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Software Voting in Asynchronous 
NMR Computer Structures 

1. Introduction 
Modern computer systems arc being used in environments that require increased reliability due to the 

nature of the tasks being performed. For example, future avionics computers will replace the mechanical 

control of present aircraft. 'The computers will make thousands of decisions per second concerning the 

stability of the aircraft. The system must be designed so that the computer will never fail in flight, since the 

stability decisions can not be made by the pilot. In many cases, the required reliability is being obtained by 

replicating hardware components, and comparing the outputs of the components to determine the correct 

result. The replication allows the system to tolerate failures in components without affecting the system 

reliability. 

One technique used to improve the system reliability is to replicate the hardware an odd number of times, 

and to compare the outputs of the modules to determine whether a majority of the modules agree. If a 

majority do agree, then this output is assumed to be the correct output. fITic comparison to determine a 

majority is called voting. The system that performs the comparison on the module outputs is called a voter. If 

the hardware is replicated three times, then the system has Triple Modular Redundancy (TMR). The 

generalization of TMR is N-Modular Redundancy (NMR), in which each module is replicated N times, and 

all N outputs are voted on to determine die correct output. Figure 1-1 shows a TMR system with four 

modules. The total number of modules and voters required for TMR is 7>-(number of modules + 

number of communication paths). 

Triple Modular Redundancy is a useful technique to mask failures in a system. One module can fail 

completely in a TMR system and the output of the system should not be affected. The number of redundant 

modules can be increased if the system reliability must be increased. The system reliability can therefore be 

increased by simply increasing the redundancy. The cost of this replication can be high. The ideal system 

performance of N processors is N times the performance of one processor. In a NMR system, though, all the 

processors arc performing the same task, so the throughput is the same as for one processor. In fact, the 

performance will be worse than that of one processor because some overhead will be associated with the 

voting, thereby reducing the system throughput. The added reliability is exchanged for increased system cost 

and decreased throughput. Some applications require extremely reliable systems, so the only option is NMR. 

Many modern computer systems use some type of replication to increase reliability. 

In N-modular-redundancy (NMR), the redundant modules are often computer-memory pairs. The 
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# Processes = 3 x ( # Nodes + # Arcs) 

Figure 1-1: Non-redundant Four Module System and Associated TMR System 

computers communicate information to be voted on either by hardware voters [11], or by software voters 

running on the processors [4] [9]. Software voting has a number of distinct advantages over hardware voting, 

one of which is the flexibility of the voter. For example, the Software Implemented Fault Tolerant computer 

(SIFO [3], has a voter that can handle a 5-way vote, or a 3-way vote. The system can determine which voter 

to use depending on the number of processors available. The software voter routine can be modified as the 

system changes in order to improve the system reliability. Other reliability improvement features such as 

dynamic reconfiguration can be easily implemented in software, and have been shown to improve system 

reliability [6] [14]. Most of the research on NMR redundancy has made the assumption that the modules are 

synchronized [1]. Since it is very difficult to force processors to be tightly synchronized, this assumption does 

not hold for a large class of systems. Some researchers are beginning to realize that asynchronous systems 

offer distinct advantages in reliability [9] and simplicity. The problem remains though of how to design an 

asynchronous system that meets the reliability objectives. 

A general purpose multiprocessor called Cm* was used to experiment with NMR computer systems [5]. 

Cm* has an operating system named Medusa that provides primitives for experimentation, and an 
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experimental interactive synthetic workload generator that provides an environment conducive to monitoring 

Cm* performance. Cm* is a 50 processor (DEC LSI-lls) multiprocessor connected by a hierarchical, 

distributed switching structure. Each processor is connected to a local memory to form a Computer module 

called a Cm. The processor is connected to the local memory by a switch called an Siocal. The Cra's are 

connected together into clusters by a high speed bus. A high speed microprogrammable bus controller, a 

Knrap, controls access to this packet switched bus, as well as providing access to other Kmaps, and their 

associated clusters. The Kmaps are each connected to other Kmaps by tv/o intercluster busses. All Cms can 

access all the memory in Cm* through the Slocals and die Kmaps. The memory reference hierarchy consists 

of local references, intracluster references, and intercluster references. 

The Medusa Operating System is a message based, object oriented operating system designed to exploit die 

architecture of Cm* [10]. It was designed with modularity, robustness, and performance in mind. The 

functions of the operating system are partitioned into Task Forces which are sets of closely cooperating 

parallel processes. The processes can communicate via messages passed through a communication medium 

called a pipe. Medusa provides for Conditional and Unconditional Sends and Receives. All data in Medusa is 

stored in system defined objects. Objects can be accessed through private or shared descriptors. The Kmap 

and the Siocal cooperate to convert a descriptor into a physical address. Operating system functions such as 

message communication, address mapping, interrupt handling, activity multiplexing, and mutual exclusion 

are performed by the Kmap microcode. 

The synthetic workload generator (SWG) [13] is a tool ainning under Medusa that provides a controllable, 

interactive experimentation environment for Cm*. The SWG provides a user interface that allows interactive 

experimentation. The SWG allows the user to vary experimental parameters at runtime, so that experimental 

data can be collected easily. All experiments for the SWG are represented as a data flow graph. Processes are 

represented as nodes of the graph. The communication of information is over arcs on die graph. Buffers are 

used to store messages being passed between nodes. The synthetic workload is made up of repetitions of 

operations from a library of actions. The actions are designed to simulate real operations. Various control 

structures supported by the SWG facilitate the starting and stopping of experiments. The SWG and the data 

flow model were used in the experiments described in Sections 4 and 5. 

This paper is divided into six sections. Section 1 provided an overview of the field of highly reliable 

systems, a justification for the work presented, and an overview of the research vehicle and tools used during 

the research. Section 2 introduces the concepts involved in voting, including synchronization issues, voting 

frequency, and voted data. Section 3 presents the experimental paradigm. The types of voters used in the 

experiments are also described. A series of experiments that describe die voting overhead in a TMR software 

voting system are presented in Section 4. A theoretical framework is developed for a voting overhead model, 
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and experimental results arc compared to results predicted by the model. Section 5 presents experiments 

designed to explore how closely synchronized voting systems must remain. Variation in process execution 

speed is used to determine how much asynchrony is acceptable in NMR systems. The results of the 

experiments yield some guidelines for designing asynchronous NMR systems. An analysis of die 

synchronization data is also presented. Equations are developed that can predict the amount of variation in 

process execution speed that is acceptable for reliable system operation. A queuing dicory model is 

developed to describe the votcr-subtask relationship. The results predicted by the model arc compared to the 

actual experimental results. 

2. Voting Concepts 
This section is concerned with giving an overview of voting systems and with presenting the issues involved 

in voting. Triple Modular Redundancy (TMR) was first proposed in 1956 by von Neumann [15]. Since that 

time, TMR systems have been built and evaluated [2] [7] [14] [16] [17]. Techniques have been used to improve 

the reliability of TMR systems, and some of diesc techniques arc presented below. In addition, some new 

concepts that relate particularly to software voting arc presented. 

The design of redundant systems is intended to improve their reliability by replicating a module N times, 

and comparing the outputs of the N modules. The comparison should take the N module outputs, and choose 

the most likely output as the actual output. The comparison has taken many forms over the years, but a 

simple majority vote is the most popular. A majority ([N/2 +1 J) of the modules must agree on a value for a 

particular output. Since most computer systems use a binary representation for the data, the voter simply 

needs to compare the data bit-by-bit. 

In an NMR system, if only one voter is used to determine the correct module output, then the failure of the 

voter becomes a catastrophic event. The voter is called a single point of failure. If the voter, however, is also 

replicated N times then the single point of failure has been removed. The systems considered in diis report 

are all NMR with no single points of failure, generally with N=3 (TMR). Systems that are TMR with no 

single points of failure can mask a single permanent, intermittent, or transient error in cither the voters or the 

modules. 

If the modules to be replicated are software modules, then each module can execute on its own processor, 

concurrent with the execution of other modules. The replicated modules that are executing the same task are 

not necessarily executing at the same time. The replicated modules will have completely separate code and 

data, so they can be called space redundant. In addition, the modules can execute at different times, which is 

called time skew redundancy. If the system uses time skew redundancy, then the system may be able to 
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tolerate multiple failures at one time, since the failures will affect different computational tasks. In a TMR 

system, tiircc simultaneous failures could be tolerated if the system was both time skew and space redundant, 

and no more errors occur until die voters correct the three faults. 

In order to vote on the outputs of modules, the voters must have some knowledge of when the outputs 

become valid. Since die modules may have different clocks, die voters must be able to wait for modules to 

prepare outputs, before voting on diem. Rvcn if die modules have the same clock (which would be a single 

point of failure, so should probably be avoided), clock skew and differences in logic delay would introduce 

die need for die voters to wait for the outputs to all become valid. The wait time could be implicit, as in SIPT, 

such that the vote occurs at a predetermined time (if the module cannot produce the output in time, then the 

vote proceeds without that output). Conversely, the wait can be explicit, as in the Cm* voting experiments 

presented in Sections 4 and 5, such that the voter waits for a signal from die module indicating die output's 

validity. In the case of explicit waiting, the voter should not wait indefinitely for the module to signal, since 

the module may fail in such a way as to never produce the signal. The voter should, in this case, have a 

time-out to prevent indefinite waiting. Two types of time-outs arc possible. A module external to the voter 

could interrupt the voter after a period of time. This requires a clock to determine the time, so is called a 

clock driven time-out. The second possibility is an event-driven time out. A number of possible events could 

trigger a time-out, but in the experiments in Sections 4 and 5 the time-out occurs after the voter receives n 

messages from one module without receiving any messages from another module. 

When the module outputs become valid a voter can determine the majority, and generate its own output 

called the voted output. The point in time when the module outputs all become valid is called a point of 

synchronization, since the system will be synchronized with respect to the module outputs at this point in 

time. The voter must wait for at least a majority of the outputs before it can decide on the correct voted 

output, so at least a majority of the modules must reach the synchronization point before the vote. If the voter 

docs not wait for all the modules to generate outputs , but only a majority, then this is called a point of partial 

synchronization. 

The amount of work done between votes can be small (a few instructions) or large (thousands of 

instructions). The trade-off in determining die voting frequency is throughput versus reliability. As the 

frequency of voting is increased, the overhead due to voting becomes greater. This decreases the throughput, 

but will increase the reliability. In general, a TMR system can tolerate one error between votes. However, 

there is a probability that two errors will occur between votes. The assumption will be made that the system 

can not recover from two such errors. Given an error rate, the system should vote frequently enough so that 

no two errors arrive between votes. A task to be performed will take longer to execute as the granularity of 

voting is decreased, due to the overhead introduced by each vote. The probability of two errors occurring 
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between votes will decrease as die granularity decreases, until the voter execution time dominates die total 

execution time. Any further decrease in granularity will have little effect on the probability of two errors 

occurring between votes, but die total task execution time will continue to increase. Therefore, die 

probability of a system failure sometime during the task execution will increase. As the voter takes a larger 

percentage of the total execution time, the voter becomes the module that is more likely to fail. The system 

reliability decreases if the granularity is decreased past this point. 

There arc many issues involved in choosing the amount and kind of data to be voted on by the voter. One 

of the first decisions made in designing a NMR system is to choose the data to be voted on. Systems can be 

designed diat would vote on the actual data used in a module. The actual data would include processor state 

that is unimportant to the value of the outputs. For example, if a program is relocatable, then the program 

counter may be different for each processor. The results produced by the program will, however, be identical. 

In a system that votes on actual data, the programs being executed must all be placed in the same memory 

space, and die programs have no flexibility in independently choosing any parameters. A more flexible 

system might allow modules to act independently, only voting on die parameters that affect the outputs. 

Once the data has been passed to die voter, the voter has some options on how to determine the majority. 

The voter could choose to compare bits, words, or an entire array. The type of data to be compared is called 

the data granularity. The choice of data granularity makes a difference in system reliability. If the data is 

voted on bit-by-bit, it is guaranteed that a majority will be found. There arc only two possible values and one 

will be the majority. If a majority of the bits arc in error dien the voted value will be incorrect. If a larger 

data granularity is chosen, for example an n-bit word, then the voter can reach three decisions. All three can 

agree on the value, two can agree on the value, or all three can disagree. In this case, the dctectability of errors 

is improved, since the probability of having two incorrect words that agree is less than having two incorrect 

bits that agree. Word voting is less likely to produce an incorrect answer which may cause catastrophic errors 

in other modules. The voter can detect when all three disagree, and a recovery routine can decide how to 

handle the faults. Even though the voter provides no answer, this is preferable to providing the wrong 

answer. If the data granularity is increased again, then the probability that two incorrect data values agree is 

decreased. If an entire array is compared to two other arrays, the probability of having two faulty but equal 

arrays is smaller than the probability of having two faulty but equal words. The array could contain two 

correctable errors, yet the voter would not correct cither because the data granularity is large. The ideal value 

of the data granularity should be when the probability of having two correctable errors in the data equals the 

probability of having two incorrect data values agree. A small data granularity allows the voter to correct 

many errors, and a large granularity reduces the probability of allowing incorrect data to pass the voter. A 

voter could obtain better detcctability and correctability by using a small data granularity to correct errors and 
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a large data granularity to detect errors. This voter would, however, have a greater execution time than a 

simple voter. 

Generally, software voters do not vote bit-by-bit, since processors arc designed to handle bytes or words 

better than bits. If the three words passed to the voter arc X, Yt and Z, then die combinatorial majority vote 

is defined as: 

C=X- Y+X-Z+ YZ 

If the values of X, Y, and Z arc words, then a bit-wise vote will proceed in parallel for all n bits in the word. 

The generation of the voted data value with this method takes just three bit-wise AND operations and two 

bit-wise OR operations. The comparison voter that is popular in many software voting systems requires at 

least three comparisons, and two branches. The combinatorial majority voter has straight in-line code that 

could be pipelined on a special purpose machine to improve performance, where the comparison voter can 

not be pipelined. The combinatorial majority voter therefore requires less execution time than the classical 

comparison voter, and increases the probability of correcting independent errors. 

In addition to choosing the data granularity, other parameters of the data must be chosen. It may be 

desirable to vote on some abstract data structures, to determine if the data they contain is equal. Some 

interesting problems arise, due to the nature of some data structures. For example, a linked list data structure 

may be passed to a voter by three modules. The voter should vote on the data in the linked list, but should 

not vote on pointers to data items. The lists should have the same structure, and the same data, but not 

necessarily the same pointers. This procedure requires an intelligent voter, with knowledge of linked lists, and 

with knowledge of the storage format. Other interesting data structures, such as queues or stacks could be 

used as inputs to the voters. Abstract data structures arc commonly used in high level programming 

languages, so the voters should be able to handle them. An NMR system should attempt to accommodate the 

programmer, not the other way around. Although no systems provide abstract voting yet, as more 

applications arc written for NMR systems, the programmers are going to discover the advantages of having 

voters that can handle abstract data. 

3. Experimental Paradigm 
The two types experiments performed use a similar paradigm. The paradigm can be viewed at the highest 

level as the execution of a single task. The task to be performed is broken into equal subtasks. Each subtask 

is executed in order, with data being passed from one subtask to the next. It is assumed that each subtask has 

the exact same execution speed, and that only one word of data is passed from one subtask to the next. Since 

the subtasks all have the same execution speed, the task can be simulated by a loop that executes n times with 

a synthetic workload that takes subtask/ time inside the loop. Figure 3-1 shows the partitioning. Each subtask 



Experimental Paradigm 

Subtask 1 

Subtask 2 
f 

Subtask i 

Subtask n 

Figure 3-1: Experiment Task Partitioning 

Figure 3-2: TMR Experimental Structure 

> triplicated, and a vote occurs on the data passed between subtasks, yielding the structure in Figure 3-2. 

The triplicated subtasks all perform the same function. They will calculate the ith data value, send a copy of 
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the data to each voter, and receive the voted value of the data from the associated voter. The new data value 

is then used in calculating the ( / + \ ) s t data value.1 The time each subtask takes to calculate the ith data value 

is an experimental variable. All of the triplicated subtasks will have a variable execution time. This time is set 

by the granularity of the subtask, which is defined as the number of operations executed between votes not 

including the overhead due to voting. An operation is four LSI-11 instructions. The granularity of each 

subtask can be set before an experiment. 
• 

The voter subtask is also triplicated, as shown in Figure 3-2. Each subtask sends each voter two data words. 

The first data word is a sequence number to associate data with an iteration. The second word is the data to 

be compared by the voter. When a voter has received data from a majority of the subtasks (two), it checks to 

see if the data values agree. If so, then a majority vote has been achieved, and the data value is sent to the 

subtask associated with this voter. If they do not agree, then the voter waits for the data value from the third 

subtask to determine the correct value, which is sent to the associated subtask. Each voter and subtask is 

assigned its own processor, so each voter proceeds with the voting in parallel with the subtask execution. 

Three types of voters are used in the experiments. The first voter, called the simple voter, is a 

synchronizing voter. It requires the subtasks to reach a full point of synchronization after each subtask 

iteration. It has no internal storage of data from one iteration to the next. The second voter, called the 

internal queue voter, has an internal queue that allows it to handle data from different iterations. The 

subtasks arc not required to fully synchronize after each iteration. This voter has been optimized for high 

execution speed in the average case and therefore has the shortest execution time. The tliird voter, called the 

sequence number voter, uses the sequence numbers that are sent by the subtasks, so that the voter can order 

data based on the subtask iteration. This voter has the longest execution time. All three voters were designed 

to allow easy expansion to N-way voting. The algorithms for the voters arc presented in Appendix I. 

As long as the subtasks have similar execution speeds, die voter should receive the Ith iteration from each 

subtask at approximately the same time. The sequence number voter and the internal queue voter do not 

require a full point of synchronization, so if one subtask is slower than the other two then the voter may 

receive the ( / + Y)st data value from a fast subtask before the slow subtask sends the ith data value. Since the 

voter now has data from two different iterations, it must be able to distinguish which data is associated with 

which iteration, and from which subtask. A voter queue is used to maintain this database. Each row in the 

queue contains information about: 

One can imagine wanting to pass more than one data value from one subtask to the next This can be done with a more complicated 
voter. The entire state of a processor (or selected parts) could be passed as data, allowing a faulty processor to recover from a transient by 
accepting the voted state as its new state. Adding this capability to the experiments would complicate them without yielding additional 
information about the voting. 
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1. which iteration tliis row represents. 

2. whether data has arrived from each source subtask. 

3. what die data value is from a source subtask (if it has arrived). 

The column the data is stored in implicitly identifies die associated destination subtask. 

The sequence number voter then scarchs for an iteration number in die voter queue to find the row where 

the data for this subtask belongs. If the iteration number is not found in the queue, a row for this iteration is 

placed in the queue and the data is placed in die row. When all of the data values for a particular row have 

arrived, the voter reports any errors found while voting and then removes the row from the queue. 

The voter queue has a finite maximum length. If one subtask has not sent any data to the voter in the same 

period in which the other two subtasks have sent many data messages, the voter queue could conceivably 

become full. The voter handles a full queue by removing the oldest row (associated with an iteration for 

which all the data has not arrived) from the queue and adding a row associated with the new iteration 

number. Errors arc reported on the row removed from the queue. The maximum length of the queue can be 

large, so that the queue will never become full in experiments. 

4. Voter Overhead Experiments 
In any N-modular redundancy (NMR) system, the amount of useful work done will be less than the 

corresponding non-replicated system. The voting that is done in a NMR system will introduce some 

overhead that will reduce the system throughput. The overhead will be made up of many different 

components, including the communication time between modules and the time required by the voters to 

receive messages and find the majority. In this section, voting overhead is discussed and a model is developed 

to describe voting overhead. 

In order to develop a model for voting overhead one must determine a method for representing overhead, 

and must determine what parameters affect the overhead. One possible representation for overhead is in 

additional operations executed per unit time (operations/second) due to redundancy. The actual throughput 

is the number of subtask operations performed per unit time. As the actual throughput goes down, the 

overhead goes up. Mathematically: 

Overhead^ Non redundant Throughput-- Actual Throughput (1) 

In this section, the actual throughput is determined, and the overhead can be calculated from the above 

equation. The non-redundant throughput is a constant for a given system. 
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Each subtask is executing an instruction sequence itcrativcly. Since each iteration is identical, die total 

overhead is the number of iterations times the overhead for one iteration. A subtask performs work for each 

iteration and the amount of work is called the granularity, (7. Since the total amount of work to be performed 

is a constant, H7, dicn die number of subtask iterations, /, is: 

/= W/G or W=IG (2) 

In other words, if die total work is 100 units, and 5 units are performed per iteration, dicn 20 iterations must 

be performed. 

As an experiment is performed, the total execution time is measured. The execution time, / 7 ; is the time 

from when a subtask begins the first iteration until die subtask finishes die last iteration. The Throughput, T 

therefore is: 

T= W/tT (3) 

The total time, /y, can be expressed as: 

/y= //- f l V C- Total number of instructions (4) 

where / / - f l v e i s the average instruction execution dme, and 

Total number of instructions— /-(a- G+ k) (5) 

where a is the number of instructions executed by a subtask when G=l and k is the total overhead per 

iteration, including voting. Therefore from Equations 4 and 5 

tT='i-aveHa-G+k) (6) 

From Equations 2 and 3, 

T = W 
ti-aveH*G+k) 

- tHave\l+k/G) . (7) 

The throughput, then, is inversely proportional to the average instruction execution time, the number of 

instructions per subtask iteration, and die number of overhead instructions over the Granularity (k/G). The 

values of /c, / / - f l v e , and a arc experimental constants, so we can plot the throughput versus the granularity. For 

typical values of K / / - f l v e , and a (*=800, / / _ a y e =6.5/ i$ , 0 = 4 ) , the curve is shown in Figure 4-1. 

The previous overhead model is both general and accurate. Although selection of the value of k (the 

subtask overhead per iteration) is difficult, a careful approximation to k can be found. 

Cm* was used as the experimental vehicle. The Voter and Subtask software routines were triplicated and 

each placed on their own processor. The number of iterations, /, and the granularity, G, were varied during 
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+ Predicted Throughput, k = 800 

1 4 16 64 256 1024 4096 16384 
Granularity (SubtaskUsage) 

Total Throughput versus Voting Granularity 

Figure 4-1: Predicted Voting Overhead 

\hc experiments. The execution rime, tj\ was recorded for each set of values of / and G. The total work done, 

W, was kept constant by chosing a value of / and calculating the value of G. The value of W was chosen to be 

16.384 operations. The throughput was calculated for each execution time. All three types of voters described 

previously were used in this experiment. From the overhead model is can be seen that changing the type of 

voter should only affect the value of k in Equation 7. The throughput versus the granularity is plotted for 

various voter changes in Figure 4-2. Even when the voter is changed significantly, the change in throughput 

seems to be small. 

The model is extremely accurate in predicting the overhead in a system. One problem with the model, 

hinted at earlier, is the difficulty in finding values for the constant k. The value should be predictable by 

adding the instruction execution times in the Subtask and the Voter, but some of the instructions used do not 

have predictable execution times due to factors like system load. In addition, some of the voting and subtask 

execution are performed in parallel, so instruction counts would give an upper bound on k, but not an 

" accurate, value. The amount of parallelism is difficult to quantify without seriously perturbing the 

experiment. Therefore, the value of k used in Figure 4-1 was estimated using experimental results. The 
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Granularity (SubtaskUsage) 
Total Throughput versus Voting Granularity 

Figure 4-2: Actual Voting Overhead for Various Voters 

comparison of the predicted and actual curves, however, loses credibility since the values of k for the 

predicted curves must be experimentally determined. 

The value of k can be given an upper bound for the non-error case. The upper bound will change as the 

voter changes, but for any given experiment the upper bound can be determined. For the optimized voter 

and subtask experiment, this upper bound has been found by adding the instruction execution times for the 

subtask overhead and the voter time. The actual value of k will be less than this time because the voter will be 

executing simultaneously with the subtask. An upper bound on k is approximated by: 

b _ b _L b 

*max ~ *s-max * ^v-max 

where ks-max is the maximum subtask contribution to k and kv-max is the maximum voter contribution to k. 

By analyzing the programs written for the experiments, it is found that: 
ks-max = 68 instructions + 3 Sends +1 Receive 

kv~max=237 instructions+3 Conditional Receives+ 1 Send 

The execution times for sends and receives on Cm* Medusa are given in [12]. The average execution time for 
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LSI-11 instructions in the voter and the subtask was determined to be 6.5JLLS. Using this information, kl 

determined. 

^ - m f l j t ^ 3 3 3 LSI-11 instructions 

£ v _ O T f l J f « 4 7 1 LSI-11 instructions 

k<333 + 471 = 804 LSI-11 instructions 

Similarly, the lower bound can be approximated by: 

ks~mjn = 6& instmctions+3 Sends + 1 Receive 

(8) 

& v _ m m = 127 instructions-^! ConditionalReceives+ 1 Send 

k-min = ^ y - miw ^s— miri) 

k>333 LSI-11 instructions (9) 

Equation 9 assumes maximum simultaneous execution of the subtask and the voter. The experiments with 

the optimized voter yielded values of k between 350 and 712. These experimental results fall between the 

minimum and maximum theoretical values calculated above. The bounds should be recalculated if tine voter 

or subtask is changed. Figure 4-3 compares the minimum and maximum predicted curves, and an 

experimental curve (for the optimized voter). One result that the model docs not take into account is that the 

value of k changes as the Granularity changes. During the optimized voter experiment, the value of k varied 

by over 350 instructions. This is due to the change in load on the Kmap processors as the Granularity 

changes. The model assumes that the value of k stays constant throughout the experiment. In spite of these 

deficiencies, the overhead model docs give accurate predictions of expected voting overhead. 

5. Voter Queue Length Experiments 
In an asynchronous NMR computer system, the processors will have their own clocks and will make little 

or no effort to synchronize the clocks with each other. The random variation in clock speed and the 

difference in process execution patterns will cause differences in the arrival times of the data to be voted on 

by the voters. The voters should be able to receive data asynchronously so that they can vote on the data 

when a majority of the processes have sent it. The voters must be able to store message values so that one 

processor can be calculating the 10th step in a procedure while another processor can be working on the 12th 

step. Eventually both processors should finish the procedure but as long as no data dependencies exist, one 

processor should not be forced to wait for another to finish a calculation. Even when data dependencies do 

exist, when a majority of the processors agree on the value of a step, there is no reason to wait for the rest of 

the processors to finish before continuing with the next step. In fact, waiting can reduce reliability if a 
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Granularity (SubtaskUsage) 
Total Throughput versus Voting Granularity 

Figure 4-3: Comparison of Actual and Predicted Voting Overhead 

processor is faulty since it may never respond to the voter. There should, however, be a limit to the amount a 

processor should be allowed to fall behind before it is considered faulty. The random variation may cause 

problems if one processor becomes hopelessly behind due to the variation. Experiments have been 

performed to discover the nature of how variations in process execution speed affect the amount a process 

falls behind the others. The effects of variation in process execution speed, as well as variation of the number 

of instructions executed between votes have been examined. 

Three experiments have been performed. Each is designed to explore a different area of the 

synchronization problem. Experiment one has a single process execute more instructions for every step in the 

experiment. This process is continuously slower. This experiment shows that the voter overhead increases as 

the slow process falls behind. Experiment two has one process slower for a period, followed by being faster 

for a period. Experiment three has one process slower for a period, followed by a period of normal speed. 

This experiment is realistic for many systems, since processes are likely to fall behind in a system but are not 

likely to speed up. 
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5 . 1 . Exper iment One 

The first experiment performed was designed to measure the ability of die voter to synchronize the 

subtasks when one subtask is continuously slower than die other subtasks. The frequency of voting (or 

granularity of the subtasks) was varied, and the execution speed of one subtask was varied. The queue lengths 

of the voters were recorded as a measure of how far the slow subtask fell behind the two faster subtasks. The 

slower subtask performed 10% to 50% more operations in calculating the next value. The slower subtask 

represents a process that requires more execution time due to an instruction retry, or due to an interrupt that 

it must handle. In dicsc situations, one subtask will be temporarily slower; but as these experiments show, it 

would be ill-advised to design a system where one subtask was continuously slower (this experiment shows 

design constraints for systems that have one continuously slower subtask). Each voter recorded the length of 

the voter queue every time a new iteration was received. The queue length information was sent as a message 

to a process that stored the data in a file. The recording of the queue length added some overhead to the 

voter, but each voter paid the same cost. 

The queue length was plotted versus the iteration number for two different granularities and various 

subtask degradation as shown in Figures 5-1 and 5-2. For granularity equal to 1024 operations, one subtask 

can be up to 10% slower and the queue length stays at one. This implies diat the voter overhead is great 

enough so that die differences in speed arc masked. For larger differences in speed, the queue length grows 

to a value and then levels off. The queue length is bounded due to an increase in voter execution time as the 

queue length increases. The voter must search for the iteration number in the queue and the search proceeds 

linearly. The subtask that is slower will not pay this overhead cost since it has n-l messages waiting for 

processing, where n is the queue length. 

As the granularity increases, the queue length grows more rapidly. With granularity equal to 1024 (Figure 

5-1), the 10% to 40% additional operations curves appear to be bounded but the 50% additional operations 

curve is not bounded. The curves for granularity equal to 16,384 (Figure 5-2) do not appear to have a 

bounded queue length. This is due to the fact that the voter overhead takes a smaller percentage of the total 

execution time for the larger granularity cases. The voter overhead is a fixed value for a specific queue length. 

When the slower subtask takes approximately the same amount of time as the voter, tfien the voter overhead 

is significant in comparison to the subtask execution time. While the normal subtasks are waiting for the 

voter to generate a voted data value, the slower subtask can be calculating a data value for one of the old 

messages (when the queue length is greater than one, the slower subtask will have data values to calculate for 

all the messages in the queue). 
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5 . 2 . Exper iment T w o 

The second experiment is a variation on the first experiment and was designed to explore the synchronizing 

nature of voters more fully. In diis experiment, one subtask is slower than the other two subtasks by a 

percentage for a period of time, then the same subtask is faster dian the other subtasks for the same period. 

The period was chosen to be 20 iterations. For example, subtask A will perform 10% more operations in 

calculating the first 20 data values, followed by performing 10% fewer operations for die next 20 iterations. 

Subtask A will therefore spend 10% more time executing the first 20 iterations than the second 20 iterations. 

While the subtask is operating slower, the queue length should behave exactly die same as in experiment 

one. Once the subtask is faster than the others, this subtask should quickly catch up resulting in a decline in 

the queue length. The rate of decline in queue length should be greater than the rate of increase, since when 

the queue has length greater than one die subtask being varied docs not have to wait for the voter to finish 

before beginning the next data value calculation. 

The first plot of queue length versus iteration number with granularity equal to 1024 (Figure 5-3) shows the 

expected result. The queue length increases when subtask A is slower and the rate of increase is die same as 

diat from experiment one. As soon as subtask A begins executing fewer operations per iteration, the queue 

length declines rapidly, reaching queue length equal to one. If die granularity is increased to 16,384 (Figure 

5-4) then the queue length is not restored to one, and there is a net increase in the queue length over dme. 

The queue length increases because subtask A will be spending more time executing the long calculations. 

5 .3 . Exper iment T h r e e 

The third experiment is similar to experiment two, except it represents a more realisdc class of 

synchronization problems. A subtask that is performing a calculation may experience a temporary slowdown, 

followed by a period of normal behavior such as a subtask which has to perform a recovery routine because of 

a bus error or has to perform a one time operating system task. Is the processor running the subtask doomed 

to stay behind, or will it eventually catch up even though it always takes as long to calculate a new data value 

as the others? As soon as a subtask falls behind, it no longer pays the overhead cost since it has messages 

queued up waiting for processing. This fact would imply that a subtask can catch up, and the rate at which it 

catches up is the incremental voter overhead cost per iteration. 

The experiment can be described as follows: one subtask will do additional operations (10% to 50%) for 20 

iterations followed by a period of normal behavior (performing the same number of operations as the other 

subtasks). The results of the experiment are shown in Figures 5-5 and 5-6. It can be seen that during the 

periods of normal operation for all three subtasks, the queue length declines, and given a long enough period 
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Figure 5-3: Granularity equal to 1024, one subtask slower half the time, faster half the time 

30 

c 

Le
 

25 

ue
 

20 
O 

15 

10 

5-

Granularity = 16K + / - 1 0 % speed variation every 20 votes 
Granularity = 16K + / - 2 0 % speed variation every 20 votes 
Granularity = 16K + / - 30% speed variation every 20 votes 
Granularity = 16K + / - 40% speed variation every 20 votes 
Granularity = 16K + / - 5 0 % speed variation every 20 votes 

120 140 160 180 200 
Time (in # of votes) 

Voter Queue Length vs Time 
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of normal behavior would reach one. The rate of decline of queue length during normal subtask behavior 
indicates the effect of voter overhead on the subtasks. 
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5.4 . Exper imental Conclusions 

The three experiments performed give a clear picture of a synchronization model for the equal subtasks 

paradigm. There appear to be two factors involved in the model. The factors are: 

1. There is a minimum voter overhead that is due to the time required by the voter to receive a 
message, handle the data, and vote on the data. The subtasks that have a queue length of one 
must pay this overhead cost every iteration of the experiment. 

2. The overhead cost increases as the voter queue length increases due to an increase in the data 
handling cost. This factor would indicate that for a long enough queue, the voter could mask any 
difference in process speed. For practical queue lengths, though, the increase in voter overhead 
masks only some of the subtask speed variation. 

The synchronization experiments can give some design principles for TMR asynchronous voting systems. 

These principles can be applied to optimize die voter queue length, to choose a subtask granularity, and to 

determine the amount of process speed variation allowed in a design. Proper application of the principles will 

lead to a design that will have a bounded queue length for all possible variations in process execution rate. 

The principles can be summarized as follows: 

1. Smaller granularity subtasks have a higher probability of having a bounded queue length. 

2. As subtask granularity increases, the random variation in process speed becomes increasingly 
important in ensuring a bounded queue length. 

3. Greater voter overhead allows a greater variation in process execution rate. This yields an 
interesting trade-off in voter design, since a faster voter process will increase system throughput 
but will decrease the amount of variation permitted in process execution rate. 

These results can be generalized for synchronous voting, as well as asynchronous voting. If the maximum 

voter length is fixed at one, then die system is synchronous like SIFT [2] [3] [4] and C.vmp [8] [11]. Both of 

these NMR systems use a synchronous voter with queue length of one. C.vmp has a hardware voter with a 

built in wait feature. The length of die wait corresponds to the voter overhead in tiicse experiments. SIFT 

uses fixed scheduling, so a vote proceeds when the next time slot begins. The voter overhead corresponds to 

the design margin in the fixed schedule (the time between the end of the process execution, and the end of the 

time slot). 
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5.5 . Synchronizat ion Model ing 

This section will present a model of die voter queue length based on granularity, percent difference in 

subtask execution speed, and time. The model is compared to the actual experimental results, but first the 

relationship between the model and the TMR experiment should be explained. 

5 . 5 . 1 . Queue Length Models 

The TMR system explained in the previous section has queues diat contain the messages being passed 

between the subtasks and die voters. Each voter has three queues in which to receive messages, and each 

subtask has one queue in which to receive messages. The subtask message queue can be viewed in the light of 

general queuing theory. The queue will have a birth rate, X, and a death rate, /x. Basic queuing theory 

assumes diat both X and /x are constant. Also, the birth rate must be less than die death rate so diat die queue 

length will be bounded. The servers of the queue have a utilization of X//x. The utilization will be less than 

one. There arc two problems with using a simple queuing model for voter synchronization. They are that the 

birth rate, X, is not constant and diat the birth rate is not less than the death rate for most of the experiments 

performed (the queue length grows, dicrcforc X is greater dian /i) . In spite of dicsc problems, a queuing 

model can be developed. 

Before a queuing model is presented, some background analysis of the previous section's data will be done. 

Experiment one, in which one subtask was continually slower, will be used in developing the model of queue 

behavior. Each experimental curve in the previous section begins to peak as time proceeds. The queue length 

grows less rapidly as the queue length increases. The queue length appears to approach some bound that is 

dependent on the granularity and the difference in execution speed. Some curves have observable bounds. 

The information from all the experiment one curves presented could be summarized if this bound 

information could be collected. If the queue had a maximum possible value, then each curve cither remains 

below the maximum or rises above the maximum. If a curve has a maximum value greater than the 

maximum queue length, then the queue will overflow during the experiment, and is unbounded by this queue 

length. Otherwise, the curve is bounded by die queue length. For three different maximum values of the 

queue length, the bounded regions and unbounded regions are shown in Figure 5-7. In designing a system, 

the maximum queue length can be chosen, and this will determine the acceptable granularities and subtask 

execution speed differences to prevent the queue from overflowing. The curves that determine the regions 

appear to be linear on the log versus log scale. That implies that: 

log2 Granularity + log2 PercentDiJference=constant 

therefore, 

Granularity x PercentDifference— constant'= VoterOverhead 

This result indicates that for a given queue length, the granularity of the subtasks is inversely proportional to 
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Figure 5-7: Summary of Hxpcriment One Data 

the percent difference in processor speed. The constant is a number of operations which is dependent on the 

voter overhead. A first approximation would equate diis number of operations to the voter overhead for one 

iteration. The voter overhead is constant along a boundary separating the bounded and unbounded regions. 

A subtask can be constantly slower by a number of operations (the voter overhead) and still only fall some 

constant number of iterations behind the other subtasks. Next, the value of the bound can be determined for 

any granularity and percent difference. 

From the experimental data, the value of the voter overhead per iteration (the number of operations slower 

one subtask may be and not fall further behind) can be plotted against the bound on the queue (the 

maximum queue length). Figure 5-8 shows the data. A linear least squares fit was determined for the data. 

This equation can predict the maximum queue length for a given granularity and percentage difference in 

subtask speed. The equation is: 

MaximumQueueLength(Af) = 0.0457- VoterOverhead— 4.0 (10) 
or 

VoterOverhead=2L0-M + 922 (11) 

Equation 10 is fairly accurate in predicting the bound on the queue, but some of the variation in the data 

remains unexplained. Equadon 11 can predict how much variation in subtask execution speed is allowed 

given a maximum queue length. Note that even when the maximum queue length is zero (a totally 

synchronous vodng system), some variation in subtask execution speed is allowed. In fact, this model 
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Figure 5-8: Maximum Queue Length 

indicates that one subtask can be constantly 92 operations slower and never fall behind. This is the minimum 

voter overhead, the time the voter takes to process two inputs. This overhead is one component of the value 

of k presented in Section 4. 

5 . 5 . 2 . Queuing Theory Model 

A subtask that has a slower execution rate than the two other subtasks will fall behind in executing each 

subtask iteration. For every iteration the slow subtask is behind, the subtask queue will contain a message. 

The queue length will grow as long as the subtask execution rate is greater tiian the voter execution rate. In 

die previous section it was shown that the voter execution time is dependent on the length of the queue. In 

fact, as the queue length grows, the voter takes longer to execute. This will result in a decreasing growth rate 

for the subtask message queue. Now a model can be formalized. 

L= the queue length 
\(L)= the birdi rate, a function of the queue length 
[i = the queue death rate 

if > 1 then the queue grows 

when = 1 then the queue length is in steady state 

X(L) - /x = g(L) = the growth rate of the queue length 
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M— maximum queue length in steady state 
and 

JC= percentage decrease in growth rate for each unit increase in L 

The maximum queue length equation was derived in die previous subsection. Using tliis, the value of x 

can be determined. At the start of each experiment, the length, L, will be zero. So, 

£l) = xM when L = 0 

This model indicates that the initial growth rate is only dependent on the maximum queue length, and a 

constant percentage. The growth rate is simply the slope of the curve. Since the growth rate can be 

experimentally determined, the value of x can be found. The growth rate when L = 0 was determined for a 

number of the experimental curves. From this information, the value of x was determined to be: 

16 
Granularity 

This result has no known significance, but is accurate over all values of granularity and percent difference in 
execution speed considered in the experiments. 

Using the above results, the growth rate, which is simply the change in queue length over time, can be 
written as: 

m = ^ = x { M - L ) = 1£r(M-L) 

The value of L in the above equation is a function of time, so: 

The solution to this differential equation is: 

' < ' > = " ( i - - p ( ^ ) ) 

Since M is experimentally known, then the queue length can be plotted against time, for various granularities, 
and percent differences in subtask execution speed. 

5 .6 . Compar ison of Model and Exper iment 

Five experimentally determined curves are compared to five predicted curves in Figure 5-9. The predicted 

results arc very similar to the experimental results. The model seems to be good at predicting the queue 

length. This model does not, however, take communication costs into account. When the granularity is small, 

the Cm* interprocess communication costs become significant causing each subtask iteration to have a greater 

execution dme. Therefore the model is not accurate for small granularities. Another problem with the model 

is that it can sometimes predict a maximum queue length too large, and at other dmes can predict a maximum 
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Figure 5-9: Predicted Queue Length and Actual Queue Length 

queue length too small. The predictions arc not consistently too high or too low. The model has several 

derived parameters. The value of x was found experimentally, and the equation found for calculating M is 

based on a least-squares fit in which some points arc outlying. 

The queuing model of the voter synchronization experiments can explain a large portion of the variation in 

the experimental results. Some of the model parameters are difficult to determine, but they can be 

approximated. The comparison of die predicted and actual results shows diat the model has the proper form 

in order to explain the experimental results. By changing the model parameters slightly to account for Cm* 

perturbations, the model can explain most of the experimental results. 
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6. Conclusion 

This paper has explored some of die attributes of NMR computer systems. Many features of software 

voters have been explored both experimentally and theoretically. Section 2 has presented some software 

voting concepts. N-modular redundancy has been described and the software concepts of time skew and 

space redundancy have been explained. Various synchronization issues have been presented, including 

time-outs, points of synchronization, and asynchronous versus synchronous systems. The frequency of voting 

and die data granularity were shown to be important factors in determining the reliability of NMR systems. 

Finally, a technique was described to allow easy bit-by-bit voting on words of data. 

In Section 4, some experiments were presented to help measure the overhead involved in software voting. 

The type of voter, die voting frequency, and the average instruction execution time were incorporated into a 

model of voting overhead. The model was shown to accurately describe the experimental data and an analysis 

of the programs yielded upper and lower bounds on the possible overhead. The voting frequency was shown 

to be the dominant factor in determining the voting overhead. 

Section 5 shows a number of synchronization experiments. The amount of variation in process execution 

speed that can be tolerated was determined for three different types of variation. The length of one voter's 

queue was measured over time to determine how far a process can fall behind two other processes. The 

queue length was shown to have a bound even when one process is continually slower than die other 

processes. Guidelines for designing reliable NMR systems were presented, based on the experimental results. 

A queuing model was developed to describe the length of a subtask's queue over time for any amount of 

variation in process execution rate. The model was shown to accurately predict the experiments over a range 

of values. 

Many of the ideas mentioned in diis article could be developed more fully. The reliability of asynchronous 

versus synchronous systems could be explored, and the concept of time skew redundancy could be the basis 

for reliability studies. The assertion was made that as the vodng frequency increases there is a point at which 

the reliability of the system will decrease. This seems intuitive, yet could probably be proven experimentally 

or mathematically. 
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I. Voter Algorithms 

1.1. Simple Synchronizing Voter 

Initialize 
Loop forever 

For i = 1 to N 
Receive msg i 
Classify msg 
If majority found then 

send msg 
end For 
Report errors 

end Loop 

1.2. Optimized Voter with internal queue 

Initialize 
Loop forever 

Conditional Receive next msg 
If voter buffer full dien 

attempt to receive missing msgs 
If majority received then 

vote 
report errors 
inidalize oldest msg slot 

store msg 
If majority arrived & not majority found then 

vote 
If all msgs arrived then 

report 
initialize msg slot 

end Loop 

1.3. Sequence Number Voter 

Initialize 
Loop forever 

Conditional Receive 
If illegal sequence number then 

report(" illegal sequence number") 
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Else 
Search for scq num in queue 
If scq num found then 

If subtask already sent this scq num then 
rcport(" scq num duplicated") 

Else 
store msg 
If majority received then 

vote 
If all msgs arrived then 

If set no oldest then 
report(" complete set not oldest") 

Else 
report 
inidalize 

Else if scq num not found then 
If queue full then 

handle oldest msg 
store msg in new queue slot 

end Loop 
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