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ABSTRACT

This paper describes an inproved, user friendly version of the conputer
package PROSYN - a mxed-integer nonlinear programming (M NLP) process
synthesi zer. PROSYN is an inpl ementation of the nodeling and deconposition
(MD strategy by Kocis and G ossmann (1989) and the outer approxination
and equality relaxation algorithm (Q¥ ER by Kocis and G ossnann (1987).
Main characteristic of the new version of PROSYN is that it -enables
aut omat ed execution of sinultaneous topol ogy and paraneter-optimzation of
processes. ptimzation of each NLP subproblem is perforned only on the
existing units rather than on the entire superstructure which substantially
reduces the size of.the NLP subproblens. In order to reduce undesirable
effects of nonconvexities involved in the naster problem the QO¥ER
al gorithm has been inproved by the use of an augnented penalty function. A
sinple process similator has been built in to perform autonated
initialization of the first NLP step. A conprehensive PROSYN* s |ibrary of
nodels for basic process units and interconnection nodes, and a
conprehensive library of basic physical properties for the nost comon
chenical conponents have been developed. This enables to carry out an
aut onat ed generati on of a conpl ex model representation for a superstructure
in which the topology is specified by a concise interface. PROSYN allows to
run in interactive node and thus provides the user with a good control and
supervision of calculations instead of having the procedure to be totally
autonated. PROSYN all ows to carry out process synthesis at two basic |levels
of conplexity: MNLP optimzation through MD and sinmultaneous heat
integration Including HEN costs. Applications with PROSYN are denonstrated
with two exanpl e probl ens.
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I NTRCDUCTI CN

Al though substantial progress in flowsheet synthesis has been recorded in
the near past, it is clear that current capabilities of mathenatical
progranm ng have not yet been fully explored in the area. In this article
recent devel opnent of a new version of MNLP process synthesizer PROSYN is
presented. The current wuser friendly version of PROSYN is a further
devel opment of a prelinmnary prototype package (Kravanja and G ossnhann,
1990). It is an inplementation of the nost advanced optim zation techni ques




for solving process synthesis problems that are fornulated as MNP
pr obl ens.

Techni cal _Backar ound

The initial NLP subproblem can be significantly reduced by applying the
general MD schene that is applied to deconpose the initial NP
substructure problem into existing flowsheet to be optimzed and other
nonexi sting units to be suboptimzed using a Lagrangean suboptim zation
procedure to obtain information about nonexisting units. At each NP
subproblem only the existing units are optimzed rather than the entire
superstructure without conpromsing the optimality of the MNLP al gorithm
Al NP subproblens are thus significantly snaller and many nunerical
difficulties are thus circunvented.

PRCSYN enabl es sinultaneous topology and paranmeter optimzation of the
process using the QN ER algorithm The algorithm consists of solving an
alternating sequence of nonlinear programming (N.P) and m xed-integer
linear progranmmng (MLP) optinzation problens. The former corresponds to
the optimzation of parameters for a flowheet with fixed structural
topol ogy and yields an upper bound to the objective to be nininized. The
latter involves a ¢l obal approxinmation to the superstructure of
alternatives in-which a new topology is identified such that its |ower
bound does not exceed the current best upper bound. The search is
terminated when the predicted l|ower bound exceeds the upper bound.
Alternatively, the search can-be stopped when there is no inprovenent in .
the NLP subproblem M NOS (Murtagh and Saunders, 1985) is used to solve the
NLP subproblens and SCCONNC (SOQN 1986) is used to solve the MLP
mast er probl ens.

Presence of nonconvex functions in the nodels of process units and
i nterconnection nodes nmay cut off the global optimum 1In order to reduce
undesirabl e effects of nonconvexlties involved in the master -problem the
QA ER algorithm has been inproved by -the use of penalty function that
allows violations of linearizations of nonconvex constraints in the
infeasible region and thus nakes possible to obtain feasible solution in
spite of nonconvexities (see Viswanathan and G ossnmann, 1990). Anot her very
inmportant procedure to renove the effect of nonconvexities that has also
been inplenented into PROSBYN, is a linearization nodification procedure by
Kocis and G ossmann (1989) by which linearizations associated with the part
of superstructure not selected in the naster probl embecone redundant. This
deactivation of the Ilinearizations establishes the feasibility of the
linearizations at zero conditions.

Program description

The flowhart of PROSYN is shown in Fig. 1. The main part of PRCSYN are
command files and logic that supervise the MD and QN ER procedures, and
that communicate with GAMS (General A gebraic Mdeling Systen), an
interface to NLP and M LP solvers by Brooke et al. (1988). The other part
conprises an autonated nodel generator and NLP initializer that uses a
sinple process simulator. In terns of conplexity, the problens can range
froma sinple NLP optim zation problemof a single process unit up to MNLP
optimzation of a conplex superstructure problem with simultaneous heat
i ntegration including HEN costs.

Ihe Mbdel Cenerator.. Interface for an automated generation of the

superstructure conprises firstly, a specification of a superstructure




topology with a sinple configuration data file (Fig.l, p_struct.dat) and
secondly, a command procedure that according to a given superstructure
topol ogy, autonmatically generates the conplex input nodel representation of
a superstructure out of PROBYN s library. The superstructure of alternative
flowsheet structures is represented in terms of interconnection nodes
(splitters and mxers) and process unit nodes (reactors, conpressors,
distillation colums, etc.). Here the process superstructure is nodeled in
conposite form since subproblens at each step of the MD strategy and the
QY ER algorithm conprise different nunber of constraints, different
obj ectives and vari abl e space of process vari abl es.

Tapology Bounds Data Components Special modules
P_STRUCT.DAT P_BOUNDS.DAT P_DATADAT P_COMPON.DAT MY MODELDAT
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Fig.l. Flowhart of PROSYN

PROSYN s Library. For each basic process units and interconnection node a
nodul e in equation form has been developed and built in PROSYNs library.
Also, a library of basic physical properties has been devel oped that uses
data given by Reid at al. (1987), for the nost common chemicals. Both
libraries can be easily accessed to conplete it with nodels for eventually
m ssing process units and/or interconnection nodes, as well as with mssing
chemcals or properties. As an interface for mathenatical nodeling and data
inputs, the high level . nodeling | anguage GAMS is used.

NP Initiglizer. It is clear that the quality and efficiency of the NLP
subprobl ens are highly dependent on the starting point supplied. However,
to supply a good one is not a straightforward task. In order to facilitate
the task, a very sinple process sinmulator that becomes a part of the PROSYN
library, has been developed. It uses the same equations as the nodels for
process units and interconnection nodes. Al what the user. has to supply
are some guesses such as conpressor outlet pressure, conversion of key
conponent in reactors, etc. The initialization is perforned automatically
for the first NLP step, while for other NP subproblems it could be
performed when the previous naster problem does not provide good starting
points for successive NLP subproblens that fail to converge. Qur experience
has shown significant conputational tine savings of the NP optimzations
using this approach.

Executi on of PROSYN

PROSYN provides the user with a good control and supervision of the




calculations instead of having the procedure to be totally autonated.
Al though PROSYN can run in automated node, the interactive node is very
useful when dealing with a conplex problem which could cause the
optimzation to fail if PROBYN ran in autonated node. The user has to
provide five input data files: definition of topology, upper and |ower
bounds of process variables, data like utility and investnent costs, a list
of chenical conponents, and if necessary, special nodel eéequations and an
initialization schenme that are not present in PROBYN s library.

EXAMPLES
The applications with PROSYN will be denonstrated with two exanples  of
i ncreasi ng conpl exity. The first snall exanple will illustrate steps of

the optimzation procedure using MD strategy. The second exanple wll
illustrate synthesis of a mediumsize process by sinmultaneous heat
integration including HEN costs.

Exanpl e 1

The superstructure of the Exanple 1 (Fig.2a) conprises two alternative raw
material feeds with different costs and concentrations of reactants, -and
two alternative catalytic reactors wth different efficiencies and
i nvestnent costs. The objective of the problem is to identify an optinal
trade-off between raw material costs and investment costs for the mentioned
alternative cases. The probl emhas been fornulated as an M NLP problemwith
four different topol ogi es enbedded in the superstructure. Existence binary
variables Yl and Y2 have been assigned to the feeds, and Y3 and Y4 to the
reactors.

|. First NLP and Deconposi tion.

The superstructure has been 3 A
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master problem to repeat  the sheet and subsystem of Exanple 1.

t opol ogy.

Subopt i m zation of subsystem (Fig.2c) has been performed for topology y =




(0,0,1,0). In order to supply to the MLP naster problem a |inear
approxi mation of nonexisting units, only nonexisting units that are
represented by nonlinear nodel, have to be suboptimzed. Since feed 1 is
represented by linear relations only, it is therefore excluded from the
subsystem Input variables of reactor 1 are automatically fixed to the
optinmal condition of rector 2 that has been found at the optimzation of
the initial flowsheet. In the objective, the Lagrange multipliers for the
splitter conponent balances obtained at the optimzation of the initial
fl owsheet, are supplied as inlet material costs while the multipliers for
the nixer are supplied as outlet product prices. The solution yields
revenue of 375,900 $/yr. The next step is again the derivation of a |inear
approxi mation, now for reactor 1.

Il. First MLP Master Problem Both linear approxi mations together with all
the linear equations originally enbedded in superstructure nodel, represent
the global |inear approxination of the whole superstructure. The solution
of 1,168,000 $/yr yields the upper bound to the objective and predicts the
new t opol ogy y=(0, 1, 1, 0).

I1l. Second NLP Subproblem According to the given topology predicted by

the nmaster problem PROSYN constructs for the NLP stage 2 a nonlinear
nodel for existing feed 2 and reactor 1 while nonexisting units are
tenporarily excluded. Since the solution is 746,000 $/yr the procedure is
termnated. The optimal solution is the one found in the first NP
subprobl emfor topol ogy y=(0,1,0,1).

Exanple 2

In the second exanpl e, the simltaneous approach has been extended al so for
HEN costs using simultaneous nmodel for HEN by Yee et al. (1990a) and Yee
and G ossmann (1990). The nodel can simltaneously target for both area and
energy costs at variable tenperature driving forces of natches and stream
arrangenent for non-uniformstreamfilmcoefficients. Mreover, it does not
rely on the pinch point concept by which an original network has to be
partitioned into subnetworks. It also enables easily to handle constraints
on the matches. The nodel was forrmulated either as the NLP targeting
problem for area and energy or as the MNP problem for HEN synthesis.
There are two drawbacks of the NLP nodel: the fixed costs cannot be
accounted for the HEN and the mathenatical expressions for the area costs
of the matches are highly nonlinear and nonconvex. (n the other hand, the
mai n drawback of the MNLP nmodel is that it introduces significant nunber
of binary variables. Since in MNLP optinization of the process flowsheets
the nmain bottleneck in terns of conplexity and consunption of CPU tine
usual 'y lies in solving NLP subprobl ens, the NLP nodel for HEN at the first
gl ance appears to be nore favorable than the M NLP one.. However, the high
nonlinearities and nonconvexities in the NLP nodel for HEN can seriously
reduce the efficiency of the OWER algorithm That is why only the MNLP
version of HEN nodel has been successfully applied for the sinultaneous
M NLP optimzation of the process and its HEN while the use of the NP
nodel for HEN has been restricted only to fixed topology of the process
flowsheet (Yee at al, 1990b).

In order to performthe simltaneous M NLP optim zation .approach using the
M D strategy, a new NLP version of HEN has been devel oped. A special |ogic
involved in the nodel, takes care that according to the MD strategy at
each NLP subproblem only existing process streans and utilities are taken
in the optinmzation, while nonexisting ones are tenporarily excluded
wi thout conpromsing the optinality of the MNLP problem Al though the new
version of the nonlinear HEN nodel is nmore robust than the original one,




and al though the Q& ER al gorithm in PROSYN has been inproved by the use of
the penalty function to reduce undesirable effects of nonconvexities, the
troubl esonme inpacts of the highly nonconvex HEN nodel are usually so strong
that the original master problemof the OWER algorithmfails to predict a
good starting point for the next NLP stage. Mreover, the values of process
variables are usually shifted either to their upper or the |ower bounds
whi ch prevent the next NLP subproblemto converge to its feasible solution.
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Fig.3. Exanple 2: a) Superstructure and initial flowsheet (bold line),
b) HEN Superstructure for initial flowsheet, c¢) final flowsheet.

| ordeR & rurcner inprove the efficiency of the simltaneous procedure by
the PROBYN, two optim zation scheme has been proposed. By the fornmer (a),
after each naster problem an initialization of the next NLP stage is
performed by the use of the sinple sinulator, while by the latter (b),6 the
i near approximation of the highly nonconvex area costs terns is devel oped
only once and consequently, less nonconvexities are introduced into the
AT 1 2" Both SCheneS haS bam tested on « EXax Ple Previ 0US|

described and investigated by Kravanja and Gossnann (1990). The
superstructure f the process (Fig.3a) includes 16 alternative flowsheets
and the superstructure of Its HEN (Fig.3b) about 16.7 mllion alternative
networks The objective of the problem is to find an optimal heat
integrated process flowsheet that yields naxi mum revenue. Results of the

ER al gorithm for both optimzation schemes are given in Table 1. Due to

r Tnf TTAof nonconvexiv g i ases. the naster problens have
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revenue of 2,613.000 «/yr. The revenue is 768,000 «/yr higher "than the st
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hi gher than the one obtained by Yee at al. (1990b) using heat integration
nodel by Duran and G ossnmann (1986). Although thé optifal topol ogy EAens




to be the same as the fixed one studied by Yee at al. (1990b), the revenue
is much higher due to nore efficient handling of nonconvexities. Since
nonconvexities in the case a) are accurmulated through the OA ER procedure,
they cut off nore of the feasible region of the master problens than the
nonaccunul ated ones in the case b). Consequently, the results of the naster
problems in the case a) decrease nore rapidly by the nunber of the QN ER
iteration when conmpared to the case-b). Also, no initializations for NLPs
in the case b) but for the first one are needed. This clearly indicates
that scheme b) for simultaneous optimzation of the process flowsheet and
HEN i s nore robust than the schene a).

Table 1. Results for Exanple 2.

[teration Topol ogy NLP (CPU tinme) MLP (CPU tine)
y k$/yr (sec on M croVax 3100)

M NLP optim zation schene a)

1 (1,0,0,1,1,0,0,1) 2240 (101) 2173 (89)

2 (0,1,1,0,1,0,1,0) 2613 (59) 606 (95)

3 (1,0,1,0,0,1,0,1) 1818 (113) and term nated
M NLP optimization schene b)

1 (1,0,0,1,1,0,0,1) 2240 (101) 2173 (89)

2 (0,1,1,0,1,0,1,0) 2613 (41) 1943 (122)

3 (0,1,1,0,1,0,0,1) 2563 (106) and term nated

CONCLUSI ONS AND S| GNI FI CANCE

The first prototype version of PROSYN had the inportant drawback that the
user was required to provide a conplex nmodel representation for the
superstructure and conplex logic relations of the MD strategy. In the new
version of PROSYN the logic has been automated, .a library of models for
process units and interconnection nodes has been built in, and data of
basi ¢ physical properties has been added which has made PROSYN nuch nore
user-friendly. In this way all user's input files are now very sinple and
conci se. Another very inportant inprovement concerns the OAER al gorithm
In order to handle nonconvexities the algorithmhas been nodified by adding
augnented penalties in the master problem Further devel opnent of PROSYN
has been done by introducing a sinple sinmulator that initializes the first
NLP step. Wth the aid of the new capabilities, PROSYN enables to carry out
automated M NLP topology and parameter optimization of conplex process
superstructures. PROSYN is an attenpt to develop an advanced tool for
process design that can handle real, large scale and conplex engineering
problens. It can be of high significance especially in decision naking of
desi gn engi neers when exploring large nunber of alternatives.
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