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Abstract

Given the initial functional specifications for a product, a designer must create the description of a
physical device that meets those requirements. The final design must simultaneously meet cost and
quality requirements as well as meet the constraints imposed by activities such as manufacturing,
assembly, and maintenance. Mechanical designs are often composed of highly-integrated, tightly-coupled
components where the interactions are essential to the behavior and economic execution of the design.
Therefore, concurrent rather than sequential consideration of requirements, such as structural, thermal, and
manufacturing constraints, will result in superior designs.

Our goal is to create a computer-based design system that will enabie a designer to concurrently consider
the interactions and trade-offs among different, and even conflicting, requirements. We are creating a
system that surrounds the designer with experts and advisors that provide continuous feedback based on
incremental analysis of the design as it evolves. These experts and advisors, called perspectives, can
generate comments on the design (e.g. comments on its manufacturability), information that becomes part
of the design (e.g. stresses), and portions of the geometry (e.g. the shape of an airfoil). However, the
perspectives are not just a sophisticated toolbox for the designer; rather they are a group of advisors who
interact with one another and with the designer.

This paper focuses on the motivation and integration of the research that has resulted from the multi-
disciplinary group creating this design system, called Design Fusion. The research falls into broad areas:
geometric modeling, features, constraints, and system architecture.

1. Introduction
In creating a concurrent design system for mechanical designers, our goal is to inftise knowledge of
downstream activities into the design process so that designs can be generated rapidly and correctly. The
design space can be viewed as a multi-dimensional space in which each dimension is a different life-cycle
objective such as fabrication, testing, serviceability, and reliability. An intelligent design system should
aid the designer in understanding the interactions and trade-offs among different, and even conflicting,
requirements. We are creating a system that surrounds the designer with experts and advisors that
provide continuous feedback based on incremental analysis of the design as it evolves. These experts and
advisors, called perspectives, can generate comments on the design (e.g. comments on its
manufacturability), information that becomes part of the design (e.g. stresses), and portions of the
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geometry (e.g. the shape of an airfoil). The perspectives are not just a sophisticated toolbox for the
designer, rather they arc a group of advisors who interact with one another and with the designer.

The design methodology is integrated around a shared, dynamic, domain-neutral representation of the
design. The shared representation includes the geometric model of the design as well as the features,
constraints, and design record. Constraints are the language by which perspectives communicate with one
another and with the designer. The design record contains the design decisions that led to the creation of
a constraint or feature. The perspectives are coordinated through a blackboard architecture which uses a
heterarchical control structure.

2. Design System Architecture
Designers use a variety of methods and techniques throughout the design process. They have many tasks
to perform and numerous sources of design data. Some subproblems have algorithmic solutions;
however, no single algorithmic solution exists for the design problem in its entirety. Human expertise is
required to integrate the subproblems, provide the missing pieces, and guide the process known as design.
Recently, with the development of knowledge-based system technologies, software has been created that
can participate directly in the design process by making design decisions1.

The design system architecture has two roles. First, it provides an interactive environment that enables
the designer to control the available resources that consist of data, knowledge, methods, and algorithms.
Secondly, the architecture provides a group problem-solving environment in which knowledge-based
systems contribute to the design process. The Design Fusion architecture is based on the blackboard
model of problem solving [8] illustrated in Figure 1. The architecture has four major components: the
blackboard, knowledge sources, search manager, and user interface.

The blackboard provides a shared representation of the design and is composed of a hierarchy of three
panels. The geometry panel is the lowest level representation of the design and uses a non-manifold
geometric model of the design. The feature panel is a symbolic level representation of the design. It
provides symbolic representations of features, constraints, specifications, and the design record. The
control panel contains the information necessary to manage the operation of the system.

Perspectives and methods are the two types of knowledge sources. Perspectives represent knowledge of
different stages in the product life cycle. Each perspective may criticize design decisions or generate new
design information. Using perspectives that communicate through i. blackboard architecture enables us to
partition the design knowledge. Each perspective can define its own internal set of features, constraints,
and variables, so that inconsistent requirements, names, and definitions are contained within the
perspectives. Communication occurs through the common language of the shared representation.
Methods provide standard analysis capabilities to the system. Three methods are currently being used:
feature extraction, constraint management, and mathematical programming.

The search manager provides a means for dynamically coordinating the perspectives. The system cycles
through four stages of control: perspective identification, perspective selection, perspective execution, and
constraint management. At the beginning of a cycle, that is, after a design decision has been posted to the
blackboard, any number of perspectives may have contributions to make. The search manager must

Examples of knowledge based systems that make design decisions include XCON [2], PRIDE [21] and ALADIN [17].
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Figure 1: Design Fusion system architecture

decide the sequence of contributions and control their execution.

The user interface provides the designer with a complete interactive environment for designing. It
provides the user with the ability to define specifications and constraints, to select from a library of
existing designs, and to modify designs. The user also has the capability to confirm or override the
systems suggestions at each stage in the search manager's decision cycle.

3. Design Representation
Our system is based on the concept of a shared representation. The shared representation of the design is
maintained on the blackboard, and all comments, constraints, and design changes are made in terms of it.
Perspectives may create local representations for reasoning and analysis, but communication is always
through the shared representation. During the design process, large quantities of information about a
design are used and generated. We have made the decision to include in the shared representation only
those attributes that may be of interest to more than one perspective. Using perspectives enables us to
partition the design knowledge into manageable chunks, while allo.wing us the flexibility to add new
information to the representation. For example, the manufacturing perspective may have a constraint on
the maximum length of a cast turbine blade. As long as this constraint is not violated, it remains within
the perspective; however, if it is violated, the manufacturing perspective would post the constraint on the



blackboard.

If a complete representation of a design could be constructed, it would include attributes like the initial
specifications, the geometry with dimensions and tolerances, the material and structural properties, the
manufacturing and assembly sequences, the design history including versions and configurations, the bill
of materials, the maintenance procedures, and so on. Depending on the design domain, the importance of
representing particular attributes will vary. We have focused on representing the geometry, features, and
constraints associated with a design.

3.1. Geometric Representation
The representation of geometry has been an active area of research over the last fifteen years. In a review
paper, Requicha and Voelcker [29] discuss the progression from early CAD systems to advanced solid
modellers. Voelcker [41] also discusses the limitations of current geometric models as design systems
because they can only represent the geometry of a completed geometric object rather than an evolving
design. Discussions along similar lines can be found in Nielsen [24] as well as in Gursoz and Prinz [14].

In surface boundary representations, known as b-reps, objects are modeled by representing their enclosing
shell. The basic elements of a b-rep are faces, edges, and vertices. The topology of an object is made
explicit by giving the connections between its elements, and the geometry of the object is made explicit
by giving coordinates to the vertices, giving lengths to the edges, etc. In constructive solid geometry
(CSG), objects are modeled as boolean combinations of a set of primitive solids; that is, an object is
constructed by adding and subtracting the basic primitives. An object is represented as a binary tree in
which the terminal nodes of the tree are solid primitives, ancf the intermediate nodes are boolean
operations that operate on the primitives to create the desired object

Both the b-rep and CSG approaches were created to represent solid objects in R3 space. These models are
not able to represent incomplete objects. The non-manifold geometric modeling systems created by
Weiler [44] and by Gursoz and Prinz [14] address this issue. These representations build upon the
boundary representations, but they are able to represent the more complex adjacency patterns such as
dangling edges or nested cones that can occur in non-manifold objects.

Because one-, two-, and three-dimensional objects can be represented consistently in non-manifold
representations, they are well-suited to design systems. With non-manifold representations, the design
can include a center line of a hole, a parting plane for a mold, and internal boundaries for a finite-element
mesh, as well as the enclosing shell of the designed object. Figure 2 shows the evolution of the
construction of a solid from a wireframe in a non-manifold representation.

3.2. Feature Representation
Our research in feature-based representations of designs has been motivated by the realization that
geometric models represent the design in greater detail than can be utilized by designers, process
planners, assembly planners, or by the rule-based systems, that emulate these activities. Experts often
abstract geometry into features like ribs, parting planes, and chamfers. To date, our research has been on
defining and recognizing shape features, that is, features that are derivable from the geometry and
topology of the design. We represent shape features using a graph grammar based on the non-manifold
representation. The geometry of the designed object and the feature definitions both use the non-manifold
representation, so features can be recognized by matching the graph representing the feature with a
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Figure 2: Evolution of a solid model

subgraph of the graph representing the design.

Many features are only used locally by perspectives. For exampie, the manufacturing perspective may
make a preliminary process plan based on the manufacturing features recognized in the design. However,
a feature or a feature interaction may cause the manufacturing perspective to generate a comment to the
designer giving a warning or advising a change in the design. Because the features are defined in terms of
the shared representation, the perspectives can communicate by referring their features to the shared
representation. So, even though the designer may use a different term for a feature or may chunk the
geometry differently, the manufacturing feature can be highlighted on the geometric display.

For example in Figure 3, a designer and a manufacturer each have a set of features defined. The designer
sees two slots, defined by their width and depth, that serve a functional role in meeting a design
requirement. The manufacturer is concerned with making the artifact and not only sees the two slots but
also the wall created between them. A manufacturing analysis of this wall indicates that it is too thin to
be milled to the given tolerance. Although the designer lacks the wall feature, the manufacturer's



definition is used to improve the design. The shared model is a basis of communication via feature
definitions for the two perspectives.

a. Initial design

b. Designer's feature

c. Manufacturer's features

Figure 3: View-point specific feature interaction

3.3. Constraint Representation
The representation shared among perspectives must include not only the evolving product geometry and
features, but it must also include the allowable limits on geometry, the relationships among behavior and
geometry, and other constraints. The set of constraints asserted by any one perspective is an encoding of
the life-cycle concerns of that perspective. The collection of all constraints is the set of currently relevant
life-cycle concerns that determine the acceptability of a design alternative. Each perspective, when
commenting on the design or suggesting design changes, can view all posted constraints and therefore
suggest modifications that minimize conflict. Additionally, the design perspective may characterize
design trade-offs by evaluating competing constraints. As the design evolves, features are added and
modified causing individual perspectives to assert additional constraints and to modify or retract existing
constraints. In this way the collection of constraints is an embodiment of the evolving life-cycle
constraints on an acceptable design.

A design record tracks the design decisions that led to the creation of a constraint or feature. Design
records are defined by the perspective which generated the decision, the type of processing that led to the



decision, and the information upon which it was based. This information can be used to maintain design
consistency when underlying assumptions of the design change or to track constraint violations back to
the sources.

3.4. Quantitative and Qualitative Representations
Qualitative representations provide a means for reasoning about complex systems without the need for
quantitative data. Most design systems perform quantitative analysis of the results of the design process.
Numeric algorithms, given numeric input, produce numeric descriptions for properties of the design. One
problem with numeric models is that the underlying relationships arc often lost or hidden in quantitative
representations. In addition, these underlying relationships cannot be manipulated symbolically.
Qualitative representations extend quantitative representations by making implicit relationships explicit
and accessible.

Procedural knowledge provides a representation for the processes necessary to perform some tasks. It can
be algorithmic, such as a finite element analysis program, or heuristic, such as problem-solving. The
design representation requires both algorithmic and heuristic information, one augmenting the other.
Some tasks have algorithmic solutions that result in some relationship between design parameters. Other
tasks use heuristic methods, such as pattern directed search that guides the problem-solving process.

Consider the pattern, or production, in Figure 4. The production is composed of a condition and an
action. When the condition is satisfied, the action is invoked. In this case, the stress concentrations in a
turbine blade shank are computed when a shank geometry is proposed by the designer. Production
systems use pattern-directed search to encapsulate operational descriptions for problem-solving tasks.

IF
1. there is a constraint on the life-time of the blade;

2. and there is a proposed geometry for the shank;

3. and the stress concentrations in the shank are unknown;
THEN

1.execute the finite element model on the shank geometry

Figure 4: Sample production

4. Features
Features provide both an abstraction mechanism and a mechanism for communicating among experts in a
heterogeneous environment. Our approach is to describe features using a graph grammar. Because the
designed object is an element in the language generated by this grammar, features can be recognized by
parsing the graph representing a feature against the graph representing the object. We provide a
representational link between the low-level geometric representation and the high-level design
abstractions by formalizing a language to express classes of high-level objects in terms of the low-level
ones. Given this language, we are able to extract the high-level elements from the neutral low-level
geometric representation.



The use of features derivable from the geometry, that is, form features is an area of active investigation in
mechanical design [10]. Other researchers have constructed systems that extract features from two-
manifold solid models. Using a boundary representation, these systems define features as patterns, and
instances of the pattern are extracted from the model [9,11,16,18, 33]. Other research in using features
in CAD systems has focused on single domains. Woo [45] utilizes decomposition using form features to
perform structural analysis. Shah has looked at mapping features between domains [35]. Several
researchers, including Unger and Ray [40], Cutkosky and Tenenbaum [5], Chang et al. [4] and Hayes
[15] have explored the use of features in constructing process plans for parts. Many research groups are

currently working on feature-based design systems. The two of most interest here are Dixon et al. [6] and
Cutkosky and Tenenbaum [5]. Our approach differs from these in that we do not use a predefined set of
features to build and represent the design.

Figure 5 illustrates several features, all labeled hole. From a functional point of view, a designer might
specify a hole only by its centerline, radius, and purpose (e.g. alignment) while a manufacturer might
define a hole by its location, radius, and manufacturing process (e.g. a punched hole). Both the designer
and manufacturer use the label hole. While the features labeled as holes are similar, they are not
identical. The difference of perspective for characterizing the concept hole necessitates differing feature
definitions. The ability to represent both manifold and non-manifold objects is essential in describing
partial designs or referring to conceptual elements such as center lines or symmetry planes.

Designer Assembler Manufacturer

Figure 5: A Hole from three different perspectives

4.1. Representation Formalisms
Our work on feature grammars builds on the work of Stiny [37] who first created shape grammars based
on the formalisms of linguistics. Using a formal grammar, instances of a class of objects can be generated
based on a sequence of production rules. We use a graph grammars, the class of grammars that operates
on two-dimensional graphs. A tutorial on graph grammars and their applications is given by Ehrig [7].
Our approach to defining features is based on Pinilla's work [26]. He defines form features by a context-
sensitive graph grammar called an augmented topology graph grammar. This grammar represents
features as topological and geometric entities and permits pattem^directed recognition and generation of
salient features from a solid model.

To describe the boundaries of 3D objects, which are inherently two-dimensional, we have created a
grammar whose domain is the graphs representing an object's topology augmented with geometric
information. Both non-manifold and manifold objects can be represented with this augmented topology



graph (ATG). Topology is encoded by four primitives: nodes (points in 3-space), edges, faces and loops
(the enclosing boundaries of faces). Each primitive is represented as a vertex in the augmented topology
graph.

These elements fonn a graph structure in which the nodes contain the topological elements and the arcs
contain relationships between the elements. The relationships are both topological and cross-referencing
geometric information, such as adjacencies and distances or angles between elements, as well as self-
referencing geometric information, such as face area or edge solid angle. The self-referencing
information is represented by self-loop arcs. Thus, we achieve a uniform representation of properties in
the arcs and simplify the labeling of the nodes of the graph. Figure 6.a and 6.b illustrate a simplified
model and its associated augmented topology graph. In [26], we present a more complete description of
the grammar, productions, and embedding rules.

a. Slot feature

b. Augmented topology graph for slot feature

c. Abstracted augmented topology graph for slot feature
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Figure 6: Example: A slot feature

4.2. Feature Grammars
In order to parse a design to recognize its features, a set of features must exist in a representation
consistent with the representation of the design. Each feature is represented by its faces, edges, and
nodes, as well as dimensional characteristics. The features are stored in a graph that represents the
adjacencies and relationships between features, providing a base for further abstraction.

We use three levels of abstraction for recognizing features. At the lowest level is a non-manifold solid



modeller. This level provides complete information for representing a solid, including all topological and
geometric data about the model. The intermediate level of abstraction is the augmented topology graph.
This level captures the geometric relationships from the input grammar and maintains a non-manifold
representation. The most abstract level represents manifold features and any manifold portion of non-
manifold features such as geometric and topological relations between faces. Any non-manifold portion
of these feature is represented at the intermediate level. By providing multiple levels of abstraction, we
reduce the search space and concentrate the search on the areas most likely to match particular features.

The power of the recognition system relies on the completeness and specificity of the feature descriptions.
A recognizer that requires enumeration of all possible cases will be slow and inefficient as well as
difficult to implement and maintain, since the number of cases is often infinite. The description must be
able to express classes of objects, not only instances of them. The recognizer must be able to recognize
individual instances of those classes from the general description. Such a description conforms to the
formalism of a language that can be described with a grammar. Under this formalism, a class of features
is described by a grammar whose starting symbol is a canonical form of the feature and a finite set of
rewrite rules that generate all possible instances of the class. Figure 7 illustrates a simple rule for splitting
walls in a slot, that is, for creating a new instance of the slot feature.

a. Rewrite rule to split slot wall

b. Slot Feature

c. One application of rule to slot feature

Figure 7: A simple rewrite rule for a slot grammar
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4.3. Feature Recognition
Using our methodology, the recognition of a feature is reduced to identifying a subgraph within the
object's ATG. The subgraph can be generated by a grammar associated with the feature. For a complete
recognizer in a domain, a number of grammars must be developed, one for each feature class considered.
A feature extractor finds the complete set of feature instances derivable from the productions of an
augmented topology graph grammar given the grammar and an augmented topology graph representing
the geometry of a design. Because both the geometric model and the feature definitions are represented
as graphs, the problem of feature extraction is the problem of finding isomorphic subgraphs, an NP-
complete problem.

Feature recognition occurs in two phases. In the first phase, called grammar compilation, a feature
grammar is processed to enable incremental processing. In the second phase, feature parsing, the
compiled grammar is used to extract features from a solid model. Because this method of feature
extraction occurs incrementally, features can be extracted from an incomplete model as the model is
constructed. As the graph representing the model is built, its vertices can be mapped on the recognizer.
As features come into existence, they are found by the recognizer.

During grammar compilation, the graph defining a feature is transformed into an equivalent graph that
allows for more efficient processing. The vertices in the input feature grammar are classified according to
the number and type of arcs connecting the vertex. Then, these classes are ranked so that thosQ with the
fewest member vertices have highest priority. The recognizer is constructed as a directed graph from
vertices with the higher priority to vertices with the lower or equal priority. Consider the slot feature in
Figure 6; its most distinguishing characteristic is its bottom face. By focusing on vertices in the design
model that are characteristic of bottom faces, the fraction of the model that must be searched can be
reduced. In this feature, as in many other features, the manifold edges and nodes contain little
information that is useful in parsing. For two-manifold features, geometric relationships between faces
provide the most useful information. For example, in Figure 6.a and b, all edges in the feature are
connected to two faces and two nodes. The structure of the nodes and edges is the same no matter where
they occur in the feature. They are not useful for discriminating between high-level features. The feature
in Figure 6.b removes these ambiguous nodes and includes only those attributes that provide less
ambiguous information, that is, the geometric relationships between faces.

Applying the feature compilation procedure to Figure 6.b, the veitces of the graph are collected into four
classes: those with a single convex connection (Class A), those with three convex connections (Class B),
those with two convex connections and one concave connection (Class Q, and those with two convex
connections and two concave connections (Class D). The class with the highest priority, Class D, is the
starting vertex for the recognizer. Vertices are added to the recognizer, one for each vertex in the input
graph, based on the priority of the class containing the vertex. Directed links are added from vertices with
higher priority to lower. If vertices have equal priority, the direction is assigned arbitrarily. The feature
recognizer for the slot is shown in Figure 8.

During feature parsing the compiled recognizer is used to find features in the design model. First, the
vertices representing faces in the design model are mapped into the same classes that were defined in the
input grammar. Then, connectivity from the feature grammar is verified in the model, guided from the
least frequently occurring classes to the most. Again, consider the compiled feature in Figure 8 and the
model represented in Figure 9. First, the face-vertices in the model are mapped on to all the classes
defined by the grammar. Note that this is not a unique mapping. There may be vertices in the model that
are not represented by any class in the recognizer; and likewise, there are vertices in the model that map
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Recognizer for slot feature

Figure 8: Feature recognizer for a slot

on to more than one class in the grammar. For example, faces that are convex with three other faces, like
class C in the example, are also members of class A, a face that is convex with another face. The
assignment of classes to vertices in the model is shown in Figure 9.c. Finally, if the vertices in the feature
and the design model match, then the connectivity in the feature recognizer must be verified. In Figure
9.e, all the nodes in the recognizer have been identified and verified, so the slot feature has been matched
in the design model.

This method of feature matching is a special case of the rete match algorithm [12]. The rete algorithm is
an efficient method of matching many patterns to many objects. The rete match process has two steps.
First, patterns are matched with objects in a working memory. Second, interpattem dependencies are
verified. These two phases correspond to the mapping of face-vertices on to classes and verifying that the
faces are configured properly. The algorithm presented here tunes the more general rete algorithm to the
problem of feature extraction.

In [32], we present the complete algorithm for feature extraction. Because our method of feature
recognition is bottom-up, features can be extracted from an incomplete model while the model is being
constructed. As the graph representing the model is built, the vertices of the graph can be mapped on the
recognizer. As features come into existence, analyses can be performed, and the designer can be given
feedback on the design as it evolves.

5. Constraints
In the context of engineering design, a constraint can be thought of as a required relationship among
design features and characteristics. Constraints may embody a design objective (e.g. weight), a physical
law (e.g. F = ma), geometric compatibility (e.g. mating of parts), production requirements (e.g. no blind
holes), or any other design requirement. Collectively, the constraints define what will be an acceptable
design. The number, diversity, and variable context of constraints make finding an acceptable design a
difficult task. Furthermore, finding the design that satisfies all the constraints is only possible when the
constraint network represents all design alternatives, when it is complete and consistent, and when it
results in a unique solution. These conditions are rarely, if ever, met. Perhaps more importantly, just a
solution to a set of constraints does not necessarily contribute to the designer's understanding of the
relative impact of various constraints and therefore does not assist the designer in identifying alternative
design configurations that are riot governed by similar constraints.

Design constraints are usually numerous, complex, and highly nonlinear. Our objective is to provide the
designer with insights about the critical interactions among features, redundant requirements, and
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Figure 9: Recognition of a slot feature in a design model

inconsistencies. This information is useful to the designer even if the constraints can be solved
numerically because a purely numerical solution does not facilitate understanding of the design task.

In many cases, it is difficult for a designer to understand the nature of a solution or deadlock, particularly
if constraints refer to each other in a circuitous structure. Some of this difficulty can be alleviated by
identifying suitable transformations on constraint networks that result in directed rather than circuitous
structures. The numerical evaluation of circuitous constraints is relatively straightforward. The algebraic
transformation is significantly more difficult, especially if the goal is to find transformations that have
physical significance to a designer and that augment a designer's insight into the design problem [43].

In design, a small set of constraints often is critical in determining many other design relations. The
ability to identify and address these critical constraints early in the' design process is important to the
designer. As different perspectives impose new constraints on the design the importance of identifying
bottle-neck constraints becomes even greater. We are currently exploring several different techniques for
identifying the bottle-neck constraints.

13



5.1. Monotonicity Analysis and Interval Methods
Monotonicity analysis [25] facilitates the simplification of a constraint network and the identification of
inappropriately bounded constraint networks. Unfortunately, most engineering design constraints do not
exhibit the global monotonicity required for the application of monotonicity analysis; however, regional
properties of functions can be exploited. The regional information can then be reassembled to draw
global inferences. We are using a methodology based on interval analysis to represent, utilize, update,
and reassemble regional information.

Using the monotonicity principles can result in the deletion of constraints and reduction in size and
complexity of the model when variables are regionally monotonic. Similarly, different constraints may
become active and dominant in different regions; hence we gain leverage by exploiting regional
information. We apply interval methods to represent, abstract, and manipulate regional information.

Interval arithmetic is used as the basis for evaluating algebraic relations containing interval variables,
yielding interval results. By using interval methods, we can characterize regional monotonicities,
regional feasibilities, etc. of design constraints. The four basic arithmetic operators produce exact
intervals, but the representation of higher level functions in terms of these basic arithmetic operators
introduces some difficulty. Conservative interval calculation destroys the one-to-one correspondence
between intervals on arguments and intervals on functions. This has important implications for design
systems, in which it is often necessary to determine what range of arguments will satisfy a range on a
function itself. The extent to which a computed interval deviates from the actual interval determines how
strong the inferences are that can be made on the intervals on variables.

Some specific techniques can be used to mediate against the expansion of intervals. One such approach is
the centered form of functions based on a Fourier expansion of the intervals and is described by
Moore [22]. Other heuristics, for example dealing with even exponents, are also useful. In addition,
several ad-hoc methods obtain less conservative intervals and even exact intervals.

5.2. Constraint Propagation in Design
When a design decision is made, constraints can be used to propagate the decision to other parts of the
design. For example, once a motor shaft diameter is specified, it is possible to determine some
characteristics of other components such as the bearings. Depending on the topological structure of the
constraint network, propagating and checking the consistency of constraints is difficult. In addition, a
designer needs not just the solution, but also needs an understanding of the nature of the solution. In
particular, a designer needs to understand how certain design decisions or variables were set, how those
variables depend on other design variables, and the leverage that design variables and constraints have
upon other design decisions. We address this need by providing a solution and an explanation of the
solution that tracks the dependencies in a constraint network and evaluates the impact of a decision on
other design variables.

Another important issue in the satisfaction of a constraint network is the scope of changes in a design that
result from a single design decision or a change in a constraint. When changes can be localized,
understanding the nature of the constraints is straightforward. However, a small change that at first may
appear to be local, may in fact propagate across the entire design space. The effects of such changes are
difficult to track and understand.

Intervals can be effective for representing and reasoning about design parameter values. Interval values
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can also be propagated through a set of constraints so that potential constraint violations can be detected.
By propagating design decisions through constraints, the effect of some design parameters on one another
can be determined. In the process, redundant constraints are identified and eliminated. The intervals of
the parameters can also be refined in this process.

Any variable can affect any other variable if there is a chain of constraints connecting them. Propagation
can occur in any direction; it is not the case that one variable in a constraint must be selected a priori as
being dependent while all others are regarded as independent. As constraints are propagated and as
intervals narrow, specifications may be found to be inconsistent with other constraints, thereby
identifying violations and redundancies before design decisions are made. Interval propagation provides
insight about a design without the need to choose specific values for design parameters. We believe that
the ability to draw important inferences about a design problem early in the process is important in
concurrent design.

A large body of research exists on solving constraint propagation problems including that of Sutherland
[39], Mackworth [20], Boming [3], Sussman and Steele [38], Gosling [13], Popplestone [27], Steward
[36], Sadeh[31], and Serrano [34]. These techniques provide a core of solution methods directly

applicable to algebraic constraints in real variables. Based on these methods, we are developing
propagation techniques applicable to constraints among interval variables. Some important differences
exist when dealing with interval constraints: the distinctions between equality and inequality constraints
change, constraints may be evaluated when any number of interval variables are not yet specified or even
when all intervals are finite, and a single constraint may be evaluated many times to obtain additional
design information.

5.3. Interval Criticality, Dominance, and Activity
The large number of constraints which arise in a concurrent design environment make it useful to
characterize the relative importance of each constraint. Some constraints are active; their presence
influences the design. Constraints that are known to be inactive can be eliminated without influencing the
design. Some of the active constraints are critical; they determine a part of the design solution. Most
critical constraints are inequality constraints that are satisfied as equalities in the final design. Some
constraints dominate others; satisfying the dominant constraints insures the satisfaction of the others.
Dominated constraints are inactive and can be deleted.

Constraints in design may not be globally monotonic, active, dominant or critical, but may have these
properties within a region. Therefore, the concepts of constraint criticality, dominance, and activity
defined over regions are more effective in identifying the critical constraints and eliminating the
insignificant ones. Interval methods can again be used to characterize regionally dominant, critical and
active constraints [19, 30].

Constraint dominance is an especially useful property for the following reasons:

• Dominance is transitive; dominance relationships can be propagated.

• Dominance often is context independent; the dominance relationship between two constraints
may be independent of objective and other constraints.

• Context-dependent properties, like constraint activity and criticality, can be identified using
constraint dominance.

• Dominance can help manage constraints in a concurrent design setting where constraints may
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be dynamically asserted. The significance of newly asserted constraints can be evaluated by
examining their interaction with currently dominant constraints.

In a concurrent design setting where life-cycle constraints can be dynamically asserted, the effect of a
newly introduced constraint can be studied by testing for dominance against the currently dominant
constraint in different regions of the design space. If a new constraint dominates the currently critical
constraint in some region of the design space, then the new constraint is critical. Thus, the transitivity of
dominance can be used to prove criticality of a new constraint.

5.4. Global Optimization
Global optimization of a general, nonlinear, nonconvex objective function subject to nonlinear constraints
is an unsolved problem. There is no single best method to attain a globally optimal solution. Most
traditional nonlinear programming techniques are local methods and can get stuck in local valleys. Also,
only under strong assumptions about the function can a solution be guaranteed to be globally optimal.

Interval methods have been used to solve the global optimization problem [28]. The methodology behind
these approaches for unconstrained optimization is as follows:

• Use interval methods to represent regional information.

• Exploit the bounds provided by the interval method to guide the branch and bound search
strategy in which regions of the design space which have lower bounds are examined first.

• Use a subdivisioning procedure to accelerate the search by yielding tighter bounds.

To solve the constrained optimization problem, these methods successively subdivide the constrained
design space until they arrive at a part of the space that satisfies all the constraints. Due to the the
extreme conservatism of interval calculations and the nonlinearity of the constraints, it is difficult to
obtain a region that satisfies all the constraints through interval calculations. On the other hand, it is not
necessary that each and every constraint be satisfied in every region through interval calculations. A
large portion of the constraints are dominated in some regions and can be deleted from those regions.

5.5. Reduction of Computational Complexity
Design problems often have large numbers of complex constraints that must be satisfied to complete a
design task. Because it is impossible to guarantee the simultaneous solution of a large set of design
constraints, we have investigated algorithms for planning and simplifying constraint satisfaction.
Satisfying a large number of constraints does not imply that all the constraints must be solved
simultaneously. We have developed algorithms for finding coupled constraints and for creating a solution
plan that minimizes the need for simultaneous solution.

The simplest type of constraint sets are those that do not need to be solved simultaneously. Constraint
sets are said to be serially decomposable if the constraints can be solved serially, yielding the value of one
new variable for each constraint evaluation [36]. We have also found that estimating the value of critical
variables can sometimes uncouple equations, thereby reducing or eliminating simultaneity..

A serially decomposable constraint set can be ordered using a simple row and ~olumn elimination
algorithm. This algorithm fails if the constraint set is not serially decomposable. An algorithm for
assessing the decomposability of a constraint set, prior to ordering, has been proposed by Rane et al. [19].
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When a constraint set is not serially decomposable, portions of the constraint set must be solved
simultaneously. Using algorithms based the work of Serrano [34] and Steward [36], subsets of the
constraint set can be identified and isolated to be solved simultaneously. The algorithm consists of two
stages: matching and ordering. A matching should be maximal, that is, the maximum number of possible
matchings should be found. This is achieved using a standard bipartite matching algorithm [1]. A
maximal match determines which variable is computed from which constraint, but does not determine the
order of solution. The ordering of the computation is based on variable-constraint matching. These
dependencies can be represented as a directed graph among variables. When these dependencies are
circuitous, a group of constraints, said to comprise a strong component, must be considered
simultaneously. Strong components can sometimes be broken or simplified by estimating the value of
one of the variables in the strong component The process is analogous to untying knots in a string.
Untying a large knot might either reveal smaller knots or might eliminate the knot altogether. • By
breaking a strong component, single-degree-of-freedom search can be performed on one variable instead
of solving for all the variables simultaneously.

It is our hypothesis that this idea can be extended to larger problems. In [23], we present algorithms that
help to identify the best variables to select to simplify a given constraint problem. We also present
experiments that show that in many cases it is possible to eliminate simultaneity by estimating the value
of just one variable.

The notion of using bipartite matching and the strong components algorithm together was originally
suggested by Wang [42]. The algorithms were used to solve Gaussian matrices for solving sets of
equations using Newton-Raphson-like methods. Serrano [34] applied a similar algorithm for finding
strong components in sets of constraints. The aim of his work was to concentrate solution on components
and to avoid solving the entire constraint set simultaneously. Both these efforts arc aimed at bi-
directional constraints. We have extended the algorithms to uni-dircctional constraints. We have also
developed the notion of breaking strong components using heuristic approaches.

6. Controlling The Design Process
The architecture provides a group problem-solving environment in which the designer and the
perspectives cooperate in the generation of a design. Both the designer and the perspectives have the
opportunity to generate and test design decisions, enabling the simultaneous participation of all
perspectives throughout the design process rather than ex post critique. The competing goals of the
designer and the different life-cycle perspectives as well as the interactions between specification of the
requirements and the specification of the artifact provide many sources of conflict during the design
process. Consequently it is necessary to determine dynamically which of the perspectives' contribution
dominates at each stage of the design process. Specifying a blackboard architecture is not sufficient to
specify the system's design behavior. The designer manager's role is to coordinate the activities so that
they are cooperative and coherent.

The philosophy that underlies the group problem solving strategy is a least commitment approach. Rather
than making specific design decisions immediately, constraints are imposed successively until
commitments must be made. The implication is that problem solving is constraint directed; however, it is
not possible to state all the constraints on a design and then to solve them. In addition to the fact that the
initial constraint set may be unsolvable, it is also true that the constraint set changes over time as
decisions are made and different parts of the design space are explored. Perspectives represent a
partitioning of knowledge relevant to some stage in the product life cycle. Much of the knowledge may
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not be relevant to the current design task, and depending on the path taken by the designer, many of the
constraints within the perspectives may never be relevant to a particular design problem. Therefore
posting all of the constraints on the blackboard at the outset would not only obfuscate the problem but
increase the problem solving complexity to that point of being unmanageable. The alternative is to let
each perspective determine the relevance of its knowledge to the situation at hand, and then reveal
whatever knowledge is relevant in the form of a constraint

Design is an exploration among alternative designs and among the methods to generate and evaluate
them. At any point in the design process, the designer and the perspectives may have many contributions
to make. The computer resources and the designer's time are limited, so decisions have to be made on
which paths to explore and which methods to use. An open issue is the determination of which
perspective dominates at any state in the design process when contributions may conflict, overlap, or be
tangential. The current demonstration version of Design Fusion leaves the selection to the designer, but
we believe that the appropriate approach is based on an analysis of the existing constraints.

Inconsistencies and conflicts in goals inevitably arise during the design process. Dealing with
inconsistencies in the constraint network is another area of research. Due to the conflicting goals and
variations of knowledge of perspectives, revealed constraints can lead to inconsistencies. These
inconsistencies are tolerated by the system but are also tracked. Our approach is to use a dependency
representation so that the sequence of decisions, and ultimately the core hypotheses that lead to the
inconsistency, can be identified and retracted when necessary.

The search manager's control abilities are made possible through the definition of a precise, multi-level
protocol that defines how a perspective can make contributions. The lower level protocol focuses on
integrating the contributions of each perspective through the assertion, derivation, and retraction of
constraints. The upper level focuses on the postponement, relaxation, and satisfaction of constraints.
Figure 10 defines the lower level protocol. Work on the upper level protocol is underway.

7. Conclusion
We have implemented the first version of the design system that embodies the research presented in this
paper. This system, known as Design Fusion, has enabled us to test and refine our ideas on concurrent
design. In the process of implementing the Design Fusion system, we have

• created a method for defining and recognizing non-manifold features and have begun to
implement an efficient algorithm for recognizing features in an evolving design

• created an architecture that integrates partial solutions to portions of the design problem
based on a common representation

• created new algorithms for reasoning about constraints using interval methods and regional
partitioning.

The Design Fusion system supports concurrent design by enabling the simultaneous consideration of
life-cycle constraints. It uses a shared representation of the design which can be parsed using perspective-
specific features. It uses constraints as a language by which perspectives communicate with one another
and with the designer. The perspectives are coordinated through a blackboard architecture that uses a
heterarchical control structure.
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• ASSERT:
• Assigns a value or constraint to a feature.
• Causes a new branch to be created in the design evolution tree.
• Cannot be retracted.

• POST:
• Assigns a value or constraint to a feature.
• Causes a new branch to be created in the design evolution tree.
• Can be retracted.

• REVISE:
• Modifies a value or constraint of a feature.
• Maintains the same branch of the design evolution tree.
• Can be retracted.

• DERIVE:
• Assigns a value or constraint to a feature.
• Maintains the same branch of the design evolution tree.
• Is retracted automatically if a posting or revision it depends on is retracted.

• RETRACT:
• Removes a value or a constraint from a feature.
• Causes a new branch to be created in the design evolution tree.

Figure 10: Low Level Protocol Definition
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