number>)*
(VAXLABEL <Label>:)*
(TYPEDESC <ptr>:)*
(VALUE_DESC <ptr>:)*

NAME The print name associated with this variable.

DESC The storage descriptor for this variable {see VLE). Fach siz2 in the SIZES field of
the descriptor must be a code-generation-time expression.

LIFE Lifetime attribute for this variable. Itis also used to indicata the access mathod for
the variable: local variables are allocated on the stack, static variables with the
code, and parameters are passed by value.

DOT-NODE*® This is used by the XFORM phase to keep track of the valus held in a variable

. {rather than the variable address).

QFFSET™ Ofiset for the current variable in its context. This is the oifset in the stack (local),
parameter number (parameter), or undefined for static symbgls. This figld is filled
in by ACTREP.

LEXLEVEL* The lexical level of this variable, This is fillad in by BLOCK.

SIZE* The static allocation for this variable {in bytes). Thisis filled in by ACTREP.

VAXLABEL*® The associated assembiy language label for this varable, if one exists. Used anly

for static variables. Fillad in by Cooz,
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TYPEDESC®

VALUE_DESC*

{Decl> Appendix VI.5.1

A pointer to the MIL descriptor which describes the storage layout for this
variable's type descriptor at run time. Used in XFORM.

A pointer to the DESC node which describes the value held in this variable. Used
in XFORM. :

<Var> describes (fixed-size) variables. Besides describing fixed-size Ada variables, VAR nodes may

be used to describe static portions of dynamic objects.

VI.6 {Desc>

{Desc>

TYPES

SIZES

INIT

VARIANTS

TOTALSIZE®

COMOFFSET*®

—

DESC
{(TYPES <{Type_Desc List>:)
(SIZES <Stmt List>:)
(INIT <Stmt List>:)
{VARIANTS <Desc List>:)
{TOTALSIZE <number>)*
{CUMOFFSET <number list>)*

(Pointers to) nodes describing each chunk of storage.

Literals describing the number of copies (described by TYPES) of this chunk
wanted.

Initial values for the corresponding chunks. Initial values may only be assigned to
chunks with a size of 1. The corresponding <Stmt> field for a chunk may be NIL,
indicating that no initialisation is desired.

Describes the variant parts (if any) of this structure. This is currently unimple-
mented.

The number of bytes required to hold a variable with this description on the VAX.
This includes ali storage specified by nested DESC nodes in the TYPES attribute.
This is filled in by ACTREP.

A list of offsets which indicates how far each field is from the beginning of the
storage for a variable with this description. This is filled in by ACTREP.

A DESC is used to described storage structure. The lengths of the TYPES, SIZES, and INIT lists must

be the same.

V1.6.1 {Type_Desc>

{Type_Descd> — (Type> | <Desc>

<Type_Desc> allows a field of a DESC node to reference either a TYPE or another DESC node.
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VI.7 <Stmt>

¢Stmt> —> <Label> | <Block> | <Loop> | <Case> | <Return> |
<Copy> | <Compare> | <Goto> | <Null> | <Exp> | <Exit> |
{Raise>
(Stmt> nodes denote statements in the MIL. The concept of a statement is actually a misnomer, as

MIL is an expression language. Every expression and statement returns a value,

vi.7.1<Labebl>

{Label> —

GOTOLABEL
(NAME <string>)
(STMT <Stmt>:)
(BLOCK <Block>:)*
(VAXLABEL <lLabel>:)*
(HANDLER <Block>:}*

NAME The print name of this label.

STMT The statement this label is attached to. This statement will not appear in the STMT
or HANDLERS field of a block or routing. The order of elaboration is: statement
before the GOTOLABEL node. the GOTOLABEL, the statement in the STMT field
of the GOTOLABEL , the statement following the GOTCLABEL node.

BLOCK* A pointer to the closest enclosing block or routine node which contains this
GOTOLABEL. Filied in by BrL.oCK.

VAXLABEL® The assembly language label which marks this spot in the assembly language
program. Fillad in by CoDE.

HANDLER*® A pointer to the closest enclosing block or routine which has an exception
handier. if none, this fizld is NIL. Filiad in by BLOCK.

GOTOLAREL nodas are used to mark places in the MiL program which may be targets for GOTO
statements, The value of a GOTCLABEL is the value of its asscciated statement {(STMT). Alsgseethe

description of the GOTO statement for restrictions on the use of GOTOs.

Vi.7.2 <Block>
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{Block> —

BLOCK
{LOCALS <Decl List>:)
(BODY <Stmt Listd:)
(TYPE (Typel>:)
{ALLOC_FLAG <number>)
{HANDLERS <Stmt List>:)
{DYNAMIC <number>)
{(TOTALSIZE <{numberd>)*
(LOCALSIZE <number>)*
(NESTEDSIZE <number>)®*
{ NUMBERBLOCKINROUTINE <number>)*
(NESTINGLEVEL <number>)*
(FRAMESIZE <number>)}*
(MILHANDER <Label>:)*
(BLOCKPARENT <Scope>:)*
(HANDLERPARENT <Scope>:)*

LOCALS Same as ROUTINE's LOCALS attribute.

BODY Same as ROUTINE’s BODY attribute.

TYPE A type descriptor which indicates the value returned by this BLOCK expression.

ALLOC_FLAG 0 indicates that no dynamic allocation was done on the stack inside of this block.
1 indicates that dynamic allocation was performed and the stack must be moved
back to its position before the block began execution.

HANDLERS Same as ROUTINE’'s HANDLERS attribute.

DYNAMIC 1 indicates that a dynamic object is being returned on top of the stack and the
stack pointer should not be altered on block exit. 0 indicates that no dynamic
obiect is being returned on the stack. Filled in by XFORM.

TOTALSIZE® The total amount of storage required for locats in this block and its nested blocks.
Filled in by ACTREP.

LOCALSIZE® The storage required for locals in this block only. Filled in by ACTREP.

NESTEDSIZE* The storage required for locals in nested blocks only. Filled in by ACTREP,

NUMBERBLOCKINROUTINE*

A number assigned to each block within a procedure, starting with 1. There is no
necessary relationship between this number and the nesting level of the block in
the routine. Filled in by BLOCK.

NESTINGLEVEL* Depth of block in current routine. This value is 1-based. Filled in by BLock.

FRAMESIZE"

The number of bytes which have already been ailocated in the enclosing routine’s
frame, i.e., the number of bytes that been allocated before the allocation for this
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BLOCK. New locals for this BLOCK are allocated after this size. Filled in by
ACTREP.

MILHANDLER* Same as ROUTINE's MILHANDLER attribute. Filled in by Cope.
BLOCKPARENT* Pointer to the nearest enclosing block or routine. Filled in by BLOCK.

HANDLERPARENT®*
Pointer to the nearest enclosing block or routine which has an exception handler.
This is the handler which would be invoked when an exception occured in the
handler for this block (without any other intervening blocks). if no such scope
exists, this is NiL. Filled in by BLOCK.

{Black>'s describe Bliss-style blocks. (The restrictions on the LOCALS field described in Section V1.3
apply here also.)

V7.3 <Loop>
{Loop> — <While> | <{For>

<Loop> nodes are used to describe while and for loops.

V1.7.3.1 {While>

{While> —

WHILE
(TEST <{Stmt>:)
(DO <Stmt List>:)
(ENDLABEL <Label>:)}*
(BLOCK <Scope>:)*
{HANDLER <Scope>:)*

TEST The test for the WHILE loop (<Stmt> must be of type int:). A value of O terminates
the loop, a vaiue of 1 continues the lcop. Other values cause undefined actions.

DO The body of the loop.

ENDLABEL™ Label (in the OBJECT language) used to mark the end of the loop for EXIT
statements, Filled in by CODE.

BLOCK™ Nearast enclosing scope for this foop. Filled in by BLOCK.

HANDLER™ Nearest enclosing scope for this loop which has an exception handler {if any).

Filled in by BLOCK.

WHILE nodes describe (Bliss-styie) while loops. WHILE nodes always have an undefined return
value, not 0 and not the vaiue of any EXIT statement.
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V1.7.3.2<Fom>
<For> —
FOR

( INDEX <Stmt>:)
(FROM <Stmt>:)
(TO <Stmt>:)
(BY <Stmt>:)
(DO <Stmt List>:)
(DIRECTION up | down)
(ENDLABEL <lLabel>;)*
(BLOCK <{Scoped>:)*
(HANDLER <Scope>:)*

INDEX The loop index (<Stmt> must be of type loc:).

FROM The smalier of the initiating and terminating Qalues. (<Stmt> must be of type int:).

TO The larger of the initiating and terminating values. (<Stmt> must be of type int:).

BY The increment for the index {(<Stmt> must be of type int:).

DO The body of the loop.

DIRECTION This attributes desrcibes whether the loop shouid run from the low value to the
high value, or from the high vaiue to the low value. This has no impact on the sign
of the BY expression.

ENDLABEL" Label {in the OBJECT language) used to denote the end of the loop. Filled in by
CoDE.

BLOCK* Nearest enclosing scope for this loop. Filled in by BLOCK.

HANDLER* Nearest enclosing scope with has an exception handler, if any. Filled in by BLOCK.

FOR nodes describe Algol 68-styie for loops. The value returned by a FOR loop is undefined. Note
that no checks are made between the DIRECTION and BY attributes, i.e., it is possible to specify a
down direction and a BY value of + 1, though it would {probably) cause an infinite loop. Each of the
INDEX, FROM, TO, and BY expressions are evaluated exactly once.

VI.7.4 {Exit>

<Exit>

-t

EXIT
{LOOP <Loop>:)
{BLOCK <(Scope>:)*
{HANDLER <Scope>:)*
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LOGCP The Mil LOQP ta be exited.
BLOCK™ Nearest enclosing scope which centains this EXIT node. Filled in by BLOCK.
HANDLER* Nearest enclosing scope. if any, which contains this EXIT node and has an

exception handler. Filled in by BLOCK.

MIL EXIT nodes return undefined values. An EXIT must refer to a LOOP which encloses it and is

statically nestad within the same routine.

VI1.7.5<{Case>
{Case> —
CASE
(DESIG <Stmt>:)
(CHOICES <Choice List>:)
DESIG The expression being case'd (<Stmt> must be of type ioc: or int:).
CHOICES The arms of the case statement.

CASE nodes represent Bliss-style case statements. Their return value is undefined. CASE
expressions are not implemented.
V1.7.5.1 {Choice>

{Choice> — <Case_Range> | <Otherwise>

VI.7.5.2 {Case_Range>

{Case_Range> —
RANGE
(RANGE <(Stmt>: <Stmtd>:)
(BODY <Stmt List>:)

RANGE Range of vaiues for this arm of the CASE (Each <Stmt> must be of the same type
as that in the DESIG field of the CASE node (VL.7.9)).

BODY The statements comprising the code for this arm.

The return value for 2 RANGE expression is undefined. RANGE ncdes are not impiemented.

CHOICE nodes represent case choice ranges.
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VI.7.5.3 (Otherwise>

{0Otherwise> —

OTHERWISE
(BODY <Stmt Listd>:)

OTHERWISE nodes are for the else clause in case statements. Their return value is not defined.
OTHERWISE nodes are not implemented.

V1.7.6 <Return>

{Return>

RETURN
(VALUE <Stmt>:)

VALUE The value to be returned.

RETURN is standard routine return and allows the return of a single unit value.

V1.7.7 <Copy>
{Copy> —
coPy
(DEST <Stmt>:)
{SOURCE <Stmt>:)
(SIZE <Stmt>:)

DEST The destination of the COPY {<{Stmt> must be of type loc:).
SOURCE The source of the COPY (<Stmt> must be of type /oc:).
SIZE An expression denoting the number of machine units to copy (it is intended that

this expression will access a location which will contain the size of the object at
run time).

COPY describes a (block) bit copy operation &,

Vi.7.8 {Campare>

16ln the current VAX implementation, the block copy works for sizes up to 216-1 bytes,
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{Compareg> —

COMPARE
(OP1 <(Stmt>:)
(OP2 <(Stmt>:)
(SIZE <Stmt>:)
{TYPE bool:)
(DYNAMIC <number>)

OP1 First operand to COMPARE.

oP2 Second operand.

SIZE The number of machine units to co.mpare (see note about SIZE field in description
of COPY).

TYPE Always bool:.

DYNAMIC Either 0 or 1. See DYNAMIC attribute of BLOCK.

COMPARE is used to allow efficient implementation of the ADA equality operation. It implements a
block compare and returns the integer value 1 if the two blocks of starage are equai, 0 if they are

different’’. No order of operand evaluation is specified.

V1.7.9 {Goto>
{Goto> —
GOTO

{TARGET <lLabel>:)

{BLOCK <Scoped:)*

{HANDLER <Scope>:}*
TARGET The MIL GOTOLABEL node where execution should continue.
BLOCK* Nearest enclosing scope which contains this GOTO node. Filled in by BLOCK.
HANDLER* Nearest enclosing scope, if any, which containg this GOTO node and has an

exception handler. Filled in by BLOCK.

MIL GOTO nodes return undefined values. The target of GOTOs may be in any block which shares a
common block ancastor {up to the routine level) with the block containing the GOTO statement, and
where no dynamic ailocation is done by any block between the common ancestor block and the block
containing the GOTO target. The target of the GOTO may alsa be in the enclosing routine of the
GOTO node. Targets of GOTOs may not be in a different routine than the GOTO node. in essence,

ﬂ'tn the VAX implementation, the biock compare is limited to objects of 215-1 bytes or fess.
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this' means that GOTQO targets cannot be in a context which requires the block's declaration
elaboration to alter the stack from its height at the place of the GOTO node.

VI.7.10<Raise>

{Raise> —
RAISE
{VALUE <Stmt>:)
VALUE An integer expression which specifies the exception to be raised.

<{Raise> nodes causes an exception to be raised explictly. The particular exception to be raised is
specified by the VALUE attribute. The value of a RAISE statement is undefined.

VL7.11 <Nuil>

<Null> =—

NULL

<Null> nodes represent the null ADA statement. They have no side effects. They return a value of 0 if
used as an expression.

V1.8 <Exp>

<Exp> = <If> | <Call> | <Opr> | <Subscript> |
{Address> | <Access> | <Literal>

<Exp> nodes denote (possibly value-returning) expressions in MIL.

VvL.8.1 <>

<If> —

IF
{(COND <Stmt>:)
(THEN <Stmt Listd>:)
{(ELSE <Stmt List>:)
(TYPE {Type>:)
(DYNAMIC <number>)

COND The conditional test in the IF (<Stmt> must be of type int:). 1 indicates that the
THEN clause should be elaborated, 0 indicates that the £ELSE clause should be
elaborated. Other values cause undefined actions.
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THEN The THEN clause of the IF.

ELSE The ELSE clause.

TYPE The type of this expression.
DYNAMIC See DYNAMIC attribute of BLOCK.,

IF nodes describe conditional expressions. The type of an IF is the type of its clauses {which must
have the same type). Note that a list of statements is allowed in each clause. No elaboration is done
of a clause which is not selected. The ELSE clause may be omitted, but the TYPE of the expression is
required to be NONE (i.e., the THEN clause may not return a value). The value returned by an IF

expression is the value returned by the selected arm.

V1.8.2 <Cal>
<Ca&ll1> —
CALL
{ROUTINE <Routine>:)
(ACTUALS <Stmt List>:)
(TYPE <Type>:)
(DYNAMIC <number>)

ROUTINE The routine being invoked.

ACTUALS The actual parameters to be passed. Each actual must be of single unit siza.
Each actual is elaborated as specified by the LINKAGE attribute of the called
routine.

TYPE The return type of this call (may be obtained simply by looking at the TYPE field of
ROUTINE). ’

DYNAMIC See the DYNAMIC attribute of BLOCK.

CALL nodes denote routine invocations. The order of elaboration of the parameters depends on the
linkage conventions of the ROUTINE. The currently implemented linkage conventions are:

C Imitate the conventions used by the C compiler on VAX/Unix. Parameters are
elaborated in reverse order and the routine is invoked with a CALLS instruction.

C_Dynamic Linkage conventions used when calting a C routine, but Ada_Dynamic conven-
tions for returning from the routine, This is used when a C run-time routine
returns a dynamicaliy-aliocated cobject on the stack.

Ada Linkage convention used by the Charrette compiier for simple Ada programs. See
' the run-time system description for these specifications. Parameters are evai-
vated in a left to right order and are pushed backwards on the stack. Toa C
program, it wouid appear that the parameter list was reversed. Linkage is by the
CALLS instruction. ’ ‘
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Linkage conventions used by the Charrette compiler for Ada routines whch return
composite values on the stack. See the run-time system description for these
specifications. This is the same as Ada linkage except the stack is not popped by
the ReT instruction for routine exit.

Linkage conventions for Algol-68 used on VAX/Unix. As we do not know what
they are, they are not implemented. They are included because the VAX/Unix
debugger system claims to understand this convention.

Linkage conventions for assembler programs. See the run-time system de-
scription for these specifications. This is currently the same as C linkage.

Linkage conventions used for calling the Ada.run-time system storage ailocator.
See the run-time system description for these specifications. '

There is no requirement that the number of actual parameters equal the number of formal parameters

specified by the ROUTINE. If the linkage convention explicitly passes the number of actuals in a call,

e.g., the first operand of a CALLS instruction, this number is gotten from the number of ACTUALS in
the CALL node, not the number of FORMALS in the ROUTINE node.

V1.8.3<0pr>
Dpr> —
OPR
(OP <0p>)
(LHS <Stmt>:)
{RHS <Stmt>:)
{TYPE <{Type>:)
{CHECK <Stmt)>: {(Stmt> 1)
(DYNAMIC <number>)
oP The operatian to perform.
LHS The left-hand-side operand (absent for some environment enquiries).
RHS The right-hand-side operand {absent for unary operators).
TYPE The type of this expression (depends on operator (<Op>} and type of operand(s}).
CHECK Two expressions which indicate the range that the computed value must meet.
This check is always made after the two operands are evaluated. With the
exception of the assignment operations, this check is made after the operation is
done. - In the case of an assignment operator, the check is done before the
assignment. An exception is raised if the check fails.
DYNAMIC See the DYNAMIC attribute of the BLOCK node.

OPR nodes denote a large class of operations in MiL. See the following sections for details on each

operator.
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V1.8.4 <Op>

{0p> — <Plus> | <Minus> | ¢Relational> | -- | * | /7 | ** rem |
and | or | xor | not | <Dot> | <Assign> |
{Cast> | <Environment>

The following paragraphs describe the effect and functicnality of each <Op>. Other desired operators

may be added easily as necessary.

V1.8.4.1 <Pius> and {Minus>

{Plus> - plus_int_int | plus_int_foc | plus_loc_int

(Minusy> — minus_int_int | minus_int_loc | minus_loc_int |
minus_loc_foc

¢Plus> and <Minus> are used to denote addition and subtraction. Their functionalities are defined as

follows:
plus_int_int: INT x INT == INT
plus_int_foc: INT x LOC — LOC
plus_loc_int: LOC x INT = LOC
minus_int_int: INT x INT == INT
minus_int_joc: INT x LOC — LGC
minus_loc_int: LOC x INT — LOC
minus_loc_loc: LOC x LOC — LOC

Operands of type LOC and INT may be used for address calcutation. Minus_loc_ioc is defined for use
in oftset calculation. Integer arithmetic may cause hardware overflows, which are ‘rapped as
sxceptions and processed. Location arithmetic (any <{plus> or <{minus> operation with a LOC
operand) will not cause an overflow. [f the result is too large for the machine, the most significant bits
will be discarded.

V1.8.4.2 {Relational>

{Relational> =+ /ss_int | leg_int |
gtr_int | geq_int |
eql_int | neg_int |
eql/_loc | neq_loc
<Relational> operators describe the starndard single unit relational cperations. The return type of a
<Relational> operation is always bool: where 0 indicates faise and 1 true. These operaters are not
meant to be used to perform the general ADA equality operation (see Section Vi.7.8 for a bit
comparison operator).
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All _int operators have the following functionality:
INT x INT — INT
while eg/_ioc and neq_loc have functionality

LOC x LOC — INT

vi.8.4.3 --
-- is unary integer negation:

- INT — INT

Appendix V1.8.4.2

The RHS field for — is irrelevant. Overflow may occur on two's complement machines.

vi.8.4.4* /,remand **

* is integer muitiplication, / is integer division, rem is integer remainder and ** is integer

exponentiation. Overflow may occur on some machines. The functionality for all three is;

INT x INT = INT

Note that these operations are not defined on LOC’s.

VI.8.4.5 and, or and xor

These are the logical operators with the value 0 representing false and 1 true. Their functionalities

are

INT x INT — INT

Vi.8.4.6 not
Not is unary complement:

not: INT — INT

The RHS field for not is irrelevant. Note that NOT 0 = 1 and NOT 1 = Q.

Vvi.8.4.7 Dot>

<Dot> — dot_loc | dot_int
<{Dot> is the indirection operator:

dot_joc: LOC - LOC
dot_int : LoC = INT
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The return type of the <Dot> operator must be defined in the operator (i.2., what are we indirecting to).

V1.8.4.8<{Assign>
CAssign> — assign_loc | assign_int | rev_assign_loc

<{Assign> is meant to denote single unit assignment/copy. (For a block copy operation, see VI.7.7)

assign_int: LOC x INT - INT -
assign_joc: LOC x LOC — LOC
rev_assign_Joc: LOC x LOC — LOC

{Assign> is not intended for general representation of the ADA assignment operaticn (although it
might be used for assignment of integers, characters, etc.). This operator is intended for use in
assignment of internal entities (e.g., array descriptors, range constraints, etc.). Both sides are
evaluated before the assignment is done. Normally, the LHS describes the target for the asignment
and the RHS the value to be assigned. In the case of the reverse assignment operator,
rev_assign_loc, the target of the assignment is the RHS expression, not the left hand side expression.
Any specified checking is done before the assignment is done.

Vi.8.4.9<{Cast>
<Cast> = cast_loc_int | cast_int_int | cast_int_loc

<Cast) is used for coercing a datum of one type into a datum of ancther type.

cast_loc_int: LOC — INT
cast_int_int: INT — INT
cast_imt_foc : INT — LOGC

<Cast> is not intended to implement Ada type conversion, only tc provide a limited facility for

changing between location and integer data. and between integer data of different sizes.

V1.8.4.10 <Environment>

<Enqvironment> —» radix | size | storage_unit { excep_val

<Environmenty is used for determining values in the run-time environment. All of the environment
inquiries return integer values.

RADIX The radix of the machine’s arithmetic. Currently this value is 2.
SIZE The number of bits in the expression in the LHS.

STORAGE_UNIT The number of bits in the basic storage unit of the machine. Currently this value is
8.
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.

EXCEP_VAL Evaluates to the value of the current (pending) exception. If no exception is
pending, this value is undefined.

(Environment)'s are intended to implement some of Ada's attribute enquiries.

VL.8.5 (Subscript>

{Subscript> —

[]
(BASE <Stmt>:)

(INDICES <{Stmt List>:)
{TYPE loc:)

{BOUNDS <Bounds>:)
(DYNAMIC <number>)
{INDIRECT_TYPE <Type>:)*

BASE The base address of the dope vector for the array being subscripted (KStmt> must
be of type lec:).

INDICES The indices of the subscript (each <8tmt> must be of type int:).

TYPE The type returned by [ ] (must be foc:}.

BOUNDS The bounds informéticm for this array (V1.8.5.1). This is currently unused and

unimplemented.
DYNAMIC See the DYNAMIC attribute for BLOCKs,

INDIRECT_TYPE* Attribute used by XFORM to indicate the contents of the address specified by this
operator.

[] is used to allow efficient subscripting (particutarly on the VAX). The BOUNDS field (bounds

descriptor) is passed to SUBSCRIPT so that it may take advantage of information contained therein

{e.g., static bounds, fixed size of elements, etc.). BOUNDS is currently unimplemented.

The fact that the base address of the dope vector for the array is passed to SUBSCRIPT implies that
the producer of MIL and the code generator must agree on the structure of array dope vectors.

The address calculations for a subscript, like all address calculations, will not generate an overfiow,
although evaluation of the indices themselves may cause an overflow. Bounds checking for the array
is generated automatically and cannot be disabled.
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Vi.8.5.1<Bounds>
{Bounds> -+

BOUNRS
(LBS <Stmt List>:)
(UBS <(Stmt List>:)
(ELT_SIZE <Stmt>:)

LBS int: expressions giving the lower bounds for each dimension of the array.
UBS int: expressions giving the upper bounds for each dimension of the array.
ELT_SIZE The size (in machine units) of each element of the array (<Stmt> must be of type

int:).

BOUNDS nodes represent bounds and element type information for arrays. They are currently
unimplemented.

V1i.8.6 (Address>

{Address> —

GTADDRESS
(WHERE <Var>:)
{(TYPE loc:)
{DYNAMIC <number>)

WHERE The variable whose address is desired.
TYPE The type returned by GTADDRESS (always /oc:).

DYNAMIC See the DYNAMIC attribute of BLOCK.

GTADDRESS is used to obtain the address of a variable. Its use is analogous to the occurrence of a
variable name in Bliss which denotes the address of the variable.

VI.8.7 {Access>

{Access> —

ACCESS
(BASE <5tmt>:)
(FIELD <Integer>)
(DESC <Dasc>:)
{VAR_NMUM <integer>)
(TYPE foc:)
{DYNAMIC <number>)
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BASE The base address of the structure (the type of <Stmt> must be Joc:).

FIELD The ordinal number of the field to be accessed (1-based).

DESC The storage descriptor describing the structure.

VAR_NUM The index of the VARIANT field {in the DESC node) to use {1-based). This is
' currently unimplemented. .

TYPE The type of value returned by ACCESS (always /oc:).

DYNAMIC See the DYNAMIC attribute of BLOCK.

ACCESS is used 10 access a field in a MIL. structure {i.e., storage layed out for a VAR node). if the
field to be accessed lies in the variant part of the structure then the VAR_NUM field tells which variant
descriptor to use (see VARIANT field in Section VIL.E).

Vi.8.8 {Literal>
{Literal> —

LITERAL
(TYPE <(Typed>:)
(VALUE <Value>)
(DYNAMIC <Number>)

TYPE Type of this LITERAL.
VALUE The actual value. Note that all LITERAL values are single unit quantities.
DYNAMIC See DYNAMIC attribute for BLOCK nodes.

LITERAL nodes are used to represent literals {constants) in the MIL program.

The following LITERAL nodes denote the constants 0 and 1 (they were referenced in Section V1.4).

zero: LITERAL
(TYPE int:)
{VALUE 0)
one: LITERAL
(TYPE int:)
(VALUE 1)

Vvi.8.8.1 <Value>
Value> — <integer> | <P1lit>

<Valued nodes describe values similar to those used in a Bliss bind.
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VI1.8.8.2 <PIit>
{Plit> -
PLIT
{TRIPLE <Value List>)
(VAXLABEL <Label>:)*
TRIPLE The data pointad to (as in a Bliss plit).
VAXLABEL*® Assembly language label which starts storage for these literals. Filled in by CODE.

A PLIT nade creates a pointer to a literal. Restricted forms of PLIT nodes are currently implemented.

The TRIPLE vaiue must be a list of integers, strings, and plit nodes.
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