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Abstract

The goal of machine learning for synthesisisthe acquistion of the reationships between form, function,
and behavior properties that satisfy design requirements. The proposed approach creates a function to
edimatethe probability of each possiblevalue of each design property being used in agiven design con-
text. NETSYN uses a connectionist learning approach to acquire and represent this probability estima-
tionfunction and exhibitsgood performancefor aposed artificial design problem. Theobjectiveof future
woik isto apply NETSYN to realistic design domains, specifically the domain of computer system de-
sign as practiced by M1.
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Chapter 1

I ntroduction

The objectives of this chapter areto describe agenera framework for the synthesis processes considered
in this research and to identify arole for machine learning in design domains with weak or nonexistent
synthesisknowledge. Inaddition, this chapter includes an overview of, and the motivation for, connec-
tionist learning approaches for synthesis knowledge acquisition and use (SKAU). Finaly, an outline of
the contents of the report is given.

11 SYNTHESISAND THE ROLE FOR MACHINE LEARNING

111 Design Framework for Synthesis

The main objective of the synthesis process is to generate a description of the form of an artifact such
that this description satisfies a collection of design requirements. Form here is used in the same sense
asin [Hemming 92] to mean geometry, topology, material, etc. Thesynthesis processistheinitial stage
of amulti-stage artifact design process consisting of the following four stages: synthesis, analysis, evalu-
ation, and redesign. Inthe synthesis stage, severa possible forms of an artifact are generated based on
agiven set of specifications. Inthe analysis stage, the behavior of these possible forms are determined
for the specified functional context. Inthe evaluation stage, the predicted behaviors are compared with
those desired and the deficiencies of the design are identified. Inthe redesign stage, changesto origina
possible forms are made to address the deficiencies found during eval uation, or new realizations are gen-
erated.

If we consider the artifact resulting from a design process to be described by itsform (e.g., topology,
shape, materia),/wrtcriOrt (e.g., load resistance, vibration isolation), and behavior properties (e.g., stress
and strain states), then we can describe each of the four stages in the multi-stage process as follows
[Flemming92]: :

» Synthesis isthe process of mapping from the design specification space (requirements on function,
behavior, form) to the form space (Fig. 1).

* Analysisisthe process of mapping from the form and specification spacesto the behavior space (Fig.
2).

» Evaluationisthe process of comparing the behavior properties to the behavior requirements and the
form properties to the form requirements (Fig. 3).

* Redesign isthe process of mapping from the specification space to the form space, with the knowl-
edge of subspaces that lead to infeasible designs (Fig. 4).

112 A Rolefor Machine Learning

The specification for an artifact used as input by the synthesis process may involve any number of re-
quired functionalities, form constraints, and behavior constraints. For problems where al of the
constraints and objectives can be clearly articulated and expressed in algebraic form, mathematical opti-
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mization approaches can be employed to search over the solution space (i.e., the space of all possible
solutions) and select the "optimal" solution to the set of constraints and defined objectives. However,
for problems where there are few constraints and the relationships between form and performance are
unknown, amathematical optimization approach isnot amenable. However, if weak theoriesor heuristic
knowledge about synthesizing solutionsto aproblem exist, knowledge-based synthesis approaches can
be used to assist (through the application of heuristic knowledge) in efficiently searching through the
space of possible design solutions, eliminating those solutions that are not promising and focussing on
those solutionsthat are. However, forthose problemsinwhichno significant domaintheory or collection
of heuristics exists, the only source of synthesis knowledge tends to be past design experience [Reich
91].

Onerole for machine learning, identified in [Reich 91], lieswithin those design domains possessing the
following characteristics:

» Thedesign spaceis identified (i.e., al properties and possible values are known apriori).

*  Synthesis knowledge is weak or nonexistent

» There exists acollection of design experiences.

The role of machine learning in domains of this type is to acquire, from past design cases, the relation-
ships betweenform, function, and behavior properties that satisfy specified design regquirements. These
relationships form a cone of useful synthesis knowledge. Having such synthesis knowledge facilitates
amore direct mapping from the specification spaceto the desired | ocations within the form and behavior
spaces. In other words, less search is heeded to find agood solution to the specification (Fig. 5).
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Figure 5 — Relationships Needed to Capture for SKAU

Hence, the goal of the research described in this report isto investigate and identify promising learning
approaches which are capable of "playing” the above role of acquiring synthesis knowledge. Next, we
outlinethe approachtaken by this researchin accomplishing thisgoal that will be presented in more detail
later in this report.

12 OVERVIEW OF APPROACH

We propose a probabilistic approach to synthesis that is based on the following assumptions:

» Designcanbesufficiently well represented as acollection of property-value pairs (i.e., afinite num-
ber of decisions). Consequently, the synthesis process is equivalent to asequence of assignments of
property values which ultimately lead to a complete design definition.




» Each property value assignment (decision) is made in some design context (i.e., partially defined
specification and/or design description).

» ltispossibleto construct a sufficiently accurate estimation of the probability of each value of each
design property being usedin a given design context.

Based onthe above assumptions, the goal of identifying learning approaches capabl e of acquiring synthe-
sis knowledge is transformed into two subgoals:

e ldentify auseful probabilistic concept which provide an adequate measure of belief that a property
value can be used in some design context.

e ldentify an effective method for the construction of aprobability estimation function that implements
the selected probabilistic concept.

In this report we demonstrate that the solution to these two subgoals (and to the original goal) may be
achieved by applying connectionist learning approaches. Our connectionist-based solution relies onthe
following:

« A recent fundamental theoretical research result demonstrates that agroup of connectionist learning
methods is capable of estimating Bayesian a posteriori probabilities.

* A representative method from the above group of connectionist learning methods may be successful-
ly used to acquire and store the probability estimation function, thus, allowing inductive learning to
be the method of construction for this probability estimation function.

This report discusses and illustrates the use of aconnectionist learning approachto acquire and represent
aprobability estimation function that can be used to achieve our goal — acquire synthesis knowledge
for its subsequent reuse.

1J MOTIVATIONS FOR USING CONNECTIONIST APPROACH

Building a synthesis system in problem domains where there is aweak, or nonexistent, domain theory,
and where mathematical optimization methods are not amenable is adifficult task. For these types of
problems, an inductive machine learning approach may possibly be used to capture, and consequently
permit reuse of, the synthesis knowledge embodied in the past design cases.

While some very good research has been conducted on how symbolic machine learning techniques can
be applied to the synthesis problem [Reich 91, Lu 92], little research has investigated how neural net-
works might be used to capture and subsequently use synthesis knowledge.

The research reported here has focuses on connectionist learning methods for SKAU. Thefollowing are
the moativations for investigating the connectionist learning methods for SKAU:

» Connectionist systems are adaptive systems capabl e of capturing complex nonlinear relationships.
Both the theoretical results concerning representational capabilities of connectionist systems [Cy-
benko 88, Hornik 89], and the results of applications of connectionist models to difficult learning
problems in control [Pomerleau 89], signal prediction [Lapedes 88] and pattern recognition [Sej-
nowski 87, Qian 88], illustrate that connectionist systems are capable of learning complex relation-
ships from asample of input-output pairs representative of that relationship. The relationships be-
tween design variables can be very complex and it is felt that the power of neural networks can be
employed to induce these relationships from a representative training sample of previous designs.

» Theknowledge representation paradigm in connectionist systems offers attractive capabilities. The
distributed knowledge representation found in connectionist systems has been shown to lead to the
kinds of operations that are reminiscent of operations of the human brain: content addressable
memory recall (i.e., reconstruction), noiseresistant computation, and gracefully degrading computa-
tion [Hinton 86]. Obvioudly, alearning system for SKAU could beneficially employ these kinds of
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operations, particularly in the context of design domains with weak synthesis knowledge. 1n addi-
tion, distributed knowledge representation allows automatic generalization [Hinton 86], which is
one of the key requirements for inductive learning systems for SKAU.

Connectionist learning systems have exhibited consistently good performance on tasks similar to
SKAU. The application of connectionist systems that motivates our research isneural pattern recog-
nition [Le Cun 89]. Since the domains of interest to this research are assumed to have weak formal
knowledge of the synthesis process, one approach to acquire the actual synthesis knowledge is to
search for meaningful patterns of features in past successful designs. Recognition of such patterns
and their generalization to new design scenarios could assist the synthesis process in producing
"good" designs. The existence of along list of successful neural pattern recognition applications,
illustrates the feasibility of aconnectionist approachto SKAU [Le Cun 89, Tesauro 90, Pomerleau
89].

Connectionist learning systems estimate Bayesian a posteriori probability. The result that aclass of
connectionist learning systems is capable of estimating Bayesian a posteriori probability provides
justification for employing a neural pattern recognition system in performing SKAU. The funda
mental difference between applying apattern recognition system to thetask of SKAU and other simi-
lar tasks is the nonunique nature of the mappings used in synthesis. The acquired synthesis know!-
edge hasto preserve al of the relationships that hold between design propertiesfor al of themultiple
possible alternatives. This is fundamentally different from the requirement posed in other tasks that
search for only one unique solution to the problem. By incorporating the concept of a posteriori
probability estimationwe are ableto satisfy the need to represent both the rel ationships and the multi-
ple aternatives for SKAU. In addition, this result provides a rigorous theoretical background for
analysis of the performance of connectionist systems and for their use in practical applications.

Connectionist systems allow the use of Bayesian learning method. Some of the recent research has
focussed its attention on the analysis of learning in connectionist systems by following the Bayesian
learning method [Buntine91]. Whilewe currently assume that the uniform convergence method ap-
plies(i.e., we assumethe existence of asufficiently large sample size and ignore factorsthat appear as
priorsinthelearning model), the Bayesian learning method providesimportant resultsfor the case of
limited sample sizes. Although the Bayesian approach has not been applied in this research to date,
we acknowledge the importance of these results for future work.

ORGANIZATION OF REPORT

The following is the organization of this technical report:

Chapter 2 presents the synthesis process considered in this research and discusses one type of ma-
chinelearning (i.e., inductivelearning) approachthat is capabl e of SK AU under the conditi ons speci-
fiedinsection 1.1. Wepresent the characteristics of the synthesis processin general and of the synthe-
sis process in domains with weak or nonexistent synthesis knowledge. From this discussion we
derive basic requirements for alearning system capable of learning synthesis knowledge. We also
describe two alternative inductive learning approaches which have been employed for SKAU.

Chapter 3 develops aprobabilistic approachto synthesis. The approach is based on the assumption
that it is possible to construct a sufficiently accurate estimation of the probability of each possible
value of each design property being usedin a given design context. The assumptionsabout the syn-
thesis process considered in this approach are presented and a probabilistic approach for synthesis
knowledge acquisition and use (SKAU) is described. We discuss the minimal requirements on the
accuracy of the probability estimation function to be useful for synthesis. The approachisillustrated
on anumber of examples taken from a realistic design domain.

Chapter 4 provides adetailed account of NETSY N - aneural network approach for synthesis knowl-
edge acquisition and use (SKAU). The basic idea of the approach is to use a connectionist learning




system to acquireandr epresent the probability estimation function introduced in Chapter 3. Theor et-
ical results rdevant to the expected performance of this approach are presented along with adiscus-
sion of how thislear ning approach fitsinto amar e general machinelear ning framework. Connection-
ist representations arethen discussed. Discussion of the ar chitecture and thetraining of NETSYN is
provided.

e Chapter 5 describes the test methodology used for evaluating the performance of NETSYN and its
comparison to two symboalic inductive learning approaches ILLS and ECOBWEB. A seriesof re-
sultsis presented for the performance and comparison of NETSY N to these symboalic learning ap-
proaches.

» Chapter 6 givesdirectionsfor the future work concerning the overall goal of NETSY N: application
to arealigic design synthesistask.

» Chapter 7 summarizesthe results presented in this technical report.




Chapter 2

Background

Inthis Chapter, we describe in more detail the synthesis process considered in this research and discuss
one atype of machine learning approach that is capable of SKAU under the conditions specified inthe
previous chapter.

First we present the characteristics of synthesis processin genera and of the synthesisprocessin domains
with weak or nonexistent synthesis knowledge. Then, we present basic requirements for alearning sys-
tem capable of learning synthesis knowledgein such adomain. Finaly, we describe two alternative in-
ductive learning approaches which have been employed for SKAU.

21 CHARACTERISTICS OF THE SYNTHESIS PROCESS

The engineering synthesis process is often viewed as an exploration ofa space of possible solutions for
aposed designpraoblem. However, thedirectionsfor performing this search arerarely giveninanexplicit
form for any engineering design domain.

Designproblems areill-structured and the design problem formulation is itself adynamic process where
new design knowledge causes the reformulation of the design problem and, subsequently, reformulation
of the synthesis search space [Coyne 90]. Incertaindesigndomains, it may be assumed that the dynamics
of the design problem formulation are slower than the actual synthesis spacetraversal. This obviously
holds in more mature design domains where the knowledge of the design synthesis space (i.e., design
variables and the rel ati onshi ps between them) has been reinforced throughthe many successful outcomes
of synthesizing designs for given design specifications.

The synthesis process in many design domains is characterized by generating alternatives which "satis-
flee" the given design requirements [Simon 81]. Therefore, the outcome of a synthesis process in such
adesigndomainis acollection of candidate designsthat satisfy initial design requirements. The nonuni-
gue nature of the synthesized designs poses areguirement on the designer to consider and evaluate more
than one aternative solution.

Another characteristic of the synthesis process is the utilization of various pieces of information of differ-
ent nature. Both qualitative and quantitative dataare combined by adesigner during the design synthesis
process. The waysin which such dataare combined to decide which part of the search spaceto traverse
are often hard to express or analyze rigorously using classicad mathematical approaches.

Inthe process of generating aternatives during the synthesis process, the designer will narrow the search
space by considering only selected subintervals of values of designvariables. Eventudly, thedesignvari-
ables will be assigned specific values to give amore complete design context The decision to select a
particular variable value will influence the feasible ranges of other design variables. The relationships
between design variables are in general complex and many-to-many: constraining one design variable
will affect the selection process of al other variables, while aparticular design variable assignment may
be inconsistent with previously constrained design variables and cause aninfeasible design. Theserela-
tionships are results of designer's experience and are reinforced throughout many successful synthesis
processes. The designer's ability to capture and to generalize these relationships from afinite number




of previous design episodes and, subsequently, to usethis knowledge innew design situationsis acrucia
capability for successful synthesis.

In the frameworic of aformulated synthesis problem, where the dimensionality of the search space (i.e.,
propertiesto be specified) isknown but the synthesisknowledge (i.e., relationships betweendesign prop-
erties) is weak or nonexistent, the only source of synthesis knowledge tends to be the past design experi-
ence. Insuch adesign situation, where an experienced designer is faced with anew design problem,
thefirst step isto perform some limited (to the extent to which the synthesis theory is available) analysis
of the design problem and then to proceed with the synthesis process. The knowledge of first principles
of behavior in the considered engineering domain is of limited utility in constructing the design alterna-
tives. To solvethedesignproblem, the designer relieson hisor her past experienceto recognizethe simi-
larities of the new situation to the design problems he or she has encountered in the past. The designer
recoghizes the important characteristics of the design problem and focuses his or her attention on these
important considerations. This subjective, experience-based knowledge of the designer will governthe
synthesis process of generating aternative design solutions.

The identified nature of the synthesis process in domains with nonexistent or weak domain theory forms
the basis for deriving the requirements for systems that are to capabl e of capturing synthesis knowledge
and facilitating its reuse in new design problems. These requirements are presented next.

22 REQUIREMENTSFOR A LEARNING SYSTEM

Three requirements are identified as necessary ingredients of any system capable of capturing synthesis
knowledge and using this knowledge in novel design situations [Reich, 1991]:

»  The ability to capture many-to-many mappings between form, function and behavior design proper-
ties. Ingeneral, one must consider al design properties for which values have been fixed or ranges
constrained when making decisions about yet unbound design properties. Considering only the de-
sign specifications and disregarding values of design attributes fixed in the course of synthesiswill in
general lead to infeasible solutions.

* Theahility to recall or generate multiple design alternatives satisfying the particular combination of
specifications. Asdescribed earlier, the synthesis processis concerned with generating multiple al-
ternatives for the same design specifications.

* The ability to generalize from theindividual design experiences—i.e., generating acceptable solu-
tions in design situations not seen before. A learning system is expected to behave well in the new
design situations that are similar to, but not identical to, previous successful design episodes.

2.3 | NDUCTI VE LEARNI NG APPROACHES FOR SKAU

Inductive learning approaches are candidate machine | earning approaches for acquiring synthesisknowl-
edge and allowing the reuse of thisknowledge innew design situations. A brief discussion of two alterna
tiveinductive learning approaches for synthesis knowledge acquisition is presented next (for amore ex-
haustive treatment of learning methods for this task, see [Reich 91]).

Inductive learning approaches can be grouped intwo main classes:

» Thefirstistheclass of supervised learning approaches. |n supervised learning approaches, learning
is based onthe availability of acorrect answer for any input description of asituation that needsto be
classified or to which avalueisto be associated. The learning system hasto adjust itself according to
the representative training cases. The goa of learning is that the system ultimately learns correct
associations between input and output patterns.

» The second is the class of unsupervised learning approaches. Inthis case, the learning target is not
specified explicitly interms of correct results for aset of training cases. Theonly available informa:




tionisinthecorrdationsof theinput data. The system hasto discover regularitiesin thetraining set
and to createcategoriesbased on thediscover ed correations. Thesecategoriesarethebasisfor clas-
sfication of the new input.

An example of an unsupervised lear ning approach to synthesisknowledge acquisition isthe ECOBWEB
learning algorithm used in the Bridger system [Reich 91]. The ECOBWEB learning algorithm is used
to form meaningful clusters out of design training cases. These clusters can then be used to complete
the synthesisprocessfor given partial design descriptions. ECOBWEB utilizes aprobabilistic approach
and it uses a heurigtic performance measure to compar e alter native classifications with respect to their
utility in the classification of designs. These classes arethen used to classify anew, partially complete
design specification. Once the input specification is classified, the whole classification hierarchy can
be used to synthesize design property values consstent with members of that class.

Thesupervised lear ning appr oach hasbeen criticized asbeing inappropriatefor lear ning synthesisknowl-
edge[Reich9l]. Early learning systemsused thisapproach in agraightforward manner which prevented
them from learning " complete' relationships between design properties. only the mapping from the set
of fixed specification properties to design description properties was captured. No attention was paid
totheinfluencethat fixing some design attribute valuesmight have on thefeasibleranges of other design
properties. Hence, many-to-many redationships between design properties could not be captured and
theuse of the supervised lear ning approach wasrightfully judged asinappropriatefor learning synthesis
knowledge.

I'nour resear ch we havefollowed the super vised lear ning approach. However , thefundamental difference
between our approach and theprevious approachesusing super vised learningisthat our basisfor classifi-
cationisnot just thesubset of design propertiesdeclar ed to be specifications. Rather, all design properties
knownin agiven design context areused to deter minethevaluesof theremaining, unknown design prop-
erties. The approach is basically one of predicting the a posteriori probabilities of each possible value
of each unknown property for the given set of known property values. Usingthisapproach, it ispossible
to account for the many-to-many reationships within synthesis knowledge. The next section gives a
detailed description of this approach.




Chapter 3

A Probabilistic Approach To Synthesis

Inthis chapter wedevel op aprobabilistic approachto synthesis. The approachisbased onthe assumption
that it is possible to construct a sufficiently accurate estimation of the probability of each possible value
of each design property being used in a given design context.

First, assumptions about the synthesis process considered inthis research are presented. Then, aproba-
bilistic approach for synthesis knowledge acquisition and use (SKAU) is described. Next, the minimal
requirements on the accuracy of the probability estimation function to be useful for synthesis are given.
Finally, the approach is illustrated on a number of examples taken from the domain of Ml [Gupta 91]
- aknowledge based system for synthesizing single-board computer systems.

3.1 ASSUMPTIONS ABOUT SYNTHESIS

In this section we list several assumptions about the kind of synthesis processes we address in this re-
search and for which we attempt to create a learning system.

Weview adesign as acollection of property-value pairs or, equivalently, collection of design decisions.
The design synthesis process is then equivalent to a sequence of assignments of property values which
ultimately leads to acomplete design definition. Some property values are determined apriori, repre-
senting design specification values. All design decisions are made in some design context (i.e., apartial
design description).

To further elaborate on our assumptions, consider a representation of asimplified design process shown
inFig. 6. Ontheleft sideofthefigure, aninitial designcontextisshown. To completethedesigndescrip-
tion, the values of three design properties need to be determined (one specification property and two de-
signdescription properties). Eachdesign property may take ononeout of three distinct val ues (graphical -
ly represented by an rectangle, triangle, and anoval). Intheinitia context, only the design specification
value is determined (denoted by a solid shape).

The first task in the design process is to consider al of the design properties for which values have not
been determined and to select one and assignitsvalue. Inthe most general case the designer would like
to consider every unresolved design property and decide which values are feasible for the given design
context. Then, based on some design strategy, the designer could select aproperty and its value which
he believes will lead to agood design. Inthe figure, completing this task gives the intermediate state
of design context (1) and the new, more complete, design contexts (2 or 3). The intermediate state (1),
represents consideration of unbound design properties. The different shades of symbols representing
values depict that each value may appear in a given design context (the darker shades indicate greater
level of belief that the value applies for the given design context). Alternative design contexts (2 and
3) are results of different design decisions. Similarly, going from either of two partial design contexts
(2 or 3), the designer considersthe val ues that the remaining design property may assume. |ntermediate
states of the design context (2a) and (3a) represent adegree of belief that the designer may havethat each
unbound property could be assigned each of its possible values in design context (2) and (3), respectively.
The final design contexts (2b and 3b) are representations of outcomes of two aternative decision se-
quences.
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Figure 6 — Alternative Decision Sequences for a Synthesis Process

A particular point worth noting here is that a designer usually has anumber of alternative choices for
making synthesisdecisions. The designer utilizes his or her subjective knowledge of the synthesis pro-
cess (i.e., knowledge of relationships among property values) to determine which property valuewill be
used inthe given context (which changes as decisions are made); consequently, he or she decides which
particular property value to determine next. We are specifically interested in acquiring this subjective
knowledge that is used to select particular property values for given design contexts.

32 aposteriori PROBABILITY ESTIMATION FOR SYNTHESIS
3.2.1 General ldea

We cast the described synthesis process into aprobabilistic framework. The probabilistic concept we se-
lect to employ inthis research is Bayesian a posteriori probability. This concept has been long recog-
nized as useful relative to engineering planning and design, asit incorporates engineeringjudgment and
observational datain aforma framework [Ang 75].

To use the concept of aposteriori probability in atraditional way, one has to know apriori probabilities
of classes of phenomenaone deals with aswell aslikelihood functions (i.e., class conditional probability
functions) of the measurements (i.e., dependent variabl es) that one can obtainfor these phenomena. Mea-
surements may be continuous or discrete values and they are represented in the form of ameasurement
vector. The Bayesian a posteriori probability p(Q 1X) represents the conditional probability of class Q
given the input measurement vector X. Use of Bayes rule alows it to be expressed as follows:

2 (X1 Q p(C)

where X iS ameasurement vector
p (XI Q) isthe likelihood of producing the measurement X if the classis Q
p (Ci) isthe apriori probability of class Q
p (X) is the unconditional probability of the measurement

In our synthesis framework, the phenomenain which we are interested are the design property value as-
signments for which we know in advance the classes (i.e., values) and the measurements are all bound
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design propertiesthat make acurrent design context (i.e., the measurement vector). Theapriori probabil-
itiescaningenera beestimated fairly well; however, the likelihood functions involve assumptions about
the probability distributions of values of the phenomena (design properties) with respect to the measure-
ments (design context). Instead of indirectly estimating a posteriori probabilities of each property value
assignment by computing probabilities according to Bayesrule, wewill consider an alternative approach
of directly estimating a posteriori probabilities (hereafter, probabilities) using a connectionist learning
model. Thisis a subject of Chapter 4.

One way to use the aposteriori probability concept isto use it as aprobability estimation of each value
of each unbound design property being used in agiven design context Such probabilities will be very
useful information during synthesis. Consider Fig. 7, which illustrates this idea. Each property value
is denoted by acircle. The properties are divided into specifications and form and behavior properties.
The assigned propertiesform the current design context whichis operated upon by the probability estima-
tion function. The result of this operation is aset of estimated probabilities of each val ue of each unbound
design property being used in the given design context The shaded circles on the right hand side of the
figure represent these probability estimations for each property value. Daiker shades represent higher
probability of the value appearing in the given design context.

For agiven set of design specifications, or any partial description of design, by using aprobability estima-
tion function we are in aposition to do the following:

» Acquire the probabilities of the values appearing for each unbound form and behavior property.

» Reason about which values of unbound design properties are viable alternatives in agiven design
context
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Figure 7 - The Probability Estimation Function

Given such atool, one can imagine asynthesis process being completed by iteratively applying the fol-

lowing steps, starting from some design context (i.e., design specifications) and ending with the comple-

tion of the design (see Fig. 8):

*  Apply the probability estimation function to acquire the probability estimation of each value of each
unbound design property for the given design context.

» Consider prabability distributions over the values for each unbound design property and decide to
which property to assign avalue next (this step may be subject to a specific strategy of selecting the
next property to bind).
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Figure 8 — Iterative Design Completion Using the Probability Estimation

» Consider the probabilities for values of the selected property and decide which valueto assignto the
property.
* Update the design context by fixing the property value.

3.2.2 Required Accuracy for the Probability Estimation Function

From the perspective of the usability of this approach, the probability estimation function should: (1)
estimate non-zero probabilities for design property values which have appeared in agiven design con-
text; (2) estimate zero probabilities for the property values that have not been inthat design context; and
(3) correctly rank themost probabl e design property value. Thisminimalist accuracy requirementisnec-
essary as the relationships between design properties in arealistic design domain may be very complex,
and construction of a probability estimation of an arbitrarily high accuracy may be impossible.

Although the above requirement is sufficient to render the proposed approach useful, it still may be too
hard for practical designproblems. Itislikely that for any problem of this complexity only an approxima-
tion of the the probability estimation function will be possible. We will return to this accuracy require-
ment again in Chapter 5, where we deal with evaluation of the proposed approach.

3.2.3 Approachesto Probability Estimation

Onemay employ different approachesto construct the probability estimating function. These approaches
may in general be classified as exact probabilistic methods, approximations of exact probabilistic meth-
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ods, or heuristic methods. By following an exact approach, one needs to follow axioms of probability
theory and provide a rigorous proof that the constructed probability estimating function for the consid-
ered problem has the desired properties. While this may be possible for small problems, the difficulty
of real synthesis problems prevents the actual usage of this approach. Methods for approximating these
probabilistic methods may be amore viable approach to complex tasks such as synthesis. The quality
of the performance of these approximating methods depends on the problem — typically, the size of the
samplethat is used to construct the probability estimation function and the dimensionality of the prob-
lem. Therefore, the usefulness of this approximating approach varies with the conditions that the actual
synthesis problem may impose. Finally, the heuristic methods sacrifice exactness for feasibility and de-
creased complexity in constructing the probability estimating function. In addition, these methods are
sometimes employed to introduce problem-dependent biases, which cause the estimation of the proba-
bilities to follow some assumed probability distributions peculiar to that problem.

In the next chapter we present a connectionist approach to constructing the probability estimation func-
tion that actually estimates a posteriori probability.

3.3 EXAMPLE USAGE: MICON SYNTHESIZER VERSION 1 (M1)

This sectionillustrates the use of the proposed probabilistic approach within the framework of a synthe-
sis system for the design of computer systems. First, adescription of the synthesis tool in MICON (M)
and the system-level synthesis task performed by thistool are given (this part is based on [Gupta 91]).

3.3.1 MICON Synthesizer Version 1 (MI)

MI (MICON Synthesizer Version 1) is apart of the MICON system that designs single-board computer
systems [Gupta91]. Specifically, M1 isaknowledge-based synthesistool that satisfieshigh level speci-
fications by performing system-level synthesis of computer systems from a set of components. The ob-
jective of system-level synthesis is to create a complete and operational computer system capable of
performing general -purpose or special-application computing. The components of design are integrated
circuits (i.e., 1Cs) or application-specific IC libraries. Input specificationsto Ml are based on afunctional
description of the elements; no details of components and their specifics are included in the specifica
tions. Typicaly, theresult of the system-level synthesis consists of aconfiguration of CPU (i.e., centra
processing unit), memory system, 1/O (input output) component, bus interfaces, and other supporting
circuitry. :

Two characteristics of this synthesis task are:
» There exists no model or language to clearly define the function of an artifact being designed.

* Thereexistsno complete and well-defined theory relating structure (i.e., form) and behavior of the
artifact.

Being arealistic problem, the following are some propertiesthat make the synthesis processin this do-
main hard:

* Thedesign spaceis large as the parts can be used in avariety of ways to fulfill functional specifica-
tions. Combinatorial explosion is aresult of an attempt to thoroughly search over the whole design
space.

* Thereareinteractions between the design sub-problems. M| dividesthe synthesis problem into aset
of sub-problems and cannot, in general, determine that the design for asubsystem will yield asatis-
factory complete design.

* There are complex interactions among the components. The relationships between components de-
pend on several factors, including the way in which acomponent is programmed.

» The knowledge base is rapidly evolving. New ICs are constantly being developed, leading to im-
proved components and new design styles.
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Based on the above description, this synthesis task belongs to the class of synthesis problems with well
defined design spaces but weak synthesis knowledge.

Inthe following subsections, weillustrate several waysin which the proposed probabilistic approach for
SKAU couldbeused by M 1. We consider the least complex subdomain of M 1—CGA controller design
— for whichthe synthesis space description is givenin the form of the synthesis hierarchy inFig. 9. In
general, M| uses an "AND-OR" hierarchy to represent the design space. The synthesis hierarchy for
CGA controller design represents apart of this"AND-OR" hierarchy. The state of the Mi's knowledge
base for the CGA controller has dictated the shape of, and the size of, this hierarchy. The arch acrossthe
toplevel branchesindicatesthetopnodebeing” AND" node. Thelower level nodesare™ OR" nodes (indi-
cated by heavier lineswithordinal numbersin circlesinfront ofthe alternatives) and"AND" nodes (indi-
cated by lighter lines). The only decisions that need to be made correspond to "OR" nodes. Therefore,
only those components corresponding to "OR" nodes are considered inthefollowing examples. In addi-
tion, asubset of performances and specificationslisted inthe samefigure areincluded intheillustrations:
cost, RAM (Random Access Memory) size, ROM (Read Only Memory) size, and the speed of the board.

33.2 Example 1 — Completing a Design for CGA controller

Theinitial example illustrates the idea of completing adesign for agiven design specification (Fig. 10).
For the given specifications (cost range, RAM size, ROM size, and desired speed of the board), the task
isto estimateinevery step of the design compl etion process the probability of each val ue of each unbound
designproperty (RAM chip, ROM chip, Address Decoder, and number of Address Decoder components)
being used inthe current design context The outcome of the represented design compl etion process can
beread from the find iteration (4) inFig. 13: RAM chip = 6264, ROM chip = 27512, Address Decoder
= OR gate, humber of Address Decoder components = 1. Also note that the synthesized solutionis an
outcome of developing only a single aternative within the synthesis space.

33.3 Example 2 — Estimating Behavior for Partial Designs

I n the case where abehavior design property is included among the design properties for describing de-
sign context, it is possible to estimate the behavior of the partially completed designsin the early stages
of the synthesis process. In Fig. 11, an example of this use of aprobability estimation function isillus-
trated. The indicated input specification consists of desired RAM size, ROM size, board speed, and a
constraint onthe desired ROM chiptype. By applying the probability estimation function, the probability
of cost being above $150 was estimated to be the highest of al considered cost values, representing the
prediction that the cost for this configuration will be above $150.

33.4 Example 3 — Recognizing Inconsistent Specifications

If we estimate the probabilities of all properties (including specification properties) based on al other
properties, thenit is possible to determine whether the given specifications are consistent. Fig. 12 illus-
trates this by showing how the output of the probability estimation function indicates different values
for properties for which values are fixed as apart of specification (e.g., the cost was set to beinthe range
$5(>-$60 on the input, but the estimated probability indicates that this value for the cost is not consistent
with the rest of the specifications).

To elaborate onthis example use, consider asubpattern of the input formed by omitting one specification
input Thisis exactly the input that enters the probability estimation function for this specification. The
function then estimates the probability for each value of that specification of being a part of considered
pattern (i.e., designcontext). Therefore, the estimation functionis perfectly capable of estimating asnon-
zero those probabilities of design specification values which are not set on input (and vice versa, estimat-
ing as zero those probabilities of design specification val ues which are set oninput) since it does not con-
sider the input values for this design specification in its estimation process. The cause for this difference
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Figure 11 — Estimating Behavior for Partial Design

between the input value and the estimated probability of that value is that the selected design properties
have created adesign context that isinconsistent withthe remaining sel ected property value. Thisincon-
sistency would not have been encountered if the decision making process (i.e., property assignment) had
been conducted one decision at atime.
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Figure 12 — Recognizing Inconsistent Specifications for CGA Controller

From the examples shown, this approach based on probability estimation could supply useful informa-
tion during the synthesis process that can be used to guide the process more directly to the location in
form and behavior space that satisfy the given requirements. The next chapter describes aconnectionist-
based approach that acquires and represents this probability estimation function.
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Chapter 4

NETSYN — a Connectionist Approach to SKAU

This chapter provides adetailed account of NETSY N - aneural network approach for synthesis knowl-
edge acquisition and use (SKAU).

First, the basic ideaof the approach is given by mapping aconnectionist |earning system onto the proba-
bility estimation function introduced in the last section. Next, some theoretical results relevant to the
expected performance of this approach are presented along with a discussion of how this learning ap-
proach fits into amore general machine learning framework. Connectionist representations are then dis-
cussed. Finaly, adiscussion of the architecture and the training of NETSY N is provided.

41 A CONNECTIONIST aposteriori PROBABILITY ESTIMATION

As discussed in subsection 3.2.3, construction of a probability estimation function is adifficult task for
realistic synthesisproblems. Thisdifficulty is aconsequence of two properties of realistic synthesis prob-
lems:

» Thedimensionality of the design space may bevery high—there may be alarge number of interact-
ing design properties that need to be considered simultaneously in the synthesis process.

* Relationships between design properties may be highly complex.

Our approach to constructing the probability estimation function is illustrated in Fig. 13. We employ
feed-forward neural networks (discussed below in more detail) as amechanism by whichto acquire and
represent the probability estimation function. Two principal benefits of using aneural netwoik inthe role
of probability estimation function are:

» The probability estimation function is acquired through inductive learning. We use existing records
of previous designs to train the neural netwoik to estimate the desired probabilities.

»  Thetrained network, under assumptions presented below, estimates Bayesian aposteriori probabili-
ties, thus allowing us for reliance the established theoretical background of Bayesian learning ap-
proaches.

42 THEORETICAL BASIS FOR NETSYN

This section presents some results of fundamental research on which the proposed connectionist ap-
proach to constructing the probability estimation function for SKAU are founded.

4.2.1 Computational Theory Background

Inthe paper by Richard and Lippmann [Richard 91], the following result has been presented, rigorously
proven, and experimentally tested:

" For an M classproblem, Bayesian probabilitiesareestimatedwhen thenetwor k hasoneoutputfor each
pattern class, desired outputsare 1 of M (one output unity corresponding to the correct class, all others
zero), and an appropriate cost function isused. "
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Figure 13— Mapping a Neural Network on Probability Estimation

The consequence of the correct estimation is that the classification error rate will be minimized, outputs
will sum to one, and outputs can be treated as probabilities. Hence, the common rule of thumb that " out-
put val ues different from zero and one are indications that more training is required or that no classifica-
tion decision should be made" are not necessarily true [Richard 91]. Such values may actually indicate
that classes have overlapping distributions [Richard 91].

However, the estimation accuracy, as reported by Richard and Lippmann, is high only if the netwoik is
sufficiently complex, there are adequate training data available, and the training data accurately reflect
the actual likelihood distributions and the apriori class probabilities of the problem. Interms of the syn-
thesis problem, these requirements aretoo stringent, and itisunlikely that any realistic synthesis process
will be captured by this approach with high accuracy. In spite of this, as discussed previoudy in 3.2.2,
the estimation of correctly ranked non-zero and zero a posteriori probabilitiesis sufficient to render the
probability estimation approach useful for SKAU.
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4.2.2 Learning Theory Background

The approachto learning (i.e., constructing the probability estimation function) in NETSY N is based on
the assumption of uniform conveigence [Buntine 91]. Uniform convergence method approximates Baye-
sian method when the number of training cases is large [Buntine 91]. Uniform convergence method re-
quires asample sizethat is large enough that the prior term found in Bayesian method becomes insignifi-
cant; this method makes no assumptions, but instead have to ignore useful information in the training
set. Therefore, it can only guarantee good performance in the worst case [Buntine].

Bayesian learning method, on the other hand, provides an approach for learning in the case of alimited
sample size. Bayesian learning method in the case of the limited sample size is approximating amethod
that produces aclassifierthat will on average have equal or lower error than aclassifier produced by any
other method applied to the same training sample [Buntine 91]. This result holds for any size of the sam-
ple, not only for the "sufficiently large" sample asin the case of uniform conveigence method. Bayesian
Learning Method is arelatively new areaof research and were not employed inthe research reported here.
However, the Bayesian approach to learning is extremely important for arealistic engineering synthesis
applications and will be addressed in future work for problems of limited size training sample.

43 CONNECTIONIST (NETSYN) REPRESENTATIONS

4J.1 Design Representation

The representation of design in the NETSY N approach is influenced by the neural netwoik-based ap-
proach. To provide input to aneural network, one has to present an input signal to the input processing
units of the network; similarly, to read output from aneural network, one has to read the signals from
the output processing units of the netwoik.

Becauseof the relative structural simplicity of neural networks, the neural network representational capa-
bilities are limited to manipulating feature-vector representations of objects or situations. A straight-for-
ward mapping of adesign onto afeature-vector representation is achieved by identifying design proper-
ties and their values and performing a one-to-one mapping of these properties and values onto the
network input and output units. This acurrent design representation approach taken in NETSY N.

A need for different design representations may arise in the case where a natural design description is
given in the form of some structure of properties that are indicative of the relationship between these
design properties (e.g., hierarchical property relationships). The possibility of representing these kind
of relationshipsis muchmore limited in aneural netwoik context thaninthe symbolic"articulated” repre-
sentations [Barto 90]. In spite of this limitation, approachesto representation of the hierarchical property
relationships exist, and will be addressed in the future work.

43.2 Design Process Representation

The design process representation in NETSY N isin the form ofincremental completion of design based
on the estimated probabilities of property values appearing in a given design context.

The following are some of the characteristics of this design process representation:

* There exists & feedback during the design completion process. Each new property value assignment
affects all other previous decisions (i.e., property value assignments). This feedback appears as an
update of probability estimations for values of previously determined properties.

» The constraints on the property value assignments are "soft". The constraints resulting from the
above feedback are not enforced; rather, the constraints are smply acomparison between property
value assignments and the estimated probabilities of these property value assignments.

* Violating the constraints leads to new designs in the considered design space. By going against the
estimated probabilities, one breaks the constraints imposed by the probability estimation function.
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Since the function is based on the previous design experiences, the decision to assign avalueto the
property for whichthe estimated probability islow or zero, correspondsto the exploration of yetto be
considered design configurations inside of the same design space.

4A NETSYN ARCHITECTURE

The approachthat we aretaking inthis researchisto use afeed-forward network architecture of theform
shownin Fig. 14 and map each property value to adistinct input and adistinct output unit. A signal ap-
plied to an input unit encodes the presence of a corresponding property value in the current design con-
text. The transfer function for both hidden and output units was the sigmoid function.
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Figure 14 — NETSYN Architecture

The construction of thistype of netwoik ismodular (Fig. 15): for each design property we create aneural
network structure which will act as a probability estimation function for that property. Therefore, our
original probability estimation function is composed of as many feed-forward neural networks as there
are properties considered in the synthesis task. In addition, we do not provide connections between a
property's set of values on the input layer of the netwoik and this property's set of values on network
output layer. In other words, fixing the value of aproperty does not affect the estimation of probabilities
for the values of that property (see Fig. 13).

45 NETSYN LEARNING

The netwoik learning algorithm used for NETSY N is the standard back-propagation learning algorithm
[Rumelhart 86]. Inorderto properly capturetheunderlying statistical properties of the giventraining set,
the usual Least Mean Squares (LMS) error criterion was substituted with the error criterion similar to
the Kullback-L eibler information measure [El-Jaroudi 90]. Thiserror criterionis aso known under dif-
ferent names: relative entropy and cross entropy. The advantage of this error measureisthat it diverges
if the output of one unit saturates at the wrong extreme [Hertz 91]. It was shown that the new error func-
tion allows better approximation of a posteriori probabilities acrossthe whol e range of aproperty values:
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Figure 15 - Modular Construction of a Neural Network for SKAU

both high and low probabilities are preserved inthis approximation, whichis notthe casewithLM S error
function [El Jaroudi 90].

The strategy of the presentation of cases to the netwoik during training is somewhat unusual from the
standard way of thetraining aneural netwoik inasupervisedlearningmode. Fig. 16illustratesthe strate-
gy for one netwoik module (i.e., probability estimation for asingle design property). During thetraining
process, atraining record of apast design is selected randomly from the training set. Then, anumber of
the properties are selected randomly from the record and omitted, creating a partially complete design
description which is presented to the netwoik ontheinput layer. The samerecord initsentirety is shown
to the netwoik at its output, which provides the correct output for each network module. The forward
propagation of input signal, error computation, and backward propagation of the error followed by updat-
ing of the weights in the whol e network takes place asin any application of the back-propagation learn-
ing algorithm.

Therandom omission of apart of the design record was experimented with to determine the optimal strat-
egy ofthetraining record presentation. Althoughit was definitely determined that the netwoik performed
much better with this approach to training then when only the compl ete records are used for training, no
conclusive results could be obtained asto which strategy of partial presentation isoptimal: many differ-
ent strategies (e.g., leaving different number of properties from the netwoik, gradually increasing number
of properties presented or omitted from the record) yielded the same quality of results. We will address
thisissue in more detail in future research.

Thelearning algorithm wasthe standard Generalized Delta(i.e., gradient descent) algorithm. Thelearn-
ing parametersthat were adjusted for the learning experiments are the step coefficient and the momentum
term. It was found that the step coefficient affected the quality of the solution if it was set to a relatively
high value. The values that we used were in the range [0.01,0.005], The momentum term was kept at
0.4.

The criterion for successful learning isnot as obviousfor NETSY N asitisfor theusual pattern recogni-
tion tasks. For example, it makes no sense to use the Sum of Squared Errors criterion over output unit
activations for the reason that the individual errors will always exist due to the different target outputs
for the same netwoik input. An error criterion that was employed in NETSY N |earning was based on the
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Figure 16 - Training of a Network for Synthes's Knowledge Acquistion

sum of the activations of output units. Ideally, the sum of the output unit activationswould convergeto
unity asthe netwoik approaches a correct etimate of the probabilities. However, because of thedifficult
nature of the learning task, the sum of these outputs would oscillate around unity and never conver ge.
When agteady pattern of these oscillationshave occurred, thetraining would be stopped and the netwoik
tested.
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Chapter 5

Evauation of NETSYN

This chapter first describes the test methodology used for evaluating the performance of NETSY N and
its comparisonto two symbolic inductive learning approaches: ILLS and ECOBWEB. Then, thefollow-
ing are presented:

» The performance of NETSY N on two sets of tests. In the firgt test, avery large number of training
cases which covered amost the whole synthesis space were used during training, while arelatively
small number of cases were kept aside for testing purposes. The second test then investigated the
performance of NETSY N on aseries of learning taskshaving relatively different numbersof training
cases. Thenumber of trai ning cases and the portion of the synthesi s space covered by these caseswere
considerably smaller than in the first test.

*  Thecomparisonof NETSYN and the ILLS symbolic learning system onalearning task with alarge
number of training cases covering nearly the whole synthesis space.

e The comparison of NETSYN and the ECOBWEB symbalic learning system on aseries of learning
tasks using severd sizes of training sets. The number of training cases and the portion of synthesis
space covered by these cases were relatively small with respect to the complete space.

51 TEST METHODOLOGY - AN ARTIFICIAL DESIGN PROBLEM (ADP)

Theintent behind creating an artificia synthesis problemwas: (1) to create atask that emulates the com-
plexity of asynthesis knowledge learning task in areal application; (2) to clearly demonstrate computa-
tional capabilities of the proposed neural netwoik approach on this learning task; and (3) to alow clear
measurement of the performance of the network and aclear statement about the capability of the proposed
approach.

5.1.1 Synthesis Space

The synthesis space of the problem is defined by eight design properties: A, B, C, D, E, F, G, and H. Each
of these properties may take on one out of five corresponding property values. For example, property A
may take on avaluefromthe collection {ai, a2, a3,34, as}, and property H may be assigned avaluefrom
thecollection { hi, 112113114115} One may think about these propertiesintermsof the propertiesfound in
MI asdiscussed in 3.3 (e.g., RAM size, RAM chip, board cost, board speed).

For this problem, we treat the initial four properties (A, B, C, D) as design specifications and the latter
four (E, F, G, H) as design descriptions to be determined by the synthesis process. Moreover, we have
reduced the dimensionality of the search space such that only the design specifications span their com-
plete domainsto produce valid design specifications. Thereafter, the design descriptionsare assigned val -
ues depending on the design specifications and, for some, on one or more design descriptions.




5.1.2 SynthesisKnowledge

The synthesis knowledge which definesthe valid rel ationships between design properties are given next.
Thisknowledge is presented in the form of rules. The general forms of these rules are:

ifAG{a }ABG{b )ACG{ &) =» En
ifAG{a }ABG{bh }ACG{c } AEG{e } =F,
fCG{g }ADG{d )AEG(e, } AFG{ I} => G,

ifCG{c }ABG{d }AFG{/*} = Hn,

where each rule gives the range of those design propertiesthat govern the value assignment for each de-
sign description.

Tables 1,2, 3, and 4 give the complete set of rulesthat describe relationships that may hold at any time
between design property values of afeasibly synthesized aternative. The rules are exhaustive: for any
combination of design specification values, there is at least one rule that applies for determining each
design descriptionvalue. However, the rules are not exclusive: for the same design specification, more
than onerulemay be applied to givethe value of adesign description. Thelater characteristic of this set of
rules becomes obvious when the rules are expressed in terms of the specifications only.

Each row inthetabl e represents one synthesis rule applicable for the val ue assignment of the correspond-
ing design description. The ranges of val ues of design specifications and, eventually, design descriptions,
for which the synthesisrule applies, are given in the columnsto the l&ft of the last column. The last col-
umn gives the values that the corresponding design description may be assigned if the left-hand side is
satisfied. Therulesareeither deterministic or probabilistic. Inthecaseof probabilistic rule, the assumed
frequencies of the assignments of each value are given in parentheses next to that value. One out of a
collection of values may be assigned to the design attribute.

5.13 Training and Test Set Generation

The above definitions of the problem sol ution space and the synthesis knowledge wereused to implement
agenerator of valid designs for the synthesis problem. The purpose of the design generator isto create the
designs that are subsequently used for training and testing of the neural network.

The generator was run ten times on acomplete set of specification combinations (i.e., each specification
taking every value from its domain) giving atotal of 6250 valid design cases. This collection of 6250
cases necessarily consisted of repeated design cases asthe generator was run withthe goal of capturingthe
probabilistic nature of the underlying design synthesis process. Next, the complete design set was parti-
tionedinto fivetrain-test collection pairs: (1) 6014 training cases and 50 test cases; (2) 500training cases
and 500 test cases; (3) 1000training cases and 1000test cases; (4) 4000training cases and 2000test cases,
and (5) 5000 training cases and 1000 test cases. Only inthefirst partition were the test cases completely
unique (i.e., not present in the training set), whilein the latter four partitions the test and training cases
wereselected randomly fromthe original collection of 6250 cases with the chance of having anumber of
identical training and test cases.

Two different evaluation methodol ogies have been employed in these tests. The following two subsec-
tions describe each of these evaluation methodologies.
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A B C E A B C E F
1 — | — 1(50%),2(50%)}| 1 | — — 1 1
2 | _ 1,23 | 2 110- - 2 12
2 - 4,5 1 2,3) 1,2 1,2 1,3] 3
34| 12| - 3 2,31 12 1,2 2514
3 3 - 3 2,31 345 ] 12 1,23
341 45]| - 5 2,31 3,45 1,2 5 4
4 3 - 5 2,31 - 3,45 1 - 5
5 _ _ 4 4,51 - 1,2 3,4 3(70%),4 (30%)
45| — 1,2 5 5
451 - 3,4 5 3(30%),4 (70%)
45| — 3,4 3415
4,51 - 5 - 3(30%),4(30%),5 (40%)
Table 1 - Synthesis Rules for Attribute E Table 2 - Synthesis Rules for Attribute F
C D E F G C D F H .
1,2 1 123 |- 1(5090),2 (50%) ] |1 - 1,2 1(50%),
1,2 1 4,5 1 (50%),3 (50%) 2(50%)
1,2 2,3 - 12,3 1(5000),3(50%)| |1 - 3,4,5 | 3(50%),
1,2 2,3 — 4,5 2 (50%),4(50%) 4 (50%)
1,2 4,5 - 12,3 1(B0%),3(70%)| 12,3,4,5| 1,2 - 1(30%),
1,2 4,5 — 4,5 2 (30%),4(70%) 2 (50%),
3,45]| 1 - 1,2 1(100%0) 5(20%)
3,45 1 — 34,5 1(80%),5 (20%)| |2,3,4,5| 3,4,5 | 1,2, 3,|4(20%),
3 2,34,5| — 1,2, 3,4| 2 (50%),3 (50%) 4 5 (80%)
3 2,34,5| - 5 2 (80%),3(20%)1 {2,3,4,51 3,45 | 5 5
4,5 2,34,5| - 12, 3 3 (50%),4 (50%)
4,5 2,34,5| - 4,5 3 (80%0),4 (20%)
Table 3 - Synthesis Rules for Attribute G Table 4 - Synthesis Rules for Attribute H

5.1.4 Performance Evaluation Methodology 1
For the test runs of NETSY N on the ADP and for the comparison of NETSYN with ILLS, the following
performance evaluation methodology was used:

« Acollectionofidentified test caseswasused to createthe partial design contextsto beused asinput: a
part of the design description was omitted to simulate an intermediate design stage and correspond-
ing design context
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e For selected designdescriptions (i.e., propertiesk,F,G,H), aposteriori probabilitiesfor eachvalue
forthetest design context were estimated and compared to the frequency of appearance of these prop-
erty values inthe same design context in the complete collection of design cases (i.e., original 6250
design cases). The latter relative frequencies of appearances of each property value were considered
to be an accurate a posteriori probabilities — they implicitly represent the underlying synthesis
knowledge.

»  Two metrics were employed to measure and compare the performance of NETSY N:

¢ "max-correct” - The percentage of correctly predicted maximum probabilities for each de-
sign description for al of the test cases in atest run.

» "set-coverage" - The number of property values that were correctly predicted to have non-
zero and zero probabilities (true/fal se sense) forthe whol e range of eachproperty. The proba-
bility predictionis assumed to be correct in abinary sense when one of thefollowing istrue:
(1) thenetwork predictionisbelow athreshold value whenthe real frequency of appearance
of the property valuein thedesign context is zero, or (2) the network predictionis abovethat
threshold value when the real frequency of appearance of the property value in the design
context is greater than zero. The zero threshold is assumed to be 5% throughout this and the
remaining experiments.

Interms of the synthesis process, the first metric measures the capability of the network to correctly learn
the most frequent assignments of design property values for given design contexts and therefore to direct
the search for alternatives to those solutions that have occurred most frequently.

The second metric measures the capability of the netwoik to reliably learnto retrieve all feasible alterna-
tives and, at the same time, it measures its capability to prune the infeasible search directions. All zero
valuesforthis measureindicate that the network haslearned to correctly retrieve all and only thefeasible
aternativesfor property values. All positive values of thismetric indicate that the network has learned to
recall all feasible solutions; however, the netwoik would direct the search process in anumber of casesin
infeasible directions (the term infeasible directiondenotes here aval ue assignment which isnot specified
inthe artificial synthesisproblem). The number of infeasible searches is proportional to the absolute val-
ue of themetric. Finally, al negative values of the metric indicate that the netwoik has learned to retrieve
only the feasible solutions, but some of the feasible solutions were not learned. The number of cases
which are not learned is proportional to the absolute value of the metric.

51*5 Performance Evaluation Methodology 2

In the test runs for comparison of NETSYN with ECOBWEB on the ADP, the following performance
evaluation methodology was used:

* A collection of identified test cases was used to create the partial design contexts: apart of design
description was omitted to simulate this design stage described by the design context.

» Forselected design descriptions (i.e., propertieskE, F, G, H), the value withthe highest probability of
being used in the test design context was predicted and compared to the actual value of the design
description that appears in the given test case.

This evaluation methodology gives a relative measure of performance of two methods: only the most

probable value for aproperty was predicted and compared to the property value of the specific test case

which supplied the input design context This methodology did not take advantage of the well-defined
nature of the problem to assess the accuracy of the learning approaches with respect to:
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» thetrue, most probable value and

» the correctness of the method in refusing the infeasible values and selecting only feasible values for
the design context.

"Nevertheless, the tests provide a useful comparison of two approaches with respect to their capability
to learn aparticular kind of synthesis knowledge.

The following subsections report on the performance results of NETSY N and comparison results with
ILLS and ECOBWEB.

52 NETSYN PERFORMANCE ON ADP

To determine the performance of NETSY N on the artificial synthesis problem, two types of tests were
run:

* TEST 1: Thepartitionwith 6014 training cases and 50 test cases was used to perform three different
kinds of test runs.

e TEST 2. All remaining partitions of the origina collection of cases (500/500, 1000/1000,
4000/2000,5000/1000) were used to run the hardest of the three test runs (determined to bethe case
when all 4 specifications are presented as input).

Evaluation method 1 was used in both tests to determine the performance of the netwoik.
52.1 TEST 1 Results

The following test runs have been performed in this test:
«  2-0f-8 run. Two out of four design specificationswere given as apartial design context. All 300 par-
tial design contexts generated from the 50 test cases were used, resulting in 300 estimations.

» 4-0of-8 run. All four design specifications were given. All 50 test cases were used for this test run.

»  7-of-8 run. Completetest design cases were used to predict each remaining design descriptionvalue
inturn. All 50 cases were used in this test run.

Figs. 17 and 18 present the results for each of thetest runs with respect to the set-coverage and max-cor-
rect metrics, respectively. Eachtest run (2-of-8,4-0f-8,7-0f-8) was performed for each design descrip-
tion (E, F, G, H) giving atotal of twelve test instances.

The performance of the network with respect to the set-coverage metric was centered around the perfect
value (i.e., zero) ineach of thetest instances. Intheworst testinstance (run4-of-8, property G), 24% of
the estimations were out of the (0, +1) interval, and 100% of estimationswereinside (0, +2) interval. In
other words, in this worst test instance, 76% of the estimations of probability were perfect or included
singleincorrect probability estimation (in the binary sense) whilein only 24% of the estimations the net-
work had two incorrect probability estimations. In nine out of twelve test instances 80% of estimations
were perfect (i.e., estimations with zero set coverage).

The performance of the network with respect to the max-correct metric was above 75% in all estimations,
while in most test cases (nine out of twelve), 80% of the estimations were correct.

These results show respectable performance of NETSY N on the ADP. Construction of aprobability es-
timation functionis possiblefor this artificia design problem wherewe have arepresentativetraining set
covering awide range of the synthesis space. Thefollowing test illustrates that we can maintain this per-
formance to alarge extent when having much smaller training samples.
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522 TEST 2 Reaults

Inthis second test, the hardest test strategy as indicated by the previous test was used (4-of-8 specifica-

tions presented as input). The following test runs have been performed in this test:

e 500/500 run. Network wastrained on 500 randomly selected cases and tested on another collection of
500 randomly selected test cases.

» 1000/1000 run. Network was trained on 1000 randomly selected cases and tested on another collec-
tion of 1000 randomly selected test cases.

e 4000/2000 run. Network was trained on 4000 randomly selected cases and tested on another collec-
tion of 2000 randomly selected test cases.

»  5000/1000 run. Network was trained on 5000 randomly selected cases and tested on another collec-
tion of 1000 randomly selected test cases.

Figs. 19 and 20 represent the results for each of thetest runswith respect to the max-correct and set-cov-
erage metrics, respectively. Each test run (2-of-8,4-0f-8,7-0f-8) was performed for each design de-
scription (E, F, G, H) giving atotal of twelve test instances.

The results represented by these diagrams show that NETSY N could achieve very good performance
when significantly smaller training sets were used. The performance with respect to the set-coverage
metric, shows that with the training size of 500, the network succeeded in estimating the probabilities
inthe binary sense so that for 70% of the estimations the result wasintheinterval (0, +1). Similarly, for
the max-comect metric, the performance of the network was above 60% in the worst case when trained
on 500 cases. This performance went over 70% for al test instances when the network was trained on
1000 cases. The performance of the network improved with the increase of thetraining size and with re-
spect to both metrics, but the improvement was relatively minor. This indicates that the approach may
be useful in the cases with relatively small number of training cases.

53 COMPARATIVE ANALYSIS: ILLSAND NETSYN

To comparetheperformance of NETSY N and the ILL S symbolic learning system [Julien, 92] onthearti-
ficid design problem (ADP), asingle test was run. The partition with 6014 training cases and 50 test
cases was used to perform three different kinds of test runs: 2-of-8 run, 4-of-8 run, and 7-of-8 run.

The estimated probabilities of values for asingle property (F) are showninthe diagraminFig. 21. Two
shades of the bars represent two approaches applied to the same test: NETSYN and ILLS. Evaluation
method 1 was used in the test to determine the performance of both networks.

Apparently, ILLS has difficulty with capturing the relationships between design properties and it per-
forms considerably worse with respect to the set-coverage metric than NETSYN. This is particularly
obvious in the hardest test run (i.e., 4-of-8) wherethe bar diagram is shifted away from the ideal value
(i.e., zero) indicating that the performance substantially deteriorated. In [Reich 91], asimilar conclusion
was made with respect to the performance of methods such as ILL S for synthesis tasks where many-to-
many relationships between design properties exist and where multiple solutions exist for the same input
specifications. Therefore, this result comes as an experimental confirmation of an earlier finding.
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54 COMPARATIVE ANALYSIS: ECOBWEB AND NETSYN

To comparethe performance of NETSYN and the ECOBWEB symboalic learning system [Reich 91] on
ADP, asingletest was performed again using four of thetraining/test partitions of original collection of
6250 (500/500,1000/1000,4000/2000,5000/1000). Only the 4-0of-8 test presentation strategy was im-
plemented to compar e the performance of the methods.

Fig. 22 presentsther esultsfor each of thetest runs Evaluation method 2 wasused inthetest to determine
the perfor mance of both networks. Theresults show consistently better performance of NETSYN rela-
tivetothat of ECOBWEB. Therdativeincreasein performanceranged from 6% to 27%. Duetotheuse
of evaluation methodology 2, it is not possible to definitely say anything about the performance of
ECOBWEB on ADP with respect to either max-correct or set-cover agemetrics. Weplanto addressthis
issuein all future comparisons of NETSYN.

55 DISCUSSION

Wehave congructed an Artificial Design Eroblem (ADP) in order to evaluatethe proposed approach and
to compareit to other relevant machine learning approaches. Therationale behind building ADP wasto
impose a synthesis problem in ardatively small synthesis space (i.e., synthesis problem described by
relatively small number of design properties) with relationshipsbetween design properties of relatively
high complexity. These relationships are meant to emulate the complexity of the knowledge that may
be found in areal synthess problem. The complexity was achieved by providing (1) nondeter ministic
relationships, (2) many-to-manyr elationshipsbetween design properties, (3) relatively involved depen-
dencies between design propertiesin which a considerable number of properties influence the feasible
ranges of other properties.

By testing the machinelear ning approaches on only asinglelear ning problem (such asADP), one cannot
draw a complete picture about capabilities and relative performances of these methods (NETSYN,
ECOBWEB, and ILLS). Nevertheless, indications of capabilities and incapabilities of thesetested meth-
odsfor SKAU arepresent. Wehopethat more compar ative test problemswill be devised to help portray
the behavior of these different learning methods.

NETSY N performswell both when alarge portion of synthesis space was cover ed by training cases and
when congderably smaller numbersoftraining caseswereused. Thisresult providesan initial indication
of the merit of the NETSYN approach with respect to the size of training sample. More experimental
results arerequiredfor sronger satementsto bemade concer ning performanceof NETSY N in Stuations
having limited sample size.

The performance of two symbolic inductive learning methods have been compared to the performance
of NETSYN and the following are the basic findings:

* The performance of the ILLS system was shown to be insufficiently accurate for the task involving
many-to-many mappings and multiple alter natives for same design specifications.

» The performance of NETSYN was consigtently better than the performance of ECOBWEB on a se-
ries of learning tasks derived from the ADP (ranging from 7% to 24%).

Therefore, the conclusions that may be drawn from the above evaluations are the following:
* NETSYN appearsto be a promising approach to SKAU.

* NETSYN appears to have a more appropriate learning bias than the two symbolic learning ap-
proaches to which it was compared for problem types of which ADP is arepresentativeexample.

* More experimental work isrequired to test the approach thoroughly on similar and other synthesis
problems for which alarger number of parameters of the learning task will be varied.
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Chapter 6

Future Work

Thisreport givesinitial resultsin applying connectionist lear ning methodstothegenerictask of synthesis
knowledgeacquisition and use (SK AU). Theresearch providesagarting point from which several direc-
tions may be followed in extending and refining the proposed approach. The following is a collection
of such directionsthat collectively aim at the goal of bringing this approach closer to realistic design do-
mains and their synthesistasks:

~ Extend NETSYN representational capabilities. Presently, the representational capability of NET-

SY N islimited to mapping thediscr etized design property values onto acollection of binary proces-
singeementshboth at theinput and at theoutput layer sof thenetwor k. Whiletheapproach isbased on
thediscrete binary output representation of property values(i.e., 1-of-M classification problem), the
representation of the input may vary widely. Representations of continuous-valued properties may
readily beincluded asinput To provide the capability of handling continuous values at the output
layer of thenetwork, the separ ate modules of the networ k may bemodified to estimateuseful statisti-
cal properties for continuous design property values (e.g., mean and variance). In addition, the
schemes for representation of the sructured design properties (e.g., hierarchical properties) need to
be investigated.

I nvestigate approaches for incremental learning. The capability of those connectionist models that
allow incremental learning needsto beinvestigated, sincethe current connectionist model described
inthisreport does not have this capability. An example of such amodd isthe Cascade-Correation
Networ k [Fahlman 90]. Theprincipal question iswhether thisor any other alter nativemode that can
learn incrementally is capable of estimating probabilities in the sense required for this approach.

Investigate approachesfor scaling up. One of thecritical issues for connectionist approachesis scal-
ing up to largeproblem spaces. Several factorsinfluencethis problem, two of which arerepresnta-
tion and use of the domain knowledge. By selecting appropriate representationsfor design, it ispos-
sibleto considerably reduce the complexity of the computations involved in congtructing (lear ning)
the probability estimation function. Similarly, by using any domain knowledgethat may exist, one
can make informed decisions about the connectivity between different parts of the input layer and
different modules of the network (each module estimates praobabilities for single property). These
and other approacheswill beinvestigated astheevaluation and theuseof NETSY N istaken tolarger
design spaces.

Apply NETSY N to realistic synthesistasks. Currently, NETSY N is being tested on a subdomain of
MI [Gupta91]. This subdomain isdesign of CGA controllers (described in 3.3). Theinitial experi-
ments bring an initial flavor of areal synthesistask to NETSYN. New requirements, that have not
been identified earlier in our research, areshapingthe NETSY N approach further. The futurework
will addressthe extensibility, applicability, and quality of the NETSY N approach to acquiring syn-
thesisknowledgein thisand other morecomplex subdomainsof M I. Additionally, further compara-
tive studies on performance of NETSYN and other approaches for SKAU are planned.
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Chapter 7

Summary

This document presents results of research that has investigated connectionist learning approaches for
synthesis knowledge acquisition and use (SK AU).

Synthesisisaprocess of mapping from the specification space to theform space. Thegoalsfor machine
lear ningin support of synthesisisto acquirether dationshipsbetween form, function, and behavior prop-
ertiesthat satisfy specified design requirements and, thereafter, to facilitate amore direct mapping from
the specification spaceto the desred location within form and behavior spaces. Thebasic requirements
for asystem capable of acquiring synthesis knowledge are 1) the ability to capture many-to-many rela-
tionships between design properties, 2) the ability to produce multiple solutions satisfying the same de-
sign specifications, and 3) the ability to generalize from afinite number of representative design cases.

Thenatureofthe synthesisprocess allows aprobabilistic approach. The probabilistic approach followed
in thisresearch isfounded upon the idea of using a probability estimation function for SKAU. Thegoal
of the probability estimation function isto estimate the probability of each possible value of each design
property being used in agiven design context Theminimal requirementsfor such aprobability estima-
tionfunctiontobeuseful for synthesisare 1) estimatenon-zer o probabilitiesfor feasbledesign property
values, 2) to estimate zer o probabilities for infeasible design property values;, and 3) to correctly rank
the most probable design property value. ’

The NETSYN connectionist approach to SKAU congtructs a probability estimation function by using
aconnectionist learning system to acquire and represent the probability estimation function. Theor etical
results provide an interpretation of the NETSY N approach in terms of estimating Bayesian aposteriori
probabilities. NETSY N presently follows the uniform conver gence lear ning approach and it may be ex-
tended to the Bayesian learning approach for the treatment of synthesislearning tasks that have access
to only small training samples.

Performance of a learning system on awell defined learning task is one of the necessary ingredients for
evaluation of learning systemsfor SKAU. Theartificial design problem (ADP) presented in the report
isonesuchwell defined lear ning task that emulatesareal synthesislearningtask. Based ontheproposed
evaluation methodology for performance of lear ning systemson ADP, the NETSY N approach ispromis-
ing with respect to both absolute performance and relative performance to two symboalic learning ap-
proaches (DLLS and ECOBWERB) on the ADP.

The goals of the future work are the application, evaluation, and adaptation of the NETSYN approach
for real design domains. Design of single-board computer syssems (MICON) is the domain in which
NETSYN isbeing tested presently. Thisdomain clearly meetsthe necessaryrequirementsof arealistic
design domain for evaluation of alearning system.
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