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Over the pagt decade the application of efficient nonlinear programming tools has become a
powerful and established grategy for process analysis and design. While simple coupling of
gandard optimization codes to process applications has demongrated the effectiveness of this
approach, further development is needed for the efficient large-scale use of these tools. Thisis
particularly true for dynamic optimization problems and on-line applications, as well as design
problemswith complex models.

This paper centers on exploiting the structure of process optimization problems. Here we consider
the tailoring of Newton-type optimization algorithms for various process applications. In
particular, the Successive Quadratic Programming (SQP) algorithm has been successful over the
past decade; it has also been extended in a number of ways to optimization problems involving
several thousand variables. After describing alarge-scale, general purpose NLP solver, we briefly
describe specialized SQP algorithmsfor diefollowing problem classes:

- optimization of complex, sructured process models with few degrees of freedom

- optimization of dynamic systems, where sructured sets of no_nllnear equatlons are created from
discretization of differential-algebraic systems (DAEs)

- trestment of parameter estimation problemswith many degr’eeqof freedom

Each of these agpectsisillustrated with a small process application and efficient techniques for
handling these problems are outlined. Also, these methods are briefly compared to general
purposealgorithmsin order to demongr ate the effectiveness of this approach.

INTRODUCTION

Since the appllcatlon of the Successive Quadratlc Programmmg (SQP) algonthm in the late
seventies there has been renewed interest in process optimization as a design and analysis tool.

Based on thework of Han (1977) and Powell (1977), several variants of this algorithm have been -
developed for flowsheet optimization, both with equation-based (Berna et al, 1980; Lockeet al.,
1983) and modular process smulators (Biegler and Hughes, 1982; Chen and Stadtherr, 198S).
Today, flowsheet optimization is an established design tool and at least a dozen commercial
process simulation programs incorporate an SQP optimization strategy. However, given the
acceptance of process optimization, the next challengeisto maintain therdiability and efficiency of
the optimization approach as moredifficult design problems are considered. Part of thischallenge
lies in the education of the design engineer, who needs to develop an appreciation of the
characterigtics and the limitations of these tools. This will lead to more attention to the proper,
intelligent formulation of optimization problems and an inter active approach to the application of
optimization tools (e.g.; Amargerct al. :1991). On the other hand, general- nonlinear programmirig
(NLP) algorithms such as SQP need:to:be tailofed toaddress.larger; sructured-process design
problems:efficiently, -as these:are'being:consider ed:-more.frequently. by?industry.’ This:paper
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considers this latter question and explores three general problem classes for which SQP has been
tailored. Specific instances are given for each of these classes and process examples arc presented
to demonstrate the effectiveness of this approach.

First, we explore the extension of SQP to complex, but structured, process models. Here, a
general decomposition method is presented that efficiently deals with large, nonlinear models with
few degrees of freedom. These are characteristic of most complex design problems in process
engineering. If, in addition, the process model is solved with a tailored, Newton-Raphson
algorithm that exploits the problem structure (e.g., block banded systems for separation units) we
show that the application of SQP decomposition leads to an efficient optimization algorithm that
can be implemented as a straightforward extension to the model solver. A comprehensive outline
of this approach is given in the next section along with an example that exploits the Naphthali-
Sandholm digtillation agorithm.

Following this, we consider process models composed of a system of differential-algebraic
equations (DAEs) Here we consider a flexible formulation where the DAE system is d|scret|zed
and incorporated directly into the formulation of the optimization problem. This "smultaneous**
approach leads to combined solution of both the modd and the optimization problem and allows
for the direct treatment of profile congraints. However, the larger size of the resulting system
dictates the application of sructured decomposition strategies if complex and realistic process
models are to be considered. Here, a tailored srategy is outlined and applied to the dynamic
optimization of a nonisothermal batch reactor. The fourth section dealswith problem formulations
that arise in data reconciliation and parameter estimation. Asin the previous two sections, the
structure of the process model can be incorporated into the decomposition procedure. Also, the
least squares gructure of the optimization problem leads to a tailored quasi-Newton strategy.
Application of these conceptsto SQP leadsto a paramee estimation algorithm that isover twice as
fast asthe general pur pose method. Moreover, certain classes of data reconciliation and parameter
egimation problems have lar ge degr ees of freedom due to underdetermincd models. Herethe effort
of general purpose nonlinear programming algorithms increases polynomially with problem size
(i.e. number of data sets). On the other.hand, we show.that-by exploiting the special sructure of
these problemsatailored SQP algorlthm |sdeveloped with performancethat increasesonly linearly
with the number of data sets. - _

The final section of the paper summarizes these concepts and briefly addresses some open
questions. Clearly, an important issueliesin increasng the number and breadth of tailored process
applications. To this end, modular and flexible optimization implementations are required along
with appropriate interfaces.to large-scale modelling tools. In addition, a flexible approach to
under ganding the gtructure of process models needs to be adopted so that proper formulation of
the process optimization problem mcludesthe rapld development of special-purpose nonlinear
programming algorlthms : o ,

HOW SQP CAN BE TAILORED
In this section we first develop a large-scale SQP algorithm that can be tailoréd to solution

algorithmsfor Iargescaleprocessmodels Here we consder , for smplluty thefollowmg general
nonlinear programmlngformulatlon T e

Min D@ - - ‘_.'i.,._:'j".'_'?i T
t h(@ «O0,. h:9l. » R s R . m S ‘-J
| ZLSZSZU - . L
Problem (1) can be solved by any:large scale-nonlinear. programming solver (e.g.;: MINOS,

Successive.Linear Programming,:GRG,.etc.). For thiswork, we consider -Successive Quadratic
Programming (SQP) for the optimization step.v-_SQP-generaII'y requires fewer-function evaluations
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than other solvers and has been shown to be robust for nonlinear programs that arise from complex
process models. Motivated by a Newton-based approach applied to the optimality conditions of
(1), SQP solves a quadratic programming (QP) subproblem in order to update the variables z. The
QP subproblem of problem (NLP) at the kth iteration is given by:

Min V@ (z)d + idTBkd

d

s t. (2
h(z) + Vh'(z)d = 0
<, +ds 2"

where

d : searchdirection vector
B~:  analytical or approximated Hessian of the Lagrange function

and necessary conditions of (2) (with bounds inactive) arc given by

S G e

Heretheindex k issuppressed and Vh is the [n by m] matrix of equality constraint gradients. As
problem (1) becomeslarge, the "vanilla' SQP algorithm becomesinefficient since B isadensen x
n matrix and no advantage is taken of model sparsity. One approach to over comethislimitation is
todevelop sparseimplementations (Nickel and Toilc, 1989; Luciaand Xu, 1990), but careneeds
to betaken to ensure global conver gence. It should be noted, though,that these approachescan be
very successful for lar ge-scale applications. Another approach deals with decompasition of (3) and
updating projections of B onto a space characterized by the independent variables of the problem.
For our applications we take advantage of these decomposition approaches as Che number of
independent variables for process optimization is relatively small (10 to 100) and the actual
projected Hessian isexpected to be small, dense and positive definite.

To develop the decomposition, let Z(zfc) be an [n by (n-m)] matrix with.columns spanning the null
space of Vh(zfc) and let Y(zfc) be an [n by m] matrix so that [YZ] is nonsingular. Let Q be a
nonsingular matrix of order (n+m), given by: . e :

SN e

YZJ 0 o
o= [0 0| @

wherel isan m-dimensional identity matrix. Thenthe search dir__ectionj(_:an_ bewrittén as= - .
and multlplymg equatlon 3 byQand substltutmgfor dylelds: S s ~ Tl

Y'BY vBZ Wh TR

VhTY 0 Corrn, _; T “
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Thusthe QP (2) hasthefollowing solution:

dy = -(Vh'YY' h
d, = - (Z'BZ)-' (Z" VO + Z'BY dy)
-(YTVh)-! (YT V<D + YTBd)

and d isrecondgructed from eguation (5). Since the search direction goes to zero at conver gence,
themultiplier estimates can be approximated by

(YTVh)! YT VO

and the matrix YABY need naot be estimated. Based on this decomposition, the reduced QP
subproblem with boundsis given by:

Vig (V<D(z) + BYd,)" Z d, + A (Z'BZ) d,
. )
SIT

z" £ & + 2d, + Yd, £ 2"

Note that the projected Hessan (Z*BZ) is usually positive definite and a dense, positive definite
guas-Ncwton approximation (e.g. the BFGS update) is a good match for this sructure. Often, the
projected Hessian in the range space, Z"BY, is neglected since it is assumed that dy is small.
Neglecting ZTBY leads to a 2-step g-superlinear rate of convergence (Nocedal and Overton,
1985), which is often acceptablefor process optimization. Alter natively thisterm can be estimated
by finite difference of thereduced gradients along Ydy, or approximated by a Broyden updale of

Z'B.Both approach&can|mprovetherateofconvergence

In addition, there are several choicesfor the basis matrices, Y and Z. In themath programming
Jiterature, orthonormal bases, created from QR factorizations of Vh, are applied (see Nocedal and
Overton,-1985). However, thisdense. decompasition is expensive and not practical for solving
large problems Instead, the following orthogonal representations are often used (see
Vasanthargjan and Bieglcr, 1988):

_Z'=[l Al and YT=[A 1] where A = (Vih'Y' V,hT.

Hereu and x represent the mdependent and dependent variables (of z), respectively. This basis
tak&advantageof sparsity in Vh' but requires a nongparse "léast squares’ step, dy, from (6).

Notethat Y ' Z 0 so the step dy isminimized. Gabay (1982) and Locke et al. (1983) suggested
sttingY(z)"=[0 1], i.e, alongacoordinate direction or basisfor a set of dependent variables.
From (6) we seethat this bass hasthe particular advantagein that the step dy comesdirectly from
a Newton step for solving h(x) = 0. Consequently, the reduced Hessian SQP method with
coordinate basesis straightforward to tailor to structured Newton-Raphson solution proceduresfor
complex models. However, Vasanthargjan and Biegler (1988) and Schmid and Biegler (1991)
have observed that because dy can become large and curvature information along this direction
(Z'BY) isignored, coordlnatebasescan lead to lessrdiable SQP algorithms. Toremedy this, the
latter study provides estimates of Z"B'Y dy and showsthat slow conver gence problems can indeed
be overcome, especially in cases where coor dinate bases normally fail. In addition, Biegler et al.

(1991) develop an adaptive procedure for estimating this mlssmg term that leads to |-?tep
superlinear conver gence. SV o S :

Asan illustration, Schmid and Biegler apply this approach tothe Naphthali-Sandholm distillation
modd, UNIDI ST, that ispart of die SEPSIM process smulator (Andersen, ct al., 1991). Herethe
modd has a block tridiagonal sructure in the dependent variables (flowratcs) and an efficient
Thomas algorithm is applied to obtain the Newton step for the distillation model. This program
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was modified and extended in a straightforward manner to include distillation optimization. The
data structures for the modelling equations and the tridiagonal system remain virtualy the same and
none of the physical property routines were modified. In addition, only afew changes were made
to theinterface in order to dlow aflexible description of the optimization problem. In this way, the
existing model is coupled to the reduced SQP method and converted into a tailored optimization
method for digtillation. As a simple example, Schmid and Biegler consider a 12 tray column for
separating benzene and toluene. Using the reflux ratio and column pressure as decision variables, a
weighted objective involving product rate and reboiler duty is minimized. Here solution of this
optimization problem with a nested gpproach (and repeated solution of the distillation model) takes
seven SQP iterations and 90 Newton iterations for the column model. On the other hand, the
simultaneous optimization approach, starting from the column's default |n|t|aI|zaI| on requires onIy
18 SQP iterations with coordinate bases (with finite difference estimates of Z'BY dy) and 21
iterations with orthogonal bases. Here, the SQP optimization is only about twice as expensive as
the Newton-Raphson column smulation.

STRUCTURES OF DAE SYSTEMS

To extend this approach to models described by systems of differential-algebraic equations,
consider the following dynamic optimization problem for t £ [a,b]

fb
Min *Fx(b),p) + | G(x(t),u(t),p) dt
Ja 8
u(t).x(t), p
sL
X(t) = F(x(t),u(t).p)
g(u(t).x(t)) £ O
gi(x(b)) £ O
x(@ = xo
x(t)- £ xt) £ x@®U
ut)- £ ut) £ u(t)
where: -
*H(x(b)) » component of objective function evaluated at final conditions
G(x(t),u(t),p) dt= component of objectivefunction over time ™
: g = inequality design condraint vector

X(t) dateprofilevector ~ - e e
u(t) = control profiles

p = design parameters not timedependent - T
of = inequality congraintsat final conditions T
Xn = initia condition for sate vector

XL (t), x"(t) = state profile bounds
uL (t), u“(t) = control profile bounds

For the NLP formulation,-we convert the differential equations to algebraic equations using
collocation on finite eements” (see Villadsen and Michelsen, 1978):--Here the discretized
collocation equations are evaluated at the shifted roots of an orthogonal polynomial, as shown in
Figure L State and control profiles are repr&eented in Lagrange form over an element i:

Li<t<8a and OEXE 1.
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XK+(0 = LxijAjO)  »j(t)-riLaiyr in dementi 9)
k=0, AmA
£ . K . —
u@=Luy6 () 9@ = rch.lj -/*_'—‘*—_ff;— indementi i=1..NE
j:i * I]Jn Tk

Herek=lj denotesk * j. Also X£.,i(t) isa (K+1) th order piecewise polynomial and ujc(t) is a
Kth order piecewise polynomial. (The difference in orders is due to the existence of the initial
conditionsfor x(t), for each dement i.)

0i.1.1 Ui-1.2 u;,1 ;2 Uia1,1 Uis1,2
Xi1,0 Xi-1,1 Xi-i2 Xig  Xil Xi2  Xitl0 Xisll Xi+1,2  Xj+20
., - - |
Ci-1 Ci Ci+l Ci+2
I< AL, >

Figure 1. Finite element collocation discretizationfor state and control profiles, and elements.

Using K point, orthogonal collocation on finite elements (see Figure 1) and defining the
polynomial basis functions so that they are normalized over each of the NE lements, one can write
thecollocation equationsfor the ODE system asfollows.

X -
AN (ti) = 2- Xy <BjKK) -ACH F (Xik, Uik) (10)
j=0

. i '
where”\(xic) = -p-and iscalculated offline. Notethat t& = & + ACfa Here the element lengths

can also be included as decision variablesin order to find possible points of discontinuity for the
control profiles and to insure that the integration accuracy is within a specified tolerance.
Additionally, we enfor ce the continuity of the sates at element endpoints, i.e.:

K _ o
e (D=7, @ or Ho- JL«l-iJ*|(t-i) i-_ 2...NE (12)

and the intsprovidetheinitial conditionsfor the next dement states: Given this
i for the DAE model, problem (8) isnow reformulated asfollows: -

N . PR
Min A (xf, p) + X Z, VU G( Xij, uy , p,AEi)
| _ i1 jel | o
Xij » Uij » P> AL » N ) R
Cstoo o ALimi= gKe () - AGF( Xyuy,p) =0 e
B(xi,uj,AL;) €0 SRTE
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g Xf) <0
X10 - X0 =0
X0+ K4 (C) =0 j= 2 NE
xt = xNE (CNE.I) =0
S X5 & X]T

L u
uij = u.ij < L&j

< AL, < ACY

NE
|- 4C--crou

i=1

Note from the structure of the collocation equations that the control variables and element lengths
directly determine the solution trajectories for the states. The linearized state equations are thus
solved forward in time using the finite element structure and passing the information from element
to element This allows us to exploit the sparsity of the ODE's and the collocation formulation.
Oncethese trgjectories have been computed, and the derivative information (sensitivity of statesto
control variables) is obtained, this information is chainruled in order to obtain the reduced gradients
of the objective and contraint functions. We then construct the reduced QP subproblem in order to
update the optimal control profile. This approach is especially efficient if the differential equations
are linear in the state variables because die resulting method becomes a reduced gradient, feasible
path approach, with the collocation equations solved at each optimization iteration (seeL ogsdon
and Biegler, 1991a).

Toillustrate this structured decomposition, let xj represent theinterior statesin element i; Xjis
determined in each element by collocation equations (10). In particular, from the collocation
equations (hi = 0) we have: :

' ob )
hi (xio,Uij Xij"j) = 0 AaBT A = t-NEf T '
oxy

and, Ax!= - (A)" ' (xjo,Uij,Xij,Afj), a Newton step for the collocation equations (10). We further
apply the linear continuity equations (11) to determine the initial conditions for the next finite
element and continue the forward elimination of the collocation equations. This leads to the
decomposition strategy for the Jacobian matrix, shown in Figure 2. Continuing die solution of the
linearized collocation equations, we evaluate the final state variables as functions of the control
variables, theelement lengths and theinitial state conditions, i.e.

Note that theflow of information from element to element is passed forward through the continuity
equations asillustrated in Figure 3. In addition, if we have inequality constraints that depend on
statevariables at final time or within some (or all) inter mediate elements, i.e. (xc) at element c, then
these can also be expressed by: . e

x¢ = f(x0.AL1, u,AG2, U2, .8lcl, ),
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State Variables
L - A"
Continuity
L - Al
Continuity

Figure 2: Decompositionfor Element to Element Solution Approach

ui AC,
20,0 L/U Continuity )
— 2] i Equatlon i Z] () e el Zf
i Initial Conditions Final
1< Element Interior States Nt Elamat Sate
Variables

Fi gure 3: ODE solver for state differential equations using collocation on fi nite el ements witth
information processed fromelement to clement.

We then proceed to the next element, calculate the interior states and chainrule to obtain their
sensitivity to the control variablesfrom the previous element Note that the chainruling continues
through the gate variables at theend of dement i, Xj, sarting from each control variablein every
dementj, up toeement i.

B AP el A = 5 it NE (13
u; oX;.2 oy -U .

Thisforward dimination and chainruling schemeactsasalinearized ODE solver and isexact ifthe
datevariablesappear linearly in theDAE system. Once statevariablevector sand their sensitivities
are calculated, reduced gradients for the objective and ng congraint functions, g(xc), are
congructed with respect to thejth contral variable by thefollowingrdations:
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(Zive) = E (Z1vg,), £+ n- 1. n, (14)
9uJ dzf 9uJ 3zC

Results of the gradient calculations are then transferred to a QP subproblem (15) which is solved in
the control variable (and element length) space. A brief description of the aIgorlthm tailored for
DAE optimization is given next:

0. Choose the number of el ements and the corresponding number of collocation points based
on the likely index of the DAE system (see Logsdon and Biegler, 1989 for details).
Initialize the control variables, state variables, and dement lengths.

1 For values of the control variables and element lengths at iteration k, and initial conditions
for the state variables, perform the following for each elementi (i = 1,..NE):

11  Usingtheinitial conditions of element i as starting guesses, (partially) solve the
collocation equations (10) by (inexact) Newton algorithm to obtain an estimate of
the il?tgr;or states. (See L ogsdon and Biegler, 1991b, for detailson thisinexact
method.

12  Calculate the derivatives with respect to this eement's decision variables.

1.3  Apply the continuity equations (11), and solve for the next element'sinitial
condition.

14  Chainrule the derivatives from previouselements'and update from equation (13).

2. Continue until an intermediate element isreached that influences an inequality (g(xc)), or
until the last element is reached. Determine the reduced gradients for the objective and
congraint functions according to equation (14).

3. Assemble the objective and all of the constraint function values and reduced gradients
from the above steps. If Kuhn-Tucker conditions are satisfied, STOP. Otherwise solve the
following quadratic program: .

Mina, V<D'Z Au +AulzBZz)AU
2 (15)
st. g+ Vg'ZAu £0

to determinethe search direction in.u. Notethat this QP contains all ofthestateand control
varlablelnequallty constraints. In addition, thereduced Hessian matrix, (Z'BZ) isupdated
by the BFGS formula, and a line search is performed in order to determlnethe steplength
for thedecisionvariables. . = -.»e»e - o T (R

5. Return.tostep 1, with anew set of decision varlablesfrom (15)

Note the similarity of this approach to the reduced SQP strategy outllned in the prewous sectlon
Again, a Newton step isfirst calculated for the dependent variables. Reduced gradients are then
calculated for theindependent variables and a quadratic program ((7) or (15)) determinesthe search
direction for thesevariables.

Toillustrate this structured approach, Logsdon and Biegler (1991b) consider a nonlinear batch
reactor example (Ray, 1981) with temperatureasthe control variable It isdesired to maximizean
intermediate product after a fixed reaction time. Here we consider the nonisothermal series
reaction, A --> B --> C which is nonlinear in the rate equations. Letting ci and C2 represent the
concentration of A and B, respectively, theoptimal control problem becomes: -,

[T

CACE W SuppL-H
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Max

C2(10)
dCi 2
at
No= MT)CO- k2(T)C2
Ki(T) = Aoexp' /RT! i=1,2
CI(0)=1-O , Cg(O) =0
208 < T < 398

Here two point collocation and six finite elements are adequate for the accuracy of the profiles and
the discretized problem (12) has 54 variables. With ageneral purpose decomposition approach that
does not take advantage of problem structure, we require 88 iterations for convergence (L ogsdon
and Biegler, 1989). With the structured approach and prescaling the reduced Hessian matrix, only
16iterations and 33 CPU seconds (Vaxstation 3200) arerequired In both cases we started with an
initial flat temperature profile of 300 K; the fina control profile is shown in Figure 4. This
approach has also been applied to much larger systems including optimization of reflux ratios for
batch distillation columns, where nonlinear programs with over 5500 variables were solved and
similar savings were observed (see Logsdon and Biegler, 1991b).

400

Temperaturs
£
=]
]

«©* Temperature
«+-- Initial Temp

®

0.4

Figure4: Optimal Temperature Profilefor Nonlinear Batch Reactor

AN SQP NETHOD FOR UNDERDETERM NED LEAST - SQUARES ' PROBLEMS

In this section weconsder agructured SQP algorithm for the parameter estimation problem
represented by the following NL P formulation.

- min @(x) =
X

where

pal

s t. _ _
fuxyy e>=0

T L U
e cee

K=l

L2...

Jlrs - ISP

iw'?%zeﬁwm o

r,

"(16)
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Xy € R, Qe RP

stp m
fgR - ER_
cpk = Xp_k - xl.l.k

k=12, S

Cuk : theresidual for k-th state variable at \i-th measurement
e . thefined value for the k-th statevariable at |i-th measurement
Xpk . the measurement for k-th statevariable at |i-th measurement
W : the positive semidefinite covariance matrix

This problem is often encountered in connection with reconciliation of process data, as well as
estimation of model parameters from laboratory experiments. Here it is interesting to note two
aspects of the problem which lead to more efficient, tailored SQP strategies. First the gradient of

the objective function with respect to XJJ, vanishes with small residual values. From (6) it isclear
that for problems with small residuals, the Lagrange multipliers also vanish at the solution.
Conseguently, an approximation to the Hessian of the Lagrange function often needs to consider
only the second derivative terms in the objective function, which are available analytically. Tjoa
and Bicglcr (1991a) exploited this property to develop a tailored quasi-Newton updating strategy
for constrained least squares problems. In comparisons with general purpose SQP methods and
MINQOS, thisapproach was at least twice as fast

A second aspect of parameter estimation problems is that the regression model is often
underdetermined. Here the number of independent variables is given by p +r (s - m) and this
increases linearly with the number of data sets; a polynomial increase in effort isrequired by the
NLP solver. To address this problem, Britt and Luccke (1973) and Dovi and Paladino (1989)
develop efficient, special purpose algorithms to deal with underdetermined regression models.
Here we show that application of a tailored SQP strategy also yields an efficient algorithm without
sacrificing any of SQP's conver gence properties. In particular, we note that the model parameters
in (16) are the only complicating variables among data sets and the regression model can be

uncoupled by adding the following dummy variables and equations: gp. = Cji - 0 = 0. With these
additional variables and constraints, the QP subproblem for (16) at iteration k is given by:

Min ¥ = v = 3| TatnTW i, + 3o AC"FB"[ Cu”

W=l h=1

(Vo) Ay + (VD AL, + fu(x\] g 0
AL, - A6 - 0

(17)

-u-1,2,... r

+
Ose Aese.

where B? theHessian for each data set, includes W from die objective function and quasi-Newton
approximations for the remaining terms from the Lagrange function. From the QP (17) the
optlmallty condltlonsaredecoupled for each data set and expressed as: -

By Vh, [{Ad]| |V
w o Jlw h

(18)

where
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V,fa 0 Ax, fiy
, Ady = , and hy = .
bee | Ay -A0

To further exploit the gructure in each data set, we apply afamiliar decomposition strategy to
(18). Here, again wedefinebasismatricesZ2JJ, and Y JJ. such that

hu[

ya 7 =0.

and the structure of these matricesisidentical for each data set. Subgtituting into (18) (asin egn.
(6)) leadsto thefollowing decomposed linear system for each data set:

YiB.Y, YiBZ, YjVly dy, YiVoy
ZB,Y, ZB.Z, 0 G | = -1 ZIVéy |- (19)
vnlY, O 0 Y hy

Note the search directions dy and d, for each data set can be calculated by using the third and
second rows of (19), respectively. This calculation can be smplified further by exploiting the
dructureof theHessian. Assuming that we have small resduals and have normalized the problem

sothat W = |, we note that the Lagrange multipliersin the approximation of B* arealso small and
can be neglected. Wethusintroducethefollowing smplifications:

By O[=0 4 =WV & = -EBZZ Ve,
Note herethat d,» isindependent of AO and that, for any value of A6 and dzp., dy” will satisfy the
congtraintsin (17). We now construct the following reduced QP by summing the contributionsin
A6 from all of the data sets and subgtituting into (17). Theresulting QP is only in the space of the
p model parameters, 6:

Min (o) A6 + JAGS R A6
6w el
s t.

eL<ek+ABse“'

and HM and Op, areconstructed from thereduced gradientsand the'sear ch difectionsdyp, and dzj,.

The advantages of solving this reduced QP are that we can also includeparameter bounds and
apply aline search strategy to enforce global conver gence, aswith any SQP method. Moreover, if
the problem has zero residuals and the reduced Hessian of the Lagrange function for (16) is
positive definite, this method is analogous to a Gauss-Newton (G-N) method and has a quadratic

convergence rate. Otherwise, for Iarger&idual problems this approach has been generalized to

include quasi-Newton updates for Z'BZ and HJJ,. A detailed deSCI’IptIOI’I of this Decoupled SQP
(DSQP) algorlthm isgivenin T} oaandBlegIer (1991b). 5. .o LA

Toillustrate this approach Tjoa and’ Blegler consder a s'|r'npl'e"r' 'r'esabn modél Whéré the
estimation problem can be made arbitrarily large by increasing die number of data sets. Thlsmodel
istaken from Rod and Hancil (1980) and hasthefollowing form

f(x,0)=x3 ~ 8y « —1— =0 .
x1 - 83
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Using the data generated in Tjoa and Biegler (1991b) we solve this problem for four cases where
the number of data sets are 25, 50, 75, and 100. Here we note that for problems with few
parameters and many data sets, the computational effort for DSQP increases only linearly and is
largely characteristic of the model considered at each data set Conseguently, this approach can be
seen as a direct extension of the SQP decomposition strategy developed in the second section.
Figure 5 briefly illustrates this property and compares this approach to the MINOS NLP solver.
Note the polynomial increasein effort with problem size that is characteristic of all general-purpose
NLP solvers, and the significant reduction in effort due to the structured decomposition in DSQP.

80

g‘ 60 +

™
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] 40 4 @ MINOS
§ - DSQP
2 ]

Q

0 fetp———p——— e
20 40 60 80 100 120
Data Sets

Figure 5: Comparison of MINOS and DSQP on Small Regression Example

Finally, it should also be noted that this approach is not only restricted to parameter estimation
problems. For example, it has straightforward extensions to multiperiod design problemsthat arise
in the design of flexible flowsheets and heat exchanger networks. Moreover, the solution of the
decoupled search directionsin (19) is straightforward to execute in parallel and leads to the easy
exploitation of coarse-grained paralld computer architectures.

SUMMARY AND CONCLUSIONS

The design of tailored Successive Quadratic Programming optimization strategiesis outlined for
three general applications in process design and analysis. Here we first consider the coupling of
complex design models to a simultaneous optimization approach; we observe that reduced space
SQP techniques not only lead to faster performance, but also allow the straightforward interface of
Ncwton-Raphson model solversto the optimization algorithm. This was briefly illustrated with a
distillation example that interfaces to the Naphthali-Sandholm model in SEPSIM: Despite the
strong coupling of the model equations and the optimization algorithm, thisimplementation allows
broad classes of distillation problems to be specified and solved within the framework of the
process simulation program.

This structured SQP approach was also extended to the optimization of differential-algebraic
systems. Here the block lower triangular structure of collocation eguations was exploited in the
SQP decomposition step. After sketching the elements of this approach and drawing parallels to the
previous section, we apply it to the optimization of a small batch reactor and compare it to an
unstructured approach. Here the savingsin effort are almost fourfold. Similar savings have also
been observed on much larger problems mvolvmg the opt|m|zat|0n of batch distillation un|ts
(Logsdon and Biegler;, 1991b).

Thelast application deals with parameter.estimation problems that have under determined process
models. These problems have potentially many degr ees of freedom, but also have a block diagonal
substructurethat allows for an efficient decomposition scheme. Herethealgorithm istailored to the
structure of each data set; all of these-have an identical structurée’ Consequently, the effort of this
decoupled SQP (DSQP) approach increases only linearly with the number of data'sets. To'illustrate
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this strategy, the DSQP approach is applied to a simple regression model and compared to the
MINOS dgorithm. Here it is clear that, given their polynomia increasein effort with problem size,
general purpose agorithms can require far more effort on these problems. Moreover, applications
of this DSQP approach are under study for general multiperiod design problems.

The various decomposition strategies and illustrative examples attest to the flexibility of the SQP
algorithm in exploiting the characteristics of process models. As shown above, additional
development in tailored approaches for structured problem classes can lead to large savings in
computational effort. An extremely convincing example of this is given in the last section.
However, an open question remains as to how the model structure can be exploited easily by the
casual user. Here flexible interfaces for the NLP solver and the process model require afairly open
data structure. With the application of powerful modelling tools with open architectures (such as
ASCEND and SPEAKEASY) this task should, we hope, become straightforward and lead to more
widespread devel opment and application of model-tailored NLP solvers.
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