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Abst rac t 

We address the problem of finding a "tight" representation of com
plex logical constraints in a mixed integer programming model by de
scribing a convex hull representation of cardinality rules. A cardinality 
rule asserts that if at least k of the propositions A\,..., Am are true, 
then at least / of the propositions B\,..., Bn are true. 

As rule-based systems and other types of logic modeling grow in popu
larity, logical rules and propositions can play an increasingly important role 
in mathematical programming models. Such simple logical constraints as 
"if A is produced, then either B or C must be produced" have long been a 
part of mathematical programming. But much more complex logic models 
are now being formulated, and they can also be embedded in mathematical 
programming models. 

A logic model is a description of a problem expressed in some logical .for
malism, usually propositional or predicate logic, from which facts about its 
solution can be deduced. Expert systems and other rule-based systems are 
logic models, as are programs written in the logical programming language 
PROLOG. It is useful to incorporate a logic model into a mathematical pro
gramming model when neither model alone adequately describes reality, or 
when the logic model contains constraints or heuristic rules that ease the 

*The first author is partially supported by AFOSR grant 91-0287 and ONR grant 
N00014-92-J-1028. Both authors are partially supported by NSF grant 1-55093. 
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solution of the mathematical model by reducing the number of alternatives 
that must be examined. 

When logical constraints become a significant component of mathemat
ical programming models, the quality of their representation becomes an 
important issue. We wish to address this problem by showing how best to 
represent a particular type of logical formula, namely a cardinality rule, in 
a mixed integer programming (MIP) model. We focus on cardinality rules 
because we have observed that logical constraints take this form in a large 
variety of applications. In fact McKinnon and Williams [11] use cardinality 
conditions as a basic form in which to express logical constraints. 

A cardinality rule has the form, 

If at least (or at most) k of the propositions A\,..., Am are true, 
then at least (or at most) / of the propositions 2 ? i , . . . , i ? n are 
true. 

An elementary cardinality rule is one in which each A, and each Bj is a 
literal (an atomic proposition or its negation) and no atomic proposition 
occurs more than once. The rules one typically finds in expert systems, 

if A\,..., Am are all true, then B is t rue, 

are special cases of elementary cardinality rules, as are cardinality clauses 
of the form, 

at least (or at most) k of A i , . . . , Am are true. 

The usual method for representing logical conditions in an MIP model 
has two stages. They are first rewritten as a conjunction of logical "clauses," 
which is to say in conjunctive normal form (CNF) . A clause is a disjunction 
of literals, such as, 

X\ V ->X2 V X 3 , 

where -1 means "not," and V means "or." Each clause is then written as an 
inequality in 0-1 variables, which for this example is, 

xi + (1 - x2) + x3 > 1, 

where Xj is interpreted as true when Xj = 1 and false when x 3 ; = 0. 
Unfortunately this is typically a very "loose" representation of the logical 

conditions, in the sense that its linear relaxation (which replaces Xj € {0,1} 
with 0 < Xj < 1) describes a poly tope that has many fractional extreme 
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points. This complicates the solution of the model, since most solution 
techniques make essential use of the linear relaxation. 

The difficulty with CNF representation is not that the individual clauses 
are poorly represented. In fact, each clause receives the tightest possible 
representation, namely a convex hull representation. This is a set of 0-
1 inequalities whose linear relaxation describes the convex hull of the-.0-1 
points satisfying them. Rather, the difficulty is that there are typically 
a large number of clauses in CNF. This results in a loose representation 
of the formula as a whole, even though each individual clause is tightly 
represented. (R. Jeroslow discusses this principle in [9].) This problem 
is particularly acute for a cardinality rule, since the number of clauses in 
its CNF equivalent grows exponentially with the rule's length if no new 
variables are added (and is apparently quite large even if new variables are 
added). 

Thus when logical constraints occur or can be expressed in the form of 
elementary cardinality rules, it is far better to give each a convex hull repre
sentation directly than to convert it to CNF first. The resulting description 
is no shorter than the CNF equivalent, because it contains all the inequali
ties that appear in CNF. But it avoids the loose representation that results 
from using only the inequalities in the CNF representation. 

We will therefore state an algorithm that generates for any elementary 
cardinality rule a set of 0-1 inequalities that provide a convex hull represen
tation of it. Our main result is that these inequalities in fact describe the 
facets of the convex hull. 

Several authors have contributed to the inequality representation of log
ical formulas in CNF. Tseitin [12] showed how to convert any formula of 
propositional logic to CNF in linear time by adding new variables. Cook 
[3, 4], Dantzig [5], Blair et al [2], and Williams [13, 14, 15] discussed the 
use of 0-1 inequalities to represent logical constraints in CNF, and Karp [10] 
used them to show that integer programming is NP-hard. The shortest such 
representation, however, was recently proposed by Wilson [16]. 

Some attention has also been paid to the representation of cardinality 
clauses (recall that these are a special case of elementary cardinality rules). 
Hadjiconstantinou and Mitra [6] described an algorithm for the automatic 
conversion of logical formulas, including cardinality clauses, into inequality 
form. But they do not consider the tightness of the representation. Hooker 
[8] described a generalized resolution procedure that generates all the un-
dominated implications of a set of cardinality clauses. This can lead to a 
tighter representation because it in effect generates valid cuts. But it can be 
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computationally expensive if carried to completion on a large set of clauses. 
In research that proceeded concurrently with ours, Araque and Chandru [1] 
found a convex hull representation of cardinality clauses. But their work has 
a different focus, because it does not consider cardinality rules in general, 
and it describes the polyhedron associated with a set covering formulation 
of the problem, which has twice the dimension of the polyhedron we stiidy. 

We begin in Section 1 by augmenting propositionai logic with cardinality 
rules to obtain "cardinality logic." Since our convex hull representation 
is designed for elementary cardinality rules, we show how to convert any 
formula of cardinality logic to a conjunction of elementary cardinality rules 
(cardinality normal form) in linear time. We also show tha t the CNF of an 
elementary cardinality rule grows exponentially with the length of the rule, 
when no variables are added. When additional variables are used, CNF is 
polynomial but still quite large using what is apparently the best known 
conversion. 

Section 2 states our algorithm for generating the convex hull description 
of a cardinality rule and proves its correctness. In Section 3 we use an 
example to illustrate its application. 

1 C a r d i n a l i t y Rules 

We begin by augmenting propositionai logic with cardinality rules. We then 
show how to write any formula of cardinality logic in cardinality normal 
form. Finally we discuss what is involved in the reduction of elementary 
cardinality rules to CNF. 

1.1 C a r d i n a l i t y L o g i c 

A cardinality rule is written, 

( A 1 , . . . , A m ) f c ^ ( B 1 , . . . , f i n ) / , ' ( 1 ) 

and is read, "if at least k of A\,..., Am are t rue, then at least / of B\,..., Bn 

are true." We assume ra> k > 0, n > 0, and / > 1. The phrase "at least" 
can be replaced with "at most" by writing, 

(-1A1,..->,4m)m_^ => ( - i B i , . . . , - « 2 ? n ) n _ / . 

Ordinary rules have m = k and / = 1 in (1). When m = 1 or n = 1 we will 
omit the parentheses, so that (A)\ (B)\ is written A^B. 
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When the antecedent is a tautology, which is to say k = 0, (1) asserts 
that at least / of B\,..., Bn are true. In such cases we can assume without 
loss of generality that m = 0. When the consequent is a contradiction, which 
is to say / > n, (1) asserts that fewer than k of A i , . . . , A m are true. In such 
cases we can assume that n = 0 and / = 1. We therefore suppose tha t every 
cardinality rule satisfies a) either m> k > 1 or m = = 0, and b) either 
n>l> l o r ( n , / ) = ( 0 , l ) . 

Propositional logic is recursively defined to consist of atomic propositions 
x\, X 2 , . . . , which are regarded as formulas, plus all formulas of the forms -«A, 
A A 5 , A V 5 , A D B, and A = fi, where A and 5 are formulas. Here A 
means "and," V means "or," D means "implies," and = means "is equivalent 
to ." Implication and equivalence are defined by, 

Cardinality logic is recursively defined to consist of all the above formu
las and all formulas of the form (1), where A i , . . . , A m and Bi,..., Bn are 
formulas of cardinality logic. 

1 . 2 CARDINALITY N O R M A L F O R M 

We now show how to convert any formula of cardinality logic to cardinality 
normal form in linear time. If the formulas to be represented are already 
elementary cardinality rules, this conversion is not necessary, and one can 
proceeed directly to the linear inequality representation (Section 2). 

We first review conversion to conjunctive normal form (CNF) in ordinary 
propositional logic. This can be done by a) using (2) and (3) to remove all 
occurrences of D and = ; b) using De Morgan's laws, 

and the equivalence ->-»A = A to absorb all negations into literals; and c) 
using the distribution law, 

(A D B) =def ( - A V 5 ) 

(A = B) =def ((A D B) /\(B D A)). 
(2) 

(3) 

- ( A A S ) = ( - L A V N F I ) 

->(A V B) = ( -«A A -«5), 

A V ( F L A C ) = ( A V B) A ( A V C ) , 

to transform the result to a conjunction of clauses. 
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It is well known that if no new variables are used, CNF can grow ex
ponentially with the size of the formula. For instance, a formula of the 
form 

( i , A j i ) V . . . V ( « n A y „ ) (4) 

translates to the conjunction of 2 n clauses of the form A\ V . . . V A n , where 
each Aj ranges over Xj and yj. But by adding new variables, conversion to 
CNF can always be accomplished in linear time. Using Wilson's conversion 
[16], we can write formula (4), for instance, as the conjunction, 

n 

{zx V . . . V zn) A f\(-.ZJ V XJ) A (pzj V Vj). (5) 

Each new variable Z{ represents a clause X{ V j/ j . The clauses -\Zj V Xj and 
-«Zj V yj encode implications Zj D Xj and Zj D yj, respectively. (5) is a 
reformulation of (4) in the sense that a) any assignment of t ru th values 
to atomic propositions that satisfies (5) also satisfies (4), and b) for any 
assignment of values to x \ , . . . , x n and y i , . . . , yn satisfying (4), there is some 
assignment of values to z \ , . . . , zn for which (5) is also satisfied. 

We will use this same principle in cardinality logic. Conversion to car
dinality normal form is somewhat complex in general because cardinality 
formulas can be embedded in cardinality formulas. But it should ordinarily 
be straightforward in practice because such embedding is probably unusual. 
In any case the conversion algorithm, below, can be automated. 

S t e p 1. Use (2) and (3) to remove occurrences of D and = . 

S t e p 2 . Use De Morgan's laws and the following to absorb all negations 
into literals: 

-*[(xi • • -xm)k => ( y i . - >yn)i] = [=> ( * i . . .xm)k] A [ ( y i . . .yn)i =>] (6) 

Let F be the resulting formula. 

S t e p 3 . F is a conjunction of one or more formulas. Let G be a conjunct 
of F that is not an elementary cardinality rule. If there is no such 
conjunct, stop. If G is a disjunction B\ V . . . V Bn with n > 2, write 
G as a cardinality rule => . . . , Bn)i. 

S t e p 4 . If G is an elementary cardinality rule except that some atomic 
proposition A occurs more than once, replace each occurrence of A 

6 



after the first with a distinct variable zp that does not occur in F. 
Rewrite G as the conjunction of the resulting cardinality rule with 
rules A zv for each zv that occurs in the antecedent and with rules 
zp => A for each zp that occurs in the consequent. Let F be the 
resulting formula and go to Step 3. 

S t e p 5. G is a cardinality rule of the form, 

( C i , . . . , C p , c u . . . , cpt)r =>- . . . , Dqj d i , . . . , dqi)s, (7) 

where c\,...,cp/ and d\,.. .,dqi are literals. Replace the conjunct G 
of F with the conjunction, 

(*!,..., tp, C\, . . . , C p / ) r ( U i , . . . , Uq, d i , . . . , dqi)s 

A A?=,(C,-=>«,•) A A L i K ' ^ A ) , 

where < i , . . . , tp and , . . . , uq are new variables that do not occur in 
F. 

S t e p 6. For i = 1 , . . . , q do the following: 

• If D{ is a cardinality rule of the form (1) with m + n > 1, replace 
ut- => D{ with 

( i 4 i , . . . , i 4 m ) * ( f l i , . . . , f l n , t 0 i , . . . , u ; / ) / (8) 

where t ^ i , . . . , w\ are new variables. 

• If Di is a conjunction B\A...ABn of 2 or more formulas, replace 
Ui => Di with 

n 

• If Di is a disjunction Bx V . . . V Bn of 2 or more formulas, replace 
Ui => Di with the cardinality rule, 

=> (-rui,Bu...,Brn)1. 

S t e p 7 . For t = 1 , . . . , p do the following: 

7 



• If C, is a cardinality rule of the form (1) with m + n > 1, replace 
d U with 

- i [ ( i 4 i , . . . , A m , Vi, . . . , Vk)k ( 5 i , . . . , B n , WU • • • , t » n - / + l ) n + l ] 

A A}=i(^i =>*.•) A A i = i + 1 ( - - ^ r = » * , - ) , 

where v i , . . . , vk and w\,..., u>n_/+i are new variables. Then ap
ply (6) and De Morgan's laws to move negations inside. 

• If d is a conjunction A\ A . . . A Am of 2 or more formulas, replace 
d =>• U with the cardinality rule, 

= > ( - i A i , . . . , - i A m , < t - ) i -

Apply (6) and De Morgan's laws to move negations inside. 

• If d is a disjunction A\ V . . . V Am of 2 or more formulas, replace 
d U with. 

S t e p 8 . Go to Step 3. 

This algorithm runs in time that increases at worst linearly with the 
number of symbols in the original formula. The argument for this is quite 
similar to that for ordinary propositionai logic. 

1.3 C o n v e r s i o n of C a r d i n a l i t y R u l e s t o C N F 

We first show that elementary cardinality rules have an exponential CNF 
expansion. For ease of exposition we will show this for Horn cardinality 
rules in particular, which have the form, 

( a ? i , . . . , S m ) * y. • (9) 

T h e o r e m 1 No CNF formula equivalent to (9) whose variables are in {x\,-

. . . , a ; m , y } has fewer than (^j^j clauses. 

Proof. Let F be any CNF equivalent. Let (z*,y*) = (x\,.. .,xm,y*) £ 
{0, l } ( m + 1 ) be a minimal violator of (9) if it violates (9) but would satisfy it 

if any equal to 1 were switched to 0. There are minimal violators, 
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since each has exactly k x^s equal to 1, and t/* = 0. Every minimal violator 
(x*,y*) must violate some clause Cx* in F. We show that every Cx* is 
necessarily distinct and that none implies another, from which the theorem 
follows. 

Since (x*,y*) violates C x *, Cx* cannot contain the positive literal Xj 
when x*j = 1. But since is a minimal violator, Cx* must contain, Xj 
for each x^ = 0. It follows that the positive literals in Cx* are precisely those 
for which x*- = 0. Thus every C x * is distinct and no one implies another. • 

When additional variables are used, there is a polynomial CNF expan
sion, but it is still long. We will show this using the pigeon hole principle, 
which Haken used to prove that the resolution method of theorem prov
ing has exponential complexity [7]. To convert (9) to CNF, we create new 
variables z t J for i = 1 , . . . , m and j = 1, k — 1. The CNF equivalent is the 
conjunction of the following clauses. 

A r - l 

- ^ i V y V \J Zij, i = l , . . . , m , (10) 

-izij V - > z t / j , all € { 1 , . . . , m } (i ^ z'), j = 1 , . . . , k - 1. (11) 

We interpret the formula (9) as saying that if we have k or more pigeons 
(i.e., k or more Xj's are true), then we cannot put them in k — 1 holes with 
at most one per hole (y is true). In (10)-(11), Z{j = 1 is interpreted as saying 
that pigeon j is put in hole i. The clauses (10) say tha t every pigeon is put 
into a hole, or else y is true. The clauses (11) say tha t no 2 pigeons are put 
into the same hole. Thus (10)-(11) force y to be true precisely when we have 
k or more pigeons, just as (9) does. 

The above method of producing a CNF equivalent generates m(k — 1) 
additional variables and m + (l/2)(fc — l ) m ( m — 1) clauses. We are aware 
of no shorter conversion. 

2 Convex H u l l Representa t ion of C a r d i n a l i t y -
Rules 

In this section, we describe the facets of the convex hull of the feasible points 
of an elementary cardinality rule. We also state an algorithm for generating 
the facets. 
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2 . 1 D e s c r i p t i o n of t h e F a c e t s 

Without loss of generality we consider rules of the form 

{xu...,xm)k =• (y i , . . . , 2 /n ) / . (12) 

If a rule has a negated literal -»xt- or we can replace every occurrence of 
Xi or yj in the facet-defining inequalities with 1 — xt- or 1 — yj, respectively. 

Denote by S the set of feasible points satisfying (12), and by conv(S) 
the convex hull of S. We begin with a negative result. 

L e m m a 1 When m > k and I > 2, (12) is equivalent to no single 0-1 linear 
inequality. 

Proof: Because of the symmetry of all xt- and of all yt- in (12), if there is an 
equivalent linear inequality, there is one of the form: 

- a(xx + ... + xm) + &(yi + . . . + yn) > -c (13) 

For brevity we will write (13) as follows, where e is a row vector of ones. 

—aex + bey > —c. 

Since (ex,ey) = ( / : , / - 1) does not satisfy (12), we have 

-ak + b(l- 1) < - c . (14) 

Since (ex,ey) = (k + I J) satisfies (12), we have 

- a ( * + l ) + 6 / > - c . (15) 

(14) and (15) imply 
a<b. (16) 

Since / > 2, (14) implies 
b + c<ak. (17) 

From (16), 
ak < a(k-l) + b. (18) 

Combining (17) and (18), 
c< a ( f e - 1). (19) 
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On the other hand, since ex = k — 1 and ey = 0 satisfy (12), we have 

-a(k — 1) > - c , 

which contradicts (19). • 
When k = m or / = 1, however, we have an equivalent 0-1 linear inequal

ity. 

L e m m a 2 If k = m, (12) is equivalent to the 0-1 linear inequality, 

- lex + ey > 1(1 - m). (20) 

Proof: If (12) is true, then either ey > I or ex < m (or both) . It is easily 
checked that (20) is satisfied in either case. Also, if (12) is false, then ex — m 
and ey < /, which violates (20). • 

Similarly, it is easily verified that : 

L e m m a 3 / / / = 1, (12) is equivalent to, 

- ex + (1 + m - k)ey > I - k. (21) 

• 
The following lemma gives an inequality which will start our description 

of the convex hull of (12). 

L e m m a 4 / / both of the following hold: a)k>2orm = k= lorm = 
k = 0, b) n > I or n = / = 1 or ( n , / ) = (0,1) , then the 0-1 linear inequality 

- lex + (1 + m - k)ey > 1(1 - k) (22) 

describes a facet of conv(S). 

Proof: It is easily checked that any point satisfying (12) satisfies (22) for all 
the cases. So we only need to find m -f- n affinely independent points (x,y) 
in S such that 

-lex + (1 + m - k)ey = 1(1 - k) 

We first consider the case k > 2 and n > I. We construct a matrix D 
whose rows are m + n affinely independent points, such that the first m 
points satisfy ex = k — 1, ey = 0 and the other n points satisfy ex — m, 
ey = /. 
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/ Al Ox 02 \ 
n _ A2 h 0 3 

C\ Bx 04 ' 
\ C2 B2 l2 J 

Here Ax is a k x k matrix of all ones except for zeros on the diagonal. A2 

is a (m—k )xk 0-1 matrix with k — 2 ones in each row. Ix is a (TO—A;) x (TO—A;) 
identity matrix. 0 i , O 2 and O 3 are zero matrices of the appropriate sizes. 

Bx is a (/ + 1) x (/ + 1) matrix of ones except for zeros on the diagonal. 
O4 is a (n — / — 1) x n zero matrix. B2 is a (n — / — 1) x (/ + 1) 0-1 matrix 
with exactly / - 1 zeros in each row. And I2 is a (n — I — 1) x (n — / — 1) 
identity matrix. Cx and C2 are matrices of the appropriate sizes containing 
all ones. 

To show that these m | n points are affinely independent, it suffices to 
show that det(D) ^ 0. It is clear that 

det(D) = det(Ax)det(Bx) 

To compute det(Ax), add all other rows of Ax to the first row and then 
subtract all other rows from the new first row divided by (k — 1). Then it is 
clear that det(Ax) = {-l)h~l(k-l). Similarly, det(Bx) = ( - 1 ) ' / . Therefore, 
we get 

det(D) = (-l)k~l(k- 1)(-1) 'Z. 

The first case follows. 
We will use appropriate portions of matrix D to exhibit the needed points 

for other cases. Their affine independence is obvious. 
When m = k = 1 and n > /, the matrix 

/ 0 0 0 \ 
1 Bx 04 \ 

\ 1 B2 I2 ) 

gives the n + 1 points. 
When m = k = 0 and n > /, the matrix 

( Bx 0 4 \ 

gives the n points. 
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When k > 2 and n = / = 1, the matrix 

gives the m + 1 points. 
When k > 2 and n = 0, / = 1, the matrix 

gives the m points. 
All others are trivial cases. Thus the lemma follows. • 
To describe the entire set of facets, we first show that the inequality (22) 

is the only facet-defining inequality, 

ax + by > c, (23) 

in which each a3 ^ 0 and each bj ^ 0. We then obtain the remaining facets 
recursively by showing that they are the facets of simpler cardinality rules. 
To do the latter we exploit the facts a) that the remaining facets are facets 
of the convex hull's projections onto lower dimensional spaces, and b) that 
each of these projections is itself the convex hull description of a simpler 
cardinality rule. 

L e m m a 5 Assume (23) defines a facet of conv(S). If a t ^ 0 for all i and 
bj 0 for all j , then (23) is a nonzero scalar multiple of (22). 

Proof: We first show a t < 0 for all i and bj > 0 for all j . Since (23) defines 
a facet of conv(S), it must contain a set T of m + n affinely independent 
points in S. For any i £ { l , . . . , m } we know that some (x,t/) G T has 
X{ = 1. Otherwise the facet is defined by xt- > 0. Since (x ,y) satisfies (12), 
it must either falsify the antecedent of (12) or satisfy the consequent. In 
either case a point (x ' , y) identical to (x ,y) except that x\ = 0 also satisfies 
(12), so that ax1 + by > c. Subtracting ax + by = c from this, we get a t < 0. 

Now consider bj. Similarly, some (x,y) € T has yj = 0. Since (x,y) 
satisfies (12), it must either falsify the antecedent of (12) or satisfy the 
consequent. In either case a point (x, y f ) identical to (x ,y) except that 
y'j = 1 also satisfies (12), so that ax + byf > c. Subtracting ax + by = c from 
this, we get bj > 0. 
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Without loss of generality, assume a\ < a2 < • • • < am < 0, and 0 < 
h <b2<---<bn. 

Second, we show that for any (x, y) £ T , ey > / implies ex = m. Consider 
a point (x ,y ) £ T such that ey > I. If ex < m, ( that is, xt = 0 for some 
£), then a point (x ' ,y ) identical to (x ,y) except xj = 1 satisfies (12). Thus 
ax' + by > c, which implies at > 0, a contradiction. With similar arguments, 
it is easily verified that points (x ,y) £ T with ex = m satisfy ey = /. 

We can also show that for any (x, y) £ T , ey < / implies ey = 0. Consider 
a point (x, y) £ T with ey < /. We must have ex < k — 1. And if ex < — 1, 
we have as above that at > 0 for some t. Thus ex = k — 1. But if ex = — 1, 
it must be that ey = 0. Otherwise, if y t = 1 for some t, consider a point 
(x, y') identical to point (x ,y) but with y[ = 0. In a way similar to the 
above, we will have bt < 0, a contradiction. 

It follows that the points in T can be partitioned into subsets T\ and T 2 , 
with ex — k — \ and ey = 0 for all (x, y) £ Ti , and ex = m and ey = Z for all 
(x ,y ) £ T2 . Furthermore, we can see as follows that there are m points in 
T\ and n points in T2. It is clear that T\ has at most m points, since ey = 0 
and they are independent. In T2 , there are at most n points since ex = m 
and they are independent. Since T has m + n points, the claim follows. 

Now we show that a t = a Vi and bj = (3 V7. First consider the points in 
T\. Set a m = a . We will build recursively a set Q C { 1 , . . of indices 
such that at- = a for all i £ Q. Initially Q = { m } , and we will augment Q 
until Q = { l , . . . , m } . 

At each step of the recursion we have Q = { 9 , . . . , m } . Let be the set 
of points in T\ satisfying x t = 1 for some i £ . . , , m } . Since Ti contains 
m independent points with ey = 0, must be nonempty. Let (x ,0) £ 
be a point satisfying xt = 0 for some J < g. We suppose for the moment tha t 
such a point exists. Let the point (x ; , 0 ) be identical to (x ,0) except x\ = 1 
and x\ = 0 for some i £ Q with x t = 1. Then (x ' ,0 ) satisfies ax' > c, since 
ex1 = k — 1. This implies a t > a t\ Since by assumption at < a t +i < . . . < a t , 
we have at = a*+i = . . . = a t = a , and we update Q = {i, t + 1, • • •, 

It remains to show, then, that there is a point (x, 0) £ T% with xt = 0 
for some t < q if q ^ 1. Suppose to the contrary, We consider two cases: 

Case 1. T\ = T^. Then all the points in T\ have x p = l,Vp < since 
otherwise (x, 0) exists. But this implies for p < q that x p = 1 for all points 
in T, which is impossible since otherwise x p < 1 would define the facet. 

Case 2. T\ ^ T\. Consider any point (x, 0) £ T\ \ T{. Since it satisfies 
ex = k — 1, we must have q > k — 1. On the other hand, consider any point 
(x ,0) £ Tj 7 . By hypothesis x p = 1 for all p < q, and we must therefore have 
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ex > fc, which is impossible because (x ,0) £ T\. 
We conclude that Q can be updated until q = 1. Thus ai = . . . = a m = 

a . 

Similar arguments using T2 verify that bj = /3, Vj. Therefore, (23) be
comes 

aex + 0EY > c (24) 

Substituting into ( 2 4 ) a point (x ,y) £ Ti , we get 

a ( I F E - l ) = c. (25) 

Doing the same for (x, t / ) £ T 2 , we get, 
am + (31 = c. 

Thus 

/*/ = - a ( m - + 1) 

Substituting this and ( 2 5 ) into ( 2 4 ) , we have 

aex - (a/l)(m - k + L)EY > a(fe - 1). (26) 

Since a < 0, the lemma follows. • 
In the following lemma and elsewhere, we say { i i , . . . , i m - i } C { 1 , . . m } 

to indicate that { z i , . . . , i r n - i } is a subset of m— 1 distinct indices in { 1 , . . .,-
m } . 

L e m m a 6 Any facet of conv(S) other than ( 2 2 ) is a facet of the projec
tion of conv(S) onto ( x t , , . . . , x t - m - 1 , t / i , . . . , yn) for some {z ' i , . . . , im-\} C 
{ 1 , . . . , m} provided k < m, or its projection onto ( x i , . . . , xm,yj1,..., y J n _ 1 ) 
for some {j\,..., j n _ i } C { 1 , . . . , n} provided I > 1. 

Proof: Consider a facet F of conv(5) other than (22). Thus at least one 
variable is missing from the inequality describing F. The proof is similar 
whether the missing variable is an Xj or a yj. Without loss of generality, 
assume it is x\. We wish to show that F is a facet for the projection P of 
conv(S) onto ( x 2 , . . . , x m , yx,..., yn). F is clearly valid for P. So it suffices 
to show that there are m + n — 1 affinely independent points of P on F. 

Consider m + n independent points of S on F. Let A be the (m + n) x 
(m + n) 0-1 matrix with each point as a row. Hence det(A) ^ 0. On the 
other hand, det(A) can be expended in the cofactors of its first column: 

det(A) = a n A n H H a m + n ? 1 A m + T l t i 

15 

T 



Clearly, each of the cofactors Aj\ corresponds to a set of m + n — 1 vectors 
in P. Since det(A) ^ 0, we must have that at least one of these cofactors 
is non-zero. This implies tha t at least one set of m + n — 1 points in P are 
independent. Furthermore, they are all on F since its defining inequality 
does not contain x\. Thus, F is a facet of P. • 

L e m m a 7 If m > k, the projection of S onto ( x t l , . . . , x t m _ 1 , y 1 ? . . . , yn) is 
precisely the set of 0-1 points satisfying ( x t l , . . . , x 1-m_ 1 )* => (yi , • . . , yn)l-

Proof: Without loss of generality, we again assume 

( X M , • • •, Z t M _ I ) = («2» • • • » Z m ) . 

Now denote by P\(S) the projection of S onto ( # 2 , • • - > £ m ) « Also let 

5! = {(x, y)|x € {0,1 j " 1 - 1 , y € {0, l } n , ( x 2 , . . . , x m ) * => ( y i , . . . , y n ) , } . 

We wish to show S\ = P\(S). 
Take a point ( x 2 , . . . , x m , y ) 6 5 i . It is clear that for either ey > / or 

ey <l-l w e h a v e ( 0 , x 2 , . . . , x m , y ) € 5 . Thus ( x 2 , . . . , x m , y ) € P i ( 5 ) . That 
is, 5i C P i ( 5 ) . Now, take ( x 2 , . . . , x m , y ) G P\(S). Then there exists an xi 
such that (x i , x 2 , . . x m , y) € 5 . If ey > / , clearly ( x 2 , . . . , x m , y ) 6 5 i . If 
ey < / — 1 , 

we know that at most k — 1 of (xx, X 2 , • • •, xm ) can be 1. Therefore, 
at most k - 1 of ( x 2 , . . . , x m ) can be 1. Tha t is, ( x 2 , . . . , x m , y ) £ 5 i . Thus 
Pi(S)CSl. • 

Similarly, we have 
L e m m a 8 / / / > 1, the projection of S onto ( x i . . . , x m , y ^ , . . . , y J n - 1 ) is 
precisely the set of 0-1 points satisfying ( x i , . . . , xm)k (yjx,..., yjn^ 
• 

It is clear now that the facets of conv(S) can be generated recursively. 
The full description of the convex hull of the general cardinality rule is 
stated in the following theorems. Here, a "clause" is a logical clause in the 
traditional sense: a cardinality rule (12) in which m = k and / = 1. 

T h e o r e m 2 / / (12) is not a clause, and if k > 2 and n > lf the facets of 
conv(S) are 

-/(*! + • • • + xm) + (m - k + l)(yi + • • • + y n ) > *(1 -
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plus the facets of 

(xil,...,xirn)k ^ Vn)l 

for all sets {i\,..., z m } C { 1 , . . . , m} provided m > k, and the facets of 

( X I , . . . , xm)k ( Y ^ , • . . , YI N _! 

/o r a// sets {j\,..., ,7 n_i} C { 1 , . . . , n} provided I > 1. 

Proof: The theorem follows from Lemmas 4-8. • 

T h e o r e m 3 / / (12) is a clause, the facets of conv(S) are given by 

— ex + ey > 1 — ra, (27) 

plus a) X{ > 0 for i — 1 , . . . m, yj < 1 for j = 1 , . . .n provided m + n > 1, 
and 6^ x, < 1 /o r t = 1 , . . . m, j/j > 0 /o r j = 1 , . . . , n provided m + n > 2. 

Proof: Lemma 4 implies that (27) defines a facet. 
To show that a bound on a variable xt- or yj is facet defining, we only 

need to prove that it is tight at m + n affinely independent points. Since the 
inequality (27) contains all variables, it cuts off only one vertex of the m + n 
dimensional unit cube. Thus it cuts off at most one of the 2 m + n ~ 1 vertices 
at which any given bound is tight. When m + n > 2, we have 2 m + n " " 1 > 
m + n and the bound defines a facet that contains at least m + n affinely 
independent points. The theorem is easily verified for the case m + n = 2. 
• 

T h e o r e m 4 / / m > k = 1, the facets of conv(S) are the facets of 

^ => ( Y I , . . . , Y N ) / , 

for i = 1 , . . , , m . 

P roof : It suffices to show that (22) is not a facet, since in this case the 
theorem follows from Lemmas 6 and 7. 

Here (22) has the form, 

- lex + mey > 0. (28) 

If (28) defines a facet, it contains a set T of n + m affinely independent 
points. Take a point (x,t/) £ T. If ey < I - 1, then x = 0. But since 
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m > 0, x = 0 implies mey = 0 and therefore y = 0. On the other hand, if 
ey = f; > f> then we have - / e x + ml1 = 0. Since ex < m, this implies /' = / 
and ex = ra. Thus any point in T is either (0,0) or has form ex = m and 
ey = /. 

Since x is a vector of ones, T contains at most n +1 affinely independent 
points, including (0 ,0) . Thus when m > 1, (28) does not define a facet: • 

The next theorem is similarly proved. 

T h e o r e m 5 / / n = I > 1 the facets of conv(S) are the facets of 

(xi,...,xm)k yj 

for j = l , . . . , n . • 

The next two theorems follow from Lemmas 4 to 8. 

T h e o r e m 6 / / m = k < 1 and I > 1, the facets of conv(S) are (22) plus 
the facets of 

x\ = > ( y j i , - - - , f f j „ - i ) j - i 

ifm= 1, or f/iose o/ 

= > fain • • • > » * . - ! 

i / m = 0, /o r a / / s e ^ { j i , . . . , j n - i } C { l , . . . , n } . • 

T h e o r e m 7 If n < I = I and m > k, the facets of conv(S) are (22), plus 
the facets of 

if n =• 1, or ^/lose o/ 

( x t l , . . . , x t * _ l 7 7 l ) / 5 = > • 

i / n = 0, / o r a// sete { i i , . . . , i m _ i } C { 1 , . . • 

2 .2 G e n e r a t i n g t h e F a c e t s 

To summarize the results of the previous section, we state below a recur
sive procedure FACET that generates all facets for the cardinality rule 
( x i , . . . , x m ) k => ( t / i , . . . , yn)i. Recall tha t we assume m = 0 if k = 0, 
and / = 1 if n = 0. The procedure can be readily automated. 

To generate a 0-1 inequality representation for an arbitrary formula of 
cardinality logic, one may use the algorithm of Section 1.2 to convert the 
formula to cardinality normal form—i.e., to a conjunction of elementary 
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cardinality rules (1). Each elementary cardinality rule may then be given a 
convex hull representation. If one or more of the literals A t in (1) is negative 
and therefore has the form -«xt-, -»xt- should be replaced by xt- before applying 
FACET. Then each occurrence of xt- in the generated inequalities should be 
replaced with (1 - x t ) . Negative Bj's should be similarly treated. 

P r o c e d u r e F A C E T ( ( x ! , . . . , xm)k (yu ..., yn)i) 

If m > k = 1 then 
For all i G {1,. • •, ra) call FACET(x t =• ( y i , . . . , yn)i). 

Else if n = / > 1 then 
For all j G {1,..., n} call F A C E T ( ( x ! , . . . , xm)k =• yj). 

Else 
Generate the facet 

- / ( x ! + . . . + xm) + (1 + m - k)(Vl + ... + yn) > 1(1 - k). 
If m > k then 

For all { i i , . . . , i m - i } C { l , . . . , m } , 
call F A C E T ( ( x t l , . . . , x t m _ 1 ) A : => (yu • • Wn)/). 

If / > 1 then 
For all { j ! , . . . , j n _ i } C { l , . . . , n } , 

call F A C E T ( ( x ! , . . . , x m ) j t ^ (yjx,..yjn_, ) / - i ) . 
If m = A; and / = 1 then 

If m + n > 1 then 
For all i G { 1 , . . . , ra} generate the facet x t > 0. 
For all j G { 1 , . . . , n) generate the facet yj < 1. 
If ra + w > 2 then 

For all i G { 1 , . . . , ra} generate the facet xt- < 1, 
For all j G { 1 , . . . , n) generate the facet yj > 0. 

Return. 

3 A n E x a m p l e 

A firm wants to build new plants at as many as three sites in order to make 
as many as three new products. 

• If at least 2 plants are built, at least 2 new products should be made. 

• If any plants are built, product 1 or 2 should be made. 
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• If a plant is built at site 1 or 2, then product 1 or 2 should be made 
only if at least two products are made. 

Let 

X{ = 1 when a plant is built at site i, 0 otherwise. 
y- = 1 when product j is made, 0 otherwise. 

The three rules can be written, 

( z i , £ 2 , ^ 3 ) 2 => (2/1,2/2,2/3)2 (29) 

( x i , 2 : 2 , 3 3 ) 1 => (2/1,2/2)1 (30) 

{xux2)\ [(Vu 2/2)1 => (yi,2/2,2/3)2] (31) 

Rule (29) is already an elementary cardinality rule. We can therefore 
apply the algorithm of Section 2 directly to obtain the following convex 
hull description. The indentation reflects the level of recursion. Redundant 
inequalities and bounds 0 < xx < 1 , 0 < y3; < 1 are omitted. 

- 2 ( x i + x 2 + * 3 ) + 2 ( y i + t/2 + y 3 ) > - 2 

- 2 ( x ! 4- x 2 ) 4- y i + y 2 4- y 3 > - 2 

- 2 ( x ! -f x3) - f y ! + y 2 + y 3 > - 2 

- 2 ( x 2 4- x 3 ) + y i + y 2 + y 3 > - 2 

- x i - x 2 - x 3 + 2 ( y i + y 2 ) > - 1 

- X ! - x 2 - x 3 4- 2 ( y i + y 3 ) > - 1 

-xx - x 2 - x 3 + 2 ( y 2 + y 3 ) > - 1 

-x\ - x2 + y i 4- y2 > - 1 

- x i - x 2 -f- y i - f y 3 > - 1 

-xi - x 2 + y 2 4- y 3 > ~ 1 

- x i - x 3 4- yi 4- y2 > - 1 

- x i - x 3 4 - y i 4 - y 3 > - 1 

- x i - x 3 4 - y 2 + y 3 > - 1 

- x 2 - x 3 4 - y i 4 - y 2 > ~ 1 

- x 2 - x 3 4- y\ 4- y 3 > - 1 

- x 2 - x 3 4- y2 + y 3 > - 1 

The 9 inequalities at the lowest level of recursion represent the clauses in 
the CNF expansion of (29). The complete convex hull description therefore 
requires only 7 inequalities in addition to those that would be used in the 
conventional representation of (29). 

Rule (30) is also an elementary cardinality rule and has the convex hull 
representation, 

20 



+ yi + V2 > o 
-*2 + yi + 2/2 > o 
- ^ 3 + y\ + 2/2 > 0, 

which is the same as the conventional CNF representation. 
We must use the algorithm of Section 1.2 to put rule (31) in cardinal

ity normal form. This yields the conjunction of the following elementary 
cardinality rules. 

( s i , * 2 ) i => tt (32) 

(yu 2/2)1 => (^1,^2 ,2/3,^1,^2)2 (33) 

u>i => -it* (34) 
w2 => (35) 
21 => y i (36) 
^2 =» 2/2 (37) 

Rule (32) has the convex hull description, 

- x x + u > 0 
- r 2 + u > 0 

Rule (33) has the description, 

- 2 y ! + zi + *2 + 2/3 4- u>i + w 2 > 0 
-2/1 4- an + z2 + 2/3 4- u>i > 0 
- y i + z\ 4- *2 + y3 + w2 > 0 
- y i + * i + ^ 2 + wi + > 0 
- y i 4- 2:1 4- y3 4- Mi 4- w2 > 0 
- y i 4- * 2 4- yz + ti;i 4- w 2 > 0 

- 2 y 2 4- * i 4- z2 4- y3 + w i + u>2 > 0 

- y 2 4- z\ + z2 + t/ 3 + u;i > 0 

- y 2 4- 2:1 4- z2 + t/3 - f w 2 > 0 

~y2 4- -2ri + *2 + t^i 4- w2 > 0 

- y 2 4- * i 4- y3 4- u>i 4- w2 > 0 

- y 2 4- z2 + t/3 -I- wi + i u 2 > 0 

Thus a full convex hull description adds only 2 inequalities to the 
ventional CNF description. 

Rules (34)-(37) respectively have the descriptions, 

— W\ — u > —I 
—w2 — u > —\ 
-z\ 4- y 2 > 0 

-Z2 4- y 2 > 0 
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