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The Problem of Practical Semantics 

§1 . Although the design of representat ional systems involves many considerations, such as computat ional 
efficiency of the operations and accommodation (at least through front-ends) of the conceptual scheme 
to those familiar to humans, one of the most impor tan t requirements is for a clear semantics. Jus t as a 
slow program may be useless, and jus t as sermons in one church may bewilder the members of another , 
one cannot hope for success in representing information about the world if one cannot tell wha t the 
representations mean. Wi thou t a clear semantics, one cannot tell if two representations mean the same 
thing or mean different things. This prevents judging the correctness of formalizations of one's intuitive 
knowledge. Similarly, without a clear semantics, one cannot distinguish innocuous, meaning-preserving 
inferences from inferences which introduce new assumptions or change meanings. 

Artificial intelligence has pursued two pa ths towards formalizing the semantics of representa­
tional systems. Both of these are based on mathemat ica l logic. In one, the representations themselves 
are sentences in a logical language, as in PROLOG; in the other, one gives a translat ion of every repre­
sentat ion into a set of sentences in a logical language; as illustrated by [HAYES 1979] and [NlLSSON 
1980]. In either case, the meaning of representations is found by looking at the models of the correspond­
ing set of sentences. 

Unfortunately, neither of these paths offers any guarantee t ha t the resulting semantics will be 
easy to construct or to comprehend. The source of the difficulty is t ha t many sorts of representations 
impor tan t in artificial intelligence concern self-knowledge of one kind or other, representations of the 
agent about its own s t ruc ture and behavior. Some of these self-representations are purely descriptive or 
introspective. Some are used normatively as ideal "self-images" to uphold in actual thought and action. 
Phrasing such self-re presentations or their t ranslat ions in a logical language is not impossible, bu t usually 
requires very complex constructions involving convoluted language-metalanguage systems. This is not 
theoretically objectionable, bu t it spells t rouble in practice, since extremely complex translations are 
difficult to comprehend by the designer and user, making translat ion-based semantics ill-suited to its 
principal mission. This problem shows up often in artificial intelligence, where many representational 
systems are described in non-linguistic or non-logical terms and never supplied with formal meanings, 
even when reasonably clear informal semantics are obvious. 

In the following, we indicate how many kinds of informal semantics can be transformed directly 
into formal semantics of no greater complexity. We avoid the unnecessary burdens of logical formulation 
and translat ion by focusing on what is real — the meanings — rather than on their ex-pression within 
a part icular logical language. Translations into logical languages, while theoretically sufficient, are not 
unique, since many languages can serve if even one can. Yet each logical language introduces peculiarities 
of its own, details tha t impede unders tanding and analysis without affecting the resulting meanings. 

The key to avoiding the difficulties of direct logical t ranslat ion is to recognize the difference 
between the internal and external meanings of representations. 

Internal and External Meanings 

§2. Designers of artificial intelligence systems commonly employ two sorts of reference: external 
reference, in which the agent 's representations refer (in the designer's mind or by some other means) 
to objects not immediately "graspable," for example diseases and geological formations; and internal 
reference, in which the agent 's representations refer (ostensively or otherwise) to objects immediately 
graspable and hence in the agent itself. This is reflected in the common focus of artificial intelligence 
architectures on general manipulations of representations ra ther than on pure logical deductions. If 
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one has immediate access to an object, one can not only talk about it, bu t modify it. Wi th immediate 
access, if one makes an inaccurate s ta tement , one can cither re t rac t it or make it t rue — both impor tant 
operations in artificial intelligence systems. On the other hand, without graspability, one can only talk 
about objects, and cannot quickly modify them to cover one's assertions. This makes deduction an 
impor tant way of talking about ungraspable objects, since one can say new things without fear of being 
more wrong than before. The principal novelty of current representational systems relative to t radi t ional 
systems of deductive logic is their concentration on the use of the relatively neglected tools of internal 
reference as the basis of self-structuring and self-modifying agents, agents which can s ta te their own 
intended s t ructure , and then make those s ta tements t rue if need be. 

P U T N A M [1975] and others argue t ha t even supposedly mental objects like human beliefs 
cannot actually be grasped, and so raise doubts t ha t two sorts of reference exist, doubts t h a t anything 
can be immediately grasped at all. The artificial intelligence approach is based on ensuring tha t some 
objects are actually grasped by construction. While many representations of the usual knowledge 
representation systems have external referents, and so do not directly affect the mind (except through 
mistakes tha t cause injury or death) , many of the information-structuring representations concern mental 
objects themselves, especially relations between representat ions. Rather than ask P U T N A M ' S question of 
whether these s t ructura l representations actually mean what the agent thinks they do, we use the intra-
mental relations to define the admissible states of the agent. The problem of correct implementat ion 
of these self-representational specifications is tha t of implementing the agent so tha t the s tates of the 
implementat ion are exactly the admissible s tates, t ha t is, so tha t the s t ruc tura l representations have 
exactly their intended meaning. We separate this portion of the meaning of mental components from 
general ecological meaning by the name admissible state semantics^ and leave specification of external 
meanings to the s tandard tools of model theory. 

The method of admissible s ta te semantics is simple, and resembles the usual explanations of 
intended meanings given by system designers. In both of these, the designer explains the meaning of one 
representation directly in terms of its relations to other representations in the system. For comparison, 
the logic translation approach requires one first t ranslate the initial representation into logic, then find 
its consequences, and then reverse the translat ion process to find other representations related to the 
original one. Since many representational systems involve succinct encodings of notions whose logical 
t ranslat ions are very complex, the difficulty of this roundabout logical procedure can be unbearable. 

Admissible State Semantics 

§3. Admissible s ta te semantics makes several fairly general assumptions about the constitution of 
agents. These constitutive assumptions involve some "parameters ," so one applies the framework by 
filling in these parameters with the characteristics intended of one's system. The three fundamental 
parameters are called V, I, and yS. We explain these in tu rn . (These three notions are par t of a larger 
framework developed in [DOYLE 1982] and elsewhere.) 

The first constitutive assumption is tha t every s ta te of the agent can be decomposed into 
elements drawn from a domain D. Here D is jus t a set, so each s ta te S is a subset of D, t ha t is, S C P . 
For most purposes, D is jus t the set of all possible representations or data-s t ructures the system might 
employ. For example, a logically-structured agent might be characterized by taking D to be the set of 
all sentences in some logical language; LISP-bascd agents might require D be the set of all possible S-
expressions; for frame or uni t-s tructured agents, D can be the set of all possible frames or units; semantic 
networks likely require D be the set of all possible nodes and links; and "society of mind" agents can 
be described using V as the set of all "mental agents" (see [DOYLE 1983]). Note carefully tha t D is 
not just the set of all components in some particular s ta te , such as the initial s ta te , but instead the set 
of all components t ha t might appear in any s ta te , at any t ime. It is possible, without much trouble, 



to formalize one's system instead in terms of an increasing sequence of domains (to capture "generated 
symbols" or other additions), bu t i l lustrating tha t would digress too far from our main purpose here. 

The second constitutive assumption is tha t every element of the domain, every possible s ta te 
component, represents a specification on the set of s tates in which it may admissibly occur, and has a 
meaning or interpretat ion tha t sets out these sanctioned s tates . Formally, we assume an interpretat ion 
function I : V -* P P D (P means power set), so tha t for each d£ D, l{d) C P D is the set of potential 
s tates sanctioned by d. For example, s ta te components t ha t are indifferent to the s ta tes in which they 
appear (such as representations purely about the external world) can be given the trivial interpretat ion 
1(d) = P D t ha t sanctions all potential s ta tes . If the component requires t ha t its appearance always 
be accompanied by some other components A C D, then one can define 1(d) = {S C D | A C 5 } . 
To forbid the component from occurring with some other components A C Dy we can define 1(d) = 
{S C D | S PI A = 0 } . Of course, these are very simple sorts of interpretat ions. Sophisticated systems 
may have some components tha t play very involved roles in the agent, and these may require very 
complex interpretat ions. Note carefully t ha t one is free to use whatever precise (e.g. mathemat ica l or 
logical) language is convenient in defining the interpretat ions of components. These metalanguages are 
par t of our (external) specification of the system, and need have no close relation to the system's own 
methods of representation. Pu t another way, we can use logic to characterize the intended behavior 
of the agent wi thout having to pretend the agent 's components and actions are logical sentences and 
logical inferences. This, as I see it, is the principal advantage of the proposed semantical framework 
over those based on logical translations. To ease the semanticist 's burden even more, we note tha t when 
there are several overlapping classes of components with special interpretat ions, one can specify several 
separate interpretat ion functions, one for each class of components, and then intersect them to get the 
full interpretat ion function. For example, if A, B C D each contain related sorts of components, one can 
define for every d £ D 

A M - { p ; 

if deA 
P D otherwise 

if deB 
otherwise 

1(d) = IA(d) n Ia(d). 

The third constitutive assumption is tha t every admissible state of the system satisfies the 
specifications represented by each of its components. We write JS to mean the set of admissible s tates 
of the agent, and define the class Q of component-admissible sets by 

Q = {SQD\Se(] 1(d)}, 
des 

so this consti tutive assumption is t ha t JS C Q. Unfortunately, simple component-admissibility cannot 
capture some intended ranges of admissible s tates for agents. For example, the empty set 0 is always 
component-admissible since it has no elements to say otherwise. One might wish to capture other 
restrictions on the intended states wi thout explicitly representing them by interpretat ions of components. 
To allow this, the framework permits definition of ^ as a proper subset of Q. Note t ha t we can always 
capture any general restriction except non-emptiness in the components themselves by redefining 1(d) 
as V(d) = ft for every d £ Dy in which case Qf = ft U { 0 } . Turning this observation around, if 
JS = Q, then all restrictions on s ta tes are explicitly represented in the s tates themselves. This recalls 
current efforts in artificial intelligence aimed at constructing completely "self-descriptive" systems, but 
we cannot pursue those here. 

In the following examples, we present some semantical specifications using this framework. 
Unfortunately, demands for brevity limit what we can present here. More detailed and comprehensive 
t rea tments of major artificial intelligence systems are in preparat ion. 
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Examples 

§4. Many systems represent information in so-called semantic networks. One of the fundamental sorts 
of information encoded in these representat ional systems concerns the "inheritance" of information by 
one concept from another. If we look for logical t ranslat ions of these systems, the tempta t ion is strong to 
formulate inheritance as implication, since everything derived about one concept can be derived in one 
further step about any concept it implies. Unfortunately for the simplicity of logical t ranslat ions, many 
uses of inheritance in artificial intelligence have nothing to do with implication, bu t instead concern 
simple economy in writing down information. One often sets up inheritance relations not to indicate 
auy common referents of descriptions, bu t as cheap ways of constructing one description in terms of 
its differences, both positive and negative, from another . For example, if we already have a description 
of lions, we can quickly construct a description of tigers by declaring t ha t the two descriptions are the 
same, except (say) t ha t tigers look different and live in India. Here we save rewriting all the information 
about being mammals , quadrupeds, furred, and so on, yet do not s ta te tha t all tigers are lions, nor 
even tha t some tigers are lions. We jus t say "ditto." Considerable investigation still continues on wha t 
notions of inheritance are practically useful and theoretically impor tant in general and in specific cases. 
We add nothing to those debates here, bu t instead il lustrate how the semantical framework introduced 
above allows designers of such systems to s ta te their intended conceptions of inheritance exactly and 
independently of how they implement those conceptions. 

To give perhaps the most trivial example possible, suppose we choose to represent concepts by 
LISP atomic symbols with property lists, and intend tha t any concept with an I S - A property should 
also have every property of the concepts listed under the I S - A property. Formally, we let D be the set 
of all LISP S-expressions, take / = Q, and define I so tha t 1(d) = P D if d is not an atomic symbol. 
We write p(a) = x to mean that the atomic symbol a has x as the value of its p property. Wi th this 
notat ion, we specify the interpretat ion of each atomic symbol a by 

1(a) = {S C D | V6 e IS-A(a) Vp ^ I S - A p(b) ^ NIL ^ p(b) = p(a)}. 

T h a t is, except for the I S - A property itself, which must be t reated differently in this representation, 
the inheriting concept must have ail the properties of its ancestor. Since the ancestor imposes similar 
conditions on states, inheritance is "transitive" in every admissible s ta te . Of course, no one would ever 
want to use such a simple-minded system: its l imitations are obvious. But we can extend the same 
methods to more interesting representational systems. . 

Consider SRL, the "schema representation language" of W R I G H T and FOX [1982]. One im­
por tan t feature of SRL is the definability of special classes of inheritance types within the representation 
system itself. While the full language is too large to present here, we can focus on one typical feature 
which illustrates how one might begin to formally specify the internal semantics of all of SRL. For this 
fragmentary analysis, we take D to be the set of all possible SRL "schema" data-s t ructures . The precise 
extent of this set does not mat te r for this example. Indeed, we use little more than the resemblance of 
schema to the simpler property-list da ta-s t ruc tures discussed above, and so do not do justice to SRL 
proper. The focus of our at tent ion is the "inclusion-spec inheritance schema." An inheritance schema 
describes a class of inheritance relationships, and inclusion-specs are generalizations of I S - A relation­
ships. W R I G H T and FOX display the form of inclusion-spec schemata as 
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{ { i n c l u s i o n - s p e c 

DOMAIN : < restriction > 

default: all 

R A N G E : < restriction > 

default: all 

T Y P E : 

default: value 

range : (SET (OR slot value)) 

SLOT : < restriction > 

default: all 

VALUE : < restriction > 

default: all 

CONDITION : 

default: T 

restriction : (OR T <predicate^)}} 

They explain this schema as follows. Every inheri tance schema has two slots called SCIIEMA1 and 
SCHEMA2 whose fillers are the schemata to be related by the defined inheri tance relationship. The 
inclusion-spec has a number of addit ional slots which, taken together, describe exactly which sorts 
of information should be transferred from SCIIEMA1 to SCHEMA2. DOMAIN and R A N G E may 
be filled with predicates on schemata limiting the force of the inclusion-spec to pairs of schemata 
satisfying the respective restrictions. CONDITION is in addition a general predicate t h a t must be 
satisfied for the inclusion-spec to transfer information. The T Y P E slot indicates whether only slots, 
or slots and their values arc to be transferred. The SLOT slot allows transfers to be restricted to a 
subset of SCIIEMAl ' s slots, and the VALUE slot can restrict the sorts of values passed to SCIIEMA2. 
In this way, the inheri tance schema encodes a general s ta tement about information transfer in the 
agent, and one uses the schema by filling in the ranges of some of the implicit quantifiers and ref­
erents of some of the explicit names. Use of a schema to s ta te this specification ra ther than an 
arbi t rary sentence of logic implicitly limits the user to specifications which the system im piemen tor 
decides can be feasibly computed. To formally specify the semantics of SRL with jus t this one sort 
of relation schema, we need only define 1(d) = P P when d is anything other than an inclusion-spec, 
and define the cases for an inclusion-spec d analogously to the property-list example above, perhaps 
by 

1(d) = {S C D | a P P /y (d .DOMAlN(S ' ) , d .SCIIEMAl(S)) = T 

A apply(d.RANGE(S), <f.SCIIEMA2(S)) = T 

A e u a / ( d . C 0 N D I T I 0 N ( 5 ) ) = T 

A Vs G d.SCHEMAl.s lots(S) 

[apply(d.SLOT(S), s)=T^se d.SCUEMA2.3lots(S) 

A <f.TYPE(S') = value ^ 

Vv 6 d .SCHEMAl . s .Wwe3 (S) 

[app/y(d.VALUE(5) J v) v G d.SCUFMA2.s.values(S)]]}. 

By doing enough honest work in defining these subsidiary functions (which we cannot pretend to here), 
we can continue in this way to give meanings to other sorts of SRL schemata as well. 
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§5. To il lustrate the applicability of admissible s ta te semantics to non-linguistic s t ruc tures for agents, 
we consider some elements of M l N S K Y ' S [1980] K-line theory of memory. For M l N S K Y , the mind is 
composed of a set of "mental agents." Each mental agent can be either active or inactive, and s ta tes of 
mind are simply sets of active mental agents. We identify the set of mental agents with the domain D 
of the agent, and consider sets in Q to be the admissible sets of active menta l agents, t h a t is JS = Q. 

The two specific sorts of menta l agents we formalize here are K-lines and cross-exclusion 
networks. K-lines are mental agents tha t , when activated, cause the activation of some set of other 
menta l agents. We formalize this by interpret ing each K-line mental agent KL in terms of the set A of 
mental agents to which it is connected, so t h a t 

I{KL) = { S C P | 4 C S } . 

Cross-exclusion networks are somewhat more complicated. Cross-exclusion networks are sets of mental 
agents which are mutual ly inhibi tory. Fur ther , cross-exclusion networks facilitate "conflict resolution" 
by disabling or ignoring all members if two or more manage to become active despite their mutua l 
inhibitions. This disabling allows activation of "higher-level" mental agents which can consider and 
resolve the conflict. We might formalize this by lett ing CXN be a mental agent representing a cross-
exclusion network, B = {^t}^— i the set of mutually inhibiting members, C — {<:,•}£_t indicators of 
which competi tor wins out, and CXN a menta l agent representing the existence of an externally forced 
conflict. To get the desired behavior, we define 

I (CXN) = {S C D | [CXN S]^BC 5 } , 

I{bi) = {S C D | [s n (C - {a}) = 0] ^ Ci e S} 

for each I , and assume the existence of a "watchdog" WD such tha t 

I(WD) = {S C D | [ 3 . y£j<n Ci,CjeS]^CXNeS}. 

With these interpretat ions, we can capture the meanings or functions of mental agents without having 
to dissect them. 

Conclusion 

§6. We have indicated the internal meanings of a variety of representat ional systems without t ransla t ing 
representat ions into a logical language. Unfortunately, demands for brevity limit the scope of this paper, 
and we have had to omit t r ea tment of vir tual s ta te information and action specifications. But as a 
final remark, we note tha t the proposed semantical framework provides a s ta r t ing point for investigating 
SMITH'S [1982] representat ional hypothesis. According to SMITH, many workers in artificial intelligence 
suppose tha t in any "interesting" computat ional agent, the representational elements of the agent 's 
s t ruc ture can be viewed proposition ally, and tha t the computa t ions made by the agent depend purely on 
the form, not on the content , of these elements. Such propositional perspectives on the s t ruc ture of agents 
may seem quite elusive if we look at non-linguistic s t ruc tures like K-lines, but the preceding framework 
offers tools for reconstruct ing the propositional s t ruc ture of non-linguistic agents. For example, if 
1(e) = I(ei) H I(e2)i one might think of e as the s t a t ement " e i A e 2 - " Similarly, if I is defined as 
the intersection of several restricted interpretat ion functions J i , . . . , In, one can view the domains of 
nontriviality of these functions as the "syntactic classes" of the agent 's language. Even so, one may 
not find this reconstructed "language" looking anything like a full first-order logical language. W h a t 
the current framework suggests, 1 think, is t ha t one can make sense of the formality condition of the 
representational hypothesis without worrying too much about linguistic rc-represcntability of the agent 's 
s t ruc ture . This brings us back to the initial proposal of this paper, tha t there arc~easier ways to give 
exact semantics to representational systems than t ranslat ions into logic. 
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