NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

CMU-CS-85-127

Debugging Ada

Bernd Bruegge

Department of Computér Science
Carnegie Mellon University
Pittsburgh, Pa. 15213

3 May 1985

Abstract

The complexity of the Ada language poses several problems for the buiider of a debugger. We identify
the Ada language constructs that cause these problems and propose solutions that can be
incorporated in a debugger based on Pascal. Several of the solutions involve changes in the symbaol
table of the Ada compiler, others are based on the argument that having tc obey the language rules is
an obstacle when debugging programs.

This research was sponsored in part by Siemens Corporate Research & Support, Research &
Technology Laboratories, Princeton, New Jersey and in part by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 3527, monitored by the Air Force Avionics Laboratory Under
Contract F33615-81-K-1539.

The views and conctuéions contained in this document are those of the author and shouid not be
interpreted as representing the official policies, either expressed or implied, of Siemens Corporate
Research and Support, the Defense Advanced Research Projects Agency or the US Government.

6
7
8
8
1

Table of Contents

. Intreduction
. Symbol Tabie Definitions
. Symbol Table Extensions

3.1. Initialization
3.2. Inline Expansion
3.3. Generics

. Dynamic Abstractions

4.1. Why Dynamic Abstractions?
4.2. Visibility List
4.3. Search Modes
4.4. Separate Compilation
4.4.1. Multiple Symbo! Tables
4.4.2. Manipulation of the Visibility List
4.5, Overloaded ldentifiers

. Tasking

5.1. General Commands
5.2. Calling Subprograms in the Runtime System
Exceptions
Implementation
Conciusion
Acknowledgements

0. Bibliography

1. Introduction

After the Ada language definition was introduced, it was tempting to "upgrade" existing Pascal
compilers and convert them into Ada compilers. This approach seemed feasible because - except for
syntactic differences - Pascal could be seen as a subset of Ada. Severa! compiler builders followed
this approach and built compilers which ended up as subset Ada compilers, providing an Ada

language with one or more of the following features missing: Generics, overioading and tasking.

When building an Ada debugger, it is tempting to follow the same idea: Start from a (Iiﬁe number
crienied) d.ebugger for Pascal, for example PasDDT [Hisgen, 1981] or KRAUT [Bruegge, 1983b), or
some Algol-like language and modify it for Ada. Again, this approach is not likely to succeed. The
implementers will encounter ditficulties, because none of the existing Pascal debuggers was
designed to be language portable. Furthermore, a straightforward implementation of an Ada
debugger based on a traditional debugger for block structured languages .is not possibie. The
problems again are rooted in tr;e complexity of the Ada language. The langulége features which make
Ada a difficult language from the point of view of a compiler buiider are the same for the debugger
builder. Features such as initialization at declarétion time or type properties that are only
determinable at runtime make it neéessary to keep more complex information in the symbol table.
Other features such overloading or separate compilation introduce large name spaces, often oniy
partially created or known by the user himself, leading to problems of proper name management at

debug time,

However, the task of writing a debugger is not the same as that of writing a compiier. Specifically,
the debugger does not have to implement the full language. In fact, we will argue that viclation of
some language rules (type checking, scope rules, etc) is actually desired during the debugging
process. Under this assumption, it is possible to start with a Pascal debugger and upgrade it to an

Ada debugger.

In this paper we discuss the problems involved in writing such a debugger. As we will see, this
includes problems that were traditionally associated with debugging of optimized code. We will deal
with the problem of debugging optimized code only as far as it is required by the reference manual.
Thus the following discussion assumes that the programs are translated by a nonoptimizing Ada

compiler supporting the full Ada reference manual’ .

1The full treatment of the problems of debugging optimized cotle is still an open research area [Hennessy, 1982],[Zeliweger,
1983).

The paper is organized as follows. in section 2 we define what one could call the "traditional”
symbol table format for Pascal debuggers. This definition serves as the base of our discussion to
cope with Ada's "non Pascal” features. Section 3 deals with language features for which we propose
the extension of the traditional symbol table format. These are initiatization at declaration time
{(section 3.1), inline expansicn (section 3.2) and generics (section 3.3). In section 4 we argue that
several of Ada’s new features can be dealt with in a better way by mechanisms that allow to violate the
language rules. We introduce the notion of a dynamic abstraction which is an abstraction maintained
during debug time involving names from several names spaces that are not necessgrily visible at the
same time in the Ada program. Dynamic abstractions are manipulated by a visibility list (section 4.2)
and by search modes (section 4.3). Language fealures that can be dealt with by dynamic
abstractions include separate compilation (section 4.4) and overloading {section 4.5). Finally we
discuss the probiem of debugging tasks and exceptions and propose the use of PATHRULES [Bruegge,

1985] for these language constructs (section 5 and 6).

The paper discusses the issues of extending a Pascal debugger to an Ada debugger on the design
level. We are currently modifying a debugger for a Pascal dialect to debug Ada programs according

to the proposais of this paper. Section 7 describes the implementation status of this effort.

2. Symbol Table Definitions

To allow symbolic debugging of Pascal programs, a compiler has to generate two tables for the
debugger: The Data table performs the mapping of program names to target locations and the Code
table maps program instructions such as statements, etc. to target locations. Each of these tables is

usually searched in both directions and we distinguish the following mappings:

Data table

s Address: VirtualAddress => IdentifierList

» Name: Identifier x Scope x Scoperule => DescriptorList

Code table

s Target: TargetAddress =2> Sou rceCodelocation

e Source: SourceCodelocation => TargetAddress
Given a virtual address in the target process, the Address mapping returns the names of the objects
containing a field that is atlocated at that address. Given a string, a scope and a scope rule {dynamic

or static search), the Name mapping returns a list of descriptors, where a descriptor contains the

virtual address, the type, etc. of the identifier. Given an address in the code of the target process, the
Targel mapping returns the corresponding location in the source program. Given the location of a
statement in the source program, the Source mapping returns the corresponding virtual address in

the target process.

The Name mapping is useful mainly for inquiries about variabies, to determine their value or to
make changes to them. It is by far more used then the Address mapping. The Address mapping is
useful for watching addresses being umntentronally touched to determine the name of the

corresponding variable,

The Target mapping is used when the program countef of the target process has to be interpreted
in terms of the source program. For example when printing the call stack, the debugger examines the
return addresses of routines on the runtime stack and uses the Target mapping to find the
corresponding source statements. The Source mapping is useful for any debugging command that
takes a source location as argument, for example setting a breakpoint, The notation for
SourceCodelocation depends on the representation of the source program. In the following we
assume the source program is represented in traditional ASClH form as a file of source lines. The
source lings can contain one or more statements and a statement index is needed to differentiate

between the statements on one line. Thus a source line oriented Source mapping looks as foilows:

Source: Line x FileName x StatementIndex => TargetAddress

We will use the term symbol table informally to denote all the above mappings and other tables

introduced later in this paper.

3. Symbol Table Extensions
This section deals with language features for which we propose the extensicn of the traditional
symbol table format. These are initialization at declaration time {section 3.1), iniine expansion

(section 3.2) and generics (section 3.3).

3.1. Initialization

For Pascal debugger implementations, the mappings Source and Targel are actually functions.
Their domain can be ordered monotonic increasing such that the range is also monotic increasing.
Thus for Pascal, the creation of the Code table is very simple: The compiler can represent Source
and Target by the same data structure - for example, a linear ordered array of record entries - and

emit the table on the fiy during the code generation. Furthermore, because Source as well as Ta rget

are monotonous increasing, the debugger can use fast search algorithms - such as binary search - for

both mappings.

Ada allows objects to be initialized in the declaration part. This complicates the code generation
and the creation of the Code table. The problem arises from the possibility to nest subprogram
declarations between the initialization code of the locals and the body of a another subprogram. The
following program fragment illustrates the problem. Inside procedure X three objects are declared:

Variable A initialized to 5, Variable B initialized to 10 and Procedure Y :

Procedure X 152
A: integer := b3
B: integer := 10;

Procedure Y 1s
begin

A :» B;
end Y

0~

10 begin

11 B := A * B;

12 end X;
There are several ways how a compiler could generate code for this fragment. The constraint is that
the variables A and B have to be initialized every time X is called. Thus the code generated for A and
B has to be executed before the body of X is executed. The code for procedure Y cannot be nested
hetween tha code initializing A and B and the body of X - except if gotcs would be inserted after the
expressions. If we assume, the compiler generates code for a virtual stack machine® as in figure
3-1 then the compiler cannot maintain a monotonic increasing ordering of line numbers which at the
same time is also monotonic increasing for code locations. Two options are available for the compiler
builder. Either the two mappings are represented by two different data structures. This offers fast
access for both mappings but requires more space. Or the two mappings are still represented by on
data structure, but only one mapping is sorted. This solution is preferable if one of the mappings is
used more often than the other one and space is a limited resource. From measurements we have
conducted with KRAUT we determinad that the Target mapping is reguested about 5 times mere often
than the Source mapping [Bruegge, 1985)]. Thus a Code table sorted by source locations seems to

be advisable in a disk space limited environment. Such a Code table is shown in figure 3-2.

Because it is possible to initialize objects at declaration time, we propose to set break points in the
declaration part. Thus in addition to be able to break before or after subprograms and sourcelines, an

Ada debugger should provide a break command that permits the user to break before or after any

2The program examples in this paper are not legal Ada programs: Each source line is prefixed by a line number.

3F::>r simplicity reasons we assume an instruction format where each instruction is two bytes long.

X
Target Address Instruction
0 LOAD &
2 STORE A
4 LOAD 10
6 STORE B
8 LOAD A
10 LOAD B
12 MULT
i4 STORE B
16 RETURN
Y
Target Address Instruction
18 LOAD 8
20 STORE A
22 RETURN

' Figure 3-1: Target Code for Subprograms X and Y

Source Location => Target Location

2 0
3 4
7 18
8 22
11 8
1z 16

Figure 3-2: Code Table for X and Y (sorted by source location)

initialization code.

3.2. Iniine Expansion

The Inline Pragma takes one or mdre names of subprograms or generic subprograms as
arguments. It specifies that the subprogram bodies should be expanded inline at each call whenever
possible. There are several problems with inline expansion on the compiler and on the debugger
side.

The reference manual states that an implementation is free to follow or ignore the recommendation
expressed by the Inline pragma. Sometimes it is not even possible to follow it, for example in
recursive subprogram definitions. Usually subunits of a unit can he (redcompiled without affecting the
unit itself. However, this is not the case if the subunits contains subprograms declared Inline and if
they are called in the unit or other units importing those subprograms. If an Inline pragma is applied
to a subprogram declaration given in a package specification, infine inclusion will only be achieved if
the the package body is compiled before units calling the subprogram. In such a case, inline inclusion
creates a dependence of the calling unit on the package body, and the compiler must recognize this
dependency when deciding the need for recompilation. if a calling unit is compiled before the
package body, the pragma may be ignored by the compiler for such calls. Similar considerations
apply to a separately compi]ed.subprogram for which an Inline pragma was specified. For example,

if unit A in the program fragment in figure 3-3 is compiled before unit B, the Inline pragma will be

ignored. If B is compiled before A, each call to Transform or Collect is inline expanded by the

compiler,

Because the language does not necessarily guarantee inline expansion, the user never can be
certain whether a subprogram is inline expanded or not. Thus we recommend that an Ada debugger

should indicate whether a subprogram is inline expanded if this information is requested by the user.

If the subprograms in figure 3-3 are inline ‘expanded, the generatad target code for our ideal stack
machine is shown in figure 3-4. For simplicity reasons we assume that the formai parameters of the
expanded subprogram are replaced by their actual parameter expressions for the given call
‘Furthermore we assume that the code is not peephole opt-imized.

== Unit A _
SA.1 procedure Top is
SA.2 R : real;
SA.3 U t rsal; :
SA.4 procedure Trensform(U: in out Real) is saparate;
SA.6 procedurs Collect{U: in out Real) is separate;
SA.6 begin
SA.7 Ccollect{R);
SA.8 Transform{R);
SA.9 Collect(S):
SA.10 Transform{S);
SA.11 end Top; . .

4

-- LUnit B

SB.1 seperate (Top)

5B.2 pragma InLine(Transform, Collect):
5B.3

$8.4 function Mult(X,Y: integer) return integer is
SB.5 wvar 1 : integer; ’
SB.6 begin

$B.7 I s X*Y;

SB.8 return I;

$B.9 end Mult:

SB.10

$8.11 procedure Transform(U: 1in out Real);
$8.12 begin

SB.13 U := Mult(y,2):

SB.14 V= U+ 23

58.3i6 end Transform;

§B.18

$B.17 precedure Collect(U: in out Real};
S8.18 begin

SB.19 Uu:= 2.0;

SB.20 end Collect;

Figure 3-3: Program fragment using inline expansion

Inline expansion also complicates the debugger side. In addition to the mappings Source and
Target, a third mapping called Inline table [Zeliweger, 1983] is needed. The Inline table records call

information whenever the compiler expands a subprogram call inline. The information contains a

4lf Top is a package, where Transform and Collect are exported, the pragma is ignared if it is only in the body.

TA.0 ENTRY TOP

TA.2 LOAD 2
TA.4 STORE R -

TA.6 LCAD R
TA.8 LOAD 2
TA.10 CALL MULT
TA.12 STORE
TA.14 LOAD
TA.16 LOAD
TA.18 ADD
TA.20 STORE R

N xx

TA.22 LOAD 2
TA.24 STORE 8 -

TA.26 LOAD S
TA.28 LOAD 2

© TA.30 CALL MULT
TA.32 STORE
TA.34 LOAD
TA.36 LOAD
TA.38 ADD
TA.40 STORE S

N w

TA.42 EXIT Top

TB.0 ENTRY MULT
T8.2 MULT

TB.4 STORE 1
TB.& LOAD I
TB.&8 EXIT MULT

Figure 3-4: Target code for Unit A and B {with inline expansion)

pointer to the source location of the call and a pointer to the symbol table entry of the subprogram.

The Source mapping is now a one-to-many mapping. Each source location of the subprogram has
to be mapped onio all the target locations of the infine expanded target code. For example, the
source location SB.13 of figure 3-3 has to be mapped to the target locations TA.6 and TA.26 of
figure 3-4,

Target is modified in the following way: I a target location belongs to an inline expanded
subprogram, the corresponding source location is the pointer to the source text location plus a
pointer to the entry in the Inline table describing the subprogram call. Part of the symbol table for the
fragment in figure 3-8 is shown in figure 3-5.

A problem with the Inline table is that it can deal only with inline expanded subprograms that clo not

Scurce mapping for unit 8:

Source Location

SB.6
S8.7
SB.8
SB.9
SB.12
SB.13
SB.14
58.16
SB.18
SB.18
SB.20

- Target Location

TB8.0
TB.2
TB.6
TB.8
TA.6 ,
TA.6 ,
TA.14,
TA.22,
TA.2,
TA.Z,
TA.8,

Target mapping for umit A:

TA.26
TA.26
TA.34
TA.42
TA.22
TA.22
TA.26

Target Location ==> Source Location, Inlinelndex

TA.2
" TA.4
TA.6
TA.8
TA, 10
TA.12
TA.14
TA.16
TA.18
TA.20

TA.22
TA.Z24
TA.26
TA.28
TA.30
TA.32
TA.34
TA.36
TA.38
TA.40

InLine Table:

Inlinelndex

-

2
3
4

[T)]

Sg.19
$8.19
SB.13
$B.13
58.13
SB.13
58.14
$B.14
SB.14
SB.14

SB.19
SB.19
$8.13
S8.13
SB.13
SB.13
5B.14
5B.14
S8.14
5B.14

MRNMNMNMNMNRNN R

o A N

Calling Location, InLineName

SA.7
SA.8
SA.9
SA.10

Collect
Transform
Collect
Transform

Figure 3-5: Symboi tabie for inline expansion

contain calls to other inline expanded subprograms. However, nested inline expanded subprograms

will probably not be unusual in Ada programs. One such exampie is when an arithmetic operator is

defined as an inline subprogram and then used in other inline expanded subprograms.

In the following we show how to deal with the problem of nested inline expansion. The basic idea is

that when any target location of a nested inline expanded subprogram is reached, the debugger has

to simulate the set of activation records that would be on the runtime stack if subprograms would not

be inline expanded. In the following we call this stack the virtual runtime stack,

The debugger can build the virtual runtime stack if the Inline Index in the Target mapping is
replaced by a Virfual Frame List. The Virtual Frame List is an ordered tist of indices into the Virtual
Frame Table (called Inline Table above). The first element of the Virtual Frame List points to the
"top" of that part of the virtual runtime stack that simulates the target location. The tail last element
points to its "bottom". Virtual Frame Lists can completely be determined at compile time, because
the compiler knows how deep inline expanded subprograms are nested at any time. Given a target
location, the debugger consults the Ta rget mapping to determine the Virtual Frame List and then
looks up the corresponding subprogram names in the Virtual Frame Table. For examp[e et us

assume we are given the fragment of a Target mapping

Target Loc3t1on => Source tocation, Virtual Framo List

T.0 B.5 4,2,1
T.4 B.5 1
T.20 B.6 4,3

and the Virtual Frame Table

Index Calling Location, Name
1 A.B Procl
2 A.10 Proc2
3 A.100 Procl
4 A.20 Proc4d

.

If there are currently three frames on the real runtime stack with the following program counters
(return addresses)

[TopOfStack]

- =
-

.20 [BottomOrStack]

then the debugger would build the following virtual runtime stack

Proc4 [TopOfStack]
Proc2

Procl

Procl

Procéd

Proc3 [BottomOfStack]

which then can be used to display the runtime stack as expected by the user.

To give another example of the use of the Virtual Frame List, we take up the program example in

figure 3-3 again, and assume the pragma is replaced by
pragma InLine (Transform, Collect, Mult)
that is, the subprogram Mult has to be inline expanded as well. In this case, no code would be

generated for unit B at all and the code for unit A would ke as shown in figure 3-8.

10

Target code for A:
TA.0 ENTRY TOP

TA.2 LOAD 2
TA.4 STORE R .

TA.6 LOAD R
TA.8 LOAD 2
TA. 10 MULT

TA.12 STORE Temp
TA.14 LOAD Tamp
TA.16 STORE R
TA.18 LOAD R
TA.20 LOAD Z
TA.22 ADD
TA.24 STORE
TA.26 LOAD
TA.28 STORE

=

(70]

TA.30 LOAD §
" TA.32 LOAD 2
TA.34 MULT
TA.36 STORE Temp
TA.38 LOAD Temp
TA.40 STORE S
TA.42 LOAD S
TA.44 LOAD 2
TA.46 ADD
TA.48 STORE S
TA.80 EXIT Top

Figure 3-6: Target Code for Unit A (nested inline example)

The symbol table in this case is shown in figure 3-7. As we can see from the Ta rget mapping, the
Virtual Frame List entry for location TA.10 - which contains the MULT op code - consists of two

virtual frames, namely the frames for subprograms Mult and Transform, respectively.

3.3, Generics

In this section we show that generics can be treated in the same way as inline expansion from the
debugger’s point of view. For each call of a generic subprogram, a unigue index is created, and the
source location of the call and the name of the generic instance are entered into the Virtual Frame
Table at that index. Again, as with Iniine expansion, the Source mapping is no longer a one to one
mapping but each source location must contain pointers to the target locations of each of the
instances. This could be done by generalizing the domain of Source to include the names of generic

instances: In the case of a line number oriented source mapping we would have

Source: Line x File x StatementIndex x InstanceName => TarpetAddress
where InstanceName is the range of strings denoting instances of generics defined in the source

program.

1

Source mapping for unit B:

Source Locatton =D Target Location

SB.6 YA 6, TA.30
SB.7 TA.6, TA.30
SB.8 TA.14, TA.38
S$B.9 TA.16, TA.40
S8.12 TA.6 , TA.30
SB.13 TA.68 , TA.30
SB.14 TA.18, TA.42
SB.15 TA.26 ,TA.60
SB.18 TA.2 , TA.28
SB.19 TA.2 , TA.26
$8.20 TA.6 , TA.30

Target mapping for unit A:

Target Location ==> Source Location, Virtual Frame List

" TA.2 58,19 1
TA. 4 5B.19 1
TA.8 $B.13 2
TA.8 $B.13 2
TA.10 SB.7 6,2
TA.12 SB.B 6,2
TA.14 SB.8 6.2
TA.18 SB.13 2
TA.18 SB.14 2
TA.20 SB.14 2
TA.22 $B.14 Z
TA. 24 SA.14 2
TA.28 $B.19 3
TA.28 $B.19 3
TA.30 S$B.13 4
TA.32 5B.13 4
TA.34 SB.7 6,4
TA.36 SB.8 6,4
TA.38 sB.8 6,4
TA. 40 5$B.13 4
TA.42 58.14 4
TA.44 5B.14 4
TA.48) $B.14 4
TA.48 SA.14 4

Virtual Frame Table:

Index ==> Calling Location, Name
1 SA.7 Collect
2 SA.8 Transform
3 SA.9 Collect
4 SA.10 Transform
b §B.13 Mult

Figure 3-7: Symbol table for nested inline expansion example

The Target mapping has to be modified too, but only if generics are not expanded but shared. For
example, an Ada compiler might generate shared code for generics instantiated inside a recursive
subprogram or for a generic with a formal type parameter that is instantiated with two different

subtypes. If both types have the same machine representation or require the same machine length for

12

the representation of the type and have the same underlying machine operations that operate on
them, the compiler could use the same code for both instances. In this case, a breakpoint
implementation based on code patching wouid not be sufficient to distinguish between breakpoints
defined for any of these instances. At any time, the runtime system has to maintain the name of the
current instance of the generic. The current instance name can then be used by the debugger to
disambiguate any uncaught exception or breakpoint in generic instances independent of underlying
optimizations. For example, if the code is shared between two instances Foo and Bar of the generic
FooBar and the user has set a breakpoint in instance Foo, for every breakpoint the debugger can

cempare the current instance name with the name Foo and break only if there is a match.

We therefore introduce a variable CurrentGeneric that always contains the Virlual Frame Table
index of the current generic instance. CurrentGeneric has to be updated at runtime every time a
generic subprogram is called, and it has to-be saved if another generic subprogram is called inside
the current generic subprogram; The index can be passed as a hidden parameter'in the generic
subprogram cail. A possible data structure for CurrentGeneric is a stack: Every time, a generic
subprogram is called inside another generic subprogram, the new index is pushed onto the stack,
And everytime a generic subprogram is exited, the stack is popped. The top of the stack always

-

contains CurrentGeneric.
The following example illustrates the previous discussion,

Give the fcllowing Ada fragment:

-~Specification:

S.1 Generic

5.2 type Element 1s private:

5.3 procedurs Exchange(U,V: in out Element);

--Body:

B.1 nrocedure Exchange{U,V: n out Element):
B.2 T: Element;

te T3

oot oD
« e o= v v
0~ DO W

-- User program:

u.1 ..

U.2 procedurs INTSWAP 1s new Exchange(Integer);

U.3 procedure CHARSWAP 15 new Exchange({Character);

U.4 procedure ARRAYSWAP 1s new Exchange{Array{1..2) of Integer);:

0 IntSwap(l.d):

1 CharSwap(A,B):
2 ArraySwap{M,N);
3 ...

13

The compiler might generate the following code for INTSWAP and CHARSWAP

LOAD
STORE
LOAD
STORE
LOAD
STORE
RETURN

R I
MOWD BN
C - C -

»

-

For ARRAYSWAP the compiler might generate the code:

.14 LOAD W1
.16 LOAD U2
.18 STORE T1
.20 STORE T2
.22 L0AD W2
.24 LOAD V2
.26 STORE L1
.28 STORE b2
.30 LOAD T1
.32 LOAD T2
.34 STORE Vi1
.36 STORE v2
.38 RETURN

e e R e e e e T I I e

The Source mapping for EXCHANGE would ook as follows:

Source Location Target Location
B.5 T.0, T.14
B.8 T.4, T.22
B.7 T.8, T.30
B.8 T.12, T.38
And the Target mapping for INTSWAP and CHARSWAP would be
Target Location Source Location, Virtual Frame List
T.0 B.6 1] 2
T.4 B.€ 1] 2
T.8 B.7 1}2
T.12 B.8 12

For the Target mapping of ARRAYSWAP we get:

Target Locetion Source Location, Virtual Frame List
7.14 8.5 3
T.22 B.8 3
T.30 B.7 3
T.38 B.8 3

The Virtual Frame Table for procedure EXCHANGE is

Frame CallingLocation, Name
1 v.10 INTSWAP
2 y.11 CHARSWAP
3 v.12 ARRAYSWAP

In our example, code is shared between the generic instances INTSWAP and CHARSWAP, thus the

Virtual Frame List entries of the Target mapping contain elements of the form 1j2. If in such case,

14

CurrentGeneric contains 1, then the debﬁgger chooses subprogram INTSWAP, if CurrentGeneric
contains 2, the debugger chooses CHARSWAP. '

In addition to the changes in the symbol table generation sketched abave, debugger commands
must also be changed to cope with generics. They have to be generalized and new display formats
are necessary. For example, the user should be able to ask for the actual parameters or variables of a
generic instance. This can be made possible by generalizing commands that allow to look at the

parameters and locals of a routine to apply to generics as well:
Parameters R
Return the actual parameters of generic instance or subprogram R.

Locals R .
Return the local variable of generic instance or subprogram GS.

The notation for a source location must aiso be generalized because any source location might

denote one or more instances of a generic.

We solve this by prefixing a source location with the name of a generic instance. For example the

command
Break INTSWAP.B.b

sets a breakpoint at source line 5 of the generic instance INTSWAP,

If a source location is not qualified by the instance name, but points to the source code of a generic,

then all current and future instances are denoted. For example,
Break &

sets a breakpoint at source line B.5 at all - current as well as future - instantiations of EXCHANGE.
This means that the debugger, after consulting thé Source mapping, sets breakpoints at target
locations T.0 and T.14. If a breakpoint occurs at one of the target locations, say T.0, the debugger
consults the Target mapping and determines source location B.S. Then it‘compares the Virtual
Erame Table index with CurrentGeneric to determine whether the breskpoint occurred in
procedure INTSWAP or in CHARSWAP.

4. Dynamic Abstractions

In this section we introduce the notion of a dynamic abstraction to manipulate names from several
names spaces that are not necessarily visible at the same time in the Ada program. Dynamic
abstractions are manipulated by a visibility ist (section 4.2) and by search modes (section 4.3). We
demonstrate how dynamic abstractions can be used for dealing with separate compilation {section

4.4) and overloading (section 4.5).

15

4.1. Why Dynamic Abstractions?

The meaning of the occurrence of an identifier at a given place in the text is deflined by Ada's
visibility and overloading rules. From user studies we have conducted with KRAUT, a debugger for a
Pascal dialect running on the Accent operating system [Bruegge, 1883b], it seems to be clear that
users have a different notion of visibility when debugging. Instead of static scope rules they often
apply dynamic scope rules. Users often refer to locals of routines that are currently not visible with
respect to the scope rules of the programming language. This hypothesis is supported by
experiments described in [Bruegge, 1985]: Violation of scope rules are used if they are provided by

the debugger.

" There is another aspect where the violation of the visibility rules at debug time is important, namely
abstract data types. This has not been so problematic in languages like Pascal, which do not support
abstract data types but it becomes a problem in Ada. Ada’s package concept encourages users to
write programs as a set of hierérchicai levels or as a set of abstract data types each of them
implementing a certain abstraction and hiding its implementation details from the rest of the system,
However, the levels of abstraction composed at design or implementation time are usually not helpful
when debugging a faulty computation. While debugging, the programmer is simultaneously the
implementer as well as the user of an abstraction. Even if he is using an abstraction, hé would like to
have a look inside it if he has to make sure the body is a correct reatization of the specification. Thus
- we argué that a view across the abstractions boundaries maintained by the Ada program is often
needed during debugging. We call such a view a dynamic abstraction. Dynamic abstractions are
useful 1o check a certain hypothesis where one might simultancously have to refer to variables
defined in several package bodies.

In addition to superimposing user defined abstractions, dynamic abstractions also permit the
violation of predefined language abstractions such as types and the operations defined on them. To
deternnine whether an abstraction is coriectly impiemented or used, a view of a type in terms of its

underlying representation is often very useful,

One might argue, that a high level source language debugger should not provide any possibility at
all to violate the rules imposed by the language. For example, it should not be possible to assign an
integer to a boolean, write an integer as a set, etc. We take a different attitude. The structu}e of the
program is a design time broperty, typing and scope rules of 3 programming language are compile
lime properties and none of these are debug time properties. In fact, we maintain that when a
program is faulty obeying structural rules or rules of the programming language obstructs the user

from finding the bug. The debugger must provide for greater flexibility and relaxation of the language

16

rules. Design abstractions and language abstractions should be seen as one possible set of dynamic

abstractioﬁs at debug time. Other dynamic abstractions can be specified by the user .

4.2. Visibility List -

A consequence of dynamic abstractions is the refaxation of the compile time rules, in particularly
the visibility rules for identifiers. In Ada programs the user will generally encounter a large name
space, especially when debugging programs that contain context clauses, that is, they import library
packages. Searching the syimbol table in such a case might actually be contusing, because it contains -
packages trhat are imported without the explicit knowtedge of the user. Furthermore, the user often
has suome idea in which package the variable is located, and a search through the whole name space
might not only be confusing but also very time consuming. Thus it would be preferable if the user
could give the debugger some directions for the search to make it more manageable and more

efficient.

In more concrete terms, the situation we want to model is where a programmer would like to inspect
a big program listing but has only a limited desk space available. The complete listing does not fit on
the desk and the programmer must use a technique to make only those aspects of the program visible
that are of concern to the current debugging problem. In practice this is generally done by putting the
irrelevant pages aside and keeping only the important pages on the desk. Abstractions maintained by
the program are usually of no concern in such a situation. Of course, during the debugging session
the view of what constitutes an irrelevant page changes very often and the programmer has to leaf

through many pages, changing their visibility status depending on his current needs,

To model this scenario with a debugger we introduce the notion of a visibility list and operations for
its manipulation. From the user's point of view the visibility list is the set cf compilation units that are
of concern to him for the current debugging situation. From the implementer's point of view the
visibility list is an ordered list of symbol tables where ¢ach symbol iable is the result of the compilation

of a compilation unit.

The visibility list is searched in sequential order, starting at the head of the list. In the following we
introduce debugger commands that manipulate the contents of the visibility list and thus permit the
user to manipulate the search order. In this section we discuss the visibility list and operations
defined on it. The search can be further modified by so-called search modes introduced in section

4.3,

The main intended use for visibility lists is ta manage the name space of large complex Ada

17

programs being debugged by experiencéd programmers. For small programs, visibility lists are
probably not very helpful, especially if the cost of making the whole name space avaifable is
neglectable. Furthermore, because the visibility list permits the programmer to violate so many rules
of the Ada language, the name space made visible by the visibility list might be quite confusing,
especially to the naive user. Thus the Ada debugger must contain commands for managing simple
name spaces and simple debug situations as well as complex name spaces and complicated debug

situations.

One name space that is often necded during debugging is the set of names that are statically visible
as seen from the current program counter and as expected by the user. The statically visible name

space can-be opened by the cornmand

OpenStaticView Enter all symbol tables of compilation units currently visible from the current point
of execution applying Ada's scope rules, ;

A situation which is also needed very often is to open ali the symbol tables for routines currently on

the runtime stack. This can be done by the OpenStack command.

OpenStack ‘
Append all symbol tables- containing symbolic information for one of the
subprograms currently on the runtime stack to the end of the visibility list. Do not
move symbol tables that are aiready in the visibility list.

To make the use of these commands as simple as possible, they can be made part of a default

profile that is automatically executed whenever the debugger is fired up.

More complex views of the name space can be obtained by applying one of the commands
described below. Each of these commands take a name N denoting a compilation unit and an
optional qualifier SPECS or BODY, which permits the debugger to distinguish between the users view
and the implementers view of the name space of N, SPECS denotes the specification parts of all
packages of N, BODY specifies the body parts of all packages of N. if the qualifier is omitted the whole
name space of N is denoted,

Open [SPECS|BODY] N
If N is already in the visibility list move it to the top. Otherwise insert the symbol
table for N at the head of the visibility list. 1f N = '*' then add all symbol tables to

the visibility list and make the specifications, body parts or both visible. For
example, Open SPECS * makes all the specifications of the program visible,

Close [SPECS|BODY] N
if N is not in the visibility list do nothing. Otherwise, if SPECS or BODY is
specified, make the specification or the body of compilation unit N invisible,

18

respectively. H no qualifier is specified, remove compilation unit N from the
visibility list. Close SPECS * removes all specifications from the visibility list.
Closc BODY * makes the name space of all bodies of the program invisible. The
command Close * empties the visibility list.

Symbol tables of compilation units are not added to the visibility fist if the user has not issued an
Open, OpenStack or OpenStaticView command. In particutar, if a compilation unit N contains
some use clauses the corresponding package declarations are not automatically made visible when N
is opened. The underlying assumption is that packages from a library are generally well debugged
and don't have to be present in the visibility list. if they are needed, however, they can be dealt with by

the OpenRecursive and CloseRecursive commands. .

OpenRecursive [SPECS|BODYIN
) Execute Open [SPECS|BODY] N. Then for each package mentioned in a context
clause (use or with) in N open the corresponding compilation unit. This is done
recursively until there are no more new clauses. N = %', then the command is
the same as Open *. '

CLOSERECURSIVE [SPECS[BODY] N
Execule Close [SPECS|BODY] N. Then for each context ctause in N, close the
compilation unit containing the package mentioned in the clause. This is done
recursively until there are no more new context clauses. CloseRecursive * is the
same as Close *.

The visibility list commands have to be supported by adequate symbolic information generated by
the Ada compiler. In particular, the debugger must be able to distinguish between specifications and
bodies of a compilation unit as easily as possible. This can be achieved by adding this information to
the Data table.

4.3, Search Modes
In Ada, a potentially visible declaration is any declaration that occurs immediately within the visible

part of a package. They can be made visible by a use clause. However, the Ada Reference Manual
states that potentially visible declarati'ons are not visible in the following cases:

e If the place considered is within the immediate scope of a homograph of the declaration.

e Conflicting names: TwQ potentially visible declarations with the same identifier are not

visible unless one of them is either an enumeration literat or a subprogram dectlaration.

For example, let us assume we are debugging the program fragmentin figure 4-1. Then the name Vis
illegal inside the body of procedure Q according to Ada's visibility rules. D.V or E.V must be ysed

instead. However, it would be legal if we "move” inta package D. Again, we regard these rules as

compile time rules that are not well suited for debugging. From the analysis of the user protocols we

19

package D is
T,U.V: Boolesn;
end D;

procedure P is
package E is
B,W.V : Integer;
end E;

procedura @ 1is
T.X: Real;
Use D,E:
begin
-- Body of procedura Q
and 0Q;
begin
éﬁ&-P; _
Figure 4-1: Ada’s Visibility Rules
know that users are moving the point of inspection - which is different from.‘ the program counter
- frequently around in the program [Bruegge, 1985]. Furthermore they avoid prefixihg and rather
move to the inspection point where they can use short names. Thus an Ada debugger should not
follow these rules and we introduce the notion of a search mode instead. The user can specify one of

three search modes:

SearchOne
The visibility list is searched from top to bottom and when the first name is found it
is printed,

SearchCompilationUnit
The visibility list is searched from top to bottom. When the first match is found, the
compilation unit is searched completely and all matches found in this compilation
unit are printed,

SearchAll
The whole visibility list is searched and the set of found identifiers is printed.

Me illustrate these search modes with an example. Let us assume we have written the following

Ada program fragment in a compilation unit CU:
procedurs R is

package TRAFFIC 1is
type COLOR 4s (RED, AMBER, GREEN);
end TRAFFIC;
packaga WATERCOLORS is
type COLOR s (WHITE, RED, YELLOW, GREEN,
BLUE, BROWN, BLACK);
end WATERCOLORS:

If we look for the name COLOR we could have the following situations:

20

1. If CU is not on the visibility list, COLOR will not be visible o the debugger.

2 IF we set the search mode to SearchOne and CU is on the visibility list, then the
debugger returns the definition of COLOR in the TRAFFIC package.

3. If we set the search mode to SearchAll and CU is on the visibility list, then the debugger
refurns both definitions of COLOR.

4.4. Separate Compilation

Ada’s separate compilation feature introduces two problems. One problem is that if a program
consists of several compilation units the whole symbolic information of the program is no longer
generated at the same tim2. Symbol tables must be generated separately for éach compilation unit
and thus an Ada debugger has to cope with the problem of multiple symbol tables. We discuss this
problem in section 4.4.1. The other problem is that separate compilation units introduce a large name
space which is only partially created by the user, especially if packages are imported by context
rclauses. When debugging the user is not necessarily interested in having this larQe-name space
avaiiable, However, he might be interested in names which cannot be made visible simultaneously as
far as the language rules are concerned. In section 4.4.2 we show how this can be done by rmeans of

the visibility list.

4.4.1. Muitiple Symbol Tables

With the symbolic information being generated at different times in several symbo! tables tha
physical relation between symbol tables and target process becomes a problem. Existing Pascal
debuggers are generally based on integrated symbol tables, that is the symbol table is part of the
runfile of the target. PasDDT [Hisgen, 1981], for example, expects the compiler to load symbol
information together with the runfile if the program is compiled with debug switch. The advantage of
an integrated symbo! table is fast response time because direct memory access to the symbolic
information can be used. There is also no need to use the file system for accessing the symbaol table,

which means that the debugger does not have to rely on the file system,

Integrated symbol tables have also several disadvantages. Depending on the programming style
and other factors, runfiles containing symbolic information can be significantly larger than the virgin
runfile [Barbacci, 1985b]. This results in the commonly practiced style of distinguishing between the
debugging version (debugging information such as NOOP's included) and the production version (alt

debugging information stripped off} of a program5 which we do not advecate. Another disadvantage

5Hoare has compared this practice with swimmers who Iry to learn swimming on the beach wearing life vests and then take
their life vests off as soon as they go into the water.

21

of integrated symbol tables is that they }:an influence the paging behaviour of the system. For
example, timing errors in the target process might have a smalier chance of being detected when
frequent symbol table access causes the enlarged runfile to be paged in a different manner than the
virgin runfile. And worse, sometimes the eniarged runfilte might be just too large to fit into the

available fils oy otem space.

Separate symbol tables have several advantages and these show up especially in the context of a
Ada debugger. The separate compilation feature encourages the compiler to keep the abstract
syntax tree of the specifications of compiled programs beyond the cornpilation 'time. This is of
advantage, for example, when a package that has not been changed after its last compilation is
imported by another program. In this case the compiler can use the syntax tree instead of scanning
the source text again, speecding up the compilation. If we allow the debugger to have read access
rights to the abstract syntax tree, no extraneou_s symbol table has to be produced (as was usually
done for Pascal debuggers). This has several advantages. First, avoiding the generation of the
{extraneous) symbo! table reduces the compilation time. Furthermore the size of the runfile of the
target process is the same no matter whether the user is debugging or not. Third, if the symbol table
is not part of the address space of the target program, it can be kept on a remote file system. Thisis
of advantage in disk space limited environment éuch as personal workstations®, Fourth, it allows the
protzction of symbolic information on the file system level making unauthorized access to the
symbolic information impossible. Copyrighted or otherwise protected proérams can be released into

"hostile” environments and still symbolically debugged if necessary.

One could argue that with the introduction of separate symbol tables the number of file accesses
has to increase and the response time of an interactive debugger slows down. However
measurements done during debugging sessions of programs written in a Pascal dialect suppérting
separate compilation revealed that generally less than 0.5% of ali symbol tables were accessed during
debugging sessions [Bruegge, 1985]. Furthermore symoolic accesses seem to follow a iocality
principie: Cnce a name is accessed in a certain compilaticn unit, the number of accesses to names
defined in the same compiiation unit is significantly higher than the number of requests for names in

different compilation units,

6Networl-‘ transparent file system access could be vsed o add the remote directory to the local file search list of the
debugger.

22

4.4.2. Manipulation of the Visibilily List
In iie dllawing we show how the notion of a visibility list can be applied with advantage to a set of

separately compiled unins. T3 w2 the discussion more concrete, figure 4-2 contains an Ada
program consisting of 3 compilation units called ., B and

COMPILATION UNIT A:

procedurs TOP is

type REAL 1s dipgits 10;
R,5 : REAL := 1.0;

package FACILITY is
PI: constant:= 3.14169;
function F({X: REAL)} return REAL;
procedure G(Y,Z: REAL):
"10 end FACILITY;
11 '
12 package body FACILITY is separate:
13 .
14 begin -~ TOP
16 FACILITY.G{R,S):
16 end TOP;

O~ O bW

COMPILATION UNIT B:

1 =zeparate (TOP)

2 package body FACILITY is

function F(X: REAL) return REAL is
4 begin

G F = X*2;
8 return F;
7 end F;
&

9

0

ta

procedure G(Y,Z: REAL) is separate;

10 end FACILITY;

COMPILATION UNIT C:

1 with TEXTIO;
Z separate (TOP.FACILITY)

3 procedure G{Y,Z: REAL) {s
4 begin

6 R := Y +Z;

8 and G;

Figure 4-2: Example program: Separate Compilation

Let us assume we are debugging this program and the visibility list is initially empty. If we execute the

command GPEN A, the visibility list containg
A (Specs, Body) [Head=Tail]

Thus all the names declared in compilation unit A such as R, S, Pi, etc, are visible for the debugger.

If we execute the command CLOSE *, the visibility list is empty again. The command

23

OPENRECURSIVE A fills the visibility list with

A (Specs, Body) [Head}
B (Specs, Body)
C (Specs, Body) [Tai1]

which makes all the symbois of all symbol tables visible. CLOSE SPECS A changes the visibility list

into
A (Body) [Head]
B {Specs, Body)
C (Spscs, Body) [Tat1]

which makes all the symbois defined in the specification of package Facility invisible: Thus the
variable Pl.as well as the specification of functions F and G are not accessible. However, F and G are
still known, because their bodies are accessible in the compilation units B and C respectively. F can
bz made invisible by the command CLOSE BODY B:

A (Body) [Head]
B (Specs)
- € (Specs, Body) [Tai1}

Note that the variables R and S in compilation unit A can only be made mwsnble if the whole

compilation unit A is removed from the visibility list.

4.5, Overloaded identifiers

Ada’'s overloading rules are complex and a fuil implementation puts quite a burden on the
implementer of the debugger. However, the overloading rufes might not always be that useful at
debug time. As we have already argued above, the user of a debugger usually does not apply the
notion of a scope as strictly as the compiler. We hypothesize that this is also true for overloaded
identifiers. Of course, when writing expressions containing overloaded operators the user most
probably expects the operators to be resolved exactly in the way they were resolved at compile time.
However, the user is also often interested in all instances of a certain name, rnot just the instances that
are visible according to the current scope and overloading rules. Thus we regard the overloading
rules as compile time rules that can be overridden at debug time by means of the visibility list
described in section 4.2. If a name is overloaded the search modes can be used to return a list of
symbols describing one or all instances of the name and ask the user for more precise information to

determine the meaning. This can be done by pointing or by some other naming mechanism.

Our approach results in a requirement for the compifer builder. To return the list of all overloaded
instances of a certain identifier as fast as possible, the Data table should allow fast access to all
overtoaded identifiers. This can be done by representing the name spaces as ternary trees where all
overlcaded_ names descend form the same node, a representation employed by the Spice Ada
compiler [Barbacci, 1985a).

24

5. Tasking

Helmbold and Luckham [Helmbold 85] propose a debugging facility for the detection of deadloéks
and blocking errors of Ada programs containing tasks. The facility is built on the notion of the tasking
state of an Ada program. A tasking state of a program is the set of tasks that have been activated by
the program, their statuses angd associated information. A tasking state is described without access to

the name space of the target program, that is it is independent of the application.

Unfortunately the facility is not adequate for many debugging situations. It does not provide the
ability to specify the execution behaviour in terms of the abstractions employed in t.;:e application. A
command like "Run the program until 1000 tasking statements have been executed” does not
describe a specific debugging situation as good as a command "Run the program until an entry call
Produce is followed by an eniry call Consume". The facility does also not provide a way to filter the
output produced during the execution. However, when debugging multiplé processes the output
produced can be overwhelming. Finally the facility does not provide for any corrective action to be

taken once a certain situation is recognized.

We propose to use PATHRULES {[Bruegge, 1983a], [Bruegge, 1985]) as a debugging facility for
debugging Ada tasks., PATHRULES is a ianguagé based on the production system paradigm. A path
rule consists of two parts: An event recognition and an action part. The janguage 1or the event
recognition part is based on predicate path expressions [Andler, 1979] and permits the description of
the state, operational and communicational aspects of single as well as multiple process systems ina
small and concise way. The action part specifies the actions to be performed when the execution of

the target process matches the execution specified by the event recognition part.

The foliowing example shows how to set a distributed breakpoint in an Ada fragment emp!bying
tasks. The fragment defines a buffering task B for a producer task P and a consumer task C and is
shown in figure 5-1.

To set a break point after P has called the entry routine Write with C = 'B' and when B is about to

accept it, we write the following path ruie:

PATHRULE DistBreak
: GPE: P:B.Write!R{Char='B'}; B: B.WritelA{C='B'}
MATCH: Suspend P,B
END DisBreak
This definition defines a path rule with the name DRistBreak. The event recognition part - prefixed
by the word GPE - contains a generalized path expression that specifies the occurrence of a
compesite event consisting of two events. The first event is described by

"p.B.Write!R{Char ='B'}". !t matches the execution when the entry routine Write of task B is

25

-- Producing task P:
loo0p

é:ﬁrite(char):
;;é loop
--Consuming task C:
Toop
é:ﬁoad(char):

end loop

.--Buffer1ng task B:
Toop
select

when count < PoolSize =>

accept Write{C: in Character) do
or
when count > 0 >

accept Read(C: out Character) do

or
terminate
end loop

Figure 5-1: Ada Tasking Example

-

requested7 by task P and the variable Char has the value 'B’. The second event is*-, described by
"B:B.Write! A{C="B"}". It matches the execution when the entry routine Write in task B is about to
be activated with -the actual parameter C='B’. The sequential operator ";" specifies that the
composite event described in the path rule is only matched by the execution if the two events occurin
sequential order, that is P requests the execution of Write before B enters the execution of Write.

No other execution path would be matched.

The action part of the path rule specifies that the tasks P and B are suspended as soon as the
execution matches the event specified in the rule. The Suspend command is described in section
5.1. Note that Ada’s semantics for rendezvous ensure that the calling task P is suspended unti! the

corresponding accept statement in B is executed,

Naturally, this example does not describe al! the possibilities of using PATHRULES for debugging Ada

tasks. PATHRULES are an adequate language to descyibe many other aspects cf Ada tasks - in fact of

?In FATHRULES the occurrence of a path function can be monitored at three different occasions, namely when the path
function execution is requested, activated or terminated. This is indicaled by postfixing the name of the path function with an
event qualifier IR, 1A or IT, respectively,

26

parallel processes in general - such as the specilication of deadlocks or the illegal use of critical
regions. A full description of PATHRULES is beyond the scope of this paper and is contained in
[Bruegge, 1985]. 7

in the remainder of this section we rather concentrate on the introduction of a set of AGa specific
commands that can be used in the action part of a path rule to debug and manipulate Ada programs
containing tasks. First, in section 5.1, we describe a set of general commands that we consider useful
in the context of debugging Ada tasks. Because nobody knows yet how to debug tasks,-it is highly .
probable that this set of commands does not cover all possible debugging situations. We argue that
this problem can be alleviated by the ability to call routines of the target program. In general, this is
already possible in PATHRULES. However, many task specific manipulation routines will be defined in
the runtime system of the language implementation. Thus in section 5.2 we propose to extend

PATHRULES to call routines defined in the runtime system as well as in the target program itself.

5.1. General Commands
Ada's semantics of tasks poses several problems when debugging Ada programs. In the following

we describe these problems and show how to circumvent them.

Ada's lask objects are constanis. At debug time, however, it might be necessary t0 replace atask by
another one. For example, tasks can proceed in parallel and make the execution of the target
process nondeterministic. To be able to make a debugging session deterministic, it might be |
desirable 1o replace a nondeterministic task by a deterministic one (such as a test driver). Another
example where task replacement might be necessary is when a task is hung and a correctly

functioning one is available. The command we propose is

Replace [ALL] T1 T2 :

Replace replaces the task T1 by the task T2. If ALL is specified, all tasks
dependent on T1 are deleted. T2 starts its execution as if it has been calied by the
program.

Ada provides gueues associated with entry routines that follow a certain server discipline. These
queues are not directly visible to the user. At debug time, however, we might want to change the
queueing discipline or the contents of the queues. Thus the debugger should provide commands that

permit the manipulation of entry queues. The commands we propose are

AddQueue STN
Add tack T behind N'th entry of the queue associated with subprogram S,

ClearQueue S

27

Clear the queue associéted with subprogram S.

Ada’s definition of the termination of a 1ask is also not very useful when debugging. For example, a
task might be hung up because of another task. The user would like to get rid olf the second task so
that the first one is able to continue its execution. If the second task has dependent tasks, the user
might want to kill these too or he might not. To manipulate the order of execution and termination of

tasks we propose the following commands:

Start T .
Start the set of tasks T = T1,...,Tn. If a task Ti is already running, ignore the
command for that task. Start * starts all currently dafined tasks.

Suspend T1,...,Tn .
Suspend the set of tasks T1,...,Tn. If a task Ti is already suspended by a previous
Suspend command, ignore the command for Ti. Suspend * suspends all
currently active tasks. Note that Suspend means suspension of the task on the
operating system level, not on the language level. In Ada a task T is suspended if
it is waiting for a rendezvous but the other task is not yet ready for the rendezvous,
Such a task would normally resume the execution if the conditions for the
rendezvous are fulfilled. However, if the user has issued a Suspend T command,
the task would not resume the execution even if the rendezvous can take place.

Resume T
Resume the set of tasks T = T1,....Tn that were suspended by a previous
Suspend command. If a task Ti is already running, ignore the command for Ti.
Resume * resumes all tasks that were suspended by a previous Suspend
command.

Kill [ALL] T1,...,Tn
Terminate each of the tasks T1,..,Tn, if they are not yet terminated. If ALL is
specified, all tasks depending on T1,...,Tn are also terminated, otherwise they are
not. Kill * terminates all tasks and depending tasks. '

Priorities of tasks can be set in Ada with the PRIORITY pragma and are fixed at runtime. The
selection of the priorities, however, does not always support all possible executions desired during

debugging. To change the priority of a task we propose the command

SetPriority NT1,...,, Tn
Change the pricrity of the set of tasks T1 eadnte N,

5.2. Calling Subprograms in the Runtime System
As mentioned before, there is not much experience in debugging Ada tasks, and thus it is not clear
whether the functionality just described in connection with the PATHRULE language is sufficient,

Because of this reason we propose that subprograms in the Ada runtime system that modify

28

impending tasks can also be called in the action part of a path rule. By providing routines that can be
called insiead of built in commands, the debugger can be customized to the specific application
being debugged. We think-that this approach is viable as long as.nabndy-knows what.a.good set of
commands for debugging tasks is. In fact, because of its flexibility and customizability it might be

even useful after such a basic set has been determined.

The runtime subprograms can be routines used by the runtime system to implement the Ada
language as well as routines that modify tasks but are never called directly, that is, routines that are
not necessary for the implementation of the Ada language. In fact, several of the commands

described above might be available as routines implemented in the runtime system.

The ability to call subprograms creates several problems for the builder of the debugger. Symbolic
information of the runtime system routines must be made visible for the debugger to set breakpoints,
intercept calls or execute the runtime foutines. In particular, the calling convention for the routines in
the runtime system should be the same as the one for the subprograms of the Ada program. This
causes problems if the runtime system is written in a different language. In this case an Ada interface
and the associated symbolic information must be provided for all the runtime system routines and

must be made visible to the user and the debugger, respectively. .

Another problem is that the environment of the call might not be the same as during normal
execution. In particular, if the subprogram is nested, the enclosing subprogram might not be on the
runtime stack and the subprogram might refer to nonexisting objects. For this reason we disallow the
call of any nested subprogram at debug time. Even if we disallow nested subprogram calls,
subprograms might refer to global variables which are not yet initialized because the subprogram is
called out of order. If the subprogram is defined in the Ada program, we can assume that the user is
able to deduce any preconditions for the call. However, this might be impossible for the subprograms
of the runtime system. For this reason the implementer of the runtime system must specify all the

preconditions for all the exported subprograms of the runtime system as a help far the user.

Even with the restrictions mentioned above, calling a subprogram might result in an unexpected
errar which the user would like to undo. Thus we propose that the debugger provides a command that

neutralizes the effect of any subprogram cail issued during a debugging session:

Abort R Restore the state of the program to the state it had before the subprogram R was
executed.

To support such a command, the debugger must be able to memorize the debug state before the

29

subiprogram is executed. This could be done by saving the state of the target process in a core dump
before executing the subprogram. if this is too costly, an additional parameter to Abort could
indicate whether to restore the state only partially. For example, a command Abort StackAndHeap
R might restore the state to the old run time stack and heap before R was called, but it expects the

userto "repair” the global state by himself8.

6. Exceptions _

The Ada language defines a set of exceplions such as Constraint - Error, Program - Error, etc.
Each of these language defined exceptions has a corresponding handler in the runtime system. If the
language defined exception occurs, this handler is called, prints out some predefined error message
and aborts the execution of the program. User defined exceptions define their own handler,
Handling exceplions in the language defined manner is not necessarily useful at debug time,
especially if exceptions indicate program errors. If a debugger is present, the user should have the
choice as to whether the actions defined by the exception handler aré executed or whether a
debugger is invoked instead.

The Ada language does not define what happens when the execution of an Ada program is
terminated because of an unhandled excepticn. Again, if a debugger is present, the debugger should
be called for any unhandled exception that is, the debugger should be regarded as the final exception
handler for any exception not handled by the target process or the runtime systeiﬁ. For example a
division by zero does not necessarily mean that the user wants to abort the current execution. At
debug time the user might want to explore what happens if he patches the result of the division with a
defined value and continues the execution. Of course, when proceeding from an uncaught exception
the state of the target process is undefined. But in many cases the user is able to patch the state into

a defined state before proceeding.

Cohen&Cohen propose a debugging facility for dealing with exceptions {Cohen, 1985]. Their
proposal introduces exception-related breakpoints, faciiities for allowing the user to raise and dismiss
exceptions and clean-up operations, We intend to provide the function‘aiity described in their paper.
For example, the Ada debugger provides commands such that the user can raise or dismiss an

exception:

Raise E Raise exception E.

BThe Unwind command in krauT, for example, removes only the activalion records from the run time stack that are a resuft
of the subprogram call, it does not restore aclivation records of other currently suspended subprograms. Neither does it
restore the heap or global variabies. However, even with this limited capabiiity the command seems to be quite useful,

Dismiss E Dismiss exception E.

We extend Cohen's proposal and suggest to use the PATHRULES language for debugging
exceptions. We propose to make use of the environment variable %FailureReason to describe the
reason for the exceptior‘n9 and three new path functions for describing events that deal specifically

with exceptions:

- RaisedException
This path function is executed when an exceplion is raised.
- PropagatedException

This path function is executed when an exception is propagated outside of a
subprogram,

- UnhandledException

This path function is executed when there is no handler associated with the raised
exception.

Event qualifiers can again be used to filter out unimportant occurrences of exception related events.
For example, the event - RaisedExceplion!R denotes the situation when an exception is about to

be raised. Thus to implement a breakpoint at the raise sites of all exceptions we write the path rule

PATHRULE BreakAtRaise
GPE: RaisedExceptioniR
ACTION: Hait

END

To break cnly at the occurrence of exceptions of type Constraint-Error we qualify the path

function - RaisedException!R with the predicate {%ExccptionReason = ‘Constraint -Error’}:

PATHRULE BreakAtRaise
GPE: RaisedExceptionlR {xtxceptionReasen = ‘Constraintirror’}
ACTION: Halt

END

The path function - PropagatediException is useful when an exception is propagated into or out
of a specified subprogram and the user might want to dismiss the exception or raise a different
exception. For example, if we would like to dismiss an exception UnknownCharacter raised by a

subprogram Write, but only if Wrile is called from the subprogram Display, we could write the

gln PATHAULLS, environment variables are prefixed by a percent sign (%) to distinguish them from names from the client name
space.

31

following path rule:

PATHRULE D1ismiss
GPE: Display!A;WritelA; PropagatedException!R {xExceptionRaason-'UnknownCharacter'}
ACTION: Dismiss %ExceptionReason
END
This path rule fires when the exception UnknawnCharacter is raised in Write and Display is
active. Because the action part of the rule dismisses the exception, the subprogram Write will not be

aborted.

To catch all unhandled exceptions of an Ada program we could write the path rule

PATHRULE CatchAl1l
GPE: UnhandledException
Action: Halt

END

To support debugging of exceptions as outlined above, the compaler must maintain a syrnboi table
that contains the names of all exceptions defined in the program and all exceptions defined in the Ada
language manual. Furthermore, the runtime system must initialize the environment variable

%ExceptionReason with the reason for the exception every time an exception is raised.

7. Implementation

We are currently implementing the proposals of this paper by extending krauT to debug Ada
‘ programs compufed by the Spice Ada compiler [Barbacci, 1985a). XRAUT is a remote, source level
symbolic debugger for a Pascal dialect called Perq Pascal [PQS, 1984]. ltis running on a personal
workstation supporting muitiple windows and a network environment with network transparent file
System access. The current status of our effort is as follows: KRAUT can deal with initialized
declarations as proposed in this paper. Visibility lists and the ability to call user defined subprograms
are also implemented. First experiences with the visibility list support our argument that users do not
always follow the language rules at debug time. Especially users of programs with large name spaces
make frequent use of visibility lists. PATHRULES have been implemented to deal with unhandled

exceptions, but are not yet usable for Ada tasks.

KRAUT cannot deal with generics, Inline pragmasm and cverloaded identifiers. These features are
currently being implemented.

10The Inline pragma is also not supported by the Spice Ada compiler.

32

8. Conclusion

In this paper we have shown how a debugger based on Pascal can be converted into an Ada
debugger and discussed the problems encountered in the process. Several Ada features can be
dealt with by making a clear distinction between compile time and debug time. Pascal did not provide
any abstractions beyond lhe procedure level. With Ada a new programming style emerges that
promotes the use of abstractions. We have argued that abstractions that are usefu! at design or
compile time are not necessarily useful at debug time. We proposed the introduction of the visibility
list to manage the visibility of the name space of an Ada program and showed how it can be used for -
separately compiled programs. Many other language rutes are not necessarily useful at debug time,
for example the rule for resolution of overloaded identifiers or Ada’'s exception handling. The
introduction of the visibility list has two advantages. First, it allows the user to make the name space
of large cornplex programs manageable because the size can be kept as small or as large as desired.
Second, a small visibility list yields faster search times, which in turn leads to better debugger

response times,

Other Ada features reguired additions to the syn;nbol table produced by the compiler for the

debugger. These included initialization at declaration time, the Inline pragma and Genetrics.

For debugging tasks and exceptions we proposed the use of PATHRULES. Furthermore we
advocated the ability to call runtime syster routines from within the debugger. The main advantage

of calling subprograms is its flexibility compared with built in commands.

9. Acknowledgements
i would like to thank Peter Feiler from Siemens RTL and Maric Barbacci from Carnegie-Melion

University for their helpful comments on earlier versions of this paper.

10. Bibliography

[Andler, 1979] S. Andler, "Predicate Path Expressions: A High-Level Synchronization
Mechanism”, Ph.D. Thesis, Department of Computer Science, Carnegie Mellon
University, 1979.

[Ball, 1982] J.E. Ball, M.R. Barbacci, S.E. Fahiman, S.P. Harbison, P.G. Hibbard, R.R. Rashid,
G.R. Robertson, and G.L. Steele: "The SPrICE Project”, Computer Science
Research Review 1980-1681, Department of Computer Science, Carnegie-Mellon
University, pp: 5-36.

[Barbacci, 1985a] M.R. Barbacci. T.D. Newton, R.G. Stockton: "The Ada+ Front End and Code
Generator”, Proceedings of the 1985 International Ada Conference: Ada In Use,

[Barbacci, 1985b]

[Bruegge, 1983a)
[Bruegge, 1983b]

[Bruegge, 1985]

[Cohen, 1985]

i [Helmbold, 1985]
& [Hennessy. 1982]
[Hisgen, 1981]

[PQS, 1984}

[Zellweger, 1983]

Paris, France, May 1985,
M.R. Barbacci, personal communication.

B. Bruegge, P. Hibbard "Generalized Path Expressions- A High Level Debugging
Mechanism", Journal of Systems and Software, Vol.3, 265-276, 1983.

B. Bruegge, "User Manual for KrRauT - The Interim Srice Debugger"”, Technical
Report RTL-83TR-008, Siemens RTL, Princeton, November 1983.

B. Bruegge, "Adaptability and Portability of Symbolic Debugqgers”, Ph.D. Thesis,
Department of Computer Science, Carnegie Mellon University, expected in August
1985,

E. Cohen, J.Cohen, "Exceptional Debugging in Ada", Technical Report, Siemens
RTL Princeton, 1985. In progress.

D. Helmbold, D. Luckham, "Debugging Ada Tasking Programs", Computer, |EEE,
47.57, March 1985,

J. Hennessy, "Symbolic Debugging of Optimized Code", ACM Transactions on
Programming Languages and Systems, Vol.4, No. 4, 323-344, July 1982,

A. Hisgen, "Pascal on the DEC System 10 at CMU", Chapter 3: PasDDT, June
1981,

Perq Systems Corporation, "Perq Pascal User Manual", Pittsburgh, 1984.

P.T. Zellweger, "An Interaciive High-Level Debugger for Control-Fiow GCptimized
Programs", Technical Report CSL-83-1, XERQOX Corporation, Palo Alto Research
Center, January 1983. :

