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1. Introduction and Overview 
This report describes the implementation of a compiler for preliminary Ada [15]. The compiler runs on 

a DECsystemlO or DECsystem20 under TOPS-10 or TOPS-20 and produces code for a VAX-11/780 

under U N I X . 

This paper is intended primarily for others who intend to implement Ada. T h e reader is assumed to be 

familiar with Ada, and with conventional compiler implementation techniques. 

T w o separate but related efforts are described in this paper. The Front End of the compiler was done 

at Intermetrics, Incorporated; the Back End was done at Carnegie-Mellon University. Strictly 

speaking, the name "Charrette" refers only to the Back End, but we have combined reports of the two 

efforts in order to provide a complete description of the compiler. The Front End is written in 

Simula [2]; the Back End is written in BLISS-10 [30]. 

Much of the material for this report was taken from four papers submitted to the Ada Symposium in 

Boston in December, 1980 [12, 25, 26, 27]. These papers have been reworked to fit together in a 

unified report. We have also included a number of working notes from the Charrette effort that 

examine aspects of the compiler not covered by the papers. 

T h e remainder of this chapter introduces the goals of the two projects, the structure of the compiler, 

and the intermediate languages used in the compiler. Chapter 2 describes the run-time represen­

tation of types and variables. Chapter 3 describes the Front End . Chapter 4 describes the phases of 

the compiler that transform the output of the Front End 0"COL A d a ) into a lower-level intermediate 

language (MIL). Chapter 5 discusses the translation of MIL into assembly language. Chapter 6 

contains a number of the Charrette working notes. 

All of the Ada program examples in this document use the revised Ada syntax [14]. 

1.1 Goals and Non-Goals 

1.1.1 T h e F r o n t E n d 

As a part of the Ada test and evaluation effort, Intermetrics developed a program to check the 

semantic correctness of Ada programs. This was done for several reasons: first, to develop an 

operational definition of the language semantics against which other translators could be compared; 

second, to determine the impact of the language rules on the design complexity of such a translator; 

and third, to understand better how to implement translators that could process Ada programs. 
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Because changes to Ada were anticipated, the design had to be general enough to handle Ada's 

semantic rules, and modular enough to incorporate changes in the language as they occurred. 

1.1.2 T h e B a c k E n d 

The Back End project had a multiplicity of goals. Our primary intentions were to produce a compiler 

for an extensive subset of Ada in a short period of time, to explore the interactions among language 

features, and discover where the implementation problems might lie. Despite our desire to get a 

compiler running quickly, we wanted to produce a clean design. Some of us were interested in 

eventually exploring strategies for implementing some of the novel aspects of Ada, such as separate 

compilation, tasking, and generics. 

The project was also characterised by a number of things we explicitly decided not to do . We did not 

intend to produce a polished user-friendly compiler. T h e project was motivated by compiler 

implementors and language designers rather than by a user community. This freed us from the need 

to spend time on those areas that were not strongly related to language implementation issues. 

We adopted the following guiding precepts: 

• Choose implementation techniques that are as general as possible; avoid schemes that 

require special case analysis. 

• Avoid optimisations unless they can be obtained with little effort. 

• Write straightforward compiler code; prefer readability of the compiler sources to 

efficiency of the running compiler. 

1.2 Compiler Structure 

The Front End consists of five phases. They are typical of compilers built with the use of parser 

generation systems. A block diagram of the Front End is shown in Figure 1-1. 

The Back End consists of seven phases. T h e phases can be grouped according to the language they 

take as input and the language they produce as output. A block diagram of the Back End , illustrating 

its phases and intermediate languages, is shown in Figure 1-2. The intermediate languages are 

described in Section 1.3. 

The first two phases ( T Y P E R E P and X F O R M ) transform T C O L A d a into MIL. The next three ( B L O C K , 

A C T R E P , and C O D E ) transform MIL into O B J E C T . The seventh ( P E E P ) performs peephole optimisations 

from O B J E C T form into O B J E C T form, and the last ( O U T P U T ) transforms O B J E C T into assembly 

language. 
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Parser Semantic Analyzer 

Lex ica l 
A n a l y z e r 

S y n t a c t i c 

A n a l y z e r 
i ree 

Bui lder 

Semant ic 
A n a l y z e r 

TCOL 
G e n e r a t o r 

F i g u re 1 - 1 : Block Diagram of Front End 

F R O N T E N D 

T Y P E R E P 
X F O R M 

BL O C K 
A C T R E P 

C O D E 

P E E P 

O U T P U T 

V A X A S S E M B L E R 

T C O L A D A 

M I L 

O B J E C T 

V A X A S S E M B L Y L A N G U A G E 

F i g u r e 1 - 2 : Back End Phase Structure 

1 . 2 . 1 L E X I C A L A N A L Y S I S 

The L E X I C A L A N A L Y S I S phase used by the Front End is a finite state machine that breaks sequences of 

characters into tokens. It is automatically generated by a parser generator system. 
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1 . 2 . 2 S Y N T A X A N A L Y S I S 

The S Y N T A X A N A L Y S I S phase, sometimes termed a parser, is also produced by a parser generator 

system using an L A L R ( 1 ) grammar. It produces a list of production rules, identifiers, and literals for 

use in building a derivation tree. 

1 . 2 . 3 T R E E B U I L D E R 

The T R E E B U I L D E R acccepts the list of productions and identifiers and creates a tree that can be 

manipulated by the semantic analysis phase. This is done by allocating a particular Simula class 

(variant record) for each rule application and linking these classes (records) together with pointers. 

1 . 2 . 4 S E M A N T I C A N A L Y S I S 

T h e design of the Front End revolves around the S E M A N T I C A N A L Y S I S phase. This phase performs a 

tree walk over the program, checking that all declarations, expressions, and statements meet the 

restrictions in the language reference manual. All binding of names for separately compiled 

programs, overload resolution, and type checking is done by this phase. Evaluation of static 

expressions, as required for type checking, is also done at this time. 

This phase is described in detail in Chapter 3. 

1 . 2 . 5 T C O L G E N E R A T O R 

The last phase of the Front End, the T C O L G E N E R A T O R , examines the program tree and translates it 

into an equivalent T C O L format for use by later phases. Conceptually, this phase is the first code 

generation phase since the original parse tree of the program is discarded and replaced by the 

simpler T C O L representation. 

1 . 2 . 6 T Y P E R E P 

T h e name T Y P E R E P is an abbreviation of "Type Representation". Its purpose is to represent Ada 

types and subtypes in terms of MIL types. It generates the compiler's internal representation of the 

descriptors needed at run time. 

T Y P E R E P performs a recursive walk over the program tree looking for type and subtype information. 

For each type or subtype, T Y P E R E P generates appropriate descriptors for information that must be 

available at run time. 
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1 . 2 . 7 X F O R M 

The name X F O R M stands for "T ree Transform". This phase has the job of transforming Ada variables, 

operations, and statements into MIL variables and expressions. By the end of X F O R M , all of the 

original T C O L A d a form of the program has been discarded. 

X F O R M is described in Chapter 4 . 

1 . 2 . 8 B L O C K and A C T R E P 

B L O C K ' S function is to identify the static nesting level of each piece of code in the MIL program. This 

gives display levels for each variable, identifies the correct exception handler for each context, and 

locates the targets of go tos and ex i ts . B L O C K also determines the maximum nesting of blocks within 

a subprogram, so that a vector of saved stack pointers may be allocated in the activation record for 

the subprogram (see Section 5 . 1 . 3 ) . 

The name A C T R E P stands for "Actual Representation". In MIL, variables are represented as machine-

independent integers and locations. A C T R E P decides how much actual storage to allocate for each 

object and decides on the layout of records and activation records. It also has the responsibility for 

handling machine-dependent Ada operations and attributes such as ' S I Z E , ' B I T S , a n d ' P O S I T I O N . 

1 . 2 . 9 C O D E 

C O D E produces machine code from MIL. It has two portions. One generates code to allocate and 

initialise declared MIL variables. T h e other generates machine code from MIL expressions. Both 

actions are performed in the same tree walk. 

C O D E treats the V A X as a pure stack machine. This approach eliminates the need to do register 

allocation, and allows this phase to ignore the context in which an expression occurs when 

generating code. 

C O D E is discussed in Chapter 5 . 

1 . 2 . 1 0 P E E P 

P E E P is a simple peephole optimiser; it is one of the few things we did to improve code quality. This 

phase is driven by a database of optimisation patterns described in a notation much like VAX 

assembly language. T h e patterns are converted by a S N O B O L program into BL ISS code which 

manipulates the O B J E C T - f o r m data structures. 

P E E P is described more fully in a separate paper [ 1 9 ] . 
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1.2.11 O U T P U T 

O U T P U T transforms O B J E C T notation into VAX assembly code. It performs a simple graph-to-text 

translation, and would be easy to modify to produce object files. 

1.3 Intermediate Languages 

It is possible to view the compiler as a set of transformations between intermediate languages. Each 

transformation is accomplished by one or more compiler phases. This section gives an overview of 

the intermediate languages. Discussion of our experiences with these languages is deferred to 

Section 7.3.1. 

1.3.1 L G N 

Each of the internal forms of a program is a graph. Nodes within the graph are typed. Each node 

contains a number of attribute/value pairs. The type of a node determines what attributes it may 

have. For example, in one form there are t r e e nodes representing the parse tree of the program and 

several kinds of s y m b o l nodes representing symbol table information. 

In order for a human being to examine these internal structures they must have some textual 

representation. The notation used is called L G N , for Linear Graph Notation [3]. The general shape of 

the L G form of a node is shown in Figure 1-3. Each node has a label which is denoted by an identifier 

followed by a colon. Each node also has a type that determines the set of attributes it may have. A 

portion of a program tree and the corresponding L G N are shown in Figure 1-4. 

label: node type 
(attribute-name -1 value(s)) 
(attPibute-name -2 value(s)) 

F i g u r e 1-3: Characterisation of L G N 

1.3.2 T C O L 

T C O L . . is an intermediate language used to represent Ada programs after semantic analysis. It was 
Add 

designed originally for use in the P Q C C project [21]. The T C O L form of a program resembles an 

annotated parse tree together with symbol table information. It differs from a parse tree in that 

operator identification, type checking, and other aspects of semantic analysis have been performed. 
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/ \ 

A : » B*C; A • 
/ \ 

B C 

L I : TREE-NODE (OP a s s i g n ) (SUBNODES L 2 : L 3 : ) 
L 2 : TREE-NODE (OP l e a f ) (DEFN s y m b o l - n o d e - f o r - A : ) 
L 3 : TREE-NODE (OP m u l t i p l y ) (SUBNODES L 4 : L 5 : ) 
L 4 : TREE-NODE (OP l e a f ) (DEFN s y m b o l - n o d e - f o r - B : ) 
L 5 : TREE-NODE (OP l e a f ) (DEFN s y m b o l - n o d e - f o r - C : ) 

F igu re 1 - 4 : T C O L For a Portion of a Program Tree 

T C O L is a rather high-level intermediate form. Its principal advantage is that it retains most of the 

information provided to the compiler by the source program rather than reducing the program to 

some simpler form in which much of this information is missing or must be painfully reconstructed. 

Figure 1-4 shows the T C O L tree for a simple expression. T C O L A d a is defined in the T C O L A d a 

report [3]; a partial description is given in a paper by Brosgol [4]. 

1.3.3 M I L 

MIL stands for Machine-independent Intermediate Language; it was designed as part of the Charrette 

project. Like T C O L it is a tree-based language. It resembles implementation languages like BLISS or 

C more closely than high-level languages like Ada. Our principal reason for choosing this form as one 

of the intermediate steps in the compiler was to force a clean separation between the machine-

independent portions of the compiler and the machine-dependent ones. 

The data structures representable in MIL are integers, pointers, and contiguous blocks of 

heterogeneous storage. MIL is an expression language; most constructs return a value. MIL retains 

fairly high-level control constructs such as if, for , and c a s e . This allows the machine-dependent 

portion of the compiler to chose special instructions intended to be used for such constructs without 

having to perform extensive analysis of a lower-level representation. 

MIL is also discussed in Section 4.1. A complete definition of MIL is given in Appendix V I . 
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1.3.4 O B J E C T 

The O B J E C T intermediate form is the compiler's internal representation of V A X machine instructions. 

This form is a doubly-l inked list of nodes representing machine instructions; nodes are Jinked together 

in the order the instructions will appear in the assembly language program. This intermediate form is 

based on the data structure used in the FINAL phase of the BLISS-11 compiler [31]. An example of a 

machine instruction and the corresponding O B J E C T form is shown in Figure 1-5. 

1.3.5 V A X A s s e m b l y L a n g u a g e 

We compile to assembly language primarily to avoid worrying about the details of object file formats. 

This also allows us to transfer text files to the target machines, avoiding problems of compatibility of 

binary file formats. 

ADDL2 ( S P ) + , R 0 

L I 
L2 
L3 

OBJECT (MOP AD0L2)(OPERAND L 2 : L 3 : ) ( P R E V L O : ) (NEXT L 4 : ) 
ADDRESS (MOP A u t o l n c r e m e n t ) ( O P E R A N D SP) 
ADDRESS (MOP R e g i s t e r ) (OPERAND RO) 

F i g u r e 1 - 5 : O B J E C T Form of a VAX Machine Instruction 
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2. A Run-time Representation for Ada Variables 
and Types 

This chapter presents a run-time representation for Ada variables and types. The type and subtype 

facilities of the Ada programming language permit some subtype information to be determined 

dynamically. This subtype information requires a run-time representation, and its dynamic nature 

influences the representation of variables. In this chapter, we first review Ada's types and subtypes to 

identify some of those aspects that affect run-time representation. We then present the particular 

representation scheme used in the Charrette Ada implementation. The scheme is straightforward and 

consistent in that a variable is represented the same way independently of whether it is on the stack, 

on the heap, or a component of another variable. The design treats Ada's discriminants and 

discriminant constraints as a form of parameterised types, where the parameterisation permits 

different instances of a type to have different variants and different sizes for array fields. Composition 

of such parameterised types is supported. We explain how several Ada operations are handled by our 

particular representation. We briefly discuss some alternative approaches to Ada representation, 

comparing them to our design. 

2.1 Review of Ada 

This section reviews some aspects of Ada that impact run-time representations [15,17]. 

2.1.1 C o n s t r a i n t s and S u b t y p e s 

The Ada language has the notions of type and subtype. A subtype is a type with constraints. Two 

variables may have the same type, but different constraints, and thus, different subtypes. Constraints 

may be run-time expressions; thus, in general, if an operation requires subtypes to match, the 

checking must be done at run time. 

There are several kinds of constraints. Scalar types may have range constraints. Arrays have index 

constraints, which determine the array bounds. These bounds must be checked upon subscripting 

and slicing and upon assigning and comparing entire arrays. Slices likewise have index constraints. 

Records may have discriminant fields which are used as the array bounds on another field in the same 

record or as the tag on a variant part. A record's discriminants may be restricted to specific values by 

a discriminant constraint. Access types may have either index constraints or discriminant constraints, 

depending on whether the accessed object is an array or a record, respectively. 

In addition to requiring run-time checking, Ada permits a programmer to make attribute inquiries. For 

example, the user may obtain the lower bound of an array via the ' F I R S T attribute. 
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2.1.2 D y n a m i c A r r a y s W i t h i n R e c o r d s 

In much of Ada, the subtype constraints for a particular variable are fixed upon allocation of the 

variable. This holds for allocation on the stack upon block entry and for allocation on the heap by 

n e w . One exception occurs with an unconstrained record variable having a discriminant that is used 

as an array bound. The variable Z in the example below is such a record. 

s u b t y p e N a t u r a l is I n t e g e r r a n g e 1 . . I n t e g e r * L A S T ; r e p e a t e d f r o m 
t y p e S t r i n g is a r r a y ( N a t u r a l range <>) of C h a r a c t e r ; package STANDARD 

t y p e M y V S t r ( L e n : I n t e g e r r a n g e 1 . . 1 3 3 := 120) is 
r e c o r d 

S V a l : S t r i n g ( 1 . . L e n ) ; 
e n d r e c o r d ; 

X: M y V S t r ( L e n => 3 9 ) ; 
Y : M y V S t r ( L e n => 1 5 ) ; 
Z : M y V S t r ; U n c o n s t r a i n e d . The d i s c r i m i n a n t 

Len may t a k e on any v a l u e i n t h e r a n g e 
1 . . 1 3 3 , and t h e a r r a y f i e l d SVal may 
become as b i g as 133 e l e m e n t s . I n i t i a l l y , 

- - Len i s 120 and SVal has bounds 1 . . 1 2 0 . 
b e g i n 
Z 
Z 
X 

= Y ; 
= X ; 
= Z ; — R e q u i r e s check t h a t Z . L e n = 39 

Since it has no discriminant constraint, the record variable Z may have its discriminant Len changed 

by an entire record assignment; this also changes the bounds (i.e., the index constraints) on the array 

field S V a l . Thus , we require some changeable association of the array variable with its subtype 

constraints. 

In the above discussion, we made such dynamic arrays within records appear to be an exceptional 

case in that their constraints changed after creation of the variable. However, one may view an entire 

record assignment that changes discriminants as re-creating the component variables. Th is re­

creation view is especially appropriate for an entire record assignment that changes variants, for such 

a change conceptually destroys the component fields belonging to the old variant while creating the 

components that belong to the new variant. 

Implementations may strive for space efficiency in representing the constrained instances of a type 

(e.g., the variables X and Y above). We can mix constrained and unconstrained instances of a record 

in assignments, with checking in the appropriate cases. We can view such mixing as involving mild 

changes of representation. 
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2.1.3 H e a p O b j e c t s a n d C o n s t r a i n t s 

For access types, the user may defer supplying index and discriminant constraints for the accessed 

type until the object is actually allocated via n e w . For example, 

t y p e P t r S t r i n g is a c c e s s S t r i n g ; 
P: P t r S t r i n g ; 
b e g i n 
P : = n e w S t r i n g ( l . . 4 0 0 0 ) ; 
P : = n e w S t r i n g ( M . . N ) ; 

In general, the subtype constraint information for each heap object must be associated with that 

particular object, to make it feasible to access this information via a pointer to the object. 

2 .1 .4 S u b t y p e C o n s t r a i n t s and F o r m a l P a r a m e t e r s of S u b p r o g r a m s 

For unconstrained array formal parameters, the formal inherits the bounds of the actual array 

parameter. Thus , the bounds of the actual must be available throughout the call on the subprogram. 

For unconstrained record formal parameters, the formal initially has the discriminant values of the 

actual. If the actual is constrained, then so is the formal. Furthermore, the subprogram body may 

inquire whether the actual parameter is constrained by applying the 'CONSTRAINED attribute to the 

formal parameter. 

2 .1.5 C o m p o s i t i o n of D i s c r i m i n a n t s a n d D i s c r i m i n a n t C o n s t r a i n t s 

In preliminary Ada, a discriminant of a record could only be used as an array bound or as a tag on a 

variant part. In revised Ada, a discriminant may also be used in a discriminant constraint on another 

field of the record. This feature permits composition of records with composition of their discriminant 

constraints, since a discriminant constraint on an outer record may be used in a constraint on an 

inner record. This allows two instances of the same outer record type to have different constraints on 

an inner record field, for example, the variables ATS and BTS below have different constraints on their 

S I field. 

t y p e T w o S t r ( N l , N 2 : I n t e g e r r a n g e 1 . . 5 1 2 ) is 
r e c o r d 

S I : M y V S t r ( L e n => N l ) ; 
S 2 : M y V S t r ( L e n => N 2 ) ; 

e n d r e c o r d ; 
A T S : T w o S t r ( N l => 39, N2 => 2 3 ) ; 
B T S : T w o S t r ( N l => 15, N2 => 2 3 ) ; 

Ada's discriminant and discriminant constraint mechanisms can be regarded as a form of 
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parameterised types, where the parameterisation permits different instances of a type to have 

different variants and different sizes for array fields [10]. 

2.2 A Particular Representation 

This section describes our run-time representation scheme. We first give overviews of the 

representations of types, subtypes, and variables, and then fill in the details in later sections. Section 

4.2 covers the translation of the Ada source program into these representations. 

2.2.1 O v e r v i e w of R e p r e s e n t a t i o n of T y p e s and S u b t y p e s 

As explained in Section 2.1.5, Ada's discriminants and discriminant constraints may be viewed as type 

parameterisation. O n e may also view array types and index constraints as being a parameterisation of 

arrays; the index constraints are the parameters. We employ this view in our implementation. Each 

non-scalar type definition in the Ada source program is described at run-time by a type template. A 

type template contains a tag to indicate whether it is for an array, record, or access type. A type 

template for an array or record may take formal parameters. The formal parameters of a record type 

template are simply its discriminants. The formal parameters of an array type template are the bounds 

for the array plus any parameters to the element type. 

When a type is used in an Ada source program, constraints may be supplied. In our run-time 

representation, these constraints become actual parameters to a type template. 

CRTag : one o f C R C o n s t r a i n e d , C R U n c o n s t r a i n e d , 
o r C R P a r e n t s P a r a m 

C R V a l u e : depends on CR Tag : 
when C R C o n s t r a i n e d , s c a l a r v a l u e o f c o n s t r a i n t 
when C R U n c o n s t r a i n e d , p o i n t e r ( a b s o l u t e ) t o 

s c a l a r t y p e d e s c r i p t o r f o r t h i s t y p e ( i f 
k n o w n ) , o r n i l ( i f u n k n o w n ) , 

when C R P a r e n t s P a r a m , i n d e x o f p a r e n t ' s 
p a r a m e t e r t o u s e , e . g . , u s e t h e t h i r d 
p a r a m e t e r o f my p a r e n t . 

F igu re 2 -1 : Constraint-rep-block 

An actual type parameter is represented by an entity called a constraint-rep-block (see Figure 2-1). It 

handles three kinds of actual type parameters: (1) constrained, (2) unconstrained, and (3) 
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constrained by a type parameter of the enclosing variable (the parent). A constraint-rep-block has 

two fields: a tag indicating which of the three cases exists and a value whose interpretation depends 

on this tag. 

All the type actuals in an index or discriminant constraint are packaged up in an entity called a call 

block. A call block may be thought of as an actual argument list. It also contains a pointer to the type 

template to which it is being applied, and a count of the number of type actuals. Thus, a subtype 

formed by an index or discriminant constraint is represented by a call block. 

A record has component fields, each having its own subtype. For each field, the type template for a 

record type contains a pointer to the template or call block for that field. An array type template 

contains a pointer to the template or call block for the component type. 

Some of the goals of this parameterised treatment of Ada types are: 

• Handling parameterisation and composition. For an instance of a composite type, actual 
parameters must be passed down from the top-level type into the component types. 

• Handling unconstrained instances of types. Just as other actual parameters must be 
passed down, the special parameter value "unconstrained" must also be passed down so 
that the correct amount of storage will be allocated for the components. 

• Handling discriminants being used in discriminant constraints on other fields. 

• Handling a constrained instantiation of a parameterised type T nested inside another type 
T2 when this constraint is not a parameter of 12. For example, 

t y p e T2 is r e c o r d A : T ( 3 , M ) ; e n d r e c o r d ; 

(Here, the variable M is from a surrounding scope.) 

2 .2.2 O v e r v i e w of R e p r e s e n t a t i o n of V a r i a b l e s 

Constraint information is stored in every instance of an array or record variable. Each array variable 

has its own copy of the index constraints (the bounds) and each record variable has its own copy of 

the discriminants, plus a single bit that tells if it is constrained. 

The representation of both array and record variables consists of two parts, the fixed part and the 

dynamic part. The fixed part has a size which is known at compile time, and is thus allocated at a 

manifest (i.e., compile-time-known) offset in the enclosing record or stack frame. The dynamic part 

has a size which must be determined at run time. The fixed part of a variable contains a pointer (as an 

offset) to the corresponding dynamic part. 

Our representation uses offsets for internal pointers within variables rather than absolute addresses. 
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Records are stored contiguously: the fixed parts for the fields is immediately followed by the dynamic 

parts. These implementation decisions are intended to facilitate using block copying for assignment. 

Our original motivation for block copies was that the preliminary A d a Language Reference 

Manual [15] and Rationale [16] imply that block copies are feasible. We wanted our design process to 

check these implicit claims. As our design and implementation have progressed, we have never 

encountered a reason for abandoning these representations. 

2.2.3 S c a l a r S u b t y p e s 

The descriptor for a scalar subtype is shown in Figure 2-2. Th is descriptor also handles scalar types, 

as a scalar type T has a range of T ' F I R S T through T ' LAST. T h e tag may be either of two values, 

StatScalar or DynScalar. If the tag is DynScalar, then the range is run-time determined, and variables 

of this subtype are given a liberal allocation of one V A X longword (4 bytes). If the tag is StatScalar, 

then the range was compile-time determined, and variables are given only as many bytes as this range 

requires. T h e motivation for this special-casing is to allocate strings as one character per byte; this is 

desired both for efficient storage utilisation and for compatibility with other software on the V A X . 

T a g : one o f S t a t S c a l a r o r D y n S c a l a r 

Low: ' F I R S T f o r s u b t y p e 

H i : ' LAST f o r s u b t y p e 

F i g u r e 2 - 2 : Scalar Subtype Descriptor 

2 .2 .4 A r r a y s 

The type descriptor for an array type is shown in Figure 2-3. 

An array variable has two parts, fixed and dynamic. The fixed part is a fairly conventional array 

descriptor, as shown in Figure 2-4. The dynamic part is the storage for the array elements 

themselves. The VirtualZeroOrigin field of the fixed part is an offset to the array elements which has 

had the lower bounds already subtracted off. For an n-dimensional array, we store n-1 multipliers. 

The extra multiplier field is used to store the size of an individual element. (These techniques are 

discussed in Gries [9].) 

We represent a slice as an array variable fixed part that has no dynamic part of its own. Instead, its 
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T a g : a l w a y s A r r a y T e m p l a t e T a g 

NFParams: number o f f o r m a l t y p e p a r a m e t e r s t o 
t h i s t y p e 

NDims: number o f d i m e n s i o n s 

E l t D e s c : p o i n t e r ( a b s o l u t e ) t o t y p e o r 
s u b t y p e d e s c r i p t o r f o r t h e e l e m e n t t y p e 

I n d e x T y p : p o i n t e r ( a b s o l u t e ) t o t h e s c a l a r 
s u b t y p e d e s c r i p t o r f o r the i n d e x t y p e 
f o r t h i s d i m e n s i o n 

( R e p e a t e d f o r each d i m e n s i o n ) 

F i g u r e 2 -3 : Array Type Descriptor 

fixed part points into the middle of some other array variable's elements. This means that slices look 

like ordinary array variables. We are able to take a slice of an array and then pass that slice as an 

actual parameter without copying any elements. If our array variable representation were split such 

that array bounds were assumed to be adjacent to the elements, then slicing would require some 

copying of elements for the slice to become an ordinary array variable. 

T a g : a l w a y s A r r a y V a r i a b l e T a g 

O f f s e t B a s e : p o i n t e r ( o f f s e t ) t o base o f 
dynamic p a r t 

NDims: number o f d i m e n s i o n s 

T o t a l E S i z e : t o t a l s i z e o f e l e m e n t s 

Lower Bound ( T h e s e 3 f i e l d s a re 
r e p e a t e d NDims t i m e s ) 

U p p e r Bound 

M u l t i p l i e r 

V i r t u a l Z e r o O r i g i n : o f f s e t t o v i r t u a l o r i g i n 
o f e l e m e n t ( 0 , 0 0) 

F i g u r e 2 -4 : Array Variable, Fixed Part 
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2.2.5 R e c o r d s 

T h e descriptor for a record type is shown in Figure 2-5. 

T a g : a l w a y s R e c o r d T e m p l a t e T a g 

NFParams: number o f f o r m a l t y p e p a r a m e t e r s t o 
t h i s t y p e 

N F i x e d : number o f f i x e d ( i . e . , n o n - v a r i a n t ) 
f i e l d s 

N V a r i a n t s : number o f v a r i a n t s ( i s number o f 
w h e n ' s ) . I f z e r o , t h e n e x t 2 f i e l d s , 
t h o u g h p r e s e n t , a r e m e a n i n g l e s s 

P t r V a r i a n t M a p : p o i n t e r t o a n o t h e r s t r u c t u r e , 
t h a t t e l l s w h i c h c a s e c h o i c e s 
a p p l y t o a v a r i a n t ( n o t p i c t u r e d ) 

C a s e P a r l n d e x : i n d e x o f t h e f o r m a l p a r a m e t e r 
t o use f o r c o n s t r a i n i n g t h i s c a s e 

F i e l d T y p : p o i n t e r ( a b s o l u t e ) t o t h e t y p e o r 
s u b t y p e d e s c r i p t o r f o r t h i s f i e l d 

( R e p e a t e d f o r each f i e l d o f t h e r e c o r d ) 

V a r i a n t T y p : p o i n t e r t o a c a l l b l o c k , w h i c h i n 
t u r n p o i n t s a t a r e c o r d t y p e d e s c r i p t o r 
f o r t h i s v a r i a n t ' s component l i s t 

( R e p e a t e d f o r each v a r i a n t ) 

F o r m a l P a r a m F l d : i n d i c a t e s w h i c h f i e l d o f t h e 
r e c o r d t h i s f o r m a l p a r a m e t e r a p p l i e s t o 

( R e p e a t e d f o r each f o r m a l p a r a m e t e r ) 

F i g u r e 2 -5 : Record Type Descriptor 

Figure 2-6 shows the record type template created for the record type M y V S t r in Section 2.1.2. Also 

shown are the call block created by the M y V S t r ( L e n = > 3 9 ) discriminant constraint, and the array 

type template for the type S t r i n g . 

Variant records are handled by making each variant component list look like another record type 

descriptor. There is one variant component list per occurence of w h e n in the declaration. T h e top-

level record type descriptor then points at call blocks that point at these record descriptors. The call 

block is interposed to allow discriminants (parameters) of the outer record to be used inside a variant 

component list. For the variant record type VR in the example below, 
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my v S t r 

R e c o r d Tempi ateTag 

nfparams = 1 

nf ixed = 2 

nvariants = 0 

) t rVar :an:Map ( u n u s e d ) 

caseParamindex ( u n u s e d 

F i e i d T y p 

F i e l d T y p 

Formal ParamFId =1 

m y v S t r ( l e n >̂ 39) 

C a l l B l o c k T a g 

C B T e m p I a t e 

C B c o u n t =1 

CRtag = C R c o n s t r a i n e d 
C R v a i u e = 3 9 

C a l l B l o c k T a g 

C 8 i emplate 

C B c o u n t = 2 

Cr tag = C R c o n s t r a i n e d 

C R v a i u e =1 

CRtag =CRparentsParam; 

C R v a i u e =1 I 

StatSca la r 

lo =1 

hi = 1 3 3 

str ing 

Array T e m p late Tag 

nfparams = 2 

ndims =1 

MtDesc 

".dexTy p 

/ charac te r 

S ta tSca la r 

lo = 0 

hi = 1 2 7 

\ / natu raF 

S ta tSca la r 

lo =1 

hi = integer ' last 

t y p e M y V S t r ( L e n : I n t e g e r r a n g e 1 . . 1 3 3 := 120) is 
r e c o r d 

S V a l : S t r i n g ( l . . L e n ) ; 
e n d r e c o r d ; 

F i g u r e 2 -6 : Templates and Call Blocks for M y V S t r and S t r i n g 
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t y p e V R ( N : I n t e g e r range 1 . . 4 ) is 
r e c o r d 

c a s e N of 
w h e n 2 . . 3 => M 

S 
w h e n 1 | 4 => T 

e n d c a s e ; 
e n d r e c o r d ; 

I n t e g e r ; 
S t r i n g ( 2 . , N ) ; 
I n t e g e r ; 

we get the type template structure shown in Figure 2-7. 

In a variant record, we need a way of mapping a value of the discriminant (here, N) into an indication 

of which variant is appropriate for that value. We number the variants starting at one, and use these 

numbers to designate the variants. Let us call these designators variant indices. For the record type 

VR, the variant indices are "1" and " 2 " , designating the " w h e n 2..3" and the " w h e n 1 | 4" variants 

respectively. The variant map is the structure that provides a mapping from the value of the variant 

record's c a s e discriminant into the variant index appropriate for that value. This map is a table with 

one entry for each choice that occurred within the variants of this c a s e ; in the above example, the 

table has three entries, for "1" , "4" , and "2. .3". The variant map table also a distinguished entry for 

" o t h e r s " , if it is present. The expressions used within choices are required by the language to be 

known at compile time. In nested variants, the same discriminant may potentially be used with more 

than one c a s e ; thus each c a s e has its own variant map. The variant map is used during variable 

creation, including the construction of record aggregates, for it provides the mechanism to determine, 

from a value of the discriminant, which variant to create. 

A record variable has two parts, fixed and dynamic. The fixed part is shown in Figure 2-8, and 

contains an offset to the base of the dynamic part. The dynamic part is shown in Figure 2-9. T h e 

storage for the dynamic part is allocated contiguously. The dynamic part is subdivided into fixed and 

dynamic parts for its fields. T h e fixed parts for all the fields come first. These have manifest sizes and 

offsets. Then come the dynamic parts for the fields. If a field has a dynamic part, then its fixed part 

contains an offset pointer to this dynamic part. Figure 2-10 shows the layout of a M y V S t r record 

variable. 

The component lists of variants are treated as sub-records. Any nested c a s e ' s become sub-records 

of the sub-records. While it would have been possible to flatten variant component lists up into the 

containing record variable, the sub-record approach reduces the amount of special-casing, since the 

scheme must handle nested records anyway. 

When accessing a field in a variant, checking must occur to make sure that the current variant 

contains this field. This is easily done by comparing the variant index for that field (known at compile 

time) to the CurVariantlndex field of the record variable's representation. 
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Re c o r d Tempi ateTag 

nfparams =1 

nf ixed - 1 

nvariants = 2 

ptrVar iantMapfnot s h o w n ) 

caseFaramindex = 1 

F i e l d T y p , for "n" 

V a r i a n t T y p 

V a r i a n t T y p 

FormalParamFId = 1 

C a l i B l o c k T a g 

C B T e m p i a t e *~ 

;3coLr . t = 1 

CRtag = CRparentsParamj 

C R v a i u e =1 

S t a t S c a l a r 

lo =1 

hi = 4 

C a i l B i o c k T a g 

C B t e m p I a U 

C B c o u n t =0 

2nd variant of V R 

R e c c r d T e m p I ateTag 

nfparams = 0 

nf ixed = 1 

nvariants = 0 

ptrVar iantMap ( u n u s e d ) 

caseParamlndex ( u n u s e d ) 

F i e l d T y p , for " t " 

R e c o r d Temp late Tag 

nfparams =1 

nf ;xed = 2 

nvariants = 0 

ptrVar iantMap ( u n u s e d ) 

caseParamlndex (unusec 

F i e l d T y p , for " m " 

F i e l d T y p , for "s* 

FormalParamFId = 0 

C a l i B l o c k T a g 

C3templa te 

C B c o u n t = 2 

CRtag = C R c o n s t r a i n e d 

C R v a i u e = 2 

CRtag = CRparentsParamj 

C R v a i u e =1 I 

to array type temp 

for "s t r ing" 

Nl/ \J/ 
to S tatSca lar for 

" integer" , in Standard 
(not s h o w n ) 

F i g u r e 2 - 7 : Templates for the Variant Record Type VR 

1st variant of VR 
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T a g : a l w a y s R e c o r d V a r i a b l e T a g 

I s C o n s t r a i n e d : t r u e i f f t h i s r e c o r d v a r i a b l e 
i s c o n s t r a i n e d 

V a r D y n S i z e : t o t a l s i z e o f t h e d y n a m i c p a r t o f 
t h i s r e c o r d v a r i a b l e . Does NOT change 
on a s s i g n m e n t 

R e c O f f s e t : o f f s e t t o t h e d y n a m i c p a r t 

F i g u r e 2 -8 : Record Variable Fixed Part 

T a g : a l w a y s R e c o r d D y n V a r i a b l e T a g 

C u r D y n S i z e : c u r r e n t ( i . e . , i n u s e ) s i z e o f t h 
dynamic p a r t o f t h e r e c o r d ' s v a l u e . May 
change on a s s i g n m e n t 

C u r V a r i a n t l n d e x : t e l l s w h i c h v a r i a n t i s 
c u r r e n t l y v a l i d f o r t h i s r e c o r d 

F i r s t F i e l d ' s F i x e d P a r t 
( R e p e a t s f o r each f i e l d ) 

F i r s t F i e l d ' s Dynamic P a r t , i f any 
( R e p e a t s f o r each f i e l d ) 

F i g u r e 2 - 9 : Record Variable Dynamic Part 

2.2 .6 A c c e s s T y p e s 

A variable of an access type consists of a fixed part that contains just the address of the referenced 

heap object; it has no dynamic part. 

The type descriptor for an access type consists of a tag indicating that it is an access type, plus an 

absolute pointer to the accessed type or subtype. 

Ada allows declaration of subtypes of access types; this permits supplying constraints on which heap 

objects the pointer may reference. T h e constraint on the access type means that only objects that 
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satisfy the constraint may be referenced by the pointer. The compiler represents this subtype by 

keeping track of the address of the call block that was constructed during the elaboration of this 

subtype. This call block is used whenever a variable of this subtype appears in a context that requires 

constraint checking. The compiler uses both the variable and the call block, addressing them 

independently. For example, in passing a variable of an access subtype as an actual parameter, 

constraint checking may be necessary both before and after the call. 

This implementation of access constraint checking is analogous to the implementation of subrange 

checking for scalar subtypes. The scalar variable and the scalar subtype descriptor are addressed 

independently, and the subtype descriptor (or, likewise, the call block) is shared amongst all instances 

of the subtype. 

2 .2 .7 V a r i a b l e A l l o c a t i o n and the R u n - t i m e A l l o c a t i o n R o u t i n e 

Type templates and call blocks are used during the allocation of variables. A run-time routine 

interprets them to allocate the dynamic parts of variables. The dynamic storage is obtained by 

growing the stack. The routine also initialises the fixed parts of variables, filling in descriptor 

information. The representation of a procedure's stack frame thus resembles that of a record 

variable. For example, if the procedure has a local array variable, then its fixed part lies in the fixed 

part of the stack frame and contains offsets into the dynamic part of the stack. 

The allocation of heap objects is handled by an alternative entry point into the allocator. 

The run-time allocator could do default initialisation of variables if we were to augment record type 

descriptors by having each field point at a variable giving its default value. At this writing, our group 

has not yet decided how we wish to do such initialisation (see Section 6.4). 

2.3 Support of Ada Operations 

This section describes how several Ada operations are implemented. 

2.3.1 A s s i g n m e n t 

Consider assignment of records that contain dynamic arrays, such as the record type M y V S t r in 

Section 2.1.2. After constraint checking has been done, assignments of M y V S t r record variables may 

proceed by a block copy, using the size of the smaller variable (see Figure 2-10). 

Now let us consider assignment of an array of arrays. 
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sval 
f ixed 

z: m y v S t r 

RecordVar iab leTag 

IsConstra ined = false 

V a r D y n S i z e = 4 8 + 1 3 3 

R e c O f f s e t 

R e c o r d D y n V a r i a b l e T a g 

C u r D y n S i z e = 4 8 + 1 5 

CurVar iant lndex ( u n u s e d l 

len =15 

Ar raryVar iab leTag 

of fsetBase 

ndims =1 

totalEs ize =15 

lower =1 

upper =15 

mult =1 

virtualOorigin 

sval 
dynamic 

Enough s p a c e for 

from 1 to 133 
elements 

Just after svai (39) 

x: myvSt r ( !en 3> 39) 

RecordVar iab leTag 

IsConstra ined =t rue 

V a r D y n S i z e = 4 8 + 3 9 

R e c O f f s e t 

R e c o r d D y n V a r i a b l e T a g 

C u r D y n S i z e = 4 8 + 3 9 

CurVar iant lndex ( u n u s e d j 

len =39 

Array Var iabieTag 

of fsetBase 

ndims =1 

tota lEs ize =39 

l o w e r =1 

upper = 3 9 

mult =1 

virtualOorigin 

Enough s p a c e for 
exact ly 39 
elements 

F i g u r e 2 - 1 0 : Assignment of the Constrained M y V S t r Record X 
to the Unconstrained M y V S t r Record Z 
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d e c l a r e 
t y p e T O u t e r is a r r a y ( I n t e g e r range <>) of S t r i n g ( a . . b ) ; 
X : T 0 u t e r ( l . . 1 0 ) ; 
Y : T 0 u t e r ( 1 1 . . 2 0 ) ; 

b e g i n 
X := Y ; 

We represent a variable of such a type as it is written: the outer array variable is a one-dimensional 

array whose elements are array variables. This produces many inner array descriptors. It is a 

property of Ada that the bounds on ail the inner arrays must be the same for two variables of the outer 

type, since these inner bounds must be given at the time of the outer type definition. For the variables 

to have different inner bounds, they would have to come from different type definitions and would thus 

be of different types. We can safely copy the array descriptors for the inner arrays over each other, as 

they all have the same representation. Therefore, the assignment X : =Y above may proceed by block 

copying the dynamic part of Y into the dynamic part of X. It would have been illegal to copy the fixed 

part of Y into X, since the bounds of X would then be wrong. If we had chosen to treat the array of 

arrays as a two-dimensional array, then it would obviously have been legitimate to block copy the 

dynamic part. 

More remarks on array assignment, especially on constraint checking, are given in Section 4.3.1. 

2 .3 .2 A g g r e g a t e s 

Aggregates are handled by treating them like temporary local variables. T h e constraints are those 

given in the aggregate. For example, a record aggregate of the record type M y V S t r 

( L e n => 8, S V a l => " L o v e l a c e " ) 

is treated like creating a local constrained record variable TempMyVStr8 : 

T e m p M y V S t r 8 : M y V S t r ( L e n => 8 ) ; 

The run-time allocator is called to create the dynamic part on the stack and to fill in the fixed part. The 

values supplied in the aggregate are copied into TempMyVStr8 as in assignment. 

T h e lifetime of the temporary variable TempMyVStrS need be no longer than the statement that 

contains the aggregate. The lifetime problem for aggregates is analogous to that of function results 

whose size is not known at the time of the call, and thus may be approached in the same way. The 

function result problem and its solution are discussed in Section 4.4.1. 
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2.4 Design Issues and Alternative Implementations 

2.4.1 A t t e m p t s at S h a r i n g D e s c r i p t o r s fo r V a r i a b l e s 

It is often apparent that several variables have the same constraints. Variables may have been 

declared together, or an explicit subtype name may have been introduced. It is interesting to consider 

storing the constraint information exactly once in a common descriptor, and sharing this descriptor 

among the variables. Such techniques have been suggested for the implementation of Eucl id, both in 

the Euclid Report [20], and by Holt and Wortman [13]. The advantages to this approach are the space 

savings and, more importantly, possible reductions in variable initialisation complexity and overhead. 

However, the shared descriptor approach introduces complexities of its own. In passing an array 

variable to an unconstrained formal parameter, the shared descriptor must also be passed in order to 

provide the bounds. A more difficult problem is that the representation of a variable depends more on 

where it is allocated. For heap objects the constraint must be accessible via the access variable; this 

suggests either that the constraint will be stored with the heap object itself or that the access variable 

will be represented by two pointers. For dynamic arrays within records, each record variable will need 

its own copy of the array bounds, for the bounds are changeable on a per-record basis. T h e non­

shared representations presented in this paper allow this kind of special casing to be avoided 1 . 

2.4.2 R e p r e s e n t a t i o n S p e c i f i c a t i o n s 

O u r variable representations intertwine user-visible fields with user-invisible descriptor fields. It can 

be argued that this has a detrimental effect on the utility of Ada's representation specification facility. 

Our implementation does not support representation specifications, but, as a compromise, we could 

document the representations the compiler will pick. An alternative scheme that kept user-visible and 

user-invisible fields entirely seperate might allow users to comprehend more easily the compiler-

generated layouts of the user-visible fields. For composite variables, two seperate composite 

structures would be built, one for each class of fields. Such a seperation would have its costs, 

especially for programs that have little dependence on the layouts. Overheads would be imposed on 

accessing a component of a variable, for two seperate address computation paths would be required. 

Procedure calls would require passing the invisible fields as an extra implicit parameter. 

1Euclid has a mechanism like dynamic arrays within records, but it requires all instances of the record variable to be 
constrained. Thus the bounds of the array cannot change. 
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Implementing equality and inequality for composite variables requires some strategy for coping with 

unallocated storage within the variable. A fieid-by-field comparison will of course work; it must be 

prepared to "walk d o w n " arbitrarily many layers of composition. A block compare implementation 

must guarantee that the unused storage always contains an agreed upon value, such as zeros. This is 

slightly harder than it seems, for the amount of unallocated storage might change. Consider the 

program: 

t y p e P a i r is r e c o r d A , B : M y V S t r ; e n d r e c o r d ; 
R , S : P a i r ; 
X : M y V S t r ( L e n => 3 9 ) ; 
Y : M y V S t r ( L e n => 1 5 ) ; 
b e g i n 

R.A := Y ; 
S := R; 
R.A := X ; 
R.A := Y ; Must be c a r e f u l t o z e r o unused 

p o r t i o n s o f R.A 
if R = S t h e n . . . 

When assigning a constrained variable Y to an unconstrained variable R . A, the unused space in R. A 

must be filled in with zeros. This implementation in effect shifts part of the cost of comparison onto 

assignment, with the obvious consequences for programs that contain many assignments and few 

comparisons. 

Our representations can handle both the zero-fill and the field-by-field approaches. For the zero-fill , 

the IsConstrained bit in each record variable, as well as the VarDynSIze field (which gives the size of 

the variable), would permit an assignment operation to discover that zeroing is required and to carry it 

out. 

For the field-by-field compare, a general purpose comparison operation for records and arrays could 

be written as a run-time routine. This routine would be passed the two variables along with the type 

template. The type template would provide the comparison routine with the knowledge of the internal 

structure of the variables. The type template for a composite type points at the type templates for the 

components; this would enable the comparison routine to call itself recursively on the components. 

Constraint information is no problem, for it is present in every variable. 

T h i s sect ion draws on a report by Hilfinger [11]. 

2.4.3 B l o c k C o m p a r i s o n of C o m p o s i t e V a r i a b l e s " 
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3. The Front End 
The Front End for Ada consists of two programs: a lexer/parser and a semantic anaiyzer/TCOL 

generator. The first was created from an LALR(1) parser generator and a grammar derived from the 

preliminary and revised language reference manuals [15,17]. Both the parser and the semantic 

analyzer/TCOL generator are written in Simula, 

For the rest of the chapter, the term parser refers to the program that implements the lexical and 

syntactic analysis phases, and the term semantic analyzer refers to the program that implements the 

semantic analysis and T C O L generation phases. 

Section 3.1 discusses some semantic problems in Ada and how they were solved. Section 3.2 

discusses the construction of semantic analyzers in Simula. An example illustrates the technique on 

a simple expression language and how it is used in our implementation. Section 7.2 presents some 

statistics on the working Front End. 

3.1 Semantic Analysis Issues 

The primary functions of the semantic analyzer are type checking, overload resolution, and name 

binding. This can be difficult in Ada, where the same name can refer to a number of different objects 

and the same syntactic structure can have a number of different meanings. The specific rules about 

the visibility, overloading, and use of identifiers are complex, changing subtly in different contexts. 

Situations where identifiers can be redeclared, hidden, and later made visible, complicate the symbol 

table facility. 

3.1.1 S y n t a c t i c G e n e r a l i t y 

There can be more than one meaning to the same syntactic structure. For example, F( X ) can have 

five possible interpretations: 

1. Subprogram call. F is a subprogram; X is a parameter. 
2. Entry call. F is an entry; X is an entry family index or formal parameter. 
3. Array index. F is an array variable; X is an index. 
4. Parameterless entry in accept statement. F is an entry; X is an entry family index 

(discrete range). 
5. Conversion. F is a type name; X is an expression. 

The grammar distinguishes statements (1,2) from expressions (1,3 4.5) and in (4) the F ( X ) comes 

after the reserved word a c c e p t . Further resolution requires looking up F in the symbol table and 

knowing more context. F ( X ) is initially determined to be a general I N D E X E D _ N A M E . When the 
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meaning is 

A R R A Y E L E M E N T 

determined, this piece of the derivation tree is replaced with a more specific entity such as 

3 . 1 . 2 O v e r l o a d R e s o l u t i o n 

Because of overloading, even when F ( X ) is known to be a procedure or entry call, we still do not 

know which F is denoted. The determination requires analysis of the parameter X, which might itself 

be a call. The preliminary language reference manual requires: 

T h e types, modes, and names of the parameters, together with the result type must be 
sufficient for the identification. T h e contextual information is propagated both ways, 

repeatedly until convergence [15]. 

It has been shown [8,18] that four passes are sufficient for either a convergence or ambiguity to be 

recognised. Other results indicate that two passes are sufficient [22, 23, 29]. 

In trying to resolve a complex overload, it may not be necessary to analyze all parameters in detail. 

For example, consider the call F ( X , ( 3 , 5 ) , Y ) ; . There may be several procedures named F that can 

take 3 arguments. Rather than trying to determine the array or record type of the aggregate (3 , 5 ) , it 

may be possible to determine F uniquely from the first and third parameters X and Y. O n c e this is 

done, the type of the second parameter is known. With this context information the analysis of the 

aggregate is much easier. 

O u r experience with the overload resolver indicates that the complexity is not in gathering the 

possible subprograms that could be used in a context or in the extra tree walks required for 

convergence. T h e complexity lies in determining the correct subprogram when the only distin­

guishing feature in the expression is the type of an aggregate. Ada's type equivalence rules are 

generally classified as name equivalence, but the processing to determine the type of an aggregate 

more closely resembles structural equivalence. Aggregates offer a very rich semantics with a minimal 

syntax. This results in large amounts of compiler code and execution time to determine the type of an 

aggregate. 

Even if the user decides to avoid the complications of overload resolution by having unique names for 

all subprograms, the use of derived types causes implicit overloading of subprogram names. If the 

user additionally decides to avoid derived types, the predefined Standard package contains 

S h o r t _ I n t e g e r , L o n g _ I n t e g e r , S h o r t _ F T o a t , and L o n g _ F l o a t , which are derived. Derived 

types can also be inadvertently introduced. For example, neglecting to use the word I n t e g e r in 

X : I n t e g e r r a n g e 1 . . 5 ; 

is interpreted as deriving a new type from I n t e g e r . 
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3 .1 .3 S t a t i c E v a l u a t i o n of E x p r e s s i o n s 

It is necessary that a construction such as 

c a s e X o f 
w h e n 1+1 => . . . 
w h e n 2 => . . . 

be recognised as illegal. This requires that the static expression 1+1 be evaluated. In addition to 

error detection, it is sometimes necessary to evaluate static expressions for type determination. For 

example, in deciding whether an aggregate can be of a particular type, the discriminants must be 

evaluated. 

t y p e R ( X r l n t e g e r ) is 
r e c o r d 

c a s e X is 
w h e n 1 => n u l l ; 
w h e n o t h e r s => Y : I n t e g e r ; 

e n d c a s e ; 
e n d r e c o r d ; 

( 1 ) or (3 , 3 ) could be aggregates of type R above, but ( 3 ) could not. 

Static values for numeric literals are computed when the literal is recognised. Other expressions are 

flagged as static but are not calculated unless needed. This calculation is performed by a call to a 

recursive expression evaluation procedure. 

3 .1 .4 V i s i b i l i t y of I d e n t i f i e r s 

Ada, along with many data abstraction languages, provides the programmer many ways to control the 

visibility and use of identifiers in the program. Among the features of Ada that affect identifier visibility 

are: 

• block structured scopes 
• modules, i.e., packages and tasks 
• renaming declarations 
• overloaded identifiers 
• private types 
• forward declarations 
• u s e clauses 
• separate compilation 

Symbol tables are used to collect identifiers for blocks, packages, tasks, subprograms, records, 

compound statements, and parameter lists. These symbol tables are linked together in the order they 

are to be searched. 
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Packages represent the first and probably most common departure from the Algol-like block 

structuring of identifier visibility. The implementation of symbol tables for packages must be able to 

handle the different scopes in a package specification, in a package body, and in a program that has 

opened a package with a u s e clause. 

3.1.4.1 S y m b o l T a b l e s fo r P a c k a g e s 

During the processing of a package specification or body, the symbol table appears to be connected 

in the same hierarchy as nested blocks. The problem is to permit the program inside of the package 

to reference all symbols in the specification and body but to restrict the program outside of the 

package to using only identifiers in the specification. Our implementation accomplishes the changing 

of identifier visibility (in a package) by using a linked list of symbols with two starting pointers. 

Consider the example below: 

p a c k a g e Example is 
A : I n t e g e r ; 
B: I n t e g e r ; 

e n d E x a m p l e ; 

p a c k a g e b o d y Example is 
C : I n t e g e r ; 
D: I n t e g e r ; 

e n d E x a m p l e ; 

A picture of the symbol table for this package is shown in Figure 3-1 

F i g u r e 3 - 1 : Symbol Table for a Simple Package 

The symbol table lookup routine uses a single pointer that points to the beginning of the list of visible 

symbols. Packaoe symbol tables keep two additional pointers: one to the beginning of the visible 

symbols for the package, one to the symbols visible outside of the package. When processing the 

body, the visible-symbol pointer is set to the entire list; outside the body, it is set to the middle of the 
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list where the identifiers in the specification begin. Because the list is built backwards, the forward 

linear search finds only the permitted symbols. 

3 . 1 . 4 . 2 S p e c i f i c a t i o n s a n d B o d i e s in t h e S y m b o l T a b l e 

Because packages, subprograms, and tasks can come in two parts, they are entered in a symbol table 

as two parts - one for the specification, one for the body. This is useful for verifying that 

respecifications of objects are consistent. Consider the example below: 

p a c k a g e Example2 is 
p r o c e d u r e I n i t ( X : in I n t e g e r := < e x p > a ) ; 

e n d E x a m p l e 2 ; 

p a c k a g e b o d y Example2 is 
p r o c e d u r e I n i t ( X : in I n t e g e r := < e x p > 2 ) is 

e n d E x a m p l e 2 ; 

The language permits <exp> 1 and <exp> 2 to be different texts as long as their expressions use the 

same entities in the same order. 

3 . 1 . 4 . 3 U s e C l a u s e s 

U s e clauses represent an interesting change in the identifier visibility structure of the program. T o a 

first approximation, the effect of a u s e clause is to copy the specified symbol table(s) and place them 

just before the symbol table for the current scope. The semantics of the u s e clause are more 

complex, and several additional steps must be taken. Three problems are present: 

• No symbol in the current scope (or other open scopes) may be hidden by a symbol in the 
module specified in the u s e clause. 

• Symbols in several u s e clauses may not hide each other. Should a conflict occur, both 
symbols must be removed from the duplicated symbol tables. 

• T h e set of overloaded symbols within a package could be changed. 

The first two problems are solved by checking that all duplicated symbols are not hiding other 

symbols before entering them into the symbol table. 

The overloaded symbol problem is more subtle. Overloaded symbols are normally chained together in 

the symbol table, forming a list of permissible objects for an identifier. As a simple example, consider 

the program fragment: 
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d e c l a r e 

p r o c e d u r e F ( X : I n t e g e r ) i s b e g i n n u l l ; e n d ; 
p r o c e d u r e F ( X : B o o l e a n ) i s b e g i n n u l l ; e n d ; 

b e g i n 
n u l l ; 

e n d ; 

The corresponding symbol table entries are shown in Figure 3-2. 

overload chain 

F i g u r e 3 - 2 : Symbol Table for Over loaded Identifiers 

Th is works quite well should the relative positions of the overloaded symbols never change. U s e 

clauses can change the available overloaded symbols. Consider the program fragment shown in 

Figure 3-3. Inside of the nested package, all three versions of procedure F are available because a 

package inherits all the symbols from its enclosing scope. Therefore the overload chain has all three 

procedures tied together. Blindly copying the symbols for package I n n e r to the beginning of the 

compound statement erroneously copies the overload chain leading from the F with a boolean 

parameter to the F with the character parameter. T o avoid this, all overloading chains are broken 

when copying over a symbol table and reestablished in the new context . 

3 .1 .5 D e r i v e d t y p e s 

The inherited subprograms for a derived type can be represented as copies of the original 

subprograms. It may seem space inefficient to have multiple copies of predefined functions, such as 

= and / = , which differ only in the types of their parameters. Without multiple copies of functions, the 

symbol table access routines must be able to distinguish between predefined, declared, and derived 

procedures. We chose not to complicate the lookup procedures. O u r strategy has been to stress 
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p r o c e d u r e Main is 

p r o c e d u r e F ( X : I n t e g e r ) ; 
p a c k a g e O u t e r is 

p r o c e d u r e F ( X : C h a r a c t e r ) ; 
p a c k a g e I n n e r is 

p r o c e d u r e F ( X : B o o l e a n ) ; 
e n d I n n e r ; 

e n d O u t e r ; 

p r o c e d u r e F ( X : I n t e g e r ) is b e g i n n u l l ; e n d ; 
p a c k a g e b o d y O u t e r is 

p r o c e d u r e F ( X : C h a r a c t e r ) is 
b e g i n n u l l ; e n d ; 

p a c k a g e b o d y I n n e r is 
p r o c e d u r e F ( X : B o o l e a n ) is 
b e g i n n u l l ; e n d ; 
a l l t h r e e e x p r e s s i o n s 
F ( 3 ) , F ( T r u e ) and F ( " A " ) 

- - a r e l e g a l 
e n d I n n e r ; 

e n d O u t e r ; 

b e g i n 
d e c l a r e 

u s e O u t e r . I n n e r ; 
b e g i n 

F ( 3 ) and F ( T r u e ) a r e b o t h l e g a l 
- - F ( " A , f ) i s i l l e g a l 

n u l l ; 
e n d ; 

e n d Main ; 

F i g u r e 3 - 3 : Overloading and u s e Clauses 

clarity and modularity and not efficiency. We have recoded critical modules to be more efficient after 

the algorithms and their implications were understood. 

3.2 I m p l e m e n t a t i o n o f t h e S e m a n t i c A n a l y s e r 

This section describes the implementation of the semantic analyser. An understanding of Simula, and 

especially the class mechanism, would be beneficial. The relationship between Simula classes and 

Ada records is described in Appendix III. 

We give several examples of class skeletons. A class skeleton is a class definilicn with only the 
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parameters and visible components listed. In general, b o l d f a c e is used to represent Simula 

keywords, italics to represent an English description of some omitted Simula code, and regular type 

face to indicate Simula code. Liberties are taken when translating grammar symbols into Simula 

identifiers. Classes are labeled by the identifier following the keyword c l a s s . If a class is defined as P 

c l a s s S , it is referenced as class S even though it is a subclass. P is termed the parent class or prefix 

class of S . In the descriptive text, S M A L L C A P S are used for the names of classes. More details about 

Simula can be found in reference texts [2, 28]. 

3.2.1 R e p r e s e n t i n g S y n t a c t i c En t i t i es 

T h e heart of the semantic analyzer is its use of Simula classes to represent grammar productions and 

Simula class instances to represent nodes in the derivation tree. Edges in the derivation tree are 

represented by Simula reference values, i.e., pointers to class instances. Non-punctuation terminal 

symbols are kept in class parameters. 

T h e use of Simula to represent a derivation tree is illustrated with an Ada-like language of simple 

variables, numbers, records, record selection, and addition. A grammar for this language is given 

below: 

<exp> :: = <name exp> 
<exp> :: = <plus exp> 
<exp>: := n u m b e r 
<name exp> :: = <name exp> . i d e n t i f i e r 
<nameexp> : : = i d e n t i f i e r 
<plus exp> :: = <exp> + <exp> 

Start Symbol: <exp> 
Nonterminals: <exp>, <name exp>, <plus exp> 
Terminals: n u m b e r , i d e n t i f i e r , . , + 
Punctuat ion: . , + 

For each production A =* X Y Z , where A is a nonterminal and X Y Z is a sequence of terminals and 

nonterminals, we write an empty class skeleton: 

A c l a s s XYZ ( X , Y , Z . . . . ) ; 
b e g i n 
e n d ; 

Using this method for the sixth rule in the example grammar gives the class skeleton 3 : 

3 0 n .y se.ected parts o. the examp.e are discussed. The fina. Casses for each rule are given in Appendix ... 
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p l u s _ e x p c l a s s a d d _ e x p ( 1 e f t _ e x p , r i g h t _ _ e x p ) ; 
r e f ( e x p ) l e f t _ e x p , r i g h t _ e x p ; 
b e g i n 
e n d ; 

Here the Simula identifier E X P corresponds to the nonterminal symbol <exp>, the identifier P L U S _ E X P 

to the nonterminal symbol <piusexp>, the identifier A D D _ E X P names the right hand side of the 6th 

production. T h e punctuation symbol + is discarded. 

There is also a class to represent the root of the derivation tree. Because the root isn't derived, there 

is no parent (superclass) in its class definition. The class skeleton for the start symbol <exp> is: 

c l a s s e x p ; 
b e g i n 
e n d ; 

Th is class is defined as a parent class for rules that have the start symbol as their left hand sides. 

Edges in the derivation tree are references (pointers) to class instances. These references are held in 

the class parameters and represent the derivation rule that reduced the right hand side of the 

production. For the class P L U S _ E X P , the two parameters reflect the rules that were used to generate 

the two right hand side expressions. 

In the general case, each derivation in a parse produces a reference value to be stored in a class 

parameter. Not all of these derivations are useful for semantic analysis. Extra references are 

eliminated by the use of the subclass facility. When the right hand side of a production is a single 

nonterminal symbol, the parameter list is omitted. For example, the class for the first rule is: 

exp c l a s s name_exp ; 
b e g i n 
e n d ; 

Rules with <name exp> on the left hand side use N A M E _ E X P as a parent class. Derivations that include 

the reduction <exp> => <name exp> do not create a reference from class N A M E _ E X P to the class that is 

used for the next rule. Subclasses of N A M E _ E X P are automatically subclasses of <EXP> S O that an 

instance of a subclass of NAME__EXP describes the application of two rules rather than one. 

An example derivation tree is given in Figure 3-4. The figure illustrates the expression R.S + 3. 

Boxes in the figure represent class instances of the class named at the bottom of the box. Lines 

between boxes represent references to class instances held in parameters. Note the use of 

subclasses and references to classes to represent edges in the derivation tree. 
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F i g u r e 3 - 4 : Derivation Tree for R.S + 3 

3 .2 .2 O p e r a t i o n of t h e S e m a n t i c A n a l y s t s P h a s e 

Semantic checking is performed by walking the derivation tree and verifying that each production is 

consistent with language semantics. The very nature of context free languages prohibits any prior 

knowledge about the productions applied after a given rule is used. Therefore, a node cannot 

explicitly name the correct procedure for nodes below it without examining its children. This requires 

placing information about possible derivation sequences in each class and distributes semantic 

knowledge widely across the entire program. Instead, we chose to confine all information about the 

semantic checking for a production inside the class for that production. This was accomplished by 

the use of virtual procedures in Simula. 

Each class has a semantic check component which is a virtual procedure. Th is procedure encodes 

the language semantics for that class's production. A node initiates semantic analysis of its subtrees 

by calls on the S E M A N T I C _ C H E C K procedures of its subtrees. Simula guarantees that the procedure of 

the instantiated class is executed. 
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Other properties of a nonterminal or production are represented as other class components. For 

example, the classes that represent the processing of expressions have a type component. In our 

small sample language, there are only three types: integer, real and record. These are represented as 

integers, so the class component for a type is an integer variable. 

Recall the program fragment R.S + 3 and the derivation tree in Figure 3-4. Assume that the 

expression appears on the right hand side of an assignment statement. The semantic check in the 

assignment statement analyzes the left hand side of the statement and determines the necessary type 

for the right hand side. This type is passed to the S E M A N T I C _ C H E C K function of the right hand side. 

Since the right hand side of an assignment statement can be any expression, it is represented by an 

object of class E X P . T h e use of virtual procedures causes the correct semantic processing to be done 

for any subclass of E X P . In the example, the S E M A N T I C _ C H E C K function for A D D _ E X P objects would be 

invoked, which in turn calls the necessary semantic checks for its constituents, if the expression is 

semantically correct, all the S E M A N T I C _ C H E C K calls return T r u e and the right hand side of the 

assignment statement has been processed. 

This technique allows for a very modular design with great flexibility. Adding another type of 

expression is trivial. O n e merely adds another subclass of E X P and the semantic analysis for this 

expression. The call to check it semantically is exactly the same. The meaning of a particular 

construction is also well localised. For example, the requirement that the types of the operands for 

addition must be of the same numeric type, is manifested only in the class that handles addition 

expressions. 

3 .2 .3 L i m i t a t i o n s of t h e C l a s s / V i r t u a l P r o c e d u r e T e c h n i q u e 

Creating classes for every production results in a tremendous number of useless classes and 

duplicate attribute code. For example, many languages, including Ada, have a list of productions for 

describing arithmetic expressions. O n e reduces E X P R E S S I O N R E L A T I O N ==> S I M P L E E X P R E S S I O N = > 

T E R M = > F A C T O R P R I M A R Y = > L I T E R A L = > N U M B E R => I N T E G E R N U M B E R to derive a simple integer. 

Eight subclasses are generated when only one is necessary. Arithmetic expressions also cause 

duplicate S E M A N T I C _ C H E C K code. Although there are two productions for addition and subtraction, 

there is little difference in the processing of these expressions. The subclasses generated for the two 

productions have the same code for semantic checks. Further, if a change is required in the 

semantics of arithmetic expressions, the change would be required in both subclasses. This strays 

from a modular breakdown of the language semantics. 

Our solution is to collapse subclasses when their semantics are sufficiently close. In the implemented 

system, L I T E R A L _ E X P R E S S I O N is an immediate subclass of E X P R E S S I O N without any intervening 

subclasses. These decisions are purely subjective. There are cases where we split a class that 
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embodied too many attributes, and cases where w e combined two classes that did the same 

processing. A table of the class structure as currently implemented is contained in Appendix I. 

3 .2 .3 .1 P r i v a t e T y p e s a n d F o r w a r d D e c l a r a t i o n s 

Private types and forward declarations present unique problems in our implementation of the front 

end because of Simula's lack of record assignment, or more technically, the inability to use "node-

overwrite" techniques for updating elements in list st ructures 4 . When a specification is encountered 

in the program, a symbol is placed into the symbol table as a placeholder for the complete 

declaration. It is quite likely that other pieces of the program will acquire a reference value for the 

placeholder's class instance. This prohibits the discarding of the temporary place holder and 

replacing it with the actual declaration once the complete definition has been processed. T o 

circumvent this problem, an indirect object, a "mimic" which can take on the appearance of another 

type, is used as a placeholder. References to the actual object are passed on to the actual symbol by 

means of virtual procedures. If for some reason a request is made for some attribute of the complete 

object before it is defined, the placeholder issues an appropriate diagnostic message. 

'Standard texts discuss node-overwrite vs. poin.er-swing techniques for manipu.ating data structures [32]. 
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4 . The T y p e r e p and X f o r m Phases 

In this chapter we explore some aspects of the translation of preliminary Ada into MIL. We give only 

glimpses of the total translation process and many aspects of the language will be ignored. Features 

that we will not discuss include: access, float and fixed types, tasks and generic definitions and 

instantiations. 

4.1 An Overv iew of MIL 

MIL is a low-level system implementation language in the spirit of Bliss [30]. It is described in detail in 

Appendix VI . 

MIL was designed as a tool for language translation and not as a general purpose programming 

language. In fact, there is no source language representation for MIL; it exists only in a graph form 

( L G N , see Section 1.3.1). In this chapter we will present MIL in a synthetic source-l ike form. 

Some of the cogent characteristics of MIL are: 

• It is expression oriented. Most statements return a value and an expression can always 
be used as a statement. 

• It is a typed language. The types are integer and location (pointer). 

• Explicit dereferencing is required in all contexts. For a variable with name X, the 
"address of X" is denoted by X and its contents by @X. @ is a general purpose 
dereferencing operator. 

• Variables are fixed in size at compile time. There is no primitive dynamic allocation 
mechanism. 

• The only data structuring mechanism is similar to a Pascal record. 

Throughout this chapter we will show how various Ada constructs are encoded in MIL. 

The heart of MIL is its typing/structuring, mechanism. Integer (int) and location ( loc) are the only 

types available. An int may be qualified with a range, as in 

int 0 . . 1 2 7 ; 

The code generator may use the range to optimise storage allocation. 

Actual storage in MIL is described by the use of descriptors. A MIL descriptor ( d e s c ) is something 

like a Pascal record, except that the fields are denoted positionally, rather than named. For instance, 
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d e s c ( i n t , l o c , int 0 . . 1 2 7 := @C+3) 

Initialisation expressions (i.e., : = @C+3) may appear in a d e s c and are evaluated by the code 

generator and assigned to the corresponding fields at run time. 

Descriptors are used to describe storage in a machine-independent manner, both for allocation and 

access. For example, variables in MIL are declared by associating a descriptor with them: 

T u p l e : d e s c ( i n t , l o c ) ; ! Define a descriptor 
X : T u p ! e ; ! Declare a variable 

or, equivalents 

X : ( i n t , l o c ) ; ! Implicit descriptor definition 

This would cause storage to be allocated for an integer followed by storage for a location. O n e would 

access the first and second fields of X by 

a c c e s s ( X , 1, T u p l e ) 
a c c e s s ( X , 2 . T u p l e ) 

respectively. T h e MIL a c c e s s construct requires an explicit descriptor since the object being 

accessed may be the result of an expression and have no associated descriptor. 

The usual complement of scalar operators is provided, including: the standard arithmetic, relational 

and assignment operations of ints; equality, inequality and assignment of Iocs ; addition of an int and 

a loc returning a loc (used in offset calculation, see Section 4.3.1); coerc ion operators from int to 

loc , and vice versa. 

The primitive constructs provided in MIL for manipulating composite objects are simple. Only simple 

block copy and block compare operations are available. Manipulation of composite objects is done 

by providing explicit instructions to perform the desired action. 

The statement structuring facilities include rout ines and b l o c k s . A MIL b l o c k or r o u t i n e may 

contain local declarations, a body, and an exception handler. A r o u t i n e is recursive and may have a 

scalar return value. A formal parameter must have a descriptor that consists of a single field, thus 

restricting formals to be scalar. Correspondingly, all actual parameters in a routine invocation are 

expressions, and hence yield scalar values. Parameter passing is by value; other mechanisms must 

be implemented within this framework (see Section 4.3.2.1), 

A b l o c k also contains a tag to control the lifetime of dynamic objects (see Section 4.4.1). This tag 

tells the code generator that at block exit it must restore the stack to its state prior to block entry. Th is 

allows X F O R M to control the lifetime of dynamic objects by the placement of deallocation indicators. 
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4.2 Translating Declarations 

MIL b l o c k s and r o u t i n e s allow local MIL declarations which are used in the translation of Ada 

declarations. Because declaration elaboration in Ada can involve computing complex expressions, 

MIL allows statements to be interspersed with declarations. 

4.2.1 T y p e D e c l a r a t i o n s 

All types except for scalar types are represented at run time. It is an important consequence of our 

type template design that the structure and contents of type descriptors are known at translation time. 

This is a fine point, and is due to the Ada language definition. The reader may be tempted to claim 

that the t y p e declaration 

t y p e T is a r r a y ( N . . M ) of I n t e g e r ; 

defines a type that requires template information known only at run time. However, the language 

definition states that this declaration generates two implicit declarations: an anonymous t y p e 

declaration of the form 

t y p e anonymous is a r r a y ( I n t e g e r r a n g e <>) of I n t e g e r ; 

and a s u b t y p e declaration 

s u b t y p e T is anonymous( H . . M ) ; 

The Front End performs this transformation and X F O R M sees only canonical type and subtype 

definitions. 

Implicit t y p e amd s u b t y p e declarations are created in many contexts in Ada. For example, variable 

declarations may construct a subtype explicit ly 5 : 

X : r e c o r d L e f t , R i g h t : I n t e g e r ; e n d r e c o r d ; 

As a less obvious example, for loops generate both a t y p e and a s u b t y p e declaration for the range 

of the index variable. 

Upon encountering a t y p e definition, X F O R M creates a MIL variable with a descriptor whose structure 

corresponds to that of the template for this type. The variable descriptor also contains initialisation 

expressions that assign the required type information. This representation is satisfactory since the 

structure of the template is known and contains oniy a fixed part. 

5 T h i s declaration is legal in preliminary Ada but illegal in revised Ada. 
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As an example of this translation, consider the following declarations 

s u b t y p e E l t is <some definition>; 

t y p e E l t _ A r r a y is a r r a y ( N a t u r a l r a n g e <>) of E l t ; 

The MIL translation of this is shown in Figure 4-1. 

! MIL descriptor and template for Elt 

E l t _ d e s c : d e s c ( d e s c r i p t o r for Elt>); 
E l t _ t e m p l a t e : E l t _ d e s c ; 

************************************* 

MIL descriptor and template for 
type Elt_Array is array(Natural) of Elt; 

E l t _ A r r a y _ d e s c : d e s c ( i n t := 3 , 
int := 2 , 
int := 2 , 

Tag indicating an array type template 
# "parameters" to this template 
# dimensions 

loc := E l t _ t e m p l a t e ) ; 
! Pointer to component subtype descriptor 

E l t _ A r r a y _ t e m p l a t e : E l t _ A r r a y _ _ d e s c ; 

F i g u r e 4 -1 : Example of MIL for Type Descriptors 

Notice the initialisation of the fourth field of E l t _ A r r a y _ d e s c to the address of the subtype 

descriptor for E l t . 

The MIL statements in Figure 4-1 are attached to the local declarations of the smallest enclosing unit 

at the point of the declaration. T h e translation of some Ada constructs (e.g., f o r loops) cause a local 

b l o c k to be created expressly for the purpose of containing non-user-generated type and subtype 

definitions. 
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4.2.2 S u b t y p e D e c l a r a t i o n s 

S u b t y p e declarations are handled similarly to t y p e declarations in that the basic action is to create a 

MIL variable and attach it to the local declarations of the enclosing unit. However, s u b t y p e 

declarations may contain execution-time expressions. Extending the example in Figure 4-1, the MIL 

translation of the declaration 

s u b t y p e EA is E l t __Ar ray ( A+B . . C ) ; 

is shown in Figure 4-2. 

! MIL descriptor for 
! subtype EA is Elt_Array(A + B..C); 

EA_desc : d e s c ( i n t := 4, ! Tag indicating call block 
loc := E l t _ A r r a y _ _ t e m p l a t e , 

! Pointer to type template 
int := 2, ! # "actualparameters" 

I The next two fields are the actual parameters. 
I Note that they are initialised with run-time expressions. 

int := @A+@B, 
int := @ C ) ; 

i **** *************** ***** * **** * 

! Descriptor (call block) for EA 

EA_ca11 b l o c k : E A _ d e s c ; 

F i g u r e 4 - 2 : Example of MIL for Call Blocks 

4 .2 .3 V a r i a b l e D e c l a r a t i o n s 

Translating a scalar variable declaration is straightforward since scalars have only fixed parts. A 

scalar is represented by a MIL variable with a descriptor of one field whose type is int and whose 

range is defined as appropriate. For instance, the Ada variable 
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! Translation of 
! A : EA; 

A _ f i xed : ( d e s c r i p t o r for array dope vector>); 

ca l l a l l o c ( A f f i x e d , E A _ c a l l _ b l o c k ) ; 

F i g u r e 4 - 3 : Allocation of a Composite Variable 

The storage allocator, alloc, is called with the address of the fixed part of A and the address of the call 

block for EA. T h e allocator will obtain and initialise the storage for A on the dynamic part of the run­

time stack and initialise the fixed part. The dope vector for A will have its bounds and multipliers filled 

in and its offsets will be made to refer to the dynamic part. 

4 .2 .4 S u b p r o g r a m D e c l a r a t i o n s 

Ada subprogram declarations require translation into executable code for two reasons: (i) default 

parameter values must be evaluated, and (ii) the subtypes of formal parameters, and any return value 

if a f u n c t i o n , must be elaborated. 

The Front End transforms all constructs dealing with default parameters into a canonical form. T h e 

details of the transformation are unimportant; it enables X F O R M to work without knowing about default 

parameters. 

L i f e : ( S t a t i c , L o c a l , G l o b a l , R e g i s t e r ) ; 

is translated into the MIL variable 

L i f e : ( i n t 0. . 3 ) ; 

Composite variables contain a dynamic part which must be allocated via a call to the run-time storage 

allocator. For the Ada declaration 

A : EA; EA as i n F i g u r e 4 - 2 

the process is indicated in Figure 4-3. 
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Elaboration of formal parameter and return value subtypes presents no difficulties in general. Their 

subtypes are translated as any other and the MIL declarations/statements become part of the local 

declarations of the unit enclosing the subprogram. 

However, unconstrained array and record subtypes may occur as formal parameter and return value 

subtypes. Unconstrained subtypes are easy because they require no translation. An unconstrained 

non-scalar formal parameter will obtain its constraint information from an actual parameter and needs 

no run-time type descriptor. For return values, the subtype is only needed at compile time for type 

checking at the call site and so we dispense with a run-time subtype descriptor. Since no constraint 

values appear in an unconstrained subtype, no expressions need to be elaborated. 

4.3 Translating Statements 

Many Ada statements translate directly into MIL. Scalar assignments and if, fo r , and w h i l e 

statements ail have explicit MIL equivalents, for example. There are statements that require some 

effort to implement correctly. 

4.3.1 A r r a y A s s i g n m e n t 

The semantics of array assignment require that the number of elements in each dimension of the 

source and destination arrays be equal. If the array lengths are unequal an exception is to be raised. 

Preliminary Ada does not specify the appropriate exception. In revised Ada LENGTH_ERROR is 

provided for this purpose. 

For singly-dimensioned arrays the test for equal lengths can be performed by comparing the size 

fields stored in the fixed part of the array object (Section 2.2.4). This is true because our context-

independent implementation scheme guarantees that two arrays of the same type and same number 

of elements will be represented identically. For multi-dimensional arrays the lengths of each 

dimension must also be compared. This is only slightly more complicated since the dope vector 

bounds multipliers gives this information almost directly. 

Copying the array value can be done by a block copy operation since the array dynamic part, which 

contains the value, is always allocated contiguously and contains no absolute pointers to subobjects. 

MIL provides a c o p y statement for just such a purpose, the syntax of which is 

c o p y (<source location}, <destination location} , <size>) 

For array assignment, the source and destination locations, which are the bases of the dynamic parts, 

are computed using the offsets stored in the dope vectors. The location of the value of array A, for 

example, is computed by 
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A_desc : desc(<descriptor for array dope vector>); 

. . . @ a c c e s s ( A , 2 , A _ d e s c ) + a c c e s s ( A , 2 , A _ d e s c ) . . . 

T h e addition expression computes the base location by adding the contents of the second field of the 

dope vector to its address. This field was initialised as an offset from its own location by the storage 

allocator at object-creation time. 

The size of an array is found by accessing the size field within its fixed part. Since the length check 

has already been performed the arrays have the same size and either array may be used for this 

computation. 

4.3.2 S u b p r o g r a m I n v o c a t i o n 

Subprogram invocation translation is a complex issue. We will not attempt a detailed analysis but give 

only an outline of the implementation. T h e primary sources of complication are parameter passing 

and return values. The former problem is dealt with in the next section and the latter within the 

section on expression translation (Section 4.4.1). 

4.3.2.1 P a r a m e t e r P a s s i n g 

T h e translation of parameter passing is complicated by imprecise semantics in preliminary Ada. 

There is much question about the desired effect of exceptions on ou t and in o u t parameters and the 

legality of modifying the constraints of actual parameters. Lacking a full definition we have chosen an 

implementation that (i) is relatively easy to implement, and (ii) provides "reasonable" semantics. In 

revised Ada the semantics has been made precise and corresponds to the semantics of our 

implementation. 

Parameter passing is done with a call -by-reference mechanism in which formal parameters are 

represented by MIL variables whose associated descriptors are 

d e s c ( l o c ) 

This provides a variable with a single pointer as its representation. All parameter accesses are 

indirect through the MIL formal. The indirection is indicated explicitly in MIL which provides only call -

by-value semantics. 

An array or record actual parameter is passed by sending the location of its fixed part. Th is implies 

that all checking on the value occurs according to the actual subtype, not the formal. If an exception 

causes execution to leave the subprogram out and in out parameters will have been modified. 

Passing scalar parameters is more complex due to our special casing of storage for scalar objects. 
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Consider an I n t e g e r formal parameter whose value requires four bytes of storage. The code 

generator has no information as to the size of an actual parameter, which may occupy one, two or 

four bytes on the VAX. The size of the actual parameter must be known to enable proper 

manipulation of its value. The following scheme allows a uniform reference to scalar actual 

parameters. 

For each scalar actual parameter a temporary MIL variable is created whose MIL descriptor is 

identical to that of its corresponding formal parameter. If the binding is in or in out , the actual 

parameter is assigned to this temporary with appropriate range checking. The address of the 

temporary is then passed to the subprogram. This guarantees that ail actual values are represented 

identically to the formal parameter subtype. Upon return from the subprogram, all out and in ou t 

actual parameters are assigned the value contained in their respective temporaries and appropriate 

range checking is performed. 

Constraint checking on scalars is done only at subprogram entry and exit. If an exception is raised 

within the subprogram body, scalar out and in out parameters will not have been modified. 

4.4 Translating Expressions 

As with statements, many Ada expressions have obvious MIL equivalents. We discuss some of the 

more interesting expression translations in this section. 

4.4.1 F u n c t i o n R e t u r n V a l u e s 

Manipulating array and record function return values is a difficult task as there is no convenient place 

to allocate the return object. If it is allocated in the called routine's context then normal function 

return will deallocate the stack frame and destroy the object. Storage for the object could be placed 

in the ca l le rs context if its size were known prior to invoking the function. The possibility of 

unconstrained return values make this impossible since the size of such an object may not be known 

until the function returns. 

We have decided to use a hole in the stack implementation which operates by leaving the return 

object in the called routine's stack frame. The function returns in a special manner that leaves the 

stack frame intact, and the object untouched. Normally the storage for the function stack frame 

would remain until the stack frame "above" it was exited. This is unacceptable due to our run-time 

machine model which utilises a single stack for expression evaluation and for dynamic allocation of 

local variables (see Chapter 5). The run-time stack will become inconsistent if a return object "l ives" 

for too long. 
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The mechanism for controlling object lifetimes in MIL is the block deallocation tag mentioned in 

Section 4.1. This forces X F O R M to be responsible for controlling the lifetime of return objects. 

Obtaining the proper lifetime is tricky. Consider the following Ada statements, where A is an array, F 

is an array-valued function and K and N are I n t e g e r s . 

A := F ( K ) ; 
N : = N + F ( K ) ' F I R S T ; — Legal only in revised Ada 

In the first assignment statement the lifetime of the return value of F is the entire statement. T h e 

second statement requires deallocation of the value after the ' F I R S T inquiry is complete. X F O R M 

operates by knowing in any particular context whether it is possible for the lifetime of a return object 

to extend beyond the context. 

A subprogram call must be treated carefully when one of its arguments is a function call having an 

unconstrained return value. Consider the following call, where G is a procedure taking an array and 

an integer as parameters. 

G ( F ( K ) , N ) 

T h e translation of this is sketched in Figure 4-4. T h e storage for the inner MIL block is not deallocated 

when the block is exited, for this storage contains the array object that is being passed to the 

procedure G. The deallocation tag on the outer MIL block will cause the stack storage for both the 

inner and the outer blocks to be reclaimed once the outer block is exited. 

B e g i n M I L b l o c k , w i t h d e a l ! o c a t i o n _ t a g = y e s 
t e m p _ l o c := B e g i n M I L b l o c k , w i t h d e a 1 1 o c a t i o n _ t a g = no 

Call F(K), leaving its frame allocated, 
and yield the address of the returned array 
as the value of this block; 

E n d M I L b l o c k ; 
t e m p _ i n t e g e r := N; 
G ( @ t e m p _ J o c , t e m p _ i n t e g e r ) ; 

E n d M I L b l o c k ; 

F i g u r e 4 - 4 : Translation of G (F (5 ) ,N) 
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4.4 .2 S u b s c r i p t i n g 

MIL has a s u b s c r i p t expression which renders the translation of Ada subscripting trivial. A primitive 

operation of this power may seem out of place in such a low-level language. It was included in MIL 

because the V A X provides a machine operation, the I N D E X instruction, which allows extremely 

efficient machine language to be generated for the Ada subscript operation. 

4 .4.2.1 S l i c ing 

Slicing an array produces a new access path but not a new object. This new variable has the same 

type as the sliced array but its subtype constraints are the expressions appearing in the slice. 

T o represent the new variable X F O R M creates a MIL variable to represent the array's dope vector. A 

call block is allocated for the new array subtype but the actual bounds values cannot be filled in until 

the slice expression is evaluated. MIL statements are generated to elaborate the integer expressions 

in the slice and to assign the appropriate constraint values to the call block. 

The dynamic part of the new variable starts at the element of the sliced array selected by the first 

integer expression in the slice. (E.g., the first component of A ( N . .M) is A ( N ) . ) This location is 

computed with a s u b s c r i p t expression. Next the fixed part of the new array variable is set to refer to 

the computed dynamic part. This is identical to the function performed by the storage allocator, 

except that the storage allocator also creates a dynamic part. There is a second entry point into the 

allocator that performs exactly the desired actions. After the call to this entry point, the MIL variable is 

the result of the slice. 
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5 . The C o d e Phase 
This chapter describes C O D E , the final code production phase of the Charrette compiler. This phase 

is concerned with the impact of the V A X architecture and Un i x 6 operating system on the code 

generation process. 

5.1 Machine Model 

No compiler system treats the full hardware available as a monolithic resource, instead, some basic 

run-time model for the architecture is adopted. Our abstract target machine is a stack machine, both 

because the V A X supports a stack environment with its addressing modes, and because it is a 

reasonable model applicable to many machines. This choice impacts 

• Instruction set utilisation 
• Expression evaluation 
• Subprogram calling conventions 
• Address space segmentation 

T h e implementation of these abstract stack machine operations with V A X instructions is discussed 

below. When possible, the philosophy, architecture, and conventions of the V A X system as published 

in the VAX manuals [5, 6, 7] are followed. 

5.1.1 H a r d w a r e U t i l i s a t i o n 

There are several sizes of objects on the VAX . VAX objects are defined as longwords (64 bits), words 

(32 bits), halfwords (16 bits), and bytes (8 bits). This contrasts with Ada objects which include arrays, 

records, tasks, and scalars. To simplify operations, every stack objects is a longword (4 bytes). 

Conversion to the correct size is performed when a datum is transfered to or from the stack by the C V T 

instructions, of which the M O V instruction is a special case with no conversions performed. When no 

conversion is necessary, it is possible to use the more efficient P U S H instruction. Technically, V A X 

instructions contain a designator, such as L, W, H, or B, which indicates the size of the operands. For 

simplicity, we omit these designators and assume that stack operands are always a longword in size. 

T h e V A X supports most stack operations in its addressing modes and register allocation. By 

convention, register 14 is the stack pointer and like the PDP-11, the stack grows downward. Pushing 

V A X objects on the stack is accomplished by using a M O V instruction with the autodecrement 

addressing mode on the predefined stack pointer. Popping the stack is accomplished by using the 

autoincrement addressing mode in a M O V instruction. 

*We use the Berkeley Paging Unix system, with local modifications for except ion handling. 
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5.1.2 E x p r e s s i o n S t a c k 

Arithmetic expressions are implemented with the autoincrement/autodecrement modes in three 

address instructions. For example, addition is carried out by 

ADD3 ( S P ) + t ( S P ) + , - ( S P ) 

which pops the first two operands off the stack, adds them, and pushes the result back onto the 

stack 7 . Assignment is done by indirection through the top of the stack. For example, the Ada scalar 

assignment statement 

X := Y ; 

is implemented by the series of instructions: 

PUSHA X ; push a d d r e s s o f X 
PUSH Y ; push v a l u e o f Y 
MOV ( S P ) + , @ ( S P ) + ; p l a c e v a l u e a t a d d r e s s 

After pushing the address of X and the value of Y, the stack is popped twice and the value is stored at 

the address. 

5 .1 .3 C a l l S t a c k 

A stack machine does all of its calculations on the stack. Conceptually, a subprogram call is just 

another expression calculation, albeit one with side effects. Activation records for subprogram calls 

are allocated on the same stack as expressions. The actual linkage is shown in Figure 5-1 and is 

partially generated by the C A L L S instruction. 

The VAX architecture predefines several registers for maintaining the context of a subprogram call. 

These conventions are used and extended as follows: 

PC Program Counter, register 15. This holds the address of the next instruction to be 
executed. 

SP Stack Pointer, register 14. This points to the last byte on the stack. 

FP Frame Pointer, register 13. This points to the beginning of the current activation record. 

AP Argument Pointer, register 12. This points to a block of storage that contains the actual 
parameters passed to the current subprogram. 

There are some optimisation routines in the code generator that recognise this situation and can repiace.it with the more 
efficient ADD2 (SP) + ,(SP) instruction. Since these optimisations are a departure from the stack machine and are not always 
applicable, they will not be discussed here. 

http://repiace.it
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F i g u r e 5 -1 : Activation Record for a Subprogram 
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T P Task Pointer, register 11. This points to the current task control block for the executing 
thread of control. This register is the only one whose use is not defined in the 
architecture, but by the run-time system. 

The first four registers (all but TP) are saved, restored, and loaded automatically by the C A L L S and R E T 

instructions. The T P is manipulated by the run-time system and normally is unchanged between 

subprogram calls. 

In keeping with the stack machine philosophy, subprograms have their parameters pushed on the 

stack, and are invoked by a C A L L S instruction. The context is saved (old.PC, FP, AP) on the stack and 

replaced by the state of the current call. Allocation of local variables and enabling of an exception 

handler is performed by code at the beginning of each routine. The R E T instruction, which 

automatically pops the stack and restores the state registers, is used to return from a subprogram. 

A conventional scheme is used to implement block structured name scopes [9]. Storage allocation 

for all packages and blocks is raised to the enclosing subprogram level. Disjoint blocks in a 

subprogram share storage for their variables. Storage for static (size known at compile time) parts of 

Ada objects is allocated on the stack when a subprogram is entered 8 . Storage for Ada objects that 

have a compiie-time-undetermined (dynamic) size is done during declaration elaboration. Storage is 

released on block exit by resetting the stack pointer to its value before the block was entered. 

Storage for subprograms is automatically released by the R E T instruction. 

5 .1 .4 A d d r e s s S p a c e S e g m e n t a t i o n 

We partition the address space as shown in Figure 5-2. The stack grows contiguously from the high 

end of memory. The lowest part of the address space is filled with the machine language for the 

program and run-time routines. The heap grows from the end of the program towards the stack. 

5.2 Difficulties with Implementing Subprograms 

There are several interactions between the simple stack model and Ada's semantics that cause the 

implementation to deviate from V A X conventions. These include: 

• Uplevel references of variables 
• Uplevel references of parameters 
• Returning Ada objects from functions 
• Sizes of parameters 
• Heaps and secondary stacks 

Each of these problems is discussed, along with the implemented solution. 

**The layout of activation records is determined at compile time by the ACTREP phase. 
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F i g u r e 5 - 2 : Partitioning of Address Space for Execution Objects 

5.2.1 U p l e v e l R e f e r e n c e s of V a r i a b l e s 

A display is prodded for referencing variables that are not in the current activation record. Display 

registers are kept in the task control biock and are referenced through the T P register. Variables in 

the current subprogram are referenced through the FP register, allowing easy access. A variable that 

is stored n bytes from the beginning of the current activation record is located at VAX address 

- n ( F P ) . an operand that can be used directly in VAX instructions. Address calculation is not as easy 

for references to variables in outer subprograms.- Four steps are required: 
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• Get address of task control b'ock 
• Add in offset for correct display register 
• Get contents of display register 
• Add in offset for variable 

This translates into three V A X instructions: 

PUSH i ( T P ) 
MOV @ ( S P ) + , - ( S P ) 
ADD2 x , ( S P ) 

g e t a d d r e s s o f d i s p l a y r e g / 
g e t v a l u e o f d i s p l a y r e g 
add i n v a r i a b l e o f f s e t x 

Full stack machine support would allow variables to be referenced uniformly regardless of their lexical 

level. Because of the limited number of registers on the V A X , the entire display cannot be contained 

in registers. 

5 .2 .2 U p i e v e l P a r a m e t e r R e f e r e n c e s 

By V A X conventions, invocations using the C A L L S instruction have the argument pointer register set 

to a block of storage that contains the subprogram's actual parameters. This is shown in Figure 5-3. 

High Memory 

Arg N 

Arg 1 
Number of A r g s 

Low Memory 

F igu re 5 - 3 : Actual Argument Block for a Subprogram 

This convention is followed by nearly all V A X software . O u r phi losophy dictates that we remain 

compatible with this convention. 

O n e problem with parameters is upievel referencing. T h e display can be used to calculate the 

The Unix Shell does not use this convention when it passes arguments from a command line. Special code must be 
generated when Ada programs are used as Shell commands. 
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address of variables in enclosing scopes, but not of the parameters to subprograms in enclosing 

scopes. Consider the following Ada program fragment: 

p r o c e d u r e 0 u t e r ( X : I n t e g e r ) is 
p r o c e d u r e I n n e r is 

. . . X . . . 

e n d I n n e r ; 

e n d O u t e r ; 

Consider the stack for a cail of I n n e r (shown in Figure 5-4). 

AR for O u t e r 

AR for p r o c e d u r e ca l led by O u t e r 

( conta ins O u t e r ' s AP) , 

( u n k n o w n to Inner) 

AR for Inner 

F i g u r e 5 - 4 : Partial Stack for Nested Subprogram Cail 

When the reference to X is encountered, it is unknown where the argument pointer for O u t e r is 

stored. The current argument pointer (AP) is for I n n e r . Although the display can give the frame 

pointer for O u t e r , the saved AP before the activation record for O u t e r is the argument pointer of 

O u t e r ' s caller. O u t e r ' s AP is saved when it calls another subprogram (which directly or indirectly 

calls I n n e r ) . To find the AP for O u t e r requires a stack analysis to determine the activation record for 

the subprogram called from O u t e r , and then to retrieve the saved AP. This is toe much overhead, 

even if the situation occurs infrequently. A better solution is to save the curre.n: argument pointer in 
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the current activation record, an overhead of one instruction per subprogram call and one longword 

per activation record. The correct AP is found by the ordinary upievel reference mechanism, and the 

parameter is referenced by the standard parameter access mechanism. 

5 .2 .3 F u n c t i o n R e t u r n O b j e c t s 

The stack machine model leaves the results of operations on the stack. However, function calls use 

the stack for passing parameters and saving state. O n e cannot merely push the returned value on the 

stack and leave; the function return pops the stack, including the returned value. The V A X 

conventions circumvent this problem by keeping returned values in register 0. After the return 

statement is executed, the contents of register 0 are pushed on the stack by the calling subprogram. 

The function result appears to be left on the top of the stack correctly. 

This technique fails for objects that cannot fit in a register. When a large object is passed as a 

parameter, only the address is passed in the call by reference scheme, so it would seem that an 

address could be returned as the value for a large object. When passing an address as a parameter, 

the storage for the Ada object has already been allocated as part of the current activation record. 

When a value is returned from a function, the object does not exist until after the function has been 

called, and so is part of the function's activation record. The address can be returned but the Ada 

object to which it refers does not exist after the function call. Nor can storage be allocated before the 

function call since the size of the returned object may not be known before the function returns. This 

is an inherent property of Ada and not of the stack model or the V A X architecture. 

A trick is needed to prevent the function's activation record from disappearing when the function 

returns. This allows the returned object to remain on the stack. The R E T instruction, which is used to 

return from a function call, automatically restores the stack pointer to its value before the function 

was called. T o move the SP back to its p r e - R E T value, it must be saved in a location that will not be 

altered by the R E T instruction. Register 1 serves this purpose. The code sequence for leaving a 

function is: 

MOV ( S P ) + , R 0 ; s a v e o b j e c t ' s a d d r e s s 
MOV S P . R l ; s a v e t h e SP v a l u e 
RET 

and the code following the C A L L S instruction at the caller's site is: 

( C A L L S ) 
MOV R1,SP ; r e s t o r e t h e SP t o save o b j e c t 
PUSH R0 ; p l a c e o b j e c t a d d r e s s on t o p o f s t a c k 

There is another aspect to the returned object problem: evaluation order is changed. Consider the 

assignment statement: 
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M := P; 

where M and P are arrays. The normal VAX code generated for the stack machine is: 

PUSHA M 
PUSHA P 
M0VC3 < s i z e o f a r r a y > , ( S P ) + , ( S P ) + 

that is? push the addresses of M and P, then do a block transfer (MOVe Characters with 3 arguments), 

popping the addresses. This paradigm breaks down in the case of returned objects. Consider the 

statement: 

M := F ( P ) 

where M and P are arrays, and F is a function that returns an array of unspecified size. The simple 

VA X code sequence i s 1 0 : 

push a d d r e s s of a r r a y M ( p a r t o f a s s i g n m e n t s t m t ) 
push a d d r e s s of a r r a y P (param t o F ) 
c a l l f u n c t i o n F w i t h 1 a r g 
r e s t o r e the s t a c k p o i n t e r f o r r e t u r n e d o b j e c t 
p l a c e r e f e r e n c e t o r e t u r n e d v a l u e on t o p o f s t a c k 

M0VC3 < s i z e o f a r r a y > , ( S P ) + . ( S P ) + 

PUSHA M 
PUSHA P 
CALLS # 1 , F 
MOV R l . S P 
PUSH RO 

The block move instruction at the end of the code sequence references the top two iongwords on the 

stack as the addresses for the block move. But the destination address is deep in the stack, below the 

returned object. The second operand to the block move instruction is garbage, in these cases, the 

Ada statement is rewritten (by X F O R M ) into the following pseudo-Ada statement: 

F (M) =: A 

which means reverse assignment. T h e semantics are: push the left hand expression (the returned 

object), push the right hand expression (the target for the assignment), and assign the left hand side 

to the right hand side. Temporary variables and an extra statement to save the left hand side ensure 

that the assignment statement is elaborated correctly. 

The returned object problem is pernicious. It affects many other parts of the abstract machine and 

run-time system. It is ill supported by the VAX, and we speculate, by most other machines. The 

obvious solution is exclusive use of the heap for all such dynamic objects. Heaps are not well 

supported by most machines, which limits the effectiveness of the solution. 

To simplify the example, all constraint checking is omitted. 
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5.3 Implementing Exceptions 

The V A X architecture provides a uniform exception handling mechanism, although it is not completely 

consistent with the requirements in the Ada rationale. The rationale states: 

One important design consideration for the exception handling facility is that exceptions 
should add to execution time only if they are raised. [16] 

In the rationale's example implementation, no execution-time overhead is needed to enable or disable 

exception handlers. 

The V A X architecture specifies that the address of the current exception handler is in the current 

activation record, and since this data structure does not exist until run time, there must be some 

execution overhead for the enabling of an exception handler. 

The implemented system uses a small amount of run-time overhead. This is considered acceptable as 

it effectively utilises the V A X hardware and architecture rather than producing convoluted code to 

circumvent it. There are four parts to the exception handling mechanism: 

o Translating the exceptions 
• Translating the exception handlers 
• Enabling and disabling the exception handlers 
• Raising exceptions and propagating raised exceptions 

5.3.1 T r a n s l a t i n g E x c e p t i o n s 

Although exception names follow the same scope rules as other names, the exceptions can be 

propagated beyond the scopes in which they can be named. This requires exceptions to have unique 

program-wide identification, even with separate compilation. This is accomplished by assigning each 

exception a static location in memory. Because static variables have unique addresses, these 

addresses may be used as unique identifiers. 

5.3.2 M a p p i n g E x c e p t i o n H a n d l e r s 

Exception handlers are blocks of code. When an exception is raised, the run-time system will execute 

a J M P instruction to the correct handler. Because all the environment registers are set to the correct 

values before this transfer, the exception handler appears to be executing in the scope where it is 

defined. Handlers finish their execution by either a J M P , if they are attached to a block, or by a R E T 

instruction if they are attached to a routine. 

The only subtle issue is changing the current exception handler. When an exception handler starts 

execution, it first changes the pointer to the current exception handler in the activation record. If this 

were not done, an exception raised in the currently executing exception handler would be routed 
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back to the exception handler that raised it, causing a infinite loop (in addition to being an incorrect 

implementation of Ada). 

5 .3 .3 E n a b l i n g E x c e p t i o n s 

The V A X architecture states that the location pointed at by the frame pointer (FP) should contain the 

address of the current exception handler. Whenever a scope that has an exception handler is 

entered, the code generator will generate an instruction that loads the address of the current 

exception handier. When the scope is left, the address of the enclosing exception handler (up to the 

routine level) will be placed into the specified location. These addresses are known at compile time, 

so the maximum overhead for having an exception handler that is never executed is two instructions 

per block or routine. By convention, an address of 0 is taken to mean that no exception handler is 

enabled for the current routine. Since the C A L L S instruction automatically sets the predetermined 

location in the activation record to 0 on routine entry, there is no additional overhead for routines that 

have no exception handlers. 

5 .3 .4 R a i s i n g E x c e p t i o n s 

There are two ways that the implementation recognises exceptional conditions: hardware recognised 

traps and software calculated values. 

5.3.4.1 H a r d w a r e E x c e p t i o n s 

Hardware exceptions are communicated by the Unix signal mechanism. When a program starts 

execution, our run-time system enables a routine to catch all possible signals. When a hardware 

exception occurs, the Unix system maps it into a special code and calls the designated routine. This 

routine translates the Unix signal code into an Ada exception value, saves this value in the task 

control block (where it may be interrogated by an exception handler) and then cails the run-time 

routine for handling Ada exceptions. This run-time routine unwinds the stack, looking for an enabled 

exception handler. The R E T instruction is used to perform the unwinding which guarantees that the 

state is completely and correctly restored. By enclosing the entire program in a block that contains a 

default exception handler, any uncaught exceptions will be processed by the system. 

This method works well, except that Unix does not relate all the possible exception information that 

the V A X generates. For example, the underflow, overflow, subscript range, and divide-by-zero 

exceptions are mapped into a single arithmetic signal. This is too imprecise a reporting mechanism. 

A modified signal routine is installed in our Unix kerne! to report the exact hardware exception that the 

V A X finds. 

We used the I N D E X instruction both to perform subscript calculations and to check range constraints 
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on assignment to discrete types, it caused us some difficulty to distinguish these two cases, s ince 

both generate the same fault. It would have been possible to detect the difference between a 

subscript calculation and a range check by examining the I N D E X instruction that generated it. 

However, after a subscript fault the program counter points to the instruction after the I N D E X that 

caused the fault. The V A X has variable-length instructions, and lacks any form of "instruction length" 

indicator that could be examined after a fault. This makes it very difficult to try to "back up" over the 

instruction. We finally decided to follow each subscript-checking I N D E X with a no-operation 

instruction. The run-time routine that handles machine-check faults examines the instruction after 

the fault in order to determine whether to raise RANGE_ERROR or INDEX_ERROR. 

5 . 3 . 4 . 2 S o f t w a r e E x c e p t i o n s 

T o make a uniform mechanism for handling exceptions, all software exceptions are made to look like 

hardware exceptions by execution of a Unix signal. Because all software generated exceptions are 

mapped into the same code by Unix, it is necessary to have some convention to indicate which 

exception has been raised. This is done by storing the exception in the task control block before 

making the signal call. When a software signal is raised, the signal handling routine assumes that the 

correct exception value is already present in the task control block. 

5.3.5 P r o p a g a t i n g E x c e p t i o n s 

Reraising an exception is just a Unix signal call, like any other software exception. It is easier than 

other software exceptions, because the current exception is already stored in the task control block. 
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6. Working Notes 
This chapter contains modified versions of some of the working notes created during the Charrette 

design stages. They typically describe things not implemented by the end of the project. Because 

they are working notes, rather than finished documents, they may not be completely accurate, and 

may ignore important or subtle points. We present them solely in hope that they might save some 

duplication of effort on the part of other implementors. 

6.1 Generics 

6.1.1 E x p a n s i o n of G e n e r i c s 

Our original plans called for another phase before T Y P E R E P , to be called G E N E R I C . G E N E R I C expands 

Ada generic instantiations by a process similar to macro expansion. We chose this over more 

ambitious schemes because of its simplicity. The remaining phases can ignore generics completely, 

thus simplifying their structure. 

The generic expansion scheme is not really as simple as macro expansion. When the body of a 

generic program unit refers to an in formal parameter, for example, the instantiated body must use the 

value of the actual parameter at the point at which the unit was instantiated. Thus for each in 

parameter, G E N E R I C introduces a c o n s t a n t variable declaration where the variable is initialised to the 

actual parameter expression. 

The distinction in T C O L A d a between built-in operators and user-defined subprograms causes another 

problem. In T C O L _ A d a , a call on a built-in function is represented by a special operator, such as 

P L U S _ O P for the built-in addition operators. Calls on user-defined subprograms are all indicated via 

the single C A L L operator; additional fields within the tree node point to the symbol table entry for the 

user-defined function. Calls on a f u n c t i o n parameter to a generic are represented in T C O L A ( j a via 

nodes containing a C A L L operator. If an instantiation passes a built-in function such as integer 

addition, the C A L L operators to this parameter must be replaced by integer addition operators. 

6 .1 .2 O t h e r S c h e m e s 

There are a number of more clever schemes for handling generics; we briefly considered some of 

them during the early design stages of the Charrette. All of these schemes are intended to reduce the 

number of code bodies produced by multiple instantiations of a common generic unit. 

The basic notion is to generate a single code body for a generic procedure or package, and to pass 
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some representation of the generic parameters as implicit parameters to the instantiated procedure, 

or to each procedure in the instantiated package. Some generic parameters are easy to deal with in 

this way. Expressions or objects, for example, are trivial. Procedures are harder, in that they require 

some representation of the environment in which they are declared in addition to the address of the 

procedure code body. However, there are well -known techniques for doing this [1, 24]. 

A more difficult part is passing types as parameters. A type parameter to a generic behaves as a 

private type or limited private type within the generic b o d y 1 1 . This means that the most the generic 

body can do is declare, pass as parameters, assign, and compare for equality. O u r type and subtype 

descriptors provide all the information needed for these operations. Thus, a descriptor can be passed 

to represent the type parameter. 

Analysis of the body of a generic package may reveal that some procedures do not require all of the 

generic parameters. In this case, the parameters could be eliminated. Alternately, the entire set of 

generic parameters could be held in a record structure, and a pointer to this structure could be 

passed as a parameter. 

6-2 Block/Procedure Entry/Exit Code 

This section gives some explanation of the code sequences generated for scope entry and exit. T h e 

sequences shown represent the worst case (maximal amount of code generated). There are many 

cases where C O D E will avoid generating unnecessary code. There are other cases where a certain 

amount of analysis in the code generator would allow substantial savings of code but the effort to 

include such tests would not serve our purposes. Recall that SP is the stack pointer, FP is the frame 

(current activation record) pointer, TP is the (currently active) task pointer, AP is the argument 

pointer, RO is general register 0, and R1 is general register 1. 

6.2.1 B l o c k E n t r y C o d e 

This is the sequence for entering a block. 

MOVL S P , a ( F P ) ; S a v e t h e s t a c k p o i n t e r f o r l e a v i n g t h e b l o c k 
; C l e a r o u t t h e l o c a l s t o r a g e w i t h z e r o s 

M0VC5 0 , ( S P ) , 0 , < b 1 o c k s t o r a g e 1 e n g t h > , < b l o c k s t o r a g e o f f s e t > 
< e l a b o r a t e d e c l a r a t i o n s > 
MOVAL A d d r l , ( F P ) ; e n a b l e e x c e p t i o n h a n d l e r 

1 1 This statement is true only in preliminary Ada. In revised Ada, the generic definiton may indicate the class of permissible 
types for a particular parameter. In this case, the generic body may make attribute inquiries on the type. 
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6 .2 .2 B lock Ex i t C o d e 

Code for leaving a block, G O T O out of a block, or E X I T from a loop. 

<push r e t u r n e d v a l u e , 
MOVL 
MOVL 
PUSHL 
MOVAL 
JBR 12 

( S P ) + , R 0 
b ( F P ) , S P 
RO 
A d d r 2 , ( F P ) 
Addr3 

i f a n y , o n t o s t a c k > 
; S a v e r e t u r n e d v a l u e ( i f a n y ) i n Reg 0 
; R e s t o r e s t a c k t o b e f o r e b l o c k a l l o c a t i o n s 
; R e s t o r e t h e r e t u r n e d v a l u e f r o m Reg 0 
; R e s t o r e o l d e x c e p t i o n h a n d l e r 
; T r a n s f e r i f n o t f a l l i n g o u t o f b l o c k 

6 .2 .3 P r o c e d u r e Ca l l C o d e 

Subprogram call. 

<push a rguments i n r e v e r s e o r d e r > 
CALLS < # a r g s > , < r o u t i n e > ; T h e a c t u a l c a l l i n s t r u c t i o n 
MOVL R l , S P ; R e s t o r e s t a c k p o i n t e r to f i n d r e t u r n e d o b j e c t 
PUSHL RO ; R e s t o r e r e t u r n e d v a l u e t o t o p o f s t a c k 

6 .2 .4 P r o c e d u r e Exi t C o d e 

A r e t u r n statement. 

<push r e t u r n e d v a l u e o n t o s t a c k > 
MOVL ( S P ) + , R 0 ; S a v e r e t u r n e d v a l u e ( i f a n y ) i n Reg 0 
MOVL c ( F P ) , d ( T P ) ; R e s t o r e o l d d i s p l a y v a l u e 
MOVL SP,R1 ; S a v e c u r r e n t s t a c k p o i n t e r f o r r e t u r n e d o b j e c t 
RET ;Pop s t a c k and r e t u r n t o c a l l e r 

6 .2.5 P r o c e d u r e E n t r y C o d e 

Subprogram definition. AR means Activation Record. 

MOVL e ( T P ) , f ( F P ) ; S a v e o l d d i s p l a y p o i n t e r i n c u r r e n t AR 
MOVL F P , e ( T P ) ; S a v e c u r r e n t AR p o i n t e r i n d i s p l a y 
MOVL A P , g ( F P ) ; S a v e c u r r e n t a rgument p o i n t e r i n AR 

; f o r u p l e v e l a d d r e s s i n g o f p a r a m e t e r s 
; A l l o c a t e s t a c k s t o r a g e . S t a c k s grow downward 

SUBL2 < # b y t e s r e q u i r e d f o r a l l b l o c k > , S P 
M0VC5 0 , ( S P ) , 0 , < b l o c k s t o r a g e 1 e n g t h > , < b l o c k s t o r a g e o f f s e t > 

; C l e a r o u t t h e l o c a l s t o r a g e w i t h z e r o s 
< e l a b o r a t e d e c l a r a t i o n s > 
MOVAL A d d r 4 , ( F P ) ; S e t up e x c e p t i o n h a n d l e r 

This is a UNIX assembler extended mnemonic, if the destination of the jump is within the range of a short-form branch, the 
short form will be used. Otherwise a long-form JMP will be used. 
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6.3 Motivation for the Stack Frame Layout 

This section refers to the stack frame layout shown in Figure 5-1. 

Everything from the word pointed to by FP up to the beginning of the AR is done by the C A L L S 

instruction. 

A display is used for upievel references. T h e current level references could be made through the 

frame pointer if we were willing to have the C O D E phase recognise this special case. T h e overhead of 

display updates seems smaller than one upievel reference via static links* Because no procedures are 

being passed as parameters or variables, a single word of saved display is sufficient. T o give a firm 

number, I suggest we use 64 display registers. 

Blocks internal to a subprogram are squashed to be on the same lexical level (in implementation only). 

This saves overhead of the AR from the (FP) to the beginning, updating display registers, and upievel 

addressing of the subprogram's global variables within the block. Care must be taken to not leave 

garbage in the fixed area between block entries as a nonpointer value in one block may be a pointer 

storage location in the next. If not cleared, when the garbage collector is called in the inner block, the 

pointer storage location could be interpreted as an address and destroy the program. 

Because the V A X addressing modes only allow autoincrement/autodecrement on registers, the SP is 

in a register. T h e old stack pointer values represent the top of stack before a block was entered. T o 

pop the stack of a block's variable-sized storage, one resets the SP to the top of stack before the 

block was entered. 

Some obvious optimisations come to mind: 

• If there are no access variables in a procedure, leave the Garbage Collection Temporary 
Pointer zero and never update it. 

• If no exception handler is declared in a block, do not update the exception handler entry. 

• If a procedure does not call other subprograms, do not bother changing the display. 

• If there is no variable part for a certain block level, remove its old stack pointer storage 
and do not alter the SP on entry/exit from that level. 

6.4 Default initialisation 

O u r system currently handles default initialisation of access variables (i.e., pointers) to null by clearing 

memory to zero when it is allocated, and using zero to represent null. 
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There are two ways to handle default initialisation of records under our scheme: 

• Augment the record type descriptor with initialisation information, and have the allocator 
perform initialisation from this information. For each field of the record, we would have a 
pointer to an auxiliary variable holding the initial value for that field. If the field has no 
initial value, the pointer would be null. For a field that is a composite object, i.e., an array 
or a record, the allocator would follow the pointer to the field's type template to call itself 
recursively. 

• Build a procedure, at the same lexical level as the type declaration, that initialises the 
fields. For a composite object, the procedure would call the initialisation procedure(s) for 
the component type(s). Such as scheme is described by Holt and Wortman for the Euclid 
language [13]. 

In either case the actual initialisation expressions must be evaluated at the point of the type definition, 

and stored in auxiliary variables. 

The two approaches are functionally equivalent. If we have the compiler build the subroutine, we 

should probably keep in mind what the structures would be like if the allocator were to do it. X F O R M 

might be able to generate code that mimics the way the allocator would walk through the descriptor 

structure. 

It is tempting to consider another potentially more efficient method for handling default initialisation of 

records. Just after the record type declaration is elaborated, allocate a single auxiliary variable of the 

record type and fill it in with the initial field values. When a variable of that record type is allocated, we 

would initialise it by block copying the auxiliary record variable into it. However, there are 

complications for records with discriminants or task components. For records with dynamic arrays, 

different instances can have different sized arrays. For variant records, fields in the variant 

component lists may have initial values, thus the initial value of a record variable (and, of course, 

possibly the size) will depend on how the variable is constrained. Record discriminants may also be 

used as discriminant constraints on an inner record field (see Section 2.1.5). in revised Ada, tasks are 

activated implicitly, either just after allocation for tasks on the heap or just after the " B E G I N " for a 

tasks local to a block, subprogram, or package (see [17], section 9.3). Thus, the initialisation of a task 

or of a record or array with task components must arrange for the activation of the task(s). 

6.5 Heaps and S e c o n d a r y S t a c k s 

There is a problem lurking in the the VAX/Unix environment which we managed to avoid only 

because tasking is not implemented. Because interprocess communication using Unix pipes is far too 

slow to allow intertask communication in Ada, it is necessary to execute all tasks in the same address 

space. Such an implementation requires one stack for each thread of control. One would like the 

hardware to check for stack overflow in the course of normal instruction execution. This is not 
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difficult to do on the VAX. If the page registers are set to prevent any access at the stack boundary, 

when the stack grows into that page, the hardware will catch it. Unix does not allow a process to 

specify which parts of memory are to be used for what purposes. The process is restricted to data, 

text (i.e., read only), and stack segments. Additional "stacks" may be grown from either the data or 

stack segments. Every time data are pushed on the stack, the stack pointer must be checked to 

ensure that one stack has not overlapped another. This is unacceptable overhead in a stack 

machine. We do not have a good solution to this problem. 

This problem should not impact the implementation of heaps for dynamically allocated objects. 

Because heap'objects are allocated infrequently and at well defined places, the checks to ensure that 

the heap has not overrun the stack are easy. By keeping the heap in data space and the stack in 

stack space, Unix will guarantee that the two areas do not overlap. 

Naturally, one could avoid the problems of multiple stacks by allocating each activation record for 

each procedure from the heap. The size of the fixed part is known at compile time, and the amount of 

extra space needed for expressions can be found by stack-height simulation. The dynamic portion of 

the activation record would also be allocated from the heap. T h e problem of cactus stacks for tasking 

vanishes under this scheme, and "stack overflow" becomes running out of heap storage. We regard 

this as excessively expensive and prefer to use the page registers in the V A X . 

6.6 Optimisation 

6.6.1 T C O L A d a O p t i m i s a t i o n 

There is one form of the P Q C C D E L A Y phase that performs T C O L - t o - T C O L optimisation transfor­

mations. It should be relatively easy to incorporate into the Charrette; we would have to add a few 

more fields to our T R E E _ N O D E s , to hold some extra information produced by this phase. 

6.6.2 M I L O p t i m i s a t i o n 

We should be able to buy a fair bit by adding a MIL optimiser phase following X F O R M . T h e type and 

subtype descriptors are all constant, in the sense that once they are initialised they are not modified. 

In MIL they look just like ordinary variables. We can add a C O N S T A N T attribute to VAR nodes, and 

have X F O R M set this attribute to T R U E for descriptors and F A L S E for other VARs. If the initial value 

for a field in the descriptor is a compile-time constant, then the optimiser can replace references to 

the field by the actual constant. This would, in particular, allow P E E P to optimise away range checking 

on integers, since it would be able to see that the bounds on the I N D E X instruction were the maximum 

and minimum integers. Given the number of range checks, this particular optimisation would be very 

useful. 
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7. Conclusion 

7.1 H i s t o r y 

The original versions of the parser and semantic analyzer were developed in mid 1978. Beginning in 

June 1979 these were extensively modified for the Ada language. At this time approximately 1/3 of 

the code and most of the design philosophy was retained. In four months, with an average of three 

people working full time (2000 person hours), a working version was released. Since that time more 

and more language features have been implemented, in August 1980 changes for revised Ada were 

started. Because modularity and flexibility were always part of the design, we needed no major 

revisions when the final report on revised Ada was published. As with any large evolving program, 

there are areas that could stand being rewritten. However, the emphasis on modularity has resulted 

in good readability and maintainability. Improvements continue to be made in the user interface, error 

recovery, capacity, and performance. 

Work on the Back End began towards the end of October, 1979. Most of November was spent on 

design of MIL, the run time-system, and the phase breakdown of the compiler. The project was 

suspended in December because of end-of semester academic dut ies 1 3 . By the second week of 

January, the Back End was producing code for trivial programs. Work continued until early May, 

1980, when the project was terminated. The current system thus took four people six months, 

working about haif time, for a total of twelve person-months. 

7.2 P e r f o r m a n c e 

The compiler front end consists of about 260 Tops-20 file p a g e s 1 4 of source code. Both programs run 

on D E C Tops-20 and Tops-10 systems. The parser can be run separately or as part of the entire front 

end as a Tops-20 dependent fork. A sample 400 line program, which included approximately 20 

procedures, required 150 seconds of C P U time on a Dec-System 20. A large amount, almost 1/3, of 

this time was spent in garbage collection. Semantic analysis alone, without T C O L A d a production, 

speeds this up slightly because of extensive character string processing required for generating 

T C O L A d a < The executable version of the parser takes 50 Tops-20 memory pages and the semantic 

analyzer / T C O L A d a generator takes 210 pages. This does not include the symbol tables and symbols 

for the predefined S T A N D A R D package which adds another 40 pages, nor those for T E X T J O . The 

current symbol table capacity is approximately 1500 symbols beyond those in S T A N D A R D and uses a 

13 
Several of the authors had teaching responsibilities. 

14 -r 

A Tops-20 file (and memory) page contains 512 36-bit words. 
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total of 400 pages. These statistics reflect the September 1980 version and are of course subject to 

change. 

It is difficult to accurately measure the speed of the Charrette Back End. The present implementation 

writes an ASCII version of the internal state into a text file between each phase. This imposes a huge 

overhead on each phase that is an artifact of the support package we happened to be using. In a 

production version of the compiler, the data would have remained in core. -

The speed of the compiler is shown in Figure 7-1. The input in this case was a 12-page, 239-line desk 

calculator program. All times are in seconds. Times are shown as C P U time and corresponding real 

time on a lightly-loaded system. The "run time" columns shows the performance of the phases after 

elimination of I / O time. Times are given for both the debugging version of the compiler (the one we 

used during development) and for a special version with the debugging overhead factored out. No 

C P U time is shown for the O U T P U T phase, or for output time for other phases, since it was less than 

the resolution of the timer (about 10 milliseconds). 

Run Time I n p u t Time O u t p u t 
Phase Debug NoOebug Real CPU Real T ime 

p a r s e r .01 9 
s e m a n t i c a n a l y s e r 64 .00 200 

TypeRep .43 .11 4 32 157 35 
X f o r m 1.81 .45 12 35 161 39 
B l o c k / A c t R e p .98 .25 6 21 92 51 
Code 8 .78 2 .26 41 28 159 118 
O u t p u t 90 721 83 

F i g u r e 7 -1 : Compiler Speed 

These figures indicate that the Back End would process about 4600 lines per C P U minute for a 
"product ion" version. Assuming a production front end of roughly equivalent speed would result in a 
2300 lines-per-minute compiler. 

T h e size of the Back End is given in Figure 7-2. Code and Data sizes are given in terms of 36-bit PDP-

10 words; source code sizes are shown in lines. The first three entries show the size of the support 

routines which are present in all phases. The remaining entries show the sizes of phase-specific 

routines; the last column for each such entry shows the total size of the phase, including the support 
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routines. Other experience indicates that turning off debugging in the compiler cuts the size of the 

code in half, partly by removing debugging checks and partly by allowing the BLISS compiler 

optimiser to work [33]. Thus, a production version of the back end would be about 50K words in size. 

S u p p o r t R o u t i n e s S i z e 
Code Data 

LG s u p p o r t 
Debugger 
O t h e r s u p p o r t 

Phases 

T y p e r e p 
X f o r m 
B l o c k / A c t R e p 
Code 
O u t p u t 

12879 3234 
12984 2840 

2613 334 

28476 6408 

. h o u t : s u p p o r t ) ( w i t h s u p p o r t ) 
Code D a t a Code D a t a S o u r c e 

9838 2457 38314 8865 2123 
23599 1315 52075 7723 7189 

5968 2040 34444 8448 2062 
23838 4090 52314 10498 4033 

7691 527 36167 6935 1100 

99410 16837 16507 

F i g u r e 7 -2 : Back End Size 

7.3 R e t r o s p e c t i v e 

7.3.1 I n t e r m e d i a t e L a n g u a g e s 

7.3.1.1 T C O L 

We found T C O L A d a to be reasonably easy to use, despite the fact that we had little influence on its 

design. We feel it is important for an intermediate language at this level to accurately reflect the 

original source program. Performing canonicalisations is reasonable and desireable, but it should not 

go so far as to destroy information. 

There were some rough spots in the T C O L A d a we got as input to the back end. In some cases these 

were T C O L problems, in some cases they were canonicalisations that T C O L permitted the Front End 

to do. An example of a T C O L problem was that T C O L A d a distingushes between built-in operators and 

user-defined subprograms. This caused difficulties in places where we would have liked to treat the 

two uniformly. An example of a canonicalisation problem was that at one time the Front End 
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expanded multidimensional arrays as arrays-of-arrays. Because of dope vector information, these 

two are not equivalent in run-time cost, although they are functionally equivalent. 

An example of a useful canonicalisation is having the Front End expand a type declaration into a type 

declaration and a subtype declaration; this transformation is mentioned in Section 4.2.1. 

7 .3 .1 .2 M I L 

We believe that the decision to use MIL was correct for the needs of our project. It allowed us a clean 

separation of work in the compiler, and made it possible to construct the two largest phases ( X F O R M 

and C O D E ) in parallel. It also allowed us the possibility of retargeting the back-end to produce code 

for another machine. 

For a longer-term project, it would probably be better to retain and decorate the T C O L A d a tree, rather 

than translate and replace it as we did. MIL is too low-level to allow the code generator to emit h igh-

quality code. As we developed the compiler, we found that we had to keep adding more high-level 

information to MIL to describe range constraints, exception handling, and function return results. We 

had to embed in the C O D E phase knowledge of the array descriptor layouts, in order to allow it to 

generate reasonable subscripting code. We could have further improved the code by embedding 

knowiege about record field accessing in MIL, such as by adding a field-access operator. At the 

moment, field access is represented by combinations of addition and indirection; this obscures what 

is going on from the code generator, and prevents it from finding better code sequences. 

T h e one exception to this is for representing data structures. We believe that MIL'S data layout 

description is better for code generation than the corresponding T C O L A d a structures; this is primarily 

because the T C O L A d a structures were designed to be close to Ada, whereas the MIL structures are 

closer to machine level without being completely machine-dependent. 

7 .3 .2 I m p l e m e n t a t i o n L a n g u a g e s 

T h e classes and virtual procedures of Simula provided a good basis for building the Front End 

semantic analyser. They allowed a great deal of flexibility, and helped in hiding non-essential 

information from the designer. Their disadvantage is that the resulting program is large and slow. 

We chose BLISS-10 for the Back End primarily because of the existence of a package for 

manipulating the Linear Graph Notation in which T C O L A d a is expressed. The L G package was of 

great benefit to us. The ability of the reader/writer to handle all input and output automatically 

depended on violating type safety, in a manner analogous to storage allocators; such a package 

might be difficult to construct in a typed language like Ada. O n the other hand, BLISS' lack of a type 

system hurt us. We did not make the characteristic BL ISS errors (missing a dot, adding an extra 
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semicolon, violating typing, passing the wrong number of parameters to a routine) very often, but 

when they happened they required a great deal of time to find. 

The slowness of the BLISS compiler was often a problem. We would often lose an afternoon from one 

of the phases because any bug fix would require several hours of clock time in recompilation and 

relinking. We avoided using BLISS-36, a technically better language than BLISS-10, because at the 

time we began the project the BLISS-36 compiler was bug-r idden and several times slower than 

BLISS-10. 

7 .3 .3 T o o l s 

We feel that it is very important for even a medium-scale project like ours to have a good set of tools. 

The L G package was very useful, but the reader/writer was very slow. The ASCII form of the 

intermediate languages allowed us to debug individual phases before their predecessors were 

working, but the length of time it took to read in the input to a phase meant that debugging was slow 

and painful. 

Towards the end of the project we developed a MIL pretty-printer that made the compiler output much 

more readable; we would have saved a lot of debugging time if it had been written earlier. We 

developed a peephole optimiser to reduce the size of the final assembly language output, primarily to 

help debugging. 

7 .3 .4 A d a 

We managed to confirm that many implementations suggested in the Rationale were reasonable. 

There are, however, a number of places where things are more difficult than the Rationale leads one 

to believe. 

• it took us quite a while to design run-time representations that could handle full type 
composition. We did manage to do so, without having to add restrictions to the facility. 
Our design is described in Chapter 2. 

• The ability of a function to return objects whose size is not known at the call site gave us a 
great deal of difficulty. This particular problem permeates the whole compiler. We 
discuss this problem in Sections 4.4.1 and 5.2.3. 

• Block comparison and copying of composite objects can essentially be done as 
suggested in the Rationale, but "unallocated" fields of a composite structure cause 
problems. We discuss this in Sections 2.3.1, 2.4.3, and 4.3.1. 

• Exception handling was quite easy, but the VAX architecture helped out. We describe 
exception handling in Section 5.3. 

• Default initialisation of records that have discriminants or that contain task components 
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essentially requires building a procedure (or equivalent data structure to be interpreted 
by the storage allocator). This problem is discussed briefly in Section 6.4. 
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Availabil ity 
For further information about the Intermetrics Front End , contact 

Mike Ryer 
Intermetrics, Incorporated 
733 Concord Avenue 
Cambridge, MA 02138 

The Ada Charrette compiler was developed at Carnegie-Mellon University to investigate the issues 

involved in implementing Ada; it was not designed to be used by a general user community. We do 

not wish to assume the burden of maintaining it, and in many ways, we believe it would be unsuitable 

for most prospective users. Hence, we do not intend to distribute it. 

We are, however, willing to make special arrangements with other implementors of Ada who are 

interested in working with us and with whom there can be a useful collaboration. Even in such cases, 

however, there are a number of conditions we must impose to protect ourselves: 

• In order to use the compiler, it is essential to first obtain a Front End that emits T C O L A d , 
such as the one produced by Intermetrics. C M U cannot distribute its copy of this 
program. 

• The party with whom we make such agreements must agree to not distribute the 
Charrette to other organisations or to use it for purposes other than those specifically 
agreed upon. In effect, the Charrette is to remain the property of C M U and we will retain 
control of its distribution and use. 

• We request specific acknowledgement in any papers or products resulting from the use 
of the Charrette either its direct use, or the use of ideas gleaned from it. 
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Appendix I Class Hierarchy in the Semantic Analyzer 

E M I T _ B A S E 
A. N O D E 

1. Identifier 
2. Exp 

a. texp (type expression) 
(1 ) t y p e _ d e n o t e J e x p 
(2) derived_def 
(3) int_def 
(4) reaLdef 
(5) enum__def 
(6) array__def 
(7) record_def 
(8) access_def 
(9) private__def 

b. range_exp 
c. iit_exp 

(1 ) int J i t 
(2) float J i t 
(3) fixed J i t 
(4) null J i t 
(5) s t r ing j i t 
(6) c h a r j i t 
(7) e n u m j i t 

d . accuracy_.cn 
e. t J n _ n o t J n 
f. r J n _ n o t _ i n 
g. others_exp 
h. compon_assoc 
i. name_exp 

(1) invoke_exp 
(2) array_elt_exp 
(3) dot_select_exp 
(4) name_all 
(5) attr_select_exp 

j . allocator_exp 
k. convert_exp 
I. qualified_exp 
m. paren_gel 
n. record_agg_choice 
o. when_exp 

3. D C L _ N O D E 

a. ObLdcl 
(1)formaLparm_dcl 

b. Pragma_dcl 
c. Exception__dcl 
d. Use_dcl 
e. Unit_dcl 

(1) subprogram_dcl 
(2) package_dcl 

f. Entry_dcl 
g. Type_dc l 
h. Subtype_dci 
i. Rep__specl 
j . Renaming_dcl 

4. B O D Y _ N O D E 
5. C O M P I L J J N I T 
6.. P R A G M A _ N O D E 
7. S T M J M O D E 

a. null__stm 
b. go to jabe l led_s tm 
c. ex i t jabel led_stm 
d. assign__stm 
e. return__stm 
f. goto_stm 
g. exit__stm 
h. raise_stm 
i. calLstm 
j . delay__stm 
k. abort_stm 
I. code_stm 
m. cmpd_stm. 

(1) if_stm 
(2) b!ock__stm 
(3) case__stm 
(4) !oop__stm 
(5) accept_stm 
(6) select_stm 

8. case_node 
9. handler_node 
10. list_node 
11. stack_element 
12. stack_head 
13. integer_node 

B, S Y M B L O C K (Symbol Table) 

1. Formals_symbiock 
a. Record_symbiock 

2. Mod_symblock 
C. S Y M T H I N G (Symbol) 

1. V r b L s y m 
a.-recfield_sym 
b. formal_sym 

2. Unit_sym 
a. Subprogram_sym 

(1) entry__sym 
b. Module_sym 

3. Pragma_sym 
4. Enumeral_sym 
5. L a b e L s y m 
6. Typemaster 

a. p r i v a t e j m 
b. s c a l a r J m 

(1) i n t j m 
(2) fixed_Jm 
(3) f i o a t j m 
(4) enum_tm 

c. array J m 
d. record J m 
e. a c c e s s j m 
f. t a s k j m 
g. p s e u d o j y p e m a s t e r 

(1) ambig_tm 
(2) u n s p e c j m 

8. package_body_psym 
9. exception_sym 
10. hidden_sym 

D. P R A G M A J N F O 
E. T I C K J N F O 

J^c^inr"3
 p a r e n t h 6 S i S e d express ion ; . i t is transformed into c o n v e r t ^ , aggregate." invoke .exp , or 

I. Class Hierarchy in the Semantic Analyzer 

The following describes the structure of the classes in the semantic analyzer for Ada written 

Simula. The main Simula classes a r e 1 5 : 

http://accuracy_.cn
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I I . Complete Example of Simula Classes for a 
Simple Language 

A class skeleton (a class definition with only the parameters and visible (not hidden and not protected) 

components listed) is given for each grammar rule. The semantics given in the S E M A N T I C _ _ C H E C K 

routines are not for Ada, but for a hypothetical Pascal-like language. B o l d f a c e is used to represent 

Simula keywords, italics to represent an English description of some omitted Simula code, and regular 

type face to indicate Simula code. Liberties are also taken when translating grammar symbols into 

Simula identifiers. 

<exp> :: = (name exp> 
<exp> :: = <plus exp> 
<exp> :: = n u m b e r 
< n a m e e x p > : : = (name exp> . i d e n t i f i e r 
< n a m e e x p > : : = i d e n t i f i e r 
<plus exp> :: = <exp> + <exp> 

Start Symbol: <exp> 
Nonterminals: <exp>, (name exp>, (p lus exp> 
Terminals: n u m b e r , i d e n t i f i e r , ,, + 
Punctuation: + 

Start Symbol: (exp> 

c l a s s e x p ; 

v i r t u a l : b o o l e a n p r o c e d u r e seman t i c _ c h e c k ; 
b e g i n 

i n t e g e r t h i s _ e x p _ t y p e ; 
e n d ; 

(exp> :: = (name exp> 

exp c l a s s name_exp ; 
b e g i n 
e n d ; 

( name exp> :: = (name exp> . i d e n t i f i e r 
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name_exp c l a s s d o t _ e x p ( 1 e f t _ p a r t , i d e n t i f i e r ) ; 
r e f ( n a m e _ e x p ) l e f t _ p a r t ; t e x t i d e n t i f i e r ; 
b e g i n 

b o o l e a n p r o c e d u r e 
s e m a n t i c _ c h e c k ( t y p e _ c o n t e x t ) ; 

i n t e g e r t y p e _ c o n t e x t ; 
b e g i n 

if l e f t _ p a r t . 
s e m a n t i c _ c h e c k ( t y p e _ c o n t e x t ) 

t h e n b e g i n 
find i d e n t i f i e r in symbol table 

for l e f t _ p a r t ; 
t h i s _ e x p _ t y p e := 

found identifier symbol. 
s y m b o l _ t y p e ; 

s e m a n t i c _ c h e c k := 
( t y p e _ c o n t e x t = 

t h i s _ e x p _ t y p e ) ; 
e n d 
e l s e s e m a n t i c _ c h e c k := f a l s e ; 

e n d ; 
e n d ; 

<name exp> :: = i d e n t i f i e r 

name_exp c l a s s i d e n t i f i e r _ e x p ( i d e n t i f i e r ) ; 
t e x t i d e n t i f i e r ; 
b e g i n 

b o o l e a n p r o c e d u r e 
s e m a n t i c _ c h e c k ( t y p e _ c o n t e x t ) ; 

i n t e g e r t y p e _ c o n t e x t ; 
b e g i n 

find i d e n t i f i e r in current symbol table; 
t h i s _ e x p _ t y p e := 

found identifier symbol. s y m b o l _ t y p e ; 
s e m a n t i c _ c h e c k := 

( t y p e _ c o n t e x t 3 

t h i s _ e x p _ t y p e ) ; 
e n d ; 

e n d ; 

<exp> :: = <plus exp> 

e x p c l a s s p*lus_exp; 
b e g i n 
e n d ; 

<plus exp>: : = <exp> + <exp> 
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p l u s _ e x p c l a s s a d d _ e x p ( 1 e f t _ e x p , r i g h t _ e x p ) ; 
r e f ( e x p ) 1 e f t _ e x p f r i g h t _ e x p ; 
b e g i n 

b o o l e a n p r o c e d u r e 
s e m a n t i c _ c h e c k ( t y p e _ _ c o n t e x t ) ; 

i n t e g e r t y p e _ c o n t e x t ; 
b e g i n 

if l e f t _ e x p . 
semant i c__c heck ( t y p e _ c o n t e x t ) 

a n d 
r i g h t _ e x p . 
semant i c _ c h e c k ( t y p e _ c o n t e x t ) 

t h e n b e g i n 
t h i s _ _ e x p _ t y p e : = 

1 e f t _ e x p . t h i s _ e x p _ t y p e ; 
s e m a n t i c _ c h e c k := 

( t y p e _ c o n t e x t = 
t h i s _ e x p _ t y p e ) 

a n d 
(1 e f t__exp . t h i s__exp__type = 
r i gh t _ e x p . t h i s__exp__type ) ; 

e n d 
e lse s e m a n t i c__check := f a l s e ; 

e n d ; 
e n d ; 

<exp> :: = n u m b e r 

exp c l a s s number ( number__tex t ) ; 
tex t number__ tex t ; 
b e g i n 

b o o l e a n p r o c e d u r e 
semant i c__check ( t y p e _ c o n t e x t ) ; 

i n t e g e r t y p e _ c o n t e x t ; 
b e g i n 

convert text into internal numeric representation ; 
th i s_exp__type := if text is an integer 

t h e n t h e _ p r e d e f i n e d _ i n t e g e r e t y p e 
e lse t h e _ p r e d e f i n e d _ f 1 o a t _ t y p e ; 

s e m a n t i c _ c h e c k := 
( t y p e _ _ c o n t e x t = t h i s _ e x p _ t y p e ) ; 

e n d ; 
e n d ; 
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111. Relationship between Simula Classes and Ada 
Records 

This appendix is intended to provide a simple explanation of the Simula class mechanism in terms of 

Ada. It is not intended to be a complete description of Simula or Ada. The reader is assumed to have 

some knowledge of Ada. Many irrelevant details of both Simula and Ada are ignored. Full details of 

Simula can be found in reference texts for the language [2, 28]. 

A Simula class is similar to an access type to a variant record in Ada. The components of a class 

(including its parameters) correspond with the fields of a record. Because these records exist only 

after they are explicitly allocated, the classes are actually access types. For example, consider the 

following Simula and Ada declarations: 

c l a s s O u t e r ( X) ; 
I n t e g e r X ; 

b e g i n 
I n t e g e r Y ; 
Y := 1 

e n d 

t y p e 0 u t e r D u m m y ( X : I n t e g e r ) is 
r e c o r d 

Y : I n t e g e r := 2 ; 
e n d r e c o r d ; 

t y p e O u t e r is a c c e s s OuterDummy; " 

In both languages, an object of type O u t e r must be explicitly allocated at run time and some initial 

value filled in for the parameter. T h e values in the class instance/record object may be read by the 

selector operation, i.e., by using the dot notation. 

Subclasses in Simula provide a way to declare variant records. A class declaration of the form: 

O u t e r c l a s s I n s i d e ; 
b e g i n 

B o o l e a n Q; 
e n d 

has a correspondence in Ada of 
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t y p e O u t e r S u b c l a s s e s is 
( N o S u b c l a s s . I n s i d e S u b c l a s s ) ; 

t y p e OuterDummy( 
S u b c l a s s : O u t e r S u b c l a s s e s := N o S u b c l a s s ; 
X : I n t e g e r ) is 
r e c o r d 

Y : I n t e g e r := 2 ; 
c a s e S u b c l a s s is 

w h e n I n s i d e S u b c l a s s => 
Q: B o o l e a n ; 

w h e n o t h e r s => 
n u l l ; 

e n d c a s e ; 
e n d r e c o r d ; 

t y p e R e f T o O u t e r is a c c e s s OuterDummy; 
s u b t y p e O u t e r is R e f T o O u t e r ; 
s u b t y p e I n s i d e is 

R e f T o O u t e r ( S u b c l a s s => I n s i d e S u b c l a s s ) ; 

Adding a new subclass in Simula corresponds with adding another variant record field in Ada. T h e 

primary difference, for defining new fields, is that Ada requires all variants to be declared with the type 

while Simula allows new variants to be introduced in separate subclass declarations. 

A difference between the two languages is the definition of procedures. In Simula, a procedure may 

be associated with a class by defining it inside of that class as a component. An Ada record has no 

such provision. In Ada, the same procedure may be written but must include a parameter by which a 

record object may be passed. 

There is less, but some, correspondence between Simula virtual procedures and Ada overloaded 

subprograms. When a virtual procedure is declared, it is a claim that there will exist a procedure by 

the same name in every subclass. At run time when that procedure is called, the subclass (i.e., 

variant) is examined and the correct procedure is selected for execution. In Ada terms, this is a claim 

that a procedure would exist for each different discriminant in the record type, and that the selection 

of the procedure to call would be postponed until run time when the value of the discriminant would 

be known, for instance, by combining all of the procedures into one procedure and selecting the 

correct procedure in a c a s e statement. 



Appendix IV Run-Time Routines 87 

IV. Run-Time Routines 

ART0 

W R I T E C H A R 

W R I T E N U M 

R E A D C H A R 

R E A D C H A R 

H A N D L E R 

A L L O C 

C A T C H E R 

Start up routine, written in C, that enables all signals, initialises the storage 
allocator, and resets the heap allocator. 

C routine that writes out a single character. 

C routine that writes out an integer. 

C routine that reads in a single character. 

C routine that reads in an integer. 

Assembly language routine that intercepts Unix signals, determines the appro­
priate Ada exception, reinstalls (if necessary) the signal catcher, unwinds the 
stack as necessary, and jumps to the current exception handier. 

C routine that allocates storage for dynamic Ada objects. 

Default exception handler for the outer-most block of the program. Written in C. 

the size of the run-time system. Sizes are given in 8-bit bytes. 

Rout i ne Code Data 

ARTO 
i n p u t / o u t p u t 
HANDLER 
ALLOC 
CATCHER 

236 
284 
116 

2856 
68 

0 
8 

12 
40 

320 

F i g u r e I V - 1 : Run-time Routine Sizes 
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V. Sample Output 
This example illustrates the block and subprogram entry and exit code for a simple program. 

V.1 Ada Program 

ADA TRANSLATOR - 1 9 8 0 - 0 5 - 0 2 

p r o c e d u r e s m a l l i s 
x : i n t e g e r r a n g e 1 . . 1 0 ; 

b e g i n 
x := 2 ; 
d e c l a r e 

y : i n t e g e r r a n g e 1 . . 2 ; 
b e g i n 

y : • x ; 
e x c e p t i o n 

when o v e r f l o w => x := 1; 
e n d ; 

end s m a l 1 ; 

NO PARSE ERRORS 
NO SEMANTIC ERRORS 
NO SEMANTIC WARNINGS 

V.2 T C O L A d a P rogram 

This listing omits the T C O L for the package S T A N D A R D , which itself requires considerable space. 

NODES 59 
ROOT TREE 1: 
ROOT TREE 73: 
1: TREE_NODE (SOURCE "PROLOG.RDP;0/1{26}") (OP SEOUENCEJDP) (XOP NOT—DEFINED) (SUBNODES 3: 4: 

5: 6: 7: 10: 11: 12: 13: 14:) 
15: TREE_NODE (SOURCE MTEST.RDP;0/1{8}") (OP LEAFJDP) (XOP INTEGER_TYPE) (DEFN 16:) 
17: TREE_NODE (SOURCE MTEST.RDP;0/1{12}") (OP LEAF_OP) (XOP INTEGER_TYPE) (DEFN 20:) 
20: L!TERAL_SYM (SOURCE "TEST.RDP;0/1 {12}") (LIT_SUBTYPE 21:) (LIT_KIND !NT_L!T) (LlT_NAME "2") 

(LITJ/ALUE "2") 
22: TREE_NODE (SOURCE "TEST.RDP;0/1{12}") (CP ASS!GN_OP) (XOP NOT_DEFINED) (SUBNODES 15: 17:) 
23: TREE__NODE (SOURCE "TEST.RDP;0/1{16>") (OP LEAF_CP) (XOP 1NTEGER_TYPE) (DEFN 24:) 
25: TREE_NODE (SOURCE MTEST.RDP;0/1{21}M) (OP LEAF_OP) (XOP !NTEGER_TYPE) (DEFN 16:) 
26: TREE_NODE (SOURCE "TEST.RDP:0/1{21}") (OP ASSIGN JOP) (XOP NOT_DEFINED) (SUBNODES 23: 25:) 
27: TREE_NODE (SOURCE "TEST.RDP;0/1{33}") {OP LEAF_OP) (XCP INTEGER__TYPE) (DEFN 16:) 
30: TREE_NODE (SOURCE "TEST.RDP;0/1{37}") (OP LEAF_OP) (XCP iNTEGER_TYPE) (DEFN 31:) 
31: LITERAL _SYM (SOURCE "TEST.RDP;0/1{37}") (LIT_SUBTYPE 21:) (LIT_KIND INTJJT) (L!T_NAME "1") 

(LlT_VALUE "1") 
32: TREE_NODE (SOURCE "TEST.RDP;0/1{37}") (OP ASS!GN_OP) (XOP NOT_DEFINED) (SUBNODES 27: 30:) 
33: TREE_NODE (SOURCE "TEST.RDP;0/1 {2S}" ) (OP SEQUENCEJDP) (XOP NOT_DEFINED) (SUBNODES 32:) 
34: TREE_NCDE (SOURCE "TEST.RDP;0/1 {2S}"> (OP LEAF_CP) (XOP NOT__DEFiNED) (DEFN 35:) 
36: TREE__NODE (SOURCE *TEST.RDP;0/1{28}") (OP WHENJ3P) (XOP NGTJDEFINED) (SUBNODES 33: 34:) 
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37: TREE .NODE (SOURCE "TEST.RDP;0/1{12}") (OP CASE_EXCEPTJON_OP) (XOP NOT DEFINED) 
(SUBNODES 36:) 

40: NAME_NODE (SOURCE "TEST.RDP;0/1{37}") (PNAME "--unique_name-5100") (NAMES 41:) 
42: TREE_NODE (SOURCE "TEST.RDP;0/1{34}") (OP LEAF_OP) (XOP INTEGER TYPE) (DEFN 43:) 
43: LITERAL_SYM (SOURCE "TEST.RDP;0/1{34}") (LIT SUBTYPE 3:) (LIT KIND INT LIT) (LIT NAME M 1 H ) 

(L IT .VALUE "1") 
44: TREE_NODE (SOURCE "TEST.RDP;0/1{37>") (OP LEAF_OP) (XOP INTEGER^TYPE) (DEFN 45:) 
45: LITERAL_SYM (SOURCE "TEST.RDP;0/1{37}") (LIT_SUBTYPE 3:) (LIT^KIND INT^LIT) (LIT_NAME "2") 

(L IT — VALUE "2") 
46: TREE_NODE (SOURCE MTEST.RDP;0/1{37} H) (OP RANGE_OP) (XOP INTEGERJTYPE) (SUBNODES 42: 44:) 
41: SUBTYPE_SYM (SOURCE "TEST.RDP;0/1{37}") (NAME 40:) (PARENTJTYPE 47:) (CONSTRAINTS 46:) 

(PARENT^SUBTYPE 3:) 
50: TREEjNODE (SOURCE "TEST.RDP;0/1{37}") (OP SUBTYPE jDECL_OP) (XOP NOT_DEFINED) (DEFN 41:) 
51: NAME_NODE (SOURCE "TEST.RDP;0/1{16}") (PNAME "Y") (NAMES 24:) 
24: VARBL_SYM (SOURCE "TEST.RDP;0/1{37;n (NAME 51:) (VARBL_SUBTYPE 41:) (CONSTANCY 

NOT .CONSTANT) (SPECIES VARBL) (IS_PRIVATE FALSE) 
52: TREE_NODE (SOURCE "TEST.RDP;0/1{12}") (OP VARBL jDECL_OP) (XOP NOT_DEFINED) (DEFN 24:) 
53: TREE~NODE (SOURCE "TEST.RDP;0/1{12}") (OP SEQUENCE_OP) (XOP NOTjDEFINED) (SUBNODES 50:52: 

26:) 
54: TREE_NODE (SOURCE "TEST.RDP;0/1{12}") (OP BLOCK_OP) (XOP NOTJDEFINED) (SUBNODES 53: 37:) 
55: NAME_NODE (SOURCE "TEST.RDP;0/1{30}") (PNAME "--uniquejname-5059") (NAMES 21:) 
56: TREE_NODE (SOURCE "TEST.RDP;0/1{26}") (OP LEAF_OP) (XOP INTEGERJTYPE) (DEFN 57:) 
57: LITER"AL_SYM (SOURCE "TEST.RDP;0/1{26}") (LITjSUBTYPE 3:) (LIT.KIND INT^LIT) (LJTJMAME "1") 

(L IT .VALUE "1") 
60: TREE_NODE (SOURCE "TEST.RDP;0/1{30}") (OP LEAF__OP) (XOP INTEGERJTYPE) (DEFN 61:) 
61: LITERAL_SYM (SOURCE "TEST.RDP;0/1{30}") (LITjSUBTYPE 3:) (LIT_KIND INT_LIT) (LIT_NAME "10") 

(LIT_VALUE M 10") 
62: TREEjNODE (SOURCE "TEST.RDP;0/1{30}") (OP RANGEJ0P) (XOP INTEGERJTYPE) (SUBNODES 56: 60:) 
21: SUBTYPEjSYM (SOURCE "TEST.RDP;0/1{30}") (NAME 55:) (PARENTJTYPE 47:) (CONSTRAINTS 62:) 

(PARENT.SUBTYPE 3:) 
63: TREE jNODE (SOURCE MTEST.RDP;0/1{30}M) (OP SUBTYPEJDECLJOP) (XOP NOTjDEFINED) (DEFN 21:) 
64: NAMEjNODE (SOURCE "TEST.RDP;0/1{8}") (PNAME "X") (NAMES 16:) 
16: VARBLjSYM (SOURCE "TEST.RDP;0/1{30}") (NAME 64:) (VARBL.SUBTYPE 21:) (CONSTANCY 

NOT_CONSTANT) (SPECIES VARBL) (ISjPRIVATE FALSE) 
65: TREE jNODE (SOURCE "TEST.RDP;0/1{14}") (OP VARBLjDECL_OP) (XOP NOTjDEFINED) (DEFN 16:) 
66: TREEjNODE (SOURCE "TEST.RDP;0/1{14}") (OP SEQUENCEjOP) (XOP NOTjDEFINED) (SUBNODES 63: 65: 

22: 54:) 
67: TREE jNODE (SOURCE "TEST.RDP;0/1{14}") (OP BLOCKjOP) (XOP NOTjDEFINED) (SUBNODES 66: 70:) 

(DEFN 71:) 
72: NAME_NODE (SOURCE "TEST.RDP;0/1{14}") (PNAME "SMALL") (NAMES 71:) 
71: SUBPROGRAM SYM (SOURCE MTEST.RDP;0/1{14}") (NAME 72:) (KIND PROCEDUREjSUBPROGRAM) 

(BODY 67:) ( I S j B U I L T J N FALSE) ( ISjSEPARATE FALSE) (LINKAGE "ADA") 
73: TREE jNODE (SOURCE "TEST.RDP;0/1{26}") (OP SUBPROGRAM j D E C L j O P ) (XOP NOTjDEFINED) (DEFN 

71:) 

V.3 MIL Program 

This is the output of a prettyprinter, rather than the actual L G form used in the compiier. T h e 

prettyprinter suppresses certain details present in the full L G form. The comments were added by 
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31: DECLARE 
51: 
61: ada ROUTINE S M A L L ( ) RETURNS NOTHING 
61: DESC_1: DESC — S t a t S c a l a r s u b t y p e d e s c r i p t o r f o r 

- - i n t e g e r r a n g e i n t e g e r ' f i r s t . . i n t e g e r ' l a s t 
5 3 : I N T RANGE -2147483648 . . 2147433647 < - 1 
5 3 : I N T RANGE -2147433648 . . 2147483647 < - -2147483648 
53 : I N T RANGE -2147483648 . . 2147483647 < - 2147433647 

76: DESC_2 : DESC - - S t a t S c a l a r s u b t y p e d e s c r i p t o r f o r 
- - i n t e g e r r a n g e 1 . . 10 

53 : I N T RANGE -2147483643 . . 2147483647 < - 1 
53 : I N T RANGE -2147433648 . . 2147483647 < - 1 
5 3 : I N T RANGE -2147433648 . . 2147483647 < - 10 

110: CAST QDESC_2.2 { 0 D E S C _ 1 . 2 , SDESC_1 .3> 
- - C h e c k s t h a t 1 i s w i t h i n -2147433648 . . 2147483647 

111: CAST @DESC_2.3 { @ D E S C _ 1 . 2 , Q D E S C _ 1 . 3 } 
- - C h e c k s t h a t 10 i s w i t h i n -2147483648 . . 2147433647 

112: X : DESC 
106: I N T RANGE 1 . . 10 

51: BEGIN 
116: X < - 2 
117: DECLARE 
122: DESC_3: DESC - - S t a t S c a l a r s u b t y p e d e s c r i p t o r 

- - f o r i n t e g e r r a n g e 1 . . 2 
53 : I N T RANGE -2147483643 . . 2147483647 < - 1 
53 : I N T RANGE -2147433643 . . 2147433847 < - 1 
5 3 : INT RANGE -2147483648 . . 2147433647 < - 2 

134: CAST @DESC_3.2 { @ D E S C _ 1 . 2 , 0 D E S C _ 1 . 3 } 
- - C h e c k s t h a t 1 i s w i t h i n -2147433848 . . 2147483647 

135: CAST QDESC_3.3 { Q D E S C _ 1 . 2 , 0 D E S C _ 1 . 3 } 
- - C h e c k s t h a t 2 i s w i t h i n -2147433648 . . 2147483647 

138: Y : DESC 
132: INT RANGE 1 . . 2 



92 MIL Program Appendix V .3 

117: BEGIN 
142: CAST Y < - QX { 9 D E S C _ 3 . 2 , @ D E S C _ 3 . 3 } 

— A s s i g n s t h e v a l u e o f X t o Y , a f t e r c h e c k i n g 
— t h a t t h e v a l u e o f X 1s w i t h i n 1 . . 2 

117: EXCEPTION 
146: I F EXVAL » 9 
146: THEN 
143: BEGIN 
144: X < - 1 
143: END 
146: ELSE 
13: RAISE EXVAL 
146: END I F 
117: END 
51: END 

31: BEGIN 
147: S M A L L ( ) 
31: EXCEPTION 
151: c a t c h e r ( E X V A L ) 
31: END 

15 
15 
15 

17 
17 
17 

23 
23 
23 

25 
25 
25 

a l l o c a t o r ROUTINE a l l o c ( ) RETURNS NOTHING 
END 

c ROUTINE S t a t V a r S e t ( ) RETURNS NOTHING 
END 

21: 
21: c ROUTINE l e n g t h ( ) RETURNS I N T RANGE -2147483648 . . 2147483647 
21: END 

c ROUTINE b o o l e a n ( ) RETURNS NOTHING 
END 

c d y n a m i c ROUTINE rep() RETURNS LOCATION 
END 

2 7 : 
27 : c ROUTINE v a l ( ) RETURNS I N T RANGE -2147483648 2147483647 
2 7 : END 

150: 
150: c ROUTINE c a t c h e r ( ) RETURNS NOTHING 
150: END 
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V . 4 A s s e m b l y C o d e P r o g r a m 

Most of the comments were added by hand, 

# VAX A s s e m b l y Language F i l e 
# O u t p u t f r o m phase OUTPUT V 1 A ( 5 ) on 2 May 80 
# I n p u t f i l e w a s : SMALL 

. t 9 X t 
# Code w h i c h makes t h e main p r o g r a m a p p e a r t o be c a l l e d by a n o t h e r 
# Ada p r o g r a m r a t h e r t h a n t h e S h e l l 

m a i n : 
. w o r d 
c a l l s 
chmk 

L f a k e m a i n : 
. w o r d 
c a l l s 
s u b l 2 
movl 
movl 
movl 

49152 
$ 0 , L f a k e m a i n 
$1 

49152 
S 0 , _ a r t 0 
$ 2 3 1 , s p 
s p , r l l 
f p . ( r l l ) 
a p , - 8 ( f p ) 

# S e t up t h e p r e d e c l a r e d p a c k a g e STANDARD 

BLKE1: 

movc5 $ 0 , ( s p ) , S 0 , $ 6 0 . - 6 4 ( f p ) C l e a r o u t l o c a l 

movl $ l . - 1 6 ( f p ) I n i t t y p e d e s c 

movl $ - 3 2 7 6 8 , - 1 2 ( f p ) 
movl $ 3 2 7 6 7 , - 8 ( f p ) 
movl $ l , - 2 8 ( f p ) I n i t t y p e d e s c 

movl $ - 1 2 8 , - 2 4 ( f p ) 
movl $ 1 2 7 , - 2 0 ( f p ) 
movl $ l , - 4 0 ( f p ) I n i t t y p e d e s c 
movl $ - 2 1 4 7 4 8 3 6 4 8 , - 3 6 ( f p ) 
movl $ 2 1 4 7 4 3 3 6 4 7 , - 3 2 ( f p ) 
movl $ l . - 5 2 ( f p ) # I n i t t y p e desc 

c l r l - 4 8 ( f p ) 
movl $ l . - 4 4 ( f p ) 
movl $ l , - 6 4 ( f p ) I n i t t y p e d e s c 
c l r l - 6 0 ( f p ) 
c v t b l $ 1 2 7 , - 5 6 ( f p ) 
moval E X H 8 , ( f p ) E n a b l e d e f a u l t 

c a l I s $ 0 , R T 0 

c l r l 0 ( f p ) 
r e t 
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RTO: 

# SMALL 

BLKE2 : 

. w o r d 49152 
movl 4(rll ) , - 4 ( f p ) # Save o l d d i s p l a y v a l u e 
movl fp ,4(rll) # U p d a t e d i s p l a y w/ new v a l u e 
movl a p , - 8 ( f p ) # Save the c u r r e n t AP f o r 

# u p i e v e l r e f s 
sub12 $ 4 6 , s p # A l l o c a t e and c l e a r l o c a l s t o r a g e 
c l r q - 3 3 ( f p ) 
movc5 $ 0 , ( s p ) , $ 0 , $ 5 , - 2 5 ( f p ) 
movl $ l , - 3 2 ( f p ) # I n 1 t t y p e d e s c f o r 1 n t 1 . . 1 0 
movl $ l , - 2 8 ( f p ) 
movl $ 1 0 , - 2 4 ( f p ) 
p u s h a l - 3 3 ( f p ) # Push a d d r e s s o f X 
p u s h l $2 # Push v a l u e 2 
I n d e x ( s p ) , - 2 8 ( f p ) , - 2 4 ( f p ) , $ l , $ l t r l 

# C h e c k r a n g e 
c v t l b ( s p ) + , « ( s p ) + # Do a s s i g n m e n t 

l a l B l o c k S t a r t i n g 

c l r q - 4 6 ( f p ) # C l e a r o u t l o c a l 
movc5 $ 0 , ( s p ) t $ 0 , $ 5 , - 3 8 ( f p ) # s t o r a g e ( a l r e a d y a l l o c a t e d ) 
movl $ l , - 4 5 ( f p ) # I n 1 t t y p e d e s c f o r 1 . . 2 
movl $ l , - 4 1 ( f p ) 
movl $ 2 , - 3 7 ( f p ) 
moval E X H 3 , ( f p ) # E n a b l e b l o c k ' s e x c . h n d l r 
p u s h a l - 4 6 ( f p ) # Push a d d r e s s o f Y 
c v t b l - 3 3 ( f p ) , - ( s p ) # Push v a l u e o f X 
I n d e x ( s p ) , - 4 1 ( f p ) , - 3 7 ( f p),$l,$l,rl # Check r a n g e 
c v t l b ( s p ) + . * ( s p ) + # Do a s s i g n m e n t ( s p ) + . * ( s p ) + 

# End o f i n t e r n a l b l o c k 
c l r l 0 ( f p ) # D i s a b l e e x c . h n d l r 

# End o f p r o c e d u r e 

movl - 4 ( f p ) , 4 ( r l l ) 
r e t 

# R e s t o r e o l d d i s p l a y v a l u e 
# r e t u r n f r o m main p r o g r a m 
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# E x c e p t i o n H a n d l e r i n i n n e r b l o c k 

EXH3: 

cin ( f p ) 
movl r 0 , 1 2 8 ( r l l ) 
p u s h ! $1 
p u s h ! 1 2 8 ( r l l ) 
cmpl $ 9 , ( s p ) + 

BR4 

cin ( s p ) 

j i b e ( s p ) + , I T E 5 

# d i s a b l e e x c . h n d l r . 
# G e t t h e c u r r e n t e x c e p t i o n 
# See i f OVERFLOW 

BR4; 

# Y e s , i s OVERFLOW, do a s s i g n m e n t 

p u s h a l - 3 3 ( f p ) 
p u s h l $1 
i n d e x ( s p ) , - 2 8 ( f p ) , - 2 4 ( f p ) , S I , $ 1 , r l 
c v t l b ( s p ) + , * ( s p ) + 

j b r I T E 7 
BLKE6: 

I T E 5 : 

# Not OVERFLOW, do a r e - r a i s e o f e x c e p t i o n 

movl 1 2 8 ( r l l ) , 1 2 8 ( r l l ) 
c a l l s S 0 , _ g e t p i d 
p u s h l S16 
p u s h l rO 
c a l l s $ 2 , _ k i l l 

I T E 7 : 
j b r BLKE2 

# Save e x e p . v a l u e 
# U n i x s i g n a l c a l l 

# End o f e x c . h n d l r , r e t t o b l o c k 

# S y s t e m E x c e p t i o n H a n d l e r 

EXH8: 
c l r l 
movl 
p u s h l 
c a l I s 
j b r 

C P ) 
r 0 , 1 2 8 ( r l l ) 
1 2 3 ( r l l ) 
$ 1 , _ c a t c h e r 
BLKE1 

# D i s a b l e e x c h n d l r . 
# G e t e x c e p t i o n v a l u e 
# C a l l e x t e r n a l r o u t , w/ 1 parm. 
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V I . Definition of MIL 
This appendix serves two purposes. First, it documents the MIL which is acceptable to the final code 

generation phases. Any MIL input which meets these specifications will be translated correctly into 

V A X assembly language. In principle, other translator systems could produce MIL and use the 

Charrette phases as part of their back end. Second, this appendix documents the tree transfor­

mations done on the MIL by the last several phases of the Charrette compiler. This is included to help 

with the maintenance of those phases. Attributes flagged with with an asterisk (*) are intended for 

documentation of the Charrette compiler and do not describe legal MIL input. 

VI.1 Notat ion 

The T C O L for the MIL is presented in a BNF-l ike form, which is self-explanatory. 

For every non-terminal of the form 

<token L i s t > 

there is (implicitly) a production of the form 

<token L i s t > - » <token> j <token> <token L i s t > | <empty> 

Non-terminal symbols which are suffixed with a " :" indicate that, in fact, what replaces the non­

terminal is not a derivation of the right-hand side of its production, but the label of a node which is 

such a derivation. 

VI .2 < M ! L T r e e > 

<MIL T r e e > -> < B l o c k > 

Until we consider separate compilation, the only form an ADA program may take is a 

procedure jdeclaration, which is represented in MIL as a <Routine>. The B L O C K node, which is the 

root (of any MIL tree), is the surrounding environment for the user-defined routine. All MIL programs 

which are passed to the Charrette compiler must have a single B L O C K node as their root. 

Within MIL, scopes delimit the lifetimes of variables and exception handlers. The semantics of MIL for 

biock and procedure elaboration are as follows: 

• Elaborate the declarations: evaluate each expression in the L O C A L S list of the block or 
routine, from left to right. 
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• Enable the exception handler for this scope if present. A scope has an exception handler 
if the H A N D L E R S field contains expressions. 

• Elaborate the body: evaluate each expression in the B O D Y list of the block or routine, 
from left to right. 

• Disable the current exception handler if present. If there was another exception handler 
enabled when this scope was entered, reenable that handler. 

The semantics of exceptions and their processing closely follows Ada. When an exception occurs , 

the nearest dynamically enabled exception handler will be elaborated. The first action of an 

exception handler is to disable itself and reenable the handler which was active when the current 

handler was enabled. Therefore, if an exception is raised in the handler, it will be propogated up the 

call stack, and not be a recursive elaboration of this handler. 

Exceptions are raised by hardware conditions and by the MIL RAISE statement. 

Unlike Ada, there is no automatic reraising of an uncaught exception. When a handler is invoked, it 

will elaborate whatever expressions are specified, and continue elaboration at the end of the scope in 

which that handler is declared. If it is desired to propogate an exception, the user must explictly place 

a RAISE statement in the handler. (Note that the value of the current exception is available as an 

expression. See <Opr> nodes, section Vl.8.3.) 

VI.3 < Routine > 

< R o u t i n e > - * 

ROUTINE 
(NAME < s t r i n g > ) 
(PARAMETERS < V a r L i s t > : ) 
(LOCALS <Dec l L i s t > : ) 
( TYPE < T y p e > : ) 
(BODY <Stmt L i s t > : ) 
( L INKAGE C | C_Dynamic | Ada | Ada_Dynamic | A l g o l 6 8 | 

Asm | A l l o c a t o r ) 
(HANDLERS <Stmt L i s t > : ) 
( L E X L E V E L <number>)* 
(VAXLABEL < L a b e l > : ) * 
(RETURNSIZE <number>)* 
( L O C A L S I Z E <number>)* 
(BLOCKSTOTAL <number>)* 
(NESTINGBLOCKSMAX <number>)* 
(MILHANDLER < L a b e l > : ) * 
( T O T A L S I Z E <number>)* 
(BLOCKPARENT < S c o p e > : ) * 
(HANDLERPARENT < S c o p e > : ) * 
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NAME 

P A R A M E T E R S 

L O C A L S 

T Y P E 

B O D Y 

L I N K A G E 

H A N D L E R S 

L E X L E V E L * 

V A X L A B E L * 

RETURNSJZE* 

L O C A L S I Z E * 

The name of the routine (optional, but useful for readability). 

Forma! parameters, if any, to this routine (VI.5.1). 

Nodes describing declarations local to this routine (VI.5). 

The return type of this routine (VI.4). 

The executable portion of this routine. 

The linkage conventions to be used when calls are made to this routine. See the 
<Call> node, section VI.8.2, for details. 

A list of statements which constitute the exception handler for this routine. This 
may be empty. 

The lexical level of this routine. Filled in by the B L O C K phase. 

The label which will be generated for the V A X assembly language output. This is a 
L A B E L node in the O B J E C T language. Filled in by the C O D E phase. 

The size of a returned value, if this is a f u n c t i o n . Note that M I L requires a fixed 
returned size. Filled in by the A C T R E P phase. 

The size of allocated local variables for this routine. This does not include space 
required by nested blocks. Filled in by the A C T R E P phase. 

B L O C K S T O T A L * The total number of blocks contained in this routine. Filied in by B L O C K . 

N E S T I N G B L O C K S M A X * 
The maximum nesting depth for blocks in this routine not including nested 
routines. If there are no blocks in this routine, it will be zero. Filled in by B L O C K . 

MILHANDLER* 

T O T A L S I Z E * 

Label (a L A B E L node in the O B J E C T language) at the start of the generated code 
for the exception handler attached to this routine, if any. Filied in by C O D E . 

This is the total size of the activation record for this routine, it includes the size of 
the routine's local variables, storage for nested blocks, saved stack pointers for 
those blocks, and several words of constant overhead for linkage. Filled in by 
A C T R E P . 

B L O C K P A R E N T * A pointer to the enclosing block. For routines, this field is always N I L . Filied in by 
the B L O C K phase. 

H A N D L E R P A R E N T 
A pointer to the block or routine which contains the statically enclosing exception 
handler. For routines, this field is always N I L . Filled in by the B L O C K phase. 

The D E S C field (see VI.6) of each <Var> (see Vl.5.1) in the P A R A M E T E R S field must be of the form 
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( T Y P E S < T y p e > : ) 
( S I Z E S one:) ! Where one: i s a s u b t r e e d e n o t i n g 

! t h e l i t e r a l 1 ( s e e V I . 8 . 8 ) 

(i.e., each parameter must be a single unit in size). Passing of objects is by value. If some other form 

of passing is desired, it must be constructed by statements within the body of the routine or the caller. 

See the <Call> node for an explanation of actual argument elaboration. 

The intent of the L O C A L S field is to descr ibe the static portion of the run-time stack. All routines have 

a return type, which is at most 1 unit in size. In the case of complex objects, this may be used to 

return the address of the object. 

Vl .4 < T y p e > 

<Type> - * 

TYPE 
(SUBTYPE NOflE | I N T | LOC) 
(RANGE < S t m t > : < S t m t > : ) 
( V A X S I Z E <number> )* 

S U B T Y P E Indicates the MIL type: INT (for integer), L O C (for location) or N O N E (indicating no 
type). 

R A N G E Currently, the only values allowed in the R A N G E field are two expressions which 
describe the range of values a value of S U B T Y P E INT may have. The expressions 
in the range are not evaluated. They are given to the code generator as additional 
information which may be used to determine the mapping between MIL integers 
and the target machine's integers. T h e R A N G E is meaningless for S U B T Y P E S 
L O C and N O N E . 

V A X S I Z E * The amount of storage required for this type on a VAX. It is filled in by A C T R E P . 

T h e code generator is free to choose any representation it desires for these types. For example, INT 

and L O C may be represented identically. 

For convenience in this appendix, we define the following T Y P E nodes: 

int: TYPE 
(SUBTYPE I N T ) 
(RANGE < S t m t > : < S t m t > : ) 

loc: TYPE 

bool: TYPE 

(SUBTYPE LOC) 

(SUBTYPE I N T ) 
(RANGE zero: one:) 
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(Note that int: is, in fact, a "template" node describing any integer type. Zero: and one: are nodes 

describing the literals 0 and 1, respectively (see section VI.8.3). 

VI .5 < D e c I > 

< D e c l > -> <Var> | < R o u t i n e > | <Stmt> 

<Decl> nodes denote declarations of variables or routines. Note that statements may be interspersed 

with declarations. This allows convenient implementation of complex Ada declaration elaboration. 

VI .5.1 <Var> 

<Var> 

NAME 

D E S C 

LIFE 

D O T - N O D E * 

O F F S E T * 

L E X L E V E L * 

SIZE* 

V A X L A B E L * 

VAR 
(NAME < s t r i n g > ) 
(DESC < D e s c > : ) 
( L I F E S T A T I C | LOCAL | PARAMETER) 
(DOT-NODE <Exp L i s t > : ) * 
(OFFSET <number>)* 
( L E X L E V E L <number>)* 
( S I Z E <number>)* 
(VAXLABEL < L a b e l > : ) * 
(TYPEDESC < p t r > : ) * 
(VALUEJDESC < p t r > : ) * 

The print name associated with this variable. 

The storage descriptor for this variable (see V I .6 ) . Each size in the S IZES field of 
the descriptor must be a code-generation-time expression. 

Lifetime attribute for this variable. It is also used to indicate the access method for 
the variable: local variables are allocated on the stack, static variables with the 
code, and parameters are passed by value. 

This is used by the X F O R M phase to keep track of the value held in a variable 
(rather than the variable address). 

Offset for the current variable in its context. This is the offset in the stack (local), 
parameter number (parameter), or undefined for static symbols. This field is filled 
in by A C T R E P . 

The lexical level of this variable. This is filled in by B L O C K . 

The static allocation for this variable (in bytes). This is filled in by A C T R E P . 

The associated assembly language label for this variable, if one exists. Used only 
for static variables. Filled in by C O D E . 
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T Y P E D E S C * A pointer to the MIL descriptor which describes the storage layout for this 
variable's type descriptor at run time. Used in X F O R M . 

V A L U E J D E S C * A pointer to the D E S C node which describes the value held in this variable. Used 
in X F O R M . 

<Var> describes (fixed-size) variables. Besides describing fixed-size Ada variables, V A R nodes may 

be used to describe static portions of dynamic objects. 

VI.6 < D e s c > 

<Desc> - * 

T Y P E S 

S I Z E S 

I N I T 

V A R I A N T S 

T O T A L S I Z E * 

C O M O F F S E T * 

DESC 
( T Y P E S < T y p e _ D e s c L i s t > : ) 
( S I Z E S <Stmt L i s t > : ) 
( I N I T <Stmt L i s t > : ) 
( V A R I A N T S <Desc L i s t > : ) 
( T O T A L S I Z E <number>)* 
(CUMOFFSET <number 1 i s t > ) * 

(Pointers to) nodes describing each chunk of storage. 

Literals describing the number of copies (described by T Y P E S ) of this chunk 
wanted. 

Initial values for the corresponding chunks. Initial values may only be assigned to 
chunks with a size of 1. The corresponding <Stmt> field for a chunk may be N I L , 
indicating that no initialisation is desired. 

Describes the variant parts (if any) of this structure. Th is is currently unimple-
mented. 

The number of bytes required to hold a variable with this description on the V A X . 
This includes all storage specified by nested D E S C nodes in the T Y P E S attribute. 
This is filled in by A C T R E P . 

A list of offsets which indicates how far each field is from the beginning of the 
storage for a variable with this description. This is filled in by A C T R E P . 

A D E S C is used to described storage structure. The lengths of the T Y P E S , S IZES , and INIT lists must 

be the same. 

VI .6 .1 < T y p e _ D e s c > 

< T y p e _ D e s c > - * <Type> | <Desc> 

<Type_Desc> allows a field of a D E S C node to reference either a T Y P E or another D E S C node. 
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V I . 7 <Stmt> 

<Stmt> - * < L a b e l > | < B l o c k > | <Loop> | <Case> | < R e t u r n > | 
<Copy> | <Compare> | <Goto> | <Nu11> | <Exp> | < E x i t > | 
<Rai se> 

<Stmt> nodes denote statements in the MIL. The concept of a statement is actually a misnomer, 

MIL is an expression language. Every expression and statement returns a value. 

V l .7 .1 <Labe l> 

< L a b e l > -> 

G0T0LABEL 
(NAME < s t r i n g > ) 
(STMT < S t m t > : ) 
(BLOCK < B l o c k > : ) * 
(VAXLABEL < L a b e l > : ) * 
(HANDLER < B 1 o c k > : ) * 

NAME The print name of this label. 

S T M T The statement this label is attached to. This statement will not appear in the S T M T 
or H A N D L E R S field of a block or routine. The order of elaboration is: statement 
before the G O T O L A B E L node, the G O T O L A B E L , the statement in the S T M T field 
of the G O T O L A B E L , the statement following the G O T O L A B E L node. 

B L O C K * A pointer to the closest enclosing block or routine node which contains this 
G O T O L A B E L . Filled in by B L O C K . 

V A X L A B E L * The assembly language label which marks this spot in the assembly language 
program. Filled in by C O D E . 

HANDLER* A pointer to the closest enclosing block or routine which has an exception 
handler. If none, this field is NIL. Filled in by B L O C K . 

G O T O L A B E L nodes are used to mark places in the MIL program which may be targets for G O T O 

statements. T h e value of a G O T O L A B E L is the value of its associated statement (STMT) . Also see the 

description of the G O T O statement for restrictions on the use of G O T O s . 

V l . 7 . 2 < B l o c k > 
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<B1ock> 

L O C A L S 

BLOCK 
(LOCALS <Dec l L i s t > : ) 
(BODY <Stmt L i s t > : ) 
( TYPE < T y p e > : ) 
(ALLOC_FLAG <number>) 
(HANDLERS <Stmt L i s t > : ) 
(DYNAMIC <number>) 
( T O T A L S I Z E <number>)* 
( L O C A L S I Z E <number>)* 
( N E S T E D S I Z E <number>)* 
(NUMBERBLOCKINROUTINE < n u m b e r > ) J 

( N E S T I N G L E V E L <number>)* 
(FRAMESIZE <number>)* 
(MILHANDER < L a b e l > : ) * 
(BLOCKPARENT < S c o p e > : ) * 
(HANDLERPARENT < S c o p e > : ) * 

Same as R O U T I N E ' S L O C A L S attribute. 

B O D Y Same as R O U T I N E ' S B O D Y attribute. 

T Y P E A type descriptor which indicates the value returned by this B L O C K expression. 

A L L O C _ F L A G 0 indicates that no dynamic allocation was done on the stack inside of this block. 
1 indicates that dynamic allocation was performed and the stack must be moved 
back to its position before the block began execution. 

H A N D L E R S Same as R O U T I N E ' S H A N D L E R S attribute. 

DYNAMIC 1 indicates that a dynamic object is being returned on top of the stack and the 
stack pointer should not be altered on block exit. 0 indicates that no dynamic 
object is being returned on the stack. Filled in by X F O R M . 

T O T A L S I Z E * The total amount of storage required for locals in this block and its nested blocks. 
Filled in by A C T R E P . 

L O C A L S I Z E * The storage required for locals in this block only. Ri led in by A C T R E P . 

N E S T E D S I Z E * The storage required for locals in nested blocks only. Filled in by A C T R E P . 

N U M B E R B L O C K I N R O U T I N E * 
A number assigned to each block within a procedure, starting with 1. There is no 
necessary relationship between this number and the nesting level of the block in 
the routine. Filled in by B L O C K . 

N E S T I N G L E V E L * Depth of block in current routine. Th is value is 1 -based. Filled in by B L O C K . 

F R A M E S I Z E The number of bytes which have already been allocated in the enclosing routine's 
frame, i.e., the number of bytes that been allocated before the allocation for this 
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B L O C K . New locals for this B L O C K are allocated after this size. Filled in by 

A C T R E P . 

MILHANDLER* Same as R O U T I N E ' S M I L H A N D L E R attribute. Filled in by C O D E . 

B L O C K P A R E N T * Pointer to the nearest enclosing block or routine. Filled in by B L O C K . 

H A N D L E R P A R E N T * 

Pointer to the nearest enclosing block or routine which has an exception handler. 
This is the handler which would be invoked when an exception occured in the 
handler for this block (without any other intervening blocks). If no such scope 
exists, this is NIL. Filled in by B L O C K . 

<Block>'s describe Bliss-style blocks. (The restrictions on the L O C A L S field described in Section VI.3 

apply here also.) 

V I . 7 . 3 < L o o p > 

<Loop> - * < W h i l e > | <For> 

<Loop> nodes are used to describe w h i l e and for loops. 

V I .7 .3 .1 <Whi le> 

< W h i l e > 

T E S T 

D O 

ENDLABEL* 

B L O C K * 

H A N D L E R * 

WHILE 
( T E S T < S t m t > : ) 
(DO <Stmt L i s t > : ) 
(ENDLABEL < L a b e 1 > : )* 
(BLOCK < S c o p e > : )* 
(HANDLER < S c o p e > : ) * 

The test for the WHILE loop (<Stmt> must be of type int:). A value of 0 terminates 
the loop, a value of 1 continues the loop. Other values cause undefined actions. 

The body of the loop. 

Label (in the O B J E C T language) used to mark the end of the loop for EXIT 
statements. Filled in by C O D E . 

Nearest enclosing scope for this loop. Filled in by B L O C K . 

Nearest enclosing scope for this loop which has an exception handler (if any). 
Filled in by B L O C K . 

WHILE nodes describe (Bliss-style) w h i l e loops. WHILE nodes always have an undefined return 

value, not 0 and not the value of any EXIT statement. 
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V I . 7 . 3 . 2 < F o r > 

<For> 

FOR 
( I N D E X < S t m t > : ) 
(FROM < S t m t > : ) 
( T O < S t m t > : ) 
(BY < S t m t > : ) 
(DO <Stmt L i s t > : ) 
( D I R E C T I O N up | down) 
(ENDLABEL < L a b e l > : ) * 
(BLOCK < S c o p e > : ) * 
(HANDLER < S c o p e > : ) * 

INDEX The loop index (<Stmt> must be of type /oc;). 

F R O M T h e smaller of the initiating and terminating values. (<Stmt> must be of type int:). 

T O The larger of the initiating and terminating values. (<Stmt> must be of type int:). 

BY The increment for the index (<Stmt> must be of type int:). 

D O The body of the loop. 

D I R E C T I O N This attributes desrcibes whether the loop should run from the low value to the 
high value, or from the high value to the low value. This has no impact on the sign 
of the BY expression. 

E N D L A B E L * Label (in the O B J E C T language) used to denote the end of the loop. Filled in by 
C O D E . 

B L O C K * Nearest enclosing scope for this loop. Filled in by B L O C K . 

HANDLER* Nearest enclosing scope with has an exception handler, if any. Filled in by B L O C K . 

F O R nodes describe Algol 68-style f o r loops. The value returned by a F O R loop is undefined. Note 

that no checks are made between the D I R E C T I O N and BY attributes, i.e., it is possible to specify a 

down, direction and a BY value of +1, though it would (probably) cause an infinite loop. Each of the 

INDEX, F R O M , T O , and BY expressions are evaluated exactly once. 

V I . 7 . 4 < E x i t > 

E X I T 
(LOOP < L o o p > : ) 
(BLOCK < S c o p e > : ) * 
(HANDLER < S c o p e > : ) * 
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L O O P The Mil L O O P to be exited. 

B L O C K * Nearest enclosing scope which contains this EXIT node. Filled in by B L O C K . 

HANDLER* Nearest enclosing scope, if any, which contains this EXIT node and has an 
exception handler. Filled in by B L O C K . 

MIL EXIT nodes return undefined values. An EXIT must refer to a L O O P which encloses it and is 

statically nested within the same routine. 

V I . 7 . 5 < C a s e > 

<Case> - * 

CASE 
( D E S I G < S t m t > : ) 
( C H O I C E S < C h o i c e L i s t > : ) 

D E S I G The expression being c a s e ' d (<Stmt> must be of type loc: or int:). 

C H O I C E S The arms of the c a s e statement. 

C A S E nodes represent Bliss-style c a s e statements. Their return value is undefined. C A S E 

expressions are not implemented. 

V I .7 .5 .1 < C h o i c e > 

< C h o i c e > - * <Case_Range> | < 0 t h e r w i s e > 

V I . 7 . 5 . 2 < C a s e _ R a n g e > 

<Case_Range> 

RANGE 
(RANGE < S t m t > : < S t m t > : ) 
(BODY <Stmt L i s t > : ) 

R A N G E Range of values for this arm of the C A S E (Each <Stmt> must be of the same type 
as that in the DESIG field of the C A S E node (Vl.7.5)). 

B O D Y The statements comprising the code for this arm. 

The return value for a R A N G E expression is undefined. R A N G E nodes are not implemented. 

C H O I C E nodes represent c a s e choice ranges. 
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V I . 7 . 5 . 3 < O t h e r w i s e > 

< 0 t h e r w i s e > - * 

OTHERWISE 
(BODY <Stmt L i s t > : ) 

O T H E R W I S E nodes are for the e l se clause in c a s e statements. Their return value is not defined. 

O T H E R W I S E nodes are not implemented. 

V I . 7 . 6 < R e t u r n > 

< R e t u r n > - * 

RETURN 

(VALUE < S t m t > : ) 

V A L U E The value to be returned. 

R E T U R N is standard routine return and allows the return of a single unit value. 

V I . 7 . 7 < C o p y > 

<Copy> - * 

COPY 
(DEST < S t m t > : ) 
(SOURCE < S t m t > : ) 
( S I Z E < S t m t > : ) 

D E S T The destination of the C O P Y (<Stmt> must be of type /oc;). 

S O U R C E The source of the C O P Y (<Stmt> must be of type loc:). 

S I Z E An expression denoting the number of machine units to copy (it is intended that 
this expression will access a location which will contain the size of the object at 
run time). 

C O P Y describes a (block) bit copy operat ion 1 6 . 

V L 7 . 8 < C o m p a r e > 

16 
'in the current VAX implementation, the block copy works for sizes up to 2 -1 bytes. 
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<Compare> - » 

COMPARE 
(0P1 < S t m t > : ) 
(0P2 < S t m t > : ) 
( S I Z E < S t m t > : ) 
( TYPE book) 
(DYNAMIC <number>) 

OP1 First operand to C O M P A R E . 

OP2 Second operand. 

S IZE The number of machine units to compare (see note about SIZE field in description 
of C O P Y ) . 

T Y P E Always booh. 

D Y N A M I C Either 0 or 1. See D Y N A M I C attribute of B L O C K . 

C O M P A R E is used to allow efficient implementation of the ADA equality operation, it implements a 

block compare and returns the integer value 1 if the two blocks of storage are equal, 0 if they are 

different 1 7 . No order of operand evaluation is specified. 

V l . 7 . 9 < G o t o > 

<Goto> - * 

GOTO 
(TARGET < L a b e l > : ) 
(BLOCK < S c o p e > : ) * 
(HANDLER < S c o p e > : ) * 

T A R G E T The MIL G O T O L A B E L node where execution should continue. 

B L O C K * Nearest enclosing scope which contains this G O T O node. Filled in by B L O C K . 

HANDLER* Nearest enclosing scope, if any, which contains this G O T O node and has an 
exception handler. Filled in by B L O C K . 

MIL G O T O nodes return undefined values. The target of G O T O s may be in any block which shares a 

common block ancestor (up to the routine level) with the block containing the G O T O statement, and 

where no dynamic allocation is done by any block between the common ancestor block and the block 

containing the G O T O target. The target of the G O T O may also be in the enclosing routine of the 

G O T O node. Targets of G O T O s may not be in a different routine than the G O T O node. In essence, 

In the VAX implementation, the block compare is limited to objects of 2 -1 bytes or less. 
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this means that G O T O targets cannot be in a context which requires the block's declaration 

elaboration to alter the stack from its height at the place of the G O T O node. 

V I . 7 . 1 0 < R a i s e > 

< R a i s e > - * 

RAISE 
(V AL UE < S t m t > : ) 

V A L U E An integer expression which specifies the exception to be raised. 

<Raise> nodes causes an exception to be raised explictly. The particular exception to be raised is 

specified by the V A L U E attribute. T h e value of a RAISE statement is undefined. 

V I . 7 . 1 K N u l l > 

<Nul1> - + 

NULL 

<Null> nodes represent the nu l l ADA statement. They have no side effects. They return a value of 0 if 

used as an expression. 

VI.8 < E x p > 

<Exp> < I f > | < C a l 1 > | <0pr> | < S u b s c r i p t > | 
< A d d r e s s > | < A c c e s s > | < L i t e r a 1 > 

<Exp> nodes denote (possibly value-returning) expressions in MIL. 

V l .8 .1 <!f> 

< I f > - + 

I F 
(COND < S t m t > : ) 
(THEN <Stmt L i s t > : ) 
( E L S E <Stmt L i s t > : ) 
( T Y P E < T y p e > : ) 
(DYNAMIC <number>) 

C O N D T h e conditional test in the IF (<Stmt> must be of type int:). 1 indicates that the 
T H E N clause should be elaborated, 0 indicates that the E L S E clause should be 
elaborated. Other values cause undefined actions. 
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T H E N The T H E N clause of the IF. 

E L S E The E L S E clause. 

T Y P E The type of this expression. 

D Y N A M I C See D Y N A M I C attribute of B L O C K . 

IF nodes describe conditional expressions. The type of an IF is the type of its clauses (which must 

have the same type). Note that a list of statements is allowed in each clause. No elaboration is done 

of a clause which is not selected. The E L S E clause may be omitted, but the T Y P E of the expression is 

required to be N O N E (i.e., the T H E N clause may not return a value). The value returned by an IF 

expression is the value returned by the selected arm. 

V I . 8 . 2 < C a l l > 

<Ca11> 

R O U T I N E 

A C T U A L S 

T Y P E 

D Y N A M I C 

CALL 
( R O U T I N E < R o u t i n e > : ) 
(ACTUALS <Stmt L i s t > : ) 
( TYPE < T y p e > : ) 
(DYNAMIC <number>) 

The routine being invoked. 

The actual parameters to be passed. Each actual must be of single unit size. 
Each actual is elaborated as specified by the L I N K A G E attribute of the called 
routine. 

The return type of this call (may be obtained simply by looking at the T Y P E field of 
R O U T I N E ) . 

See the D Y N A M I C attribute of B L O C K . 

C A L L nodes denote routine invocations. T h e order of elaboration of the parameters depends on the 

linkage conventions of the R O U T I N E . The currently implemented linkage conventions are: 

C Imitate the conventions used by the C compiler on VAX/Unix . Parameters are 
elaborated in reverse order and the routine is invoked with a C A L L S instruction. 

C__Dynamic Linkage conventions used when calling a C routine, but Ada__Dynamic conven­
tions for returning from the routine. This is used when a C run-time routine 
returns a dynamically-allocated object on the stack. 

Ada Linkage convention used by the Charrette compiler for simple Ada programs. See 
the run-time system description for these specifications. Parameters are eval­
uated in a left to right order and are pushed backwards on the stack. To a C 
program, it would appear that the parameter list was reversed. Linkage is by the 
C A L L S instruction. 
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AdaJDynamic Linkage conventions used by the Charrette compiler for Ada routines whch return 
composite values on the stack. See the run-time system description for these 
specifications. This is the same as Ada linkage except the stack is not popped by 
the R E T instruction for routine exit. 

Algol68 

Asm 

Allocator 

Linkage conventions for Algol-68 used on VAX/Unix . As we d o not know what 
they are, they are not implemented. They are included because the VAX/Unix 
debugger system claims to understand this convent ion. 

Linkage conventions for assembler programs. See the run-time system de ­
scription for these specifications. This is currently the same as C linkage. 

Linkage conventions used for calling the Ada run-time system storage allocator. 
See the run-time system description for these specifications. 

There is no requirement that the number of actual parameters equal the number of formal parameters 

specified by the R O U T I N E . If the linkage convention explicitly passes the number of actuals in a call, 

e.g., the first operand of a C A L L S instruction, this number is gotten from the number of A C T U A L S in 

the C A L L node, not the number of F O R M A L S in the R O U T I N E node. 

V I . 8 . 3 < O p r > 

<0pr> 

OPR 
(OP <0p>) 
( LHS < S t m t > : ) 
(RHS < S t m t > : ) 
( T Y P E < T y p e > : ) 
(CHECK < S t m t > : < S t m t > : ) 
(DYNAMIC <number>) 

O P T h e operation to perform. 

L H S T h e left-hand-side operand (absent for some environment enquiries). 

R H S T h e right-hand-side operand (absent for unary operators). 

T Y P E The type of this expression (depends on operator (<Op>) and type of operand(s)) . 

C H E C K T w o expressions which indicate the range that the computed value must meet. 

This check is always made after the two operands are evaluated. With the 
exception of the assignment operations, this check is made after the operation is 
done. In the case of an assignment operator, the check is done before the 
assignment. An exception is raised if the check fails. 

D Y N A M I C See the D Y N A M I C attribute of the B L O C K node. 

O P R nodes denote a large class of operations in MIL. See the following sections for details on each 

operator. 
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V l . 8 . 4 < O p > 

<0p> - * < P l u s > | <Minus> | < R e l a t i o n a 1 > | | * | / | ** | rem \ 
and | or \ xor | not | <Dot> | < A s s i g n > | 
< C a s t > | < E n v i r o n m e n t > 

The following paragraphs describe the effect and functionality of each <Op>. Other desired operators 

may be added easily as necessary. 

V I .8 .4 .1 <Plus> and <Minus> 

< P l u s > -* plusjntjnt \ plus JntJoe \ plus Joe Jnt 

<Minus> - * minus Jnt Jnt \ minus Jnt Joe \ minusjocjnt \ 
minus Joe Joe 

<Plus> and <Minus> are used to denote addition and subtraction. Their functionalities are defined as 

follows: 

plusjntjnt: INT X INT -+ INT 
plus Jnt Joe: INT x LOC -* LOC 
plus Joe Jnt: LOC X INT LOC 

minus Jnt Jnt: INT X INT — INT 
minus Jnt Joe: INT X LOC LOC 
minusjocjnt: LOC X INT -* LOC 
minus Joe Joe: LOC X LOC -* LOC 

Operands of type L O C and INT may be used for address calculation. Minus Joe Joe is defined for use 

in offset calculation. Integer arithmetic may cause hardware overflows, which are trapped as 

exceptions and processed. Location arithmetic (any <plus> or <minus> operation with a L O C 

operand) will not cause an overflow. If the result is too large for the machine, the most significant bits 

will be discarded. 

V I . 8 . 4 . 2 <Relat ionaI> 

< R e l a t i o n a l > - » Issjnt j leqjnt \ 
gtrjnt j geqjnt \ 
eqljnt j neqjnt \ 
eqljoc | neqjoc 

<Relational> operators describe the standard single unit relational operations. The return type of a 

<Relational> operation is always booh where 0 indicates false and 1 true. These operators are not 

meant to be used to perform the general ADA equality operation (see Section VI.7.8 for a bit 

comparison operator). 
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All Jnt operators have the following functionality: 

I N T x INT - + INT 

while eqljoc and neqjoc have functionality 

LOC x LOC - * INT 

V l . 8 . 4 . 3 

is unary integer negation: 

— : INT - * INT 

The RHS field for - is irrelevant. Overf low may occur on two's complement machines. 

V l . 8 . 4 . 4 * , / , r e m a n d * * 

* is integer multiplication, / is integer division, rem is integer remainder and ** is integer 

exponentiation. Overflow may occur on some machines. The functionality for all three is; 

INT x INT INT 

Note that these operations are not defined on L O C ' s . 

V I . 8 . 4 . 5 a n d , o r a n d xor 

These are the logical operators with the value 0 representing false and 1 true. Their functionalities 

are 

INT x INT INT 

V l . 8 . 4 . 6 nor 

Not is unary complement: 

not: I N T I N T 

The RHS field for not is irrelevant. Note that N O T 0 = 1 and N O T 1 = 0. 

V I . 8 . 4 . 7 < D o t > 

<Dot> - » dotjoc | dotjnt 

<Dot> is the indirection operator: 

dotjoc: LOC - » LOC 
dotjnt: LOC - * INT 



Appendix VI.8.4.8 Definition of MIL 115 

The return type of the <Dot> operator must be defined in the operator (i.e., what are we indirecting to). 

V I . 8 . 4 . 8 < A s s i g n > 

< A s s i g n > —* assign Joe \ assign Jnt \ rev_assignJoc 

<Assign> is meant to denote single unit assignment/copy. (For a block copy operation, see VI.7.7.) 

assign Jnt: LOC x INT INT 
assign Joe: LOC x LOC - * LOC 
rev_assignJoc : LOC x LOC —• LOC 

<Assign> is not intended for general representation of the ADA assignment operation (although it 

might be used for assignment of integers, characters, etc.). This operator is intended for use in 

assignment of internal entities (e.g., array descriptors, range constraints, etc.). Both sides are 

evaluated before the assignment is done. Normally, the LHS describes the target for the asignment 

and the RHS the value to be assigned. In the case of the reverse assignment operator, 

rev_assignJoc, the target of the assignment is the RHS expression, not the left hand side expression. 

Any specified checking is done before the assignment is done. 

V I . 8 . 4 . 9 < C a s t > 

< C a s t > - » cast Joe Jnt | cast Jnt Jnt \ cast Jnt Joe 

<Cast> is used for coercing a datum of one type into a datum of another type. 

cast Joe Jnt: LOC -* I N T 
cast Jnt Jnt: INT -* INT 
cast Jnt Joe: INT -+ LOC 

<Cast> is not intended to implement Ada type conversion, only to provide a limited facility for 

changing between location and integer data, and between integer data of different sizes. 

V I . 8 . 4 . 1 0 < E n v i r o n m e n t > 

< E n v i ronment> -+ radix ] size \ storagejjnit \ excep_val 

<Environment> is used for determining values in the run-time environment. All of the environment 

inquiries return integer values. 

RADIX The radix of the machine's arithmetic. Currently this value is 2. 

S IZE The number of bits in the expression in the LHS. 

S T O R A G E _ U N I T The number of bits in the basic storage unit of the machine. Currently this value is 
8. 
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E X C E P J / A L Evaluates to the value of the current (pending) exception. If no exception is 
pending, this value is undefined. 

<Environment>'s are intended to implement some of Ada's attribute enquiries. 

V ! . 8 . 5 < S u b s c r i p t > 

< S u b s c r i p t > - * 

[ ] 
(BASE < S t m t > : ) 
( I N D I C E S <Stmt L i s t > : ) 
( T Y P E loc:) 
(BOUNDS < B o u n d s > : ) 
(DYNAMIC <number>) 
( I N D I R E C T _ T Y P E < T y p e > : ) * 

B A S E The base address of the dope vector for the array being subscripted (<Stmt> must 
be of type /oc;). 

INDICES The indices of the subscript (each <Stmt> must be of type Int:). 

T Y P E The type returned by [ ] (must be loc:). 

B O U N D S The bounds information for this array (Vl.8.5.1). Th is is currently unused and 
unimplemented. 

D Y N A M I C See the D Y N A M I C attribute for B L O C K S . 

I N D I R E C T _ T Y P E * Attribute used by X F O R M to indicate the contents of the address specified by this 
operator. 

[ ] is used to allow efficient subscripting (particularly on the VAX) . T h e B O U N D S field (bounds 

descriptor) is passed to S U B S C R I P T so that it may take advantage of information contained therein 

(e.g., static bounds, fixed size of elements, etc.). B O U N D S is currently unimplemented. 

The fact that the base address of the dope vector for the array is passed to S U B S C R I P T implies that 

the producer of MIL and the code generator must agree on the structure of array dope vectors. 

The address calculations for a subscript, like all address calculations, will not generate an overflow, 

although evaluation of the indices themselves may cause an overflow. Bounds checking for the array 

is generated automatically and cannot be disabled. 
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V I .8 .5 .1 < B o u n d s > 

<Bounds> - * 

BOUNDS 
(LBS <Stmt L i s t > : ) 
(UBS <Stmt L i s t > : ) 
( E L T _ S I Z E < S t m t > : ) 

L B S int: expressions giving the lower bounds for each dimension of the array. 

U B S int: expressions giving the upper bounds for each dimension of the array. 

E L T _ S I Z E The size (in machine units) of each element of the array (<Stmt> must be of type 
int:). 

B O U N D S nodes represent bounds and element type information for arrays. They are currently 

unimplemented. 

V l . 8 . 6 < A d d r e s s > 

< A d d r e s s > 

GTADDRESS 
(WHERE < V a r > : ) 
( T Y P E loc:) 
(DYNAMIC <number>) 

W H E R E The variable whose address is desired. 

T Y P E The type returned by G T A D D R E S S (always loc). 

D Y N A M I C See the DYNAMIC attribute of B L O C K . 

G T A D D R E S S is used to obtain the address of a variable. Its use is analogous to the occurrence of a 

variable name in Bliss which denotes the address of the variable. 

V I . 8 . 7 < A c c e s s > 

< A c c e s s > 

ACCESS 
(BASE < S t m t > : ) 
( F I E L D < I n t e g e r > ) 
(DESC < D e s c > : ) 
(VAR_NUM < i n t e g e r > ) 
( TYPE loc:) 
(DYNAMIC <number>) 
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A C C E S S is used to access a field in a MIL structure (i.e., storage layed out for a V A R node). If the 

field to be accessed lies in the variant part of the structure then the V A R J M U M field tells which variant 

descriptor to use (see V A R I A N T field in Section VI.6). 

V I . 8 . 8 < L i t e r a l > 

< L i t e r a l > - » 

L I T E R A L 
( T Y P E < T y p e > : ) 
(VALUE <Va1ue>) 
(DYNAMIC <Number>) 

T Y P E Type of this L I TERAL . 

V A L U E The actual value. Note that all L I T E R A L values are single unit quantities. 

D Y N A M I C See D Y N A M I C attribute for B L O C K nodes. 

L I T E R A L nodes are used to represent literals (constants) in the MIL program. 

T h e following L I T E R A L nodes denote the constants 0 and 1 (they were referenced in Section VI.4). 

zero ; L I T E R A L 
( T Y P E int:) 
(VALUE 0) 

one: L I T E R A L 
( T Y P E int:) 
(VALUE 1) 

V l . 8 . 8 . 1 <Value> 

< V a l u e > - * < i n t e g e r > | < P 1 i t > 

<Value> nodes describe values similar to those used in a Bliss b i n d . 

B A S E The base address of the structure (the type of <Stmt> must be /oc;). 

F IELD The ordinal number of the field to be accessed (1 -based). 

D E S C The storage descriptor describing the structure. 

V A R J M U M The index of the V A R I A N T field (in the D E S C node) to use (1-based). Th is is 
currently unimplemented. 

T Y P E The type of value returned by A C C E S S (always /oc:). 

D Y N A M I C See the D Y N A M I C attribute of B L O C K . 
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V I . 8 . 8 . 2 < P l i t > 

< P l i t > - * 

P L I T 
( T R I P L E < V a l u e L i s t > ) 
(VAXLABEL < L a b e l > : ) * 

T R I P L E The data pointed to (as in a Bliss pl i t ) . 

V A X L A B E L * Assembly language label which starts storage for these literals. Filled in by C O D E . 

A PLIT node creates a pointer to a literal. Restricted forms of PL IT nodes are currently implemented. 

The T R I P L E value must be a list of integers, strings, and plit nodes. 
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