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Over the past decade the application of efficient nonlinear programming tools has become a
powerful and established strategy for process analysis and design. While simple coupling of
standard optimization codes to process applications has demonstrated the effectiveness of this
approach, further development is needed for the efficient large-scale use of these tools. This is
particularly true for dynamic optimization problems and on-line applications, as well as design
problems with complex models.

This paper centers on exploiting the structure of process optimization problems. Here we consider
the tailoring of Newton-type optimization algorithms for various process applications. In
particular, the Successive Quadratic Programming (SQP) algorithm has been successful over the
past decade; it has also been extended in a number of ways to optimization problems involving
several thousand variables. After describing a large-scale, general purpose NLP solver, we briefly
describe specialized SQP algorithms for die following problem classes:

- optimization of complex, structured process models with few degrees of freedom

- optimization of dynamic systems, where structured sets of nonlinear equations are created from
discretization of differential-algebraic systems (DAEs)

- treatment of parameter estimation problems with many degrees of freedom

Each of these aspects is illustrated with a small process application and efficient techniques for
handling these problems are outlined. Also, these methods are briefly compared to general
purpose algorithms in order to demonstrate the effectiveness of this approach.

INTRODUCTION

Since the application of the Successive Quadratic Programming (SQP) algorithm in the late
seventies there has been renewed interest in process optimization as a design and analysis tool.
Based on the work of Han (1977) and Powell (1977), several variants of this algorithm have been
developed for flowsheet optimization, both with equation-based (Berna et aL, 1980; Locke et al.,
1983) and modular process simulators (Biegler and Hughes, 1982; Chen and Stadtherr, 198S).
Today, flowsheet optimization is an established design tool and at least a dozen commercial
process simulation programs incorporate an SQP optimization strategy. However, given the
acceptance of process optimization, the next challenge is to maintain the reliability and efficiency of
the optimization approach as more difficult design problems are considered. Part of this challenge
lies in the education of the design engineer, who needs to develop an appreciation of the
characteristics and the limitations of these tools. This will lead to more attention to the proper,
intelligent formulation of optimization problems and an interactive approach to the application of
optimization tools (e.g., Amargerct aL, 1991). On the other hand, general nonlinear programming
(NLP) algorithms such as SQP need to be tailored to address larger; structured process design
problems efficiently, as these are being considered more frequently by industry.'This paper
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considers this latter question and explores three general problem classes for which SQP has been
tailored. Specific instances are given for each of these classes and process examples arc presented
to demonstrate the effectiveness of this approach.

First, we explore the extension of SQP to complex, but structured, process models. Here, a
general decomposition method is presented that efficiently deals with large, nonlinear models with
few degrees of freedom. These are characteristic of most complex design problems in process
engineering. If, in addition, the process model is solved with a tailored, Newton-Raphson
algorithm that exploits the problem structure (e.g., block banded systems for separation units) we
show that the application of SQP decomposition leads to an efficient optimization algorithm that
can be implemented as a straightforward extension to the model solver. A comprehensive outline
of this approach is given in the next section along with an example that exploits the Naphthali-
Sandholm distillation algorithm.

Following this, we consider process models composed of a system of differential-algebraic
equations (DAEs). Here we consider a flexible formulation where the DAE system is discretized
and incorporated directly into the formulation of the optimization problem. This "simultaneous*1

approach leads to combined solution of both the model and the optimization problem and allows
for the direct treatment of profile constraints. However, the larger size of the resulting system
dictates the application of structured decomposition strategies if complex and realistic process
models are to be considered. Here, a tailored strategy is outlined and applied to the dynamic
optimization of a nonisothermal batch reactor. The fourth section deals with problem formulations
that arise in data reconciliation and parameter estimation. As in the previous two sections, the
structure of the process model can be incorporated into the decomposition procedure. Also, the
least squares structure of the optimization problem leads to a tailored quasi-Newton strategy.
Application of these concepts to SQP leads to a parameter estimation algorithm that is over twice as
fast as the general purpose method. Moreover, certain classes of data reconciliation and parameter
estimation problems have large degrees of freedom due to underdetermincd models. Here the effort
of general purpose nonlinear programming algorithms increases polynomially with problem size
(i.e. number of data sets). On the other hand, we show that by exploiting the special structure of
these problems a tailored SQP algorithm is developed with performance that increases only linearly
with the number of data sets.

The final section of the paper summarizes these concepts and briefly addresses some open
.>-:-• - -; questions. Clearly, an important issue lies in increasing the number and breadth of tailored process

applications. To this end, modular and flexible optimization implementations are required along
with appropriate interfaces to large-scale modelling tools. In addition, a flexible approach to
understanding the structure of process models needs to be adopted so that proper formulation of
the process optimization problem includes the rapid development of special-purpose nonlinear
programming algorithms. . •

HOW SQP CAN BE TAILORED

In this section we first develop a large-scale SQP algorithm that can be tailored to solution
algorithms for large-scale process models. Here we consider, for simplicity, the following general
nonlinear programming formulation: > -

Min <D(z) : ,'";.'

s.t h(z) « 0, h:9l

Problem (1) can be solved by any large scale nonlinear programming solver (e.g., MINOS,
Successive Linear Programming, GRG, etc.). For this work, we consider Successive Quadratic
Programming (SQP) for the optimization step. SQP generally requires fewer function evaluations
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than other solvers and has been shown to be robust for nonlinear programs that arise from complex
process models. Motivated by a Newton-based approach applied to the optimality conditions of
(1), SQP solves a quadratic programming (QP) subproblem in order to update the variables z. The
QP subproblem of problem (NLP) at the kth iteration is given by:

Min

d

s. t.

+ l d T B k d

h(zk) + VhT(zk) d = 0
(2)

where
zk

zu

d : search direction vector

B^: analytical or approximated Hessian of the Lagrange function

and necessary conditions of (2) (with bounds inactive) arc given by

B Vh

VhT 0
(3)

Here the index k is suppressed and Vh is the [n by m] matrix of equality constraint gradients. As
problem (1) becomes large, the "vanilla" SQP algorithm becomes inefficient since B is a dense n x
n matrix and no advantage is taken of model sparsity. One approach to overcome this limitation is
to develop sparse implementations (Nickel and Toilc, 1989; Lucia and Xu, 1990), but care needs
to be taken to ensure global convergence. It should be noted, though, that these approaches can be
very successful for large-scale applications. Another approach deals with decomposition of (3) and
updating projections of B onto a space characterized by the independent variables of the problem.
For our applications we take advantage of these decomposition approaches as Che number of
independent variables for process optimization is relatively small (10 to 100) and the actual
projected Hessian is expected to be small, dense and positive definite.

To develop the decomposition, let Z(zfc) be an [n by (n-m)] matrix with columns spanning the null
space of VhT(zfc)f and let Y(zfc) be an [n by m] matrix so that [YZ] is nonsingular. Let Q be a
nonsingular matrix of order (n+m), given by: ,

[YZJ
0

0
I (4)

where I is an m-dimcnsional identity matrix. Then the search direction can be written as:

IV
and multiplying equation (3) by Q and substituting for d yields:

(5)

VhTY

VBZ Wh
ZTBZ o

0 0
u - • • • - pv<t>

h .

. • • • - . . ; ( 6 )
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Thus the QP (2) has the following solution:

dy = -(VhTYYl h
d2 = - (ZTBZ)-! (ZT VO + ZTBY dy)

v = - (YT Vh)-1 (YT V<D + YTBd)

and d is reconstructed from equation (5). Since the search direction goes to zero at convergence,
the multiplier estimates can be approximated by

v = -

and the matrix Y^BY need not be estimated. Based on this decomposition, the reduced QP
subproblem with bounds is given by:

Mj£ (V<D(zk) + B Ydy)T Z dz + 1 dj (ZTBZ) dz

S.I.

zL £ Zk + Zdz + Ydy £ zu

Note that the projected Hessian (Z^BZ) is usually positive definite and a dense, positive definite
quasi-Ncwton approximation (e.g. the BFGS update) is a good match for this structure. Often, the
projected Hessian in the range space, Z^BY, is neglected since it is assumed that dy is small.
Neglecting ZTBY leads to a 2-step q-superlinear rate of convergence (Nocedal and Overton,
1985), which is often acceptable for process optimization. Alternatively this term can be estimated
by finite difference of the reduced gradients along Ydy, or approximated by a Broyden update of
ZTB. Both approaches can improve the rate of convergence.

In addition, there are several choices for the basis matrices, Y and Z. In the math programming
literature, orthonormal bases, created from QR factorizations of Vh, are applied (see Nocedal and
Overton, 1985). However, this dense decomposition is expensive and not practical for solving
large problems. Instead, the following orthogonal representations are often used (see
Vasantharajan and Bieglcr, 1988):

Z T =[I -AT] and YT=[A I] where A = (Vxh
TYl VuhT.

Here u and x represent the independent and dependent variables (of z), respectively. This basis
takes advantage of sparsity in VhT but requires a nonsparse "least squares" step, dy, from (6).
Note that YTZ = 0 so the step dy is minimized. Gabay (1982) and Locke et al. (1983) suggested
setting Y(z)T = [ 0 I ], i.e., along a coordinate direction or basis for a set of dependent variables.
From (6) we see that this basis has the particular advantage in that the step dy comes directly from
a Newton step for solving h(x) = 0. Consequently, the reduced Hessian SQP method with
coordinate bases is straightforward to tailor to structured Newton-Raphson solution procedures for
complex models. However, Vasantharajan and Biegler (1988) and Schmid and Biegler (1991)
have observed that because dy can become large and curvature information along this direction
(ZTB Y) is ignored, coordinate bases can lead to less reliable SQP algorithms. To remedy this, the
latter study provides estimates of ZTB Y dy and shows that slow convergence problems can indeed
be overcome, especially in cases where coordinate bases normally fail. In addition, Biegler et al.
(1991) develop an adaptive procedure for estimating this missing term that leads to l-?tep
superlinear convergence. ,v

As an illustration, Schmid and Biegler apply this approach to the Naphthali-Sandholm distillation
model, UNIDIST, that is part of die SEPSIM process simulator (Andersen, ct al., 1991). Here the
model has a block tridiagonal structure in the dependent variables (flowratcs) and an efficient
Thomas algorithm is applied to obtain the Newton step for the distillation model. This program
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was modified and extended in a straightforward manner to include distillation optimization. The
data structures for the modelling equations and the tridiagonal system remain virtually the same and
none of the physical property routines were modified. In addition, only a few changes were made
to the interface in order to allow a flexible description of the optimization problem. In this way, the
existing model is coupled to the reduced SQP method and converted into a tailored optimization
method for distillation. As a simple example, Schmid and Biegler consider a 12 tray column for
separating benzene and toluene. Using the reflux ratio and column pressure as decision variables, a
weighted objective involving product rate and reboiler duty is minimized. Here solution of this
optimization problem with a nested approach (and repeated solution of the distillation model) takes
seven SQP iterations and 90 Newton iterations for the column model. On the other hand, the
simultaneous optimization approach, starting from the column's default initialization requires only
18 SQP iterations with coordinate bases (with finite difference estimates of ZTBY dy) and 21
iterations with orthogonal bases. Here, the SQP optimization is only about twice as expensive as
the Newton-Raphson column simulation.

STRUCTURES OF DAE SYSTEMS

To extend this approach to models described by systems of differential-algebraic equations,
consider the following dynamic optimization problem for t £ [a,b]

Min *F(x(b),p) + | G ( x ( t ) , u ( t ) , p ) dt
(8)

u(t),x(t), p
s.L

x(t) = F(x(t),u(t),p)
g(u(t),x(t)) £ 0
g f (x(b)) £ 0
x(a) = xo

x(t)L £ x(t) £ x(t)U

where:
u(t)L £ u(t) £ u(t)U

I
*F( x(b)) • component of objective function evaluated at final conditions

b

G(x(t) ,u(t) ,p) dt = component of objective function over time
'a

g = inequality design constraint vector
x(t) = state profile vector
u(t) = control profiles
p = design parameters, not time dependent - : .
gf = inequality constraints at final conditions
xn = initial condition for state vector
xL(t), xu(t) = state profile bounds
uL(t), uu(t) = control profile bounds

For the NLP formulation, we convert the differential equations to algebraic equations using
collocation on finite elements (see Villadsen and Michelsen, 1978).- Here the discretized
collocation equations are evaluated at the shifted roots of an orthogonal polynomial, as shown in
Figure L State and control profiles are represented in Lagrange form over an element i:

and 0 £ x £ 1.
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XK+I(0 = Lxij^jO) »j(t)-riLaj / t
( ty, in dementi (9)

k=o,j ^ " ^

uK(0 = L uy 6j (t) 9j (t) = rifc.ij /*"*** in element i i = 1,... NE
j=i * t j J " l i k '

Here k=lj denotes k * j. Also X£+i(t) is a (K+1) th order piecewise polynomial and ujc(t) is a
Kth order piecewise polynomial. (The difference in orders is due to the existence of the initial
conditions for x(t), for each element i.)

Xj+2,0

Ci-1 Ci Ci+1 Ci+2

Figure 1: Finite element collocation discretization for state and control profiles, and elements.

Using K point, orthogonal collocation on finite elements (see Figure 1) and defining the
polynomial basis functions so that they are normalized over each of the NE elements, one can write
the collocation equations for the ODE system as follows.

A^i r(tik) = 2- Xy <t>j(Xk) -ACi F (xik,uik) (10)

1 "~ l , . . . . . . . . , iNEr

k = 1 ,K

* Uwt

where ^(xic) = -p- and is calculated offline. Note that t& = & + ACfo Here the element lengths
can also be included as decision variables in order to find possible points of discontinuity for the
control profiles and to insure that the integration accuracy is within a specified tolerance.
Additionally, we enforce the continuity of the states at element endpoints, i.e.:

or H o - ] L « l - i J * | ( t - i ) i - 2,......,NE (11)

ints provide the initial conditions for the next element states. Given this
for the DAE model, problem (8) is now reformulated as follows:

Min ^ (x f, p) + X Z, WU G( Xij, uy , p,A£i)

(12)

A&F( Xyfuy,p) =0
0 v
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gf

XiO

Xf -

L

L

NE

I-

(Xf) <

" XK+1

XNE

4 C - -

0
= 0

(Ci) = 0

(CNE + I ) = 0

^ Xjj

< u U

U
< AC;

CTOUI

NE

Note from the structure of the collocation equations that the control variables and element lengths
directly determine the solution trajectories for the states. The linearized state equations are thus
solved forward in time using the finite element structure and passing the information from element
to element This allows us to exploit the sparsity of the ODE's and the collocation formulation.
Once these trajectories have been computed, and the derivative information (sensitivity of states to
control variables) is obtained, this information is chainruled in order to obtain the reduced gradients
of the objective and contraint functions. We then construct the reduced QP subproblem in order to
update the optimal control profile. This approach is especially efficient if the differential equations
are linear in the state variables because die resulting method becomes a reduced gradient, feasible
path approach, with the collocation equations solved at each optimization iteration (see Logsdon
and Biegler, 1991a).

To illustrate this structured decomposition, let xj represent the interior states in element i; xj is
determined in each element by collocation equations (10). In particular, from the collocation
equations (hi = 0) we have:

hi (xio,Uij,Xij^j) = 0 A a B T ^ l ~ 1 - - N E f j - 1 —» K

oxy

and, Ax!= - (A)"1^ (xjo,Uij,Xij,A£j), a Newton step for the collocation equations (10). We further
apply the linear continuity equations (11) to determine the initial conditions for the next finite
element and continue the forward elimination of the collocation equations. This leads to the
decomposition strategy for the Jacobian matrix, shown in Figure 2. Continuing die solution of the
linearized collocation equations, we evaluate the final state variables as functions of the control
variables, the element lengths and the initial state conditions, i.e.

x f = f(xo,ACi, ui,AC2. u2, . . . ^ # _

Note that the flow of information from element to element is passed forward through the continuity
equations as illustrated in Figure 3. In addition, if we have inequality constraints that depend on
state variables at final time or within some (or all) intermediate elements, i.e. (xc) at element c, then
these can also be expressed by:
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State Variables

U
A"1

Continuity

A-1

Continuity

Figure 2: Decomposition for Element to Element Solution Approach

ui AC,

L / U Continuity
Equation

1st Element Interior States Initial Conditions
Next Element

Final
State
Variables

Figure 3: ODE solver for state differential equations using collocation on finite elements witth
information processed from element to clement.

We then proceed to the next element, calculate the interior states and chainrule to obtain their
sensitivity to the control variables from the previous element Note that the chainruling continues
through the state variables at the end of element i, xj, starting from each control variable in every
element j, up to element i.

35
J-U

(13)

This forward elimination and chainruling scheme acts as a linearized ODE solver and is exact if the
state variables appear linearly in the DAE system. Once state variable vectors and their sensitivities
are calculated, reduced gradients for the objective and ng constraint functions, g(xc), are
constructed with respect to the jth control variable by the following relations:



European Symposium on Computer Aided Process Engineering—1 S89

g n ) r ***± n - 1. n, (14)
9UJ dzf 9UJ 3zc

Results of the gradient calculations are then transferred to a QP subproblem (15) which is solved in
the control variable (and element length) space. A brief description of the algorithm tailored for
DAE optimization is given next:

0. Choose the number of elements and the corresponding number of collocation points based
on the likely index of the DAE system (see Logsdon and Biegler, 1989 for details).
Initialize the control variables, state variables, and element lengths.

1. For values of the control variables and element lengths at iteration k, and initial conditions
for the state variables, perform the following for each element i (i = 1,...NE):

1.1 Using the initial conditions of element i as starting guesses, (partially) solve the
collocation equations (10) by (inexact) Newton algorithm to obtain an estimate of
the interior states. (See Logsdon and Biegler, 1991b, for details on this inexact
method.)

1.2 Calculate the derivatives with respect to this element's decision variables.

1.3 Apply the continuity equations (11), and solve for the next element's initial
condition.

1.4 Chainrule the derivatives from previous elements and update from equation (13).

2. Continue until an intermediate element is reached that influences an inequality (g(xc)), or
until the last element is reached. Determine the reduced gradients for the objective and
constraint functions according to equation (14).

3. Assemble the objective and all of the constraint function values and reduced gradients
from the above steps. If Kuhn-Tucker conditions are satisfied, STOP. Otherwise solve the
following quadratic program:

MinAu V<DTZ Au + A u ( Z B Z ) A U
2 (15)

s.t. g + VgTZAu £0

to determine the search direction in u. Note that this QP contains all of the state and control
variable inequality constraints. In addition, the reduced Hessian matrix, (ZTBZ) is updated
by the BFGS formula, and a line search is performed in order to determine the steplength
for the decision variables. -..»,•,•»,• -. •., , ., r -, ,

5. Return to step 1, with a new set of decision variables from (15). .

Note the similarity of this approach to the reduced SQP strategy outlined in the previous section.
Again, a Newton step is first calculated for the dependent variables. Reduced gradients are then
calculated for the independent variables and a quadratic program ((7) or (15)) determines the search
direction for these variables.

To illustrate this structured approach, Logsdon and Biegler (1991b) consider a nonlinear batch
reactor example (Ray, 1981) with temperature as the control variable. It is desired to maximize an
intermediate product after a fixed reaction time. Here we consider the nonisothermal series
reaction, A --> B --> C which is nonlinear in the rate equations. Letting ci and C2 represent the
concentration of A and B, respectively, the optimal control problem becomes: , .

CACE W SuppL-H
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Max c 2 (1 .0 )

dCi 2

^ = MT)c?- k2(T)c2

]k i ( T ) = A iOexp l /RT
C l(0)=1.0 , c2(0) = 0

298 < T < 398

i = l , 2

Here two point collocation and six finite elements are adequate for the accuracy of the profiles and
the discretized problem (12) has 54 variables. With a general purpose decomposition approach that
does not take advantage of problem structure, we require 88 iterations for convergence (Logsdon
and Biegler, 1989). With the structured approach and prescaling the reduced Hessian matrix, only
16 iterations and 33 CPU seconds (Vaxstation 3200) are required In both cases we started with an
initial flat temperature profile of 300 K; the final control profile is shown in Figure 4. This
approach has also been applied to much larger systems including optimization of reflux ratios for
batch distillation columns, where nonlinear programs with over 5500 variables were solved and
similar savings were observed (see Logsdon and Biegler, 1991b).

400

0.0 0.2

•©• Temperature
•+- Initial Temp

Figure 4: Optimal Temperature Profile for Nonlinear Batch Reactor

AN SQP METHOD FOR UNDERDETERMINED LEAST SQUARES PROBLEMS

In this section we consider a structured SQP algorithm for the parameter estimation problem
represented by the following NLP formulation.

min
x

s. t.
(16)

e> = o

L U

e <> e ^ e
.j.'..r:.r»' r- ^**'

where
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s+p

k = 1, 2 , . . . s

w

the residual for k-th state variable at \i-th measurement

the fined value for the k-th state variable at |i-th measurement

the measurement for k-th state variable at |i-th measurement
the positive semidefinite covariance matrix

This problem is often encountered in connection with reconciliation of process data, as well as
estimation of model parameters from laboratory experiments. Here it is interesting to note two
aspects of the problem which lead to more efficient, tailored SQP strategies. First the gradient of
the objective function with respect to XJJ, vanishes with small residual values. From (6) it is clear
that for problems with small residuals, the Lagrange multipliers also vanish at the solution.
Consequently, an approximation to the Hessian of the Lagrange function often needs to consider
only the second derivative terms in the objective function, which are available analytically. Tjoa
and Bicglcr (1991a) exploited this property to develop a tailored quasi-Newton updating strategy
for constrained least squares problems. In comparisons with general purpose SQP methods and
MINOS, this approach was at least twice as fast

A second aspect of parameter estimation problems is that the regression model is often
underdetermined. Here the number of independent variables is given by p + r (s - m) and this
increases linearly with the number of data sets; a polynomial increase in effort is required by the
NLP solver. To address this problem, Britt and Luccke (1973) and Dovi and Paladino (1989)
develop efficient, special purpose algorithms to deal with underdetermined regression models.
Here we show that application of a tailored SQP strategy also yields an efficient algorithm without
sacrificing any of SQP's convergence properties. In particular, we note that the model parameters
in (16) are the only complicating variables among data sets and the regression model can be

uncoupled by adding the following dummy variables and equations: gp. = Cji - 0 = 0. With these
additional variables and constraints, the QP subproblem for (16) at iteration k is given by:

s. t.

Min
X

L
0 <

- A6

; e +

r

- 0

r

V

; e

J g

1,2, . . . r

(17)

where B^ the Hessian for each data set, includes W from die objective function and quasi-Newton
approximations for the remaining terms from the Lagrange function. From the QP (17), the
optimality conditions are decoupled for each data set and expressed as:

0 h* J (18)
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Vxfa 0

Vrfcfe I
and

-A0

To further exploit the structure in each data set, we apply a familiar decomposition strategy to
(18). Here, again we define basis matrices ZJJ, and YJJ. such that

and the structure of these matrices is identical for each data set. Substituting into (18) (as in eqn.
(6)) leads to the following decomposed linear system for each data set:

0

YjVly

0

0

(19)

Note the search directions dy and dz for each data set can be calculated by using the third and
second rows of (19), respectively. This calculation can be simplified further by exploiting the
structure of the Hessian. Assuming that we have small residuals and have normalized the problem
so that W = I, we note that the Lagrange multipliers in the approximation of B^ are also small and
can be neglected. We thus introduce the following simplifications:

Note here that d z^ is independent of AO and that, for any value of A6 and dZp., dy^ will satisfy the
constraints in (17). We now construct the following reduced QP by summing the contributions in
A6 from all of the data sets and substituting into (17). The resulting QP is only in the space of the
p model parameters, 6:

Min
6

s. t.

A6 + 1A91

eL < ek e
u

A6

and HM and Op, are constructed from the reduced gradients and the search directions dyp, and dzjj,.
The advantages of solving this reduced QP are that we can also include parameter bounds and
apply a line search strategy to enforce global convergence, as with any SQP method. Moreover, if
the problem has zero residuals and the reduced Hessian of the Lagrange function for (16) is
positive definite, this method is analogous to a Gauss-Newton (G-N) method and has a quadratic
convergence rate. Otherwise, for large residual problems this approach has been generalized to
include quasi-Newton updates for ZTBZ and HJJ,. A detailed description of this Decoupled SQP
(DSQP) algorithm is given in TjoaandBiegler (1991b). ^ -

To illustrate this approach, Tjoa and Biegler consider a simple regression model where the
estimation problem can be made arbitrarily large by increasing die number of data sets. This model
is taken from Rod and Hancil (1980) and has the following form:

f(x, 0) 1 = 0
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Using the data generated in Tjoa and Biegler (1991b) we solve this problem for four cases where
the number of data sets are 25, 50, 75, and 100. Here we note that for problems with few
parameters and many data sets, the computational effort for DSQP increases only linearly and is
largely characteristic of the model considered at each data set Consequently, this approach can be
seen as a direct extension of the SQP decomposition strategy developed in the second section.
Figure 5 briefly illustrates this property and compares this approach to the MINOS NLP solver.
Note the polynomial increase in effort with problem size that is characteristic of all general-purpose
NLP solvers, and the significant reduction in effort due to the structured decomposition in DSQP.

MINOS
DSQP

40 60 80 100 120

Data Sets
Figure 5: Comparison of MINOS and DSQP on Small Regression Example

Finally, it should also be noted that this approach is not only restricted to parameter estimation
problems. For example, it has straightforward extensions to multiperiod design problems that arise
in the design of flexible flowsheets and heat exchanger networks. Moreover, the solution of the
decoupled search directions in (19) is straightforward to execute in parallel and leads to the easy
exploitation of coarse-grained parallel computer architectures.

SUMMARY AND CONCLUSIONS

The design of tailored Successive Quadratic Programming optimization strategies is outlined for
three general applications in process design and analysis. Here we first consider the coupling of
complex design models to a simultaneous optimization approach; we observe that reduced space
SQP techniques not only lead to faster performance, but also allow the straightforward interface of
Ncwton-Raphson model solvers to the optimization algorithm. This was briefly illustrated with a
distillation example that interfaces to the Naphthali-Sandholm model in SEPSIM. Despite the
strong coupling of the model equations and the optimization algorithm, this implementation allows
broad classes of distillation problems to be specified and solved within the framework of the
process simulation program.

This structured SQP approach was also extended to the optimization of differential-algebraic
systems. Here the block lower triangular structure of collocation equations was exploited in the
SQP decomposition step. After sketching the elements of this approach and drawing parallels to the
previous section, we apply it to the optimization of a small batch reactor and compare it to an
unstructured approach. Here the savings in effort are almost fourfold. Similar savings have also
been observed on much larger problems involving the optimization of batch distillation units
(Logsdon and Biegler, 1991b).

The last application deals with parameter estimation problems that have underdetermined process
models. These problems have potentially many degrees of freedom, but also have a block diagonal
substructure that allows for an efficient decomposition scheme. Here the algorithm is tailored to the
structure of each data set; all of these have an identical structure. Consequently, the effort of this
decoupled SQP (DSQP) approach increases only linearly with the number of data sets. To illustrate
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this strategy, the DSQP approach is applied to a simple regression model and compared to the
MINOS algorithm. Here it is clear that, given their polynomial increase in effort with problem size,
general purpose algorithms can require far more effort on these problems. Moreover, applications
of this DSQP approach are under study for general multiperiod design problems.

The various decomposition strategies and illustrative examples attest to the flexibility of the SQP
algorithm in exploiting the characteristics of process models. As shown above, additional
development in tailored approaches for structured problem classes can lead to large savings in
computational effort. An extremely convincing example of this is given in the last section.
However, an open question remains as to how the model structure can be exploited easily by the
casual user. Here flexible interfaces for the NLP solver and the process model require a fairly open
data structure. With the application of powerful modelling tools with open architectures (such as
ASCEND and SPEAKEASY) this task should, we hope, become straightforward and lead to more
widespread development and application of model-tailored NLP solvers.
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