
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Mixed-Integer Optimization Techniques for the
Design and Scheduling of Batch Processes

I.E. Grossmann, I. Quesada, R. Raman, V.T. Voudouris

EDRC 06-137-92



Mixed-Integer Optimization Techniques for the
Design and Scheduling of Batch Processes

Ignacio E, Grossmann, Ignacio Quesada, Ramesh Raman and Vasilios T. Voudouris

Department of Chemical Engineering and Engineering Design Research Center, Carnegie Mellon

University, Pittsburgh, PA 15213, U.S.A.

Abstract: This paper provides a general overview of mixed-integer optimization

techniques that are relevant for the design and scheduling of batch processes. A brief

review of the recent application of these techniques in batch processing is first presented.

The paper then concentrates on general purpose methods for mixed-integer linear (MELP)

and mixed-integer nonlinear programming (MINLP) problems. Basic solution methods as

well as recent developments are presented. A discussion on modelling and reformulation is

also given to highlight the importance of this aspect in mixed-integer programming.

Finally, several examples are presented in various areas of application to illustrate the

performance of various methods.

Keywords: mathematical programming, mixed-integer linear programming, mixed-

integer nonlinear programming, branch and bound, nonconvex optimization, reformulation

techniques, batch design and scheduling

Introduction

The design, planning and scheduling of batch processes is a very fertile area for the

application of mixed-integer programming techniques. The reason for this is that most of

the mathematical optimization models that arise in these problems involve both discrete and

continuous variables that must satisfy a set of equality and inequality constraints, and that

must be chosen so as to optimize a given objective function. While there has been the

recognition that many batch processing problems can be posed as mixed-integer

optimization problems, the more extensive application of these techniques has only taken

place in the recent past



It is the purpose of this paper to provide an overview of mixed-integer optimization

techniques. We will first present a brief review of the application of these techniques in

batch processing. We then provide a brief introduction to mixed-integer programming in

order to determine a general classification of major problem types. Next we concentrate in

both mixed-integer linear (MILP) and mixed-integer nonlinear programming (MINLP)

techniques, introducing first the basic methods and then the recent developments that have

taken place. We then present a discussion on modelling and reformulation, and finally,

some numerical examples and results in various areas of application.

Review of applications

In this section we will present a brief overview of the application of mixed-integer

programming in batch processing. More extensive reviews can be found in Papageorgaki

and Reklaitis (1990c) and Reklaitis (1989,1991).

Mixed-integer nonlinear programming techniques have been applied mostly to

design problems. Based on the problem considered by Sparrow et al (1975), Grossmann

and Sargent (1979) were the first to formally model the design of multiproduct batch plants

with parallel units and with single product campaigns as an MINLP problem. These

authors showed that if one relaxes the numbers of parallel units to be continuous, the

associated NLP corresponds to a geometric program that has a unique solution. Rather

than solving the problem directly as an MINLP, the authors proposed a heuristic rounding

scheme for the number of parallel units using nonlinear constraints based on the solution of

the relaxed NLP. Since this problem provides a valid lower bound to the cost, optimality

was established within the deviation of the rounded solution. This MINLP model was

subsequently extended by Knopf et al (1982) in order to handle semi-continuous units. A

further extension, was the MINLP model for a special type of multipurpose plants by

Suhami and Mah (1982) in which simultaneous production was only allowed if products

did not require the same processing stages. This model was subsequently modified by

Vaselenak et al (1987) and by Faqir and Karimi (1989) to embed the selection of

production campaigns. However, all these works did not rigorously solve the MINLP, but

they relied on the rounding scheme by Grossmann and Sargent (1978) for obtaining an

integer number of parallel units.

The first design application in which an MINLP model was rigorously solved was

the work by Vaselenak et al (1987) who considered the retrofit design of multiproduct

batch plants. These authors applied the outer-approximation method by Duran and

Grossmann (1986) with a modification to handle separable nonconvex terms in the



objective. Recently, Fletcher et al (1991) removed the assumptions of equal volume for

units operating out of phase by Vaselenak et al (1987), and formulated a new MINLP

model that again was solved by the outer-approximation method. Also, Kocis and

Grossmann (1989) formulated the MINLP model by Grossmann and Sargent (1978) in

terms of 0-1 variables for the parallel units and solved it rigorously with the outer-

approximation method as implemented in DICOPT. Subsequently, Wellons and Reklaitis

(1989) applied this computer code to an MINLP model for multiproduct plants under

uncertainty with staged expansions.

An important limitation in all the above applications was that convexity of the

relaxed MINLP problem was a major requirement. Also, it became apparent that the

solution of larger design problems could become expensive. The first difficulty was

partially circumvented with the augmented penalty version of the outer-approximation

algorithm proposed by Viswanathan and Grossmann (1990) and which was implemented

in the computer code DICOPT++. This code was applied by Birewar and Grossmann

(1990) for the simultaneous synthesis, sizing and scheduling of multiproduct batch plants

which gives rise to a nonconvex MINLP model.

Papageorgaki and Reklaitis (1990a,b) developed a comprehensive MINLP model

for the design multipurpose batch plants which involved nonconvex terms. They found

that the code DICOPT would get trapped into suboptimal solutions and that the computation

time was high. For this reason they proposed a special decomposition method in which the

subproblems are NLFs with fixed 0-1 variables and campaign lengths and the master

problem corresponds to a simplified MILP. Faqir and Karimi (1989) also modelled a

special class of multipurpose batch plants with multiple production routes and discrete sizes

as an MINLP problem that involves nonconvexities in the form of bilinear constraints.

These authors proposed valid underestimators for these constraints and reduced the design

problem to a sequence of MILP problems. Recently, Voudouris and Grossmann (1992a)

have shown that several batch design problems, convex and nonconvex, can in fact be

reformulated as MILP problems when they involve discrete sizes. Examples include the

design of multiproduct batch plants with single product campaigns and the design of

multipurpose batch plants with multiple routes. Finally, Ravemark and Rippin (1991) have

reported computational experience in solving a variety of batch design problems as MINLP

problems using the computer code DICOPT++, while Straub and Grossmann (1992) have

applied it in the optimization of flexibility of multiproduct batch plants.

As for scheduling and planning, there have been a large number of MILP models

reported in the Operations Research literature. However, in chemical engineering the first

major MILP model for batch scheduling was proposed by Rich and Prokopakis (1986) for



the case of multipurpose batch plants in which the products were preassigned to processing

units. They used the computer code LINDO (Schrage, 1986) to solve this problem, and

later extended it to handle the production of a product over several predefined sets of units

(Rich and Prokopakis, 1987). Ku and Karimi (1988) developed an MILP model for

selecting production sequences that minimize the makespan in multiproduct batch plants

with one unit per stage. Their model, which can accomodate a variety of storage policies,

was also solved with the computer code LINDO.

A very general approach to the scheduling of batch operations was proposed by

Kondili et al (1988) in which they developed a state-task network representation to model

batch operations with complex process network structures. By discretizing the time

domain they posed their problem as a multiperiod MDLP model that has the flexibility of

accomodating variable batch sizes, splitting and mixing of batches, finite, unlimited or no

storage, various transfer policies and resource constraints. Furthermore, the model has the

flexibility of assigning equipment to different tasks. Recently, Shah et al (1991) have been

able to considerably tighten the LP relaxation for this problem and develop a special

purpose branch and bound method with which these authors have been able to solve

problems with more than one thousand 0-1 variables. These authors have also extended

their MILP model to some design and planning problems (Shah and Pantelides, 1991).

For the case of the no-wait flowshop scheduling problem Miller and Pekny (1991)

(see also Pekny and Miller, 1991) formulated the problem as an asymmetric traveling

salesman problem (see Gupta, 1976). For this model they developed a parallel branch and

bound method that was coupled with a matching algorithm for detecting Hamiltonian

cycles. The specialized implementation of their algorithm has allowed them to solve

problems to optimality with more than 10,000 batches, which effectively translates to

problems with more than 20,000 constraints and 100,000,000 0-1 variables.

Finally, MINLP models for scheduling of multipurpose batch plants have been

formulated by Wellons and Reklaitis (1991) to handle flexible allocation of equipment and

campaign formations. Due to the large size of these problems, these authors developed a

special decomposition strategy for their solution. Sahinidis and Grossmann (1991a)

considered the cyclic scheduling of continuous multiproduct plants with parallel lines and

formulated the problem as a large-scale MINLP problem. They developed a solution

method based on Generalized Benders decomposition for which they were able to solve

problems with up to 800 0-1 variables, 23,000 continuous variables and 3000 constraints.

In summary, what this brief review shows is that both MILP and MINLP

techniques are playing an increasingly important role in the modelling and solution of batch

processing problems. This review also shows the importance of exploiting the structure of



these problems for developing reasonably efficient solution methods. It should also be

mentioned that while there might be the temptation to resort to simpler optimization

approaches such as simulated annealing, mixed integer programming provides a rigorous

and deterministic framework, although it is not always the easiest one to apply. On the

other hand, many mixed-integer problems that were regarded as unsolvable 10 years ago

are currently being solved to optimality with reasonable computing requirements due to

advances in algorithms and increased computer power.

Mixed-integer programming

In its most general form a mixed-integer program corresponds to the optimization problem,

(MIP)tnin
s.t.

Z = f(x,y)
h(x,y) = 0
g(x,y)£O

x e Rn y e N+
m

in which x is a vector of continuous variables and y is a vector of integer variables. The

above problem (MIP) specializes to the two following cases:

I. Mixed-integer linear programming (MILP). The objective function f, and the constraints

h and g are linear in x and y in this case. Furthermore, most of the applications of interest

are restricted to the case when the integer variables y are binary, i.e. ye {0,1 } m . A

number of important classes of problems include the pure integer linear programming

problem (only integer variables) and a large number of specialized combinatorial

optimization problems that include for instance assignment, knapsack, matching, covering,

facility location, networks with fixed charges and traveling salesman problems (see

Nemhauser and Wolsey, 1988).

II. Mixed integer nonlinear programming (MINLP). The objective function and/or

constraints are nonlinear in this case. The most common form is linear in the integer

variables and nonlinear in the continuous variables (Grossmann, 1990). More specialized

forms include polynomial 0-1 programs and 0-1 multilinear programs which can be

transformed into MILP problems (eg see Balas and Mazzola, 1984).

The difficulty that arises in the solution of MILP and MINLP problems is that due

to the combinatorial nature of these problems, there are no optimality conditions like in the



continuous case that can be directly exploited for developing efficient solution methods

(see paper by Westerberg at this meeting).

In this paper we will concentrate on the modelling and solution of unstructured

MHJP problems, and MINLP problems that are linear in the 0-1 variables. Both types of

problems correspond to the more general type of mixed-integer optimization problems that

arise in batch processing. It is very important however, to recognize that if the model has a

more specialized structure, general purpose techniques will be inefficient for solving large

scale version of these problems, and specialized combinational optimization algorithms

should be used in this case.

Mixed-integer Linear Programming (MILP)

We will assume the more common case in which the subset of the integer variables y are

restricted to take only 0 or 1 values. This then gives rise to the MILP problem:

min Z = cTx + bTy (MILP)
s.t. Ax + By^ d

In attempting to develop a solution method to solve problem (MILP), the first

obvious alternative would be to solve for every combination of 0-1 variables the

corresponding LP problem in terms of the variables x, and then pick as the solution the 0-1

combination with lowest objective function. The major drawback with such an approach is

that the number of 0-1 combinations is exponential. For example, an MILP problem with

10 0-1 variables would require the solution of 21 0 = 1024 LPs, while a problem with 50 0-

1 variables would require the solution at 2 5 0 = 1.13xl015 LPs! Thus, this approach is, in

general, computationally infeasible.

A second alternative is to relax the 0-1 requirements and treat the variables y as

continuous with bounds, 0 £ y < 1. The problem with such an approach, however, is that

except for few special cases (e.g. assignment problem), there is no guarantee that the

variables y will take integer values at the relaxed LP solution. As an example, consider the

pure integer progra

min
s.t.

Z = -l.:

yi

yi

2yi -

>yx -

+y2

.y2

•y
«-(
<

=

2

).5>
1

0,1



By relaxing yi and y2 to be continuous the solution yields the noninteger point

yi=0,715, y2=0.285, Z= -1.143. Assume we simply round the variables to the nearest

integer value, namely yi = 1, y2 = 0. This, however, is an infeasible solution as it violates

the first constraint. In fact, the optimal solution is yi = 0, y2 = 1, Z = -1. Thus, solving

the MDLP problem by relaxation of the y variables and rounding them to the nearest integer,

will in general not lead to the correct solution. Note, however, that the relaxed LP has the

property that its optimal objective value provides a lower bound to the integer solution.

In order to obtain a rigorous solution to the problem (MILP) the most common

approach is the branch and bound method which originally was proposed by Land and

Doig (1960) and later formalized by Dakin (1965). In the branch and bound technique the

objective is to perform an enumeration without having to examine all the 0-1 combinations.

The basic idea is first to represent all the 0-1 combinations through a binary tree such as the

example shown in Fig. 1. Here at each node of the tree the solution of the linear program

subject to integer constraints for the subset of the y variables that are fixed in previous

branches is considered. For example, in node A the root of the tree involves the solution of

the relaxed LP, while node B involves the solution of the LP with fixed y i = 0, y2 = 1 and

withO £y3 ^ 1.

In order to avoid the enumeration of all the nodes in the binary tree, we can exploit

the following basic properties. Let k denote a descendent node of node I in the tree (e.g.

k=B, ^=A) and let (P^) and (P̂ ) denote the corresponding LP subproblems. Then the

following properties can be easily established:

1. If (P̂ ) is infeasible then (Pk) is also infeasible.

2. If (Pk) is feasible then (P̂ ) is also feasible, and (Z')* < (Zk)*. That is, the optimal

objective of subproblem (P̂ ) corresponds to a lower bound of the optimal objective at

subproblem (Pk).

3. If the optimal solution of subproblem (Pk) is such that y = 0 or 1, then (Zk)* > Z*.

That is, the optimal objective of subproblem (Pk) corresponds to an upper bound of

Z*, the optimal MILP solution.

The above properties can be used to fathom nodes in the tree within an enumeration

procedure. The question of how to actually enumerate the tree involves the use of

branching rules. Firstly, one does not necessarily have to follow the order of the index of

the variables y for branching as might be implied in Fig. 1. A simple alternative is to

branch instead on the 0-1 variable that is closest to 0.5. Alternatively, one can specify a



priority for the 0-1 variables, or else use a more sophisticated scheme that is based on the

use of penalties (Driebeck, 1966; Tomlin, 1971), Secondly, one has to decide as to what

node should be examined next having solved the LP at a given node in the tree. Here the

two major alternatives are to use a depth-first (last in-first out) or a breadth-first (best

second rule) enumeration. In the former case one of the branches of the most recent node

is expanded first; if all of them have been examined we backtrack to another node. In the

y3-0 / \ ya=i / \ V3=0 / \ / w ~ ' / \ y3a1

Fig. 1. Binary tree representation for three 0-1 variables

latter case the two branches of the node with the lowest bound are expanded successively;

in this case no backtracking is required. While the depth-first enumeration requires less

storage, the breadth-first enumeration requires in general an examination of fewer nodes.

In practice the most common scheme is to use depth first, but by branching on the 0 and 1

values of a binary variable at each node.

In summary, the branch and bound method consists in first solving the relaxed LP

problem. If y takes integer values we stop. Otherwise we proceed to enumerate the nodes

in the tree according to some specified branching rules. At each node the corresponding LP

subproblem is solved, typically by updating the dual LP problem of the previous node

which requires few pivot operations. By then making use of the properties cited before,

we either fathom the node (if infeasible or if lower bound > upper bound) or keep it open

for further examination. Clearly the computational efficiency is largely dependent on the

quality of the lower bounds of the LP subproblems.

As an example, consider the following MILP problem involving one continuous

variable and three 0-1 variables:



min Z = x + yi + 3y2 + 2y3

s.t. -x + 3yi + 2y2 + y3 ̂ 0

-5yi-8y2-3y3<;-9
(2)

The branch and bound tree using a breadth-first enumeration is shown in Fig. 2.

The number in the circles represents the order in which 9 nodes out of the 15 nodes in the

tree are examined to find the optimum. Note that the relaxed solution (node 1) has a lower

bound of Z = 5.8, and that the optimum is found in node 9 where Z = 8, yi=0, y2=y3=l,

and x=3.

Z-5.8

[0.2,1,0]

yt-o y t- i

Z=6 Z=*6.5
[1,0.5,0]

Infeas.

Fig. 2. Branch and bound tree for example problem (2)

The branch and bound method is currently the most common method used for

MILP in both academic and commercial computer software (eg. LINDO, ZOOM,

SCICONIC, OSL, CPLEX, XA). Some of these codes feature a number of special

features that can help to reduce the enumeration in the tree search. Perhaps one of the most

noteworthy are the generalized upper bound constraints (Beale and Tomlin, 1970) which

are integer constraints of the form,

1
iel

(3)



In this case instead of performing branching on individual variables, the branching

is performed by partitioning the variables into two subsets (commonly of equal size). As a

simple example consider the problem:

min. Z = yi + 2y2 + 3y3 + 4y4
s.t. yi + y2-y3-y4^0

yi + Y2 + y3 +y4 = l
yi-0,1 i - 1 , 4

(4)

The relaxed UP solution of this problem is Z = 2, yi = y$ = 0.5, y2 = y4 = 0. If a

standard branch and bound search is performed, 4 nodes are required for the enumeration

as shown in Fig. 3a. However, if we instead treat the last constraint as a generalized upper

bound constraint, only two nodes are enumerated as shown in Fig. 3b.

Z=2.0

Z=4

Z=3

Z = Infeas.

(a) Branching on individual variables

Z=2.0

Z=3 Infeas.

(b) Branching with generalized upper bounds

Fig.3. Standard branching rule and generalized upper bounds.

10



Closely related to the generalized upper bound constraints, are the special ordered

sets (see Beale and Tomlin, 1970; Tomlin, 1988). The most common are the SOS1

constraints that have the form,

a iy i (5)
iel iel

in which the second constraint is denoted as a reference row where x is a variable and oci

are constants with increasing value. In this case the partitioning of the 0-1 variables at each

node is performed according to the placement of the value of the continuous variable x

relative to the points (Xi. S0S2 constraints are those in which exactly two adjacent 0-1

variables must be nonzero, and they are commonly used to model piecewise linear concave

functions. Again, considerable reductions in the enumeration can be achieved with these

types of constraints.

Another important capability in branch and bound codes are preprocessing

techniques that have the effect of fixing variables, eliminating redundant constraints, adding

logical inequalities, tightening variable bounds and/or performing coefficient reduction (see

Brearly et al, 1975; Crowder et al, 1983; Martin and Schrage, 1985). A simple example of

coefficient reduction is for instance converting the inequality 2yi + y2 S> 1 into yi + y2 ̂  1

which yields a tighter representation in the 0-1 poly tope. An example of a logical constraint

are minimum cover constraints. For instance, given the constraint 3yi + 2y2 + 4y3 £ 6,

yi + y3 ^ 1 is a minimum cover since it eliminates the simultaneous selection of

yi = y3 = 1 which violates this constraint. Preprocessing techniques can often reduce the

integrality gap of an MILP although their application is not always guaranteed to reduce the

computation time.

Although the LP based branch and bound method is the dominant method for MILP

optimization, there are other solution approaches which often complement this method.

These can be broadly classified into three major types: cutting plane methods,

decomposition methods and logic based methods. Only a very brief overview will be given

for these methods.

The basic idea of the original cutting plane methods was to solve a sequence of

successively tighter linear programming problems. These are obtained by generating

additional inequalities that cut-off the fractional integer solution. Gomory (1960)

developed a method for generating these cutting planes, but the computational performance

tends to be poor due to slow convergence and the large increase in size of the LP

subproblems. An alternative approach is to generate strong cutting planes that correspond

11



to facets, or faces of the integer or mixed-integer convex hull. Strong cutting planes are

obtained by considering a separation problem to determine the strongest valid inequality

that cuts off the fractional solution. This, however, is computationally a difficult problem

(it is NP-hard) and for this reason unless one can obtain theoretically these cuts for

problems with special structure, only approximate cutting planes are generated. Also,

strong cutting planes are generated from the LP relaxation and during the branch and bound

search to tighten the LP. Crowder et al (1983) developed strong cutting planes for pure

integer programming problems by considering each constraint individually and treating

each of them as knapsack problems. Van Roy and Wolsey (1987) considered special

network structures for MILP problems to generate strong cutting planes. In both cases,

substantial improvements were obtained in a number of test problems.

A more recent approach for cutting plane methods has been based on the important

theoretical result that is possible to transform an unstructured MILP problem into an

equivalent LP problem that corresponds to the convex hull of the MILP. This involves

converting the MILP into a nonlinear polynomial mixed integer problem which is

subsequently linearized through variable transformations (Lovacz and Schrijver, 1989;

Sherali and Adams, 1989). Unfortunately, the transformation to the LP with the convex

hull is exponential. However, these transformations can be used as a basis for generating

cutting planes within a "branch and cut11 enumeration, and this is for instance an approach

that is being explored by Balas et al (1991).

As for decomposition methods for MILP, the most common method is Benders

decomposition (Benders, 1962). This method is based on the idea of partitioning the

variables into complicating variables (commonly integer variables in the MILP) and

noncomplicating variables (continuous variables in MILP). The idea is to solve a sequence

of LP subproblems for fixed complicating variables yk,

Zk = min cTx + bTyk (LPB)

s.t. Ax < d - Byk

and master problems that correspond to projections in the space of the binary variables and

that are based on dual representations of the continuous space. The form of the master

problem given K feasible and M infeasible solution points for the subproblems is given by:

12



= mince

k = l , . . K ( M B )

0 m = l , . . M

a e R 1 , ye {0,1 }m

Since the master problem provides valid lower bounds and the LP subproblems

upper bounds, the sequence of problems is solved until equality of the bounds is achieved.

Benders decomposition has been successfully applied in some problems (eg. see Geoffrion

and Graves, 1976), but it can also have very slow convergence if the LP relaxation is not

tight (see Magnanti and Wong, 1981). Nevertheless, this method is in principle attractive

in large multiperiod MILP problems. Finally, another type of decomposition techniques are

Lagrangean relaxation methods which are applied when complicating constraints destroy

the special structure of a problem.

Logic based methods were developed by taking advantage of the analogy between

binary and boolean variables. Balas (1974) developed Disjunctive Programming as an

alternate form of representation of mixed-integer programming problems. MILP problems

are formulated as linear programs with disjunctions (sets of constraints of which at least

one must be true). Balas(1975) characterized the family of all valid cutting planes for a

disjunctive program. Using these cuts, disjunctions were re-expressed in terms of binary

variables and the resulting mixed-integer problem is solved.

Another class of logic based methods are based on using symbolic inference

techniques for the solution of pure integer programming problems. Hooker (1988)

demonstrated the analogy between unit resolution and first order cutting planes. Jeroslow

and Wang (1990) solved the satisfiability problem using a numerical branch and bound

based scheme but solving the nodal problems using unit resolution. An alternate symbolic

based branching rule was also proposed by these authors. Motivated by the above ideas,

Raman and Grossmann (1991) considered the incorporation of logic in general mixed-

integer programming problems in the form of redundant constraints to express with logic

propositions the relations among units in superstructures. Here one approach is to convert

the logic constraints into inequalities and add them to the MILP. Although this has the

effect of reducing the integrality gap, the size of the problem is often greatly increased

(Raman and Grossmann, 1992a). Therefore, these authors considered an alternate scheme

in which symbolic inference techniques were used on a the set of logical constraints which

are expressed in either the disjunctive or conjunctive normal form representations. The idea

is to perform symbolic inference at each node during the branch and bound procedure in

order to perform branching on the variables so as to fix additional binary variables. Orders

13



of magnitude reductions have been reported by these authors using this approach (Raman

and Grossman, 1992b).

Finally, it should be noted that the more recent computer codes for MILP, such as

OSL (IBM, 1992) and MINTO (Savelsbergh et al, 1991) have an "open software

architecture" that gives the user considerably more flexibility to control the branch and

bound search. For instance, these codes allow the addition of cutting planes and

modification of branching rules according to procedures supplied by the user.

Mixed-integer Nonlinear Programming (MINLP)

Although the problem (MIP) given earlier in the paper corresponds to an MINLP

problem, for most applications the problem is linear in the 0-1 variables and nonlinear in

the continuous variables x; that is,

minZ= f(x) + cTy

s.t. h(x) = 0 (MINLP)

mx€R n , y€{0,l}

This mixed-integer nonlinear program can in principle also be solved with the

branch and bound method presented in the previous section (Gupta and Ravindran, 1985;

Naber and Schrage, 1990; Borchers and Mitchell, 1991). The major difference here is that

the examination of each node requires the solution of a nonlinear program rather than the

solution of an LP. Provided the solution of each NLP subproblem is unique, similar

properties as in the case of the MBLP would hold with which the rigorous global solution of

the MINLP can be guaranteed.

An important drawback of the branch and bound method for MINLP is that the

solution of the NLP subproblems can be expensive since they cannot be readily updated as

in the case of the MILP. Therefore, in order to reduce the computational expense involved

in solving many NLP subproblems, we can resort to two other methods: Generalized

Benders decomposition (Geoffrion, 1972) and Outer-Approximation (Duran and

Grossmann, 1986). The basic idea in both methods is to solve an alternating sequence of

NLP subproblems and MILP master problems. The NLP subproblems are solved by

optimizing the continuous variables x for a given fixed value of y, and their solution

yields an upper bound to the optimal solution of (MINLP). The MILP master problems

consist of linear approximations that are accumulated as iterations proceed, and they have

14



the objective of predicting new values of the binary variables y as well as a lower bound on

the optimal solution. The alternate sequence of NLP subproblems and MILP master

problems is continued up to the point where the predicted lower bound of the MILP master

is greater or equal than the best upper bound obtained from the NLP subproblems.

The MILP master problem in Generalized Benders decomposition (assuming

feasible NLP subproblems) is given at any iteration K by:

(MGB)
s.t a £ f(x*) + cTy + (^k)T [g(xk) + By] k=l,2...K

a € R ! , ye {0,1}™

where a is the largest Lagrangian approximation obtained from the solution of the K NLP

subproblems; xk and |ik correspond to the optimal solution and multiplier of the kth NLP

subproblem; ZQB corresponds to the predicted lower bound at iteration K.

In the case of the Outer-Approximation method the MILP master problem is given

by:

= min a (MOA)

S.t a £ f(x»<) + Vf(xk)T(x-Xk) + cTy|

TkVh(x>9T(x-xk) £ 0 J k=l,2,...K
)

aeR 1 , x e R n , y e { 0 , l } m

where a is the largest linear approximation of the objective subject to linear approximations

of the feasible region obtained from the solution of the K NLP subproblems. Tk is a
v k k

diagonal matrix whose entries tfj = sign (k\), where X\ is the Lagrange multiplier of

equation hi at iteration k, and is used to relax the equations in the form of inequalities

(Kocis and Grossmann, 1987). This method has been implemented in the computer code

DICOPT (Kocis and Grossmann, 1989).

Note that in both master problems the predicted lower bounds, ZQB, and ZQA,

increase monotonically as iterations K proceed since the linear approximations are refined

by accumulating the lagrangian (in MGB) or linearizations (in MOA) of previous iterations.

It should be noted also that in both cases rigorous lower bounds, and therefore

convergence to the global optimum, can only be ensured when certain convexity conditions

hold (see Geoffrion, 1972; Duran and Grossmann, 1986).

In comparing the two methods, it should be noted that the lower bounds predicted

by the outer approximation method are always greater than or equal to the lower bounds

15



predicted by Generalized Benders decomposition. This follows from the fact that the

Lagrangian cut in GBD represents a surrogate constraint from the linearization in the OA

algorithm (Quesada and Grossmann, 1992a). Hence, the Outer-Approximation method

will require the solution of fewer NLP subproblems and MILP master problems (see

example 4 later in the paper). On the other hand, the MILP master in Outer-Approximation

is more expensive to solve so that Generalized Benders may require less time if the NLP

subproblems are inexpensive to solve. As discussed in Sahinidis and Grossmann (1991c),

fast convergence with GBD can only be achieved if the NLP relaxation is tight

As a simple example of an MINLP consider the problem:

min Z = yi + l-5y2 + 0.5y3 + xj^ + X2^
s.t. ( x i - 2 ) 2 - x 2 < 0

x i - 2 y i > 0
x 1 - x 2 - 4 ( l - y 2 ) < 0

(6)

yi + y2 + y3 ^ 1
0 < x i <4, 0 < x 2 < 4

Objective function

10

Lower
bound

-10

-15

-20

Upper bound

n GBD

Lower bound
GBD

' Iterations

Fig. 4. Progress of iterations of OA and GBD for MINLP in (6).

Note that the nonlinearities involved in problem (6) are convex. Fig. 4 shows the

convergence of the OA and the GBD methods to the optimal solution using as a starting

point yi as y2 = y3 = 1. The optimal solution is Z =3.5, with y\ = 0, y2 = 1, y3 = 0, xi =

16



1, X2 = 1. Note that the OA algorithm requires 3 major iterations, while GBD requires 4,

and that the lower bounds of OA are much stronger.

Other related methods for MINLP include the extension of the OA algorithm by

Yuan et al (1989) who considered nonlinear convex terms for the 0-1 variables, and the

feasibility technique by Mawekwang and Murtagh (1986) in which a feasible MINLP

solution is obtained from the relaxed NLP problem. The latter method has been recently

extended by Sugden (1992).

In the application of Generalized Benders decomposition and Outer-Approximation,

two major difficulties that can arise are the computational expense involved in the master

problem if the number of 0-1 variables is large, and non-convergence to the global

optimum due to the nonconvexities involved in the nonlinear functions.

To circumvent the first problem, Quesada and Grossmann (1992a) have proposed

for the convex case an LP/NLP based branch and bound method in which the basic idea is

to integrate the solution of the MILP master problem and the NLP subproblems which are

assumed to be inexpensive to solve. This is accomplished by a tree enumeration in which

an NLP is first solved to construct an initial linear approximation to the problem. The LP

based branch and bound search is then applied; however when an integer solution is found

a new NLP subproblem is solved from which new linear approximations are derived which

are then used to update the open nodes in the tree. In this way the cold start for a new

branch and bound tree for the MILP master problem is avoided. It should be noted that this

computational scheme can be applied to Generalized Benders and Outer-Approximation.

As mentioned before the latter will yield stronger lower bounds. However, in this

integrated branch and bound method the size of the LP subproblems can potentially become

large. To handle this problem Quesada and Grossmann (1992a) proposed the use of partial

surrogates that exploit the linear substructures present in an MINLP problem.

In particular, consider that the MINLP has the following structure,

Z=min cTy + aTw + r(v)

st Cy + Dw + t (v )<0 (MINLP)

Ey + Fw + Gv < b

y e Y, w € W, v e V

in which the equality constraints are relaxed to inequalities according to the matrix 1* and

included in the inequality set. Here the continuous variables x have been partitioned in two

subsets w and v such that the constraints are divided into linear and nonlinear constraints,

and the continuous variables into linear and nonlinear variables. In this representation

17



[Dw -f t(v)l
Fw + Gv J, and X= WxV. By constructing a

partial surrogate constraint involving the linearization of the nonlinear terms in the objective

and nonlinear constraints, the modified master problem has the form:

p (MMOA)

st cTy + aTw + b - a = 0

p 2> r(vk) + (Xk )T [ Cy + Dw + t(vk) ] - (^k )T G (v - vk) k=l,...K

Ey + Fw + Gv £ b
y € Y, w € W, v e V, a e R\ p e R1

where Xk and |Xk are the optimal multipliers of the kth NLP subproblem. It can be seen that

as opposed to the Benders cuts, the linearizations are defined in the full space of the

variables, requiring only the addition of one new constraint for the nonlinear terms. It can

be shown that the lower bound ZL K predicted by the above master problem is weaker than

the one of OA, but stronger than the one by GBD. Computational experience has shown

that the predicted lower bounds are in fact not much weaker than the ones by the OA

algorithm.

As for the question of nonconvexities, one approach is to modify the definition of

the MELP master problem so as to avoid cutting off feasible mixed-integer solutions.

Viswanathan and Grossmann (1990) proposed an augmented-penalty version of the MILP

master problem for outer-approximation, which has the following form:

s.t. a 2> f(xk) + Vf(xk)T(x-xk) + cTy\

TkVh(xk)T(x-xk) < pk k=l,2,...K

g(xk) + Vg(xk)T(x-xk) + By < qk )

in which the slacks pk, qk, have been added to the function linearizations, and in the

objective function with weights pk that are sufficiently large but finite. Since in this case

one cannot guarantee a rigorous lower bound, the search is terminated when there is no

further improvement in the solution of the NLP subproblem. This method has been

implemented in the computer code DICOPT++ which has shown to be successful in a

number of applications. It should also be noted that if the original MINLP is convex the

above master problem reduces to the original OA algorithm since the slacks will take a

value of zero.

18



An important limitation with the above approach is that it does not address the

question whether the NLP subproblems may contain multiple local solutions. Recently

there has an important effort to address the global optimization of nonconvex nonlinear

programming problems (e.g. see Horst, 1990). The current methods are either stochastic

or deterministic in nature. In the former, generally no assumption about the mathematical

structure of the problem is made. Simulated annealing is an example of a method that

belongs to this category which in fact has been applied to batch process scheduling (Ku and

Karimi, 1991; Patel et al, 1992). This method however has the disadvantages that no strict

guarantee can be given about global optimality and that its computational expense can be

high. Deterministic methods require the problem to have some particular mathematical

structure that can be exploited to ensure global optimality.

Floudas and Visweswaran (1990) developed a global optimization algorithm for the

solution of bilinear programming problems. Valid lower and upper bounds on the global

optimal solution are obtained through the solution of primal and relaxed dual problems.

The primal problem arises by fixing a subset of complicating variables which reduces the

bilinear NLP into an LP subproblem. The relaxed dual problems arise from the master

problem of GBD but in which the Lagrangian function is linearized and partitioned into

subregions to guarantee valid lower bounds. An implicit partition of the feasible space is

conducted to reduce the gap between the lower and upper bounds. A potential limitation of

this method is that the number of relaxed dual problems to be solved at each iteration can

grow exponentially with the number of variables involved in the nonconvex terms.

Another approach for solving nonconvex NLP problems in which the objective

function involves bilinear terms is the one presented by Al-Khayyal and Falk (1983).

These authors make use of the convex envelopes for the individual bilinear terms to

generate a valid lower bound on the global solution. An LP underestimator problem is

imbedded in a spatial branch and bound algorithm to find the global optimum. Sherali and

Alameddine (1990) presented a reformulation-linearization technique which generates tight

LP underestimator problems that dominate the ones of Al-Khayyal and Falk. A similar

branch and bound search is conducted to find the global solution. Although this method

requires the enumeration of few nodes in the branch and bound tree, it has the main

disadvantage that the size of the LP underestimator problems grows exponentially with the

number of constraints.

Swaney (1990) has addressed the problem in which the objective function and

constraints are given by bilinear terms and separable concave functions. A comprehensive

LP underestimator problem provides valid lower bounds that are used within a branch a

19



bound enumeration scheme in which the partitions do not increase exponentially with the

number of variables.

Quesada and Grossmann (1992b) have considered the global optimization of

nonconvex NLP problems in which the feasible region is convex and the objective involves

rational and/or bilinear terms in addition to convex functions. The basic idea is based on

deriving an NLP underestimator problem that involves both linear and nonlinear estimator

functions that provide an exact approximation of the boundary of the feasible region. The

linear understimators are similar to the ones by Al-Khayyal and Falk (1983), but these are

strengthened in the NLP by nonlinear convex underestimators. The NLP underestimator

problem, which allows the generation of tight lower bounds of the original problem, is

coupled with a spatial branch an bound search procedure for finding the global optimum

solution.

Modelling and reformulation

One of the difficulties involved in the application of mixed-integer programming

techniques is that problem formulation is not always trivial, and that the way one

formulates a problem can have a very large impact in the computational efficiency for the

solution. In fact, it is not uncommon that for a given problem one formulation may be

essentially unsolvable, while another formulation may make the problem much easier to

solve. Thus, model formulation is a crucial step in the application of mixed-integer

programming techniques.

While model formulation still remains largely an art, a number of guiding principles

are starting to emerge that are based on a better understanding of polyhedral theory in

integer programming (see Nemhauser and Wolsey, 1988). In this section we will present

an overview of modelling techniques and illustrate them with example problems. These

techniques can be broadly classified into logic based methods, semi-heuristic guidelines,

reformulation techniques and linearization techniques.

It is often the case in mixed-integer programming that it is not obvious how to

formulate a constraint in the first place, let alone formulate the best form of that constraint.

Here the use of prepositional logic and its systematic transformation to inequalities with 0-1

variables can be of great help (e.g. see Williams, 1988; Cavalier and Soyster, 1987; Raman

and Grossmann, 1991). In particular, when logic expressions are converted into the

conjunctive normal form, each clause has the form,

Pi v P2 v ... v P m (7)

20



where Pi is a proposition and v is the logical operator OR. The above clause can be readily

transformed into an inequality by relating a binary variable yi to the truth value of each

proposition Pi (or 1 - yi for its negation). The form of the inequality for the above clause

is,

yi + yi +... + ym ^ i (8)

As an example consider the logical condition, Pi v P2 =* P3 which when

converted into conjuctive normal form yields, (-1 Pi v P3) A (-1 P2 v P3) . Each of the

two clauses can then be translated into the inequalities,

1 - yi + y3 > 1 y3 £ yi (9)

1 - y2 + y3 ^ 1 or y3 > y2

Similar procedures can be applied when deriving mixed-integer constraints.

Once constraints have been formulated for a given problem, the question that arises

is whether alternative formulations might be better suited for the computation, and here the

first techniques to be considered are semi-heuristic guidelines. These are rules of thumb on

how to formulate "good11 models. A simple example are variable upper bound constraints

for problems with fixed charges,

Here it is well known that although for representation purposes the upper bound U can be

large, one should try to select the smallest valid bound in order to avoid a poor LP

relaxation. Another well known example is the constraint that often arises in multiperiod

MDLP problems (selecting unit z implies possible operation yj in period i, i=l,2,...n),

Here the disaggregation into the constraints,

y i - z <0 i=l,2,..n

will produce a much tighter representation (in fact the convex hull of the 0-1 polytope).

These are incidentally the constraints that would be obtained if the logical conditions for

this constraint are expressed in conjuctive normal form.

21



The main problem with the disaggregated form of constraints is the potentially large

number of them when compared with the aggregated form. Therefore, one has to balance

the trade-offs between model size and tighter relaxations- For example Voudouris and

Grossmann (1992) report a model in which the disaggregated variable upper bound

constraints were used in the form

Wijsn ^ Uysn yjsn V i, j, S, n ( 1 3 )

An equivalent aggregated form of the above constraints is

X Wijsn ^ £ UijSn yjsn V j, S, n Q4)
i i

When the first set of constraints is used the model involved 708 constraints and required

233 CPUsec using SCICONIC on a VAX 6320. When the second set of constraints is

used, the model required only 220 constraints, but the time was increased to 649 sec

because of the looser relaxation of (14).

While the above modelling schemes are somewhat obvious, there are some which

arc not. A very good example arises in the MILP scheduling model of Kondili et al (1988).

In this model, the following constaints apply:

(a) At any time t, an idle item of equipment j can only start at most one task

i.ij.

(b) If the item j does start performing a given task i € Ij, then it cannot start any

other task until the current one is finished after pi time units.

Kondili et al (1988) formulated the two above constraints as:

i j t < l Vj,t

ieli (15)
t+prl
£ Z Wijt-1<M(1-Wijt) Vi,j«=Ki,t

where M is a suitably large number. Note that the second constraint has the effect of

imposing condition (b) if Wyt = 1. As one might expect the second constraint yields a poor

relaxation due to the effect of the "big MM. Interestingly, Shah et al (1991) found an

equivalent representation for the above two constraints, which is not only much tighter, but

requires much fewer constraints! These are given by,

22



t-pi+1

I I Wijt*l Vj,t (16)

Thus, this example clearly shows that formulation of a "proper" model is not always trivial or

even well understood. Nevertheless, an analysis of the problem based on polyhedral theory

can help one understand the reason for the effectiveness of the constraint A detailed proof

for constraint (16) is given in the Appendix.

However, not everything in MHJP modelling is an art A more rational approach that

has been emerging is the idea of reformulation techniques that are based on variable

disaggregation (e.g. see Radrin and Choe, 1979; Jeroslow and Lowe, 1984, 1985), and

which have the effect of tightening the LP relaxation. The example par excellence is the lot

sizing problem that in its "naive11 form is given by the MHJP (see Nemhauser, Wolsey,

1988):

NT

min X (Pt*t+ ht st + ctYt)
t=i

s.t. st.i + xt = dt + st t= l ,NT (17)

x t<xuy t t = l , N T
so = O

s t ,x t^0, yt€ {0,1} t = l , N T

where xt is the amount to be produced in period t, yt is the associated 0-1 variable, and st is

the the inventory for period t; Ctj^ht, are the set-up, production and storage costs for time

period t, t= 1, NT.

As has been shown by Krarup and Bilde (1977) the above MILP can be reformulated

by disaggregating the production variables xt into the variables qtx, to represent the amount

produced in period t to satisfy the demand in period x > t; that is,

NT

Xt = X q « (18)

The MILP is then reformulated as,

min 2, 2, <Pt + h' + h'+i + -+ h*-i) Q" + 2, ctyt (19)
t=l T=t t=l
C

s.t. X <ta = dt t = l , N T
t=i

qtx £dtyt t=l,NT, x = t,NT

23



As it turns out this reformulation yields the absolute tightest LP relaxation since it yields 0-1

values for the y variables; thus this problem can be solved as an LP and there is no need to

apply a branch and bound search as there is in the original MDLP (17). It should be noted that

although this example is quite impressive, it is not totally surprising from a theoretical

viewpoint The lot sizing problem is solvable in polynomial time and therefore one would

expect that it should be possible to formulate this problem as an LP that is polynomially sized

in the number of variables and constraints. It should be noted that the lot sizing problem is

often embedded in MELP planning and scheduling problems with which one can reformulate

these problems to tighten the LP relaxation as discussed in Sahinidis and Grossmann

(1991b).

Finally, another case that often arises in the modelling of mixed-integer problems are

nonlinearities such as bilinear products of 0-1 variables or products of 0-1 with continuous

variables. Nonlinearities in binary variables usually involve the transformation of a nonlinear

function into a polynomial function of 0-1 variables and then transforming the polynomial

function into a linear function of 0-1 variables (Sherali and Adams, 1988). For cross

products between binary and continuous variables Petersen (1971) proposed a linearization

method which was later extended by Glover (1975). The main idea behind these linearization

schemes was the introduction of a new continuous variable to represent the cross product.

The equivalence between the bilinear term and the new variable was enforced by introducing

a set of equivalence constraints. For the specific case in which the model has a multiple

choice structure, an efficient linearization scheme was proposed by Grossmann et al (1992).

This scheme compared to the one proposed by Glover gives tighter LP relaxations with fewer

number of constraints. The multiple choice structure usually arises in discrete design models,

in which the design variables instead of being continuous, take values from a finite set Batch

process design problems often involve discrete sizes and as such the latter linearization

scheme is well suited. As an example, consider the the bilinear constraints:

«ij 2 disYisVj - PijWj < 0 j€ J(i), i=l,..n (20)
s=l

in which yis is a 0-1 variable and vj is continuous, and where the following constraint holds:
NO)
I
s=l

In order to remove the bilinear terms yisvj in (20), define the continuous variables vijs such

that

24



j i=l,..n (22)
s=l

VJL yis < vijs <£ VjU yis j€ J(i), s=l, N(i), i=l..n (23)

where VjL, Vju are valid lower and upper bounds. Using the equations in (21) to (23), the

constraints in (20) can be replaced by the linear inequalities

ay X îsVijs - pywj £ 0 j€ J(i) , i=l,..n (24)
s=l

The bilinear constraints in (20) can also be linearized by considering in addition to the

inequalities in (24), the following constraints proposed by Glover (1975):

VJL yis £ vijs £ VJU yis

vijs £ VJ - VJU(1- yis) j€ J(i), s=l, N(i), i=l..n (25)

This linearization, however, requires almost twice as many constraints as (22), (23) and (24)

Furthermore, while a point (vijs, vj, yis) satisfying (22) and (23) satisfies the inequalities in

(25), the converse may not be true. For instance, assume a non-integer point yis such that

vijs = vjuyis. Using (21) it follows from (25) that

^•(vV-vjOyis < VJ < vV (26)

while (22) yields vj = vjU. Thus, the inequalities in (25) may produce a weaker LP

relaxation.

For the case when the bilinear constraints in (20) are only inequalities, Torres

(1991) has shown that it is sufficient to consider the following constraints from (25):

vijs
- yis) j€ J(i), s=l, N(i), i=l..n (27)

J L

which requires fewer constraints than the proposed linearization in (22) and (23).

However, the above inequalities also can produce a weaker LP relaxation. For instance,

setting vijs = vjLyis for a non-integer point yis yields,

VJ < v}1 - (vV - vj-) yis (28)

while (22) yields vj = vjL.

25



While the modelling techniques described in this section have been mostly aimed at

MILP problems, they are of course also applicable to MINLP problems. One aspect

however, that is particular to MINLP problems are the modelling of nonlinearities of the

continuous variables. In such a case it is important to determine whether the nonlinear

constraints are convex or not. If they are not, the first attempt should be to try to convexify

the problem. The most common approach is to apply exponential transformations of the

form x = exp(u), where x are the original continuous variables and u the transformed

variables; if the original nonlinearities correspond to posynomials these tranformations will

lead to convex constraints. A good example is the optimal design of multiproduct plants with

single product campaigns (Grossmann and Sargent, 1978), with which Kocis and

Grossmann (1988) were able to rigorously solve the MINLP problem to global optimality

with the outer-approximation algorithm. When no transformations can be found to convexify

a problem, this does not necessarily mean that the relaxed NLP has multiple local optima.

However, nonconvexities in the form of bilinear products and rational terms are warning

signals that should not be ignored. In this case the application of a global optimization

method such as the ones described previously will be the only way to rigorously guarantee

the global optimum.

Finally, it should be noted that another aspect in modelling is the computer software

that is available for formulating and solving mixed-integer optimization problems. At this

point the modelling system GAMS (Brooke et al. 1988) has emerged as a major tool in which

problems can be specified in algebraic form and automatically interfaced with codes for

mixed-integer linear and nonlinear optimization (e.g. ZOOM, SCICONIC, OSL,

DICOPT++). Modelling tools such as this one greatly reduce the time that is required to test

and prototype mixed-integer optimization models.

Examples

In this section we will present several examples to illustrate a number of points and the

application of techniques for mixed-integer programming in batch processing.

Example 1: The MILP for the State Task Network model for the scheduling of

batch operations by Kondili et al. (1991) has been used to compare the performance of

three MILP codes: ZOOM an academic code, and OSL and SCICONIC which are

commercial codes. This example which has 5 tasks, 4 units, 10 time periods and 9 states

(see Fig. 5), also demonstrates the effect of modelling schemes on the solution efficiency.

The objective is to maximize the production of the two final products. The resulting MILP

model, which incorporates the constraints in (16), involves 251 variables (80 binary) and

26



309 constraints (see Shah et al , 1991). The results of the benchmark comparison between

the three codes for this problem are shown in Table 1. The problems were solved to

optimality (0% gap) by using GAMS as an interface. As can be seen in Table 1 the

performance of the codes is quite different SCICONIC had the lowest computing

requirements: about less than a tenth of the requirements of ZOOM.

Feed A

Heating

9Product 1

Hot A

FeedB

1
Reaction 2

IntAB

4
( \ Int BC

y
Reaction 1

i
FeedC

r\

Impure C

y
Reaction 3

i

Separation

Product 2

-o

Fig. 5. State-task network for example problem

It should be noted that Shah et al (1991) solved this problem with their own branch

and bound method in two forms. In the first the MILP was identical as the one solved in

this paper. In this case 1085 nodes and 437 sees on a SUN1- Sparcstation were required

to solve the problem within 1% of optimality. In the second form, the authors applied a

solution strategy for reducing the size of the relaxed LP and for reducing degeneracies. In

this case only 29 nodes and 7 sees were required to solve the problem, which represents a

performance comparable to the one by SCICONIC.

To illustrate the effect that alternate formulations may have, two cases were

considered and the results are shown in Table 2a. Firstly, realizing that the objective

function does not contain any binary variable, the second column involves the addition of a

penalty to the objective function in which all the binary variables are multiplied by a very

small number so as not to affect the optimum solution. The idea is simply to drive the 0-1

variables to zero to reduce the effect of degeneracies. In the third column, 18 logic cuts in

the form of inequalities have been added to the MILP model to reduce the relaxation gap

(Raman and Grossmann, 1992a). These logic cuts represent connectivity of units in the

state task network. For example, in the problem of Fig. 5, since no storage of impure C is

27



allowed, the separation step has to be immediately performed after reaction 3. As can be
seen from Table 2a, both modelling schemes lead to a substantial improvement in the
solution efficiency with OSL, while with SCICONIC only the addition of logic cuts
improves the solution efficiency. Furthermore, the effect of adding these logic cuts in this
problem have been studied for the case of 10, 20, 40 and 50 time periods. The results,
shown in Table 2b, demonstrate an increase in the effectiveness of the logic cuts in
improving the efficiency of the branch and bound procedure. The reduction in the number
of nodes required in the branch and bound search due to the logic cuts increases from a
factor of 3 for the 10 period case to a factor of more than 6 for the 40 period case. The 50
time period problem, with 1251 variables (400 binary) and 1509 constraints could not be
solved by OSL within 100,000 iterations and 1 hour of CPU time on the IBM POWER
530. With the addition of the logic cuts, the problem is solved in 158-84 sec requiring only
698 nodes and 5017 iterations.

Table 1. Comparison with several MILP codes

ZOOM
OSL
SCICONIC

nodes

410
350
61

iterations

7866
918
318

CPU time *

39.44
14.85
3.63

* IBM POWER 530

Table 2a. Computational results with modified formulations
(OSL / SCICONIC)

number of nodes
number of iterations
CPU time*

Relaxed Optimum
Integer Optimum

Original
Model

350/61
918/318

14.85/3.63

257.2
241

Model with altered
Objective Function

40/61
336/318

2.51/3.65

257.2
241

Model with
Logic Cuts

108/33
620/233

5.98/2.13

257.2
241

* sec IBM POWER 530

28



Table 2b. Example 1: Effect of logic cuts for different time periods

10 Time Periods
251 variables
80 binary

Constraints
Number of nodes '
Number of Iterations
CPU Time *

20 Time Periods
501 variables
160 binarv

Constraints
Number of nodes
Number of Iterations
CPU Time *

40 Time Periods
1001 variables
320 binary

Constraints
Number of nodes
Number of Iterations
CPU Time •

50 Time Periods
1251 variables
400 binary

Constraints
Number of nodes
Number of Iterations
CPU Time*

Original
Model

309
350
918
14.85

609
123
755

10.22

1209
2098
25964

424.68

1509
>20,000
>100,000

>3,600

Model
with Logic Cuts

327
108
620
5.98

643
67
658
7.81

1279
315

3423
67.17

1597
698

5017
158.84

'secIBM POWER530

Example 2. In order to illustrate the effect of preprocessing and the use of SOSl

constraints, consider the design of multiproduct batch plants with one unit per stage,

operating with single product campaigns, and where the equipment is available in discrete

sizes (Voudouris and Grossmann, 1992a). The MILP model is as follows:

j s (RP1)

29



s.t.

E j s = i J=I,..,M
s

Ti 2: 0 i=l,..,N , yj s e {0, 1} j=l,..,M , s=l,..,nsj

The example considered involves with 6 stages and 5 products. To illustrate the effect that

the number of discrete sizes has in the size of model (RPl) as well as in the computational

performance, three problems one with 8, one with 15 and another with 29 discrete sizes

were considered.The MILP problems were solved using SCICONIC 2.11 (SCICONIC,

1991) through GAMS 2.25 in a Vax-6420.

Table 3: Computational results for example 2

# DIS. SIZES

8

15

29

8

15

29

CONSTRAINTS

38

38

38

38

38

38

VARIABLES 0-1 VAR'S CPU-TIME • 1

WITHOUT S O S l . DOMAIN REDUCTION AND CUTOFF

54

96

180

WITH SOSl

"4&mm

82

154

48

90

174

2.93

25.09

44.94
DOMAIN REDUCTION AND CUTOFF

40

76

148

1.93

2.85

6.64

ITERATIONS

181

985

1203

5V

91

182

NODES

89

731

979

53

64

150
• IN VAX-6420 SECONDS

As seen from Table 3, the number of discrete sizes has a significant effect in the

number of 0-1 variables, and hence in the number of iterations and the CPU time. One can,

however, reduce significantly the computational requirements by performing a domain

reduction of the 0-1 variables through the use of bounds to fix a subset of them to zero,

treating the multiple choice constraints as SOSl constraints and applying and objective

function cutoff as described in Voudouris and Grossmann (1992a). As seen in Table 3,

reductions of up to one order of magnitude are achieved.

30



Example 3. This example will illustrate how strong cutting planes may

significantly improve the computational performance of MILP problems with poor

continuous relaxations. A good example are jobshop scheduling problems. Consider the

case in which one has to schedule a total of 8 batches, 2 for each one of 4 products A, B,

C, D so as to minimize the makespan in a plant consisting of 5 stages. The processing

times for each product are given in Fig. 6, where it can be seen that not all products require

all the stages, and that they all require zero-wait transfer policy.

8 7
Stgl

Stg2

Stg3

Stg4

Stg5

5

3

3 4

6

1

I—
9

4

| 3
fc-fi-Wri-ii—

6
^ ^

4

PniA PixIB PrdC PrdD Tune

Figure 6. Processing times of products in various stages.

As noted in Voudouris and Grossmann (1992b) the makespan minimization problem

described above can be formulated as an MILP problem of the form:

s. t Ms

min Ms

M
>i + X l i k

k=l

(PI)

Vi

— - k k - 1

Sj - Si + W(l-yijk) ^ (X t i k - X t jk) V ( i , j, k') e C
k=l k=l

_ _ k' k'-l

Si -Sj +Wy i j k>(X t j k -£t ik) V(i , j ,k ' )e C
k=l k= l _

y i j k € {0,1} Vi,j ,k S i>0 Vi

In the above formulation the potential clashes at every stage are resolved with a pair of

disjunctive constraints that involve a large bound W. The difficulty with these constraints

is that they are trivially satisfied when the corresponding binary variables are relaxed,

which in turn yields a poor LP relaxation. For this example, the LP relaxation had an

objective value of 18 compared to the optimal integer solution of 41, which corresponds to

31



a relaxation gap of 56%. The MILP was solved with SCICONIC 2.11 on a Vax-6420

requiring 55 CPUsecs, and the solution is shown in Fig.7. In order to improve the LP

relaxation basic-cut inequalities have been recently proposed by Applegate and Cook

(1991), and they have the form,

t ikS ik2>ETktik+ t i k t j k

i eT

tik(Ms-S ik)>Frkt ik+
ieT ieT

t i k t j k

Vk

Vk
{ieT.jeT.kj}

M
where Si k = the starting time of job i on machine k (Si k = Si + ]£ t i k)

T s a subset of the set of jobs kssl

E^ = the earliest possible starting time of j on k (which is just the sum of

j's processing times on the machines before k)

I^ = the minimum of Ejk over all j € T

Fjk = the minimum completion time of j after it is processed on k (which is

just the sum of jfs processing times on the remaining machines)

the minimum of Ejk over all j € T

The impact of these constraints in the MILP was very significant in this example. The LP

relaxation increased to 38 which corresponds to a gap of only 7%. In this case the optimal

solution was obtained in only 8 CPUsecs.

PrdA
Time

Figure 7. Optimal schedule for example 3.

Example 4. The optimal design of multiproduct batch plants with parallel units

operating out of phase (see Fig. 8) will be used to illustrate the computational performance

of the different MINLP algorithms.

32



0
Fig. 8. Multiproduct batch plant with parallel units

Two different cases are considered. One consists of 5 products in a plant with 6

processing stages process with a maximum of 4 parallel units per stage (batch5). The

second one has 6 products in a plant with 10 stages and a maximum of 4 parallel units per

stage (batch6). The MINLP formulation and the data for these examples are reported in

Kocis and Grossmann (1989) and the size of the problems is given in Table 4. The model

is a geometric programming problem that can be transformed into a convex MINLP

through exponential transformations.

Table 4 : Data for problems in Example 4.

problem

batch5
batch6

Binary
variables

24
40

Continuous
variables

22
32

Constraints

73
141

The GBD and OA algorithms were used for the solution of both examples and the

computational results are given in Table 5. The GBD algorithm was implemented within

GAMS, while the version of the OA algorithm used was the one implemented in

DICOPT++ with the augmented penalty. MINOS 5.2 was used for the NLP subproblems

and SCICONIC 2.11 for the MELP master problems. Note that in both cases the OA

algorithm required much fewer iterations than GBD which predicted very weak bounds and

a large number of infeasible NLP subproblems during the iterations. For problem batch5

both algorithms found the global optimal solution. For batch6, both algorithms also found

the same solution which however is suboptimal since the correct optimum is $398,580. In

the case GBD, the algorithm did not converge as it had a large gap between the lower and

upper bounds after 66 iterations. In the case of the OA algorithm as implemented in

DICOPT ++ the optimal solution was suboptimal due to the termination criterion used in

this implementation.

33



Table 5 : Computational results of Example 4

problem

batchS
batch6

GBD algorithm
Solution

$285,506
$402,496

iterations

67
66+

CPU time*

766.88
2527.2

OA algorithm
Solution

$285,506
$402,496

iterations

3
4

CPU time*

26.94
108.58

' sec Vax 642U + Convergence ot bounds was not achieved

In both the above examples the solution of the MILP master problem in the OA

algorithm was of the order of 80%. A rigorous implementation of the OA algorithm for the

convex case (Duran and Grossmann, 1986) and the LP/NLP based branch and bound

algorithm by Quesada and Grossmann (1992a) were also applied to compare their

computational performance with respect to the number of nodes that are required for the

MILP master problem. The results are given in Table 6. As can be seen, both algorithms

required the solution of 4 and 10 NLP subproblems, respectively, and they both obtained

the same optimal solution. However, the LP/NLP based branch and bound required a

substantially smaller number of nodes (36% and 16% of the number of nodes required by

OA).

Table 6. Results on MILP solution step for problems in Example 4.

problem

batch 5
batch 6

optimal
solution

$285, 506
$398, 580

Outer Approximation
nodes

90
523

NLP

4
10

LP/NLP branch and bound
nodes

32
84

NLP

4
10

Example 5. In order to illustrate the effect of nonconvexities, consider the design

and production planning of a multiproduct batch plant with one unit per stage. The

objective is to maximize the profit given by the income from the sales of the products minus

the investment cost. Lower bounds are specified for the demands of the products and the

investment cost is assumed to be given by a linear cost function. Since the sizes of the

vessels are assumed to be continuous, this gives rise to the following NLP model:

max

s.t.
i < H

I, N, j=l,M

I, N

(NLPP)

34



where iii and Bjis the number and size of the batches for product i, and Vj is the size of the

equipment at stage j. The first inequality is the capacity constraint in terms of the size

factors Sy, the second is the horizon constraint in terms of the cycle times for each product

Ti and the total time H, and the last inequality is the specification on lower bounds for the

demands QiL. Note that the objective function is nonconvex as it involves bilinear terms,

while the constraints are convex. The data for this example are given in Table 7. A

maximum size of 5000 L was specified for the units in each stage.

Table 7. Data for Example 5

Product
A
B
C
D

i
(hrs)

12
13.6
18.4

Pi
($/Kg)

15
13
14
17

QiL
(Kg)
80000
50000
50000
25000

Sij(L/kg)
1 2 3
2
4
3
4

3
6
2
3

4
3
5
4

at = 50, ot2 = 80, a3 = 60 ($/L); H = 8,000 hrs

When a standard local search algorithm (MINOS 5.2) is used for solving this NLP

problem using as a starting point nA=nB=nc=60 and no=300 the predicted optimum profit

is $8,043,800/yr and the corresponding batch sizes and their number are shown in Table 8.

Table 8. Suboptimal solution for example 5

B
n

A
1250
79.15

B
833.33
60

C
1000
50

D
1250

289.868

Since the formulation in (NLPP) is nonconvex there is no guarantee that this

solution is the global optimum. This problem can be reformulated by replacing the

nonconvex terms by underestimator functions to generate a valid NLP underestimator

problem as discussed in Quesada and Grossmann (1992b). The underestimator functions

require the solution of LP subproblems to obtain tight bounds on the variables, and yield a

convex NLP problem with 8 additional constraints.

The optimal profit predicted by the nonlinear underestimator problem is

$8,128,100/yr with the variables given in Table 9. When the objective function of the

original problem (NLPP) is evaluated for this feasible point the same value of the objective

function is obtained proving that it corresponds to the global optimal solution. This

problem was solved on a IBM/R6000-530 with MINOS 5.2, and 1.6 sees were required to

solve the LP bounding problems and 0.26 sees to solve the NLP underestimator problem.

35



It is interesting to note that both the local and global solutions had the maximum equipment

sizes. The only difference was in the number of batches produced for products A and D.

Table 9. Global optimum solution for example 5

B
n

A
1250
389.5

B
833.33
60

C
1000
50

D
1250
20

Concluding Remarks
This paper has given a general overview of mixed-integer optimization techniques for

the optimization of batch processing systems. As was shown with the review of previous

work, the application of these techniques has increased substantially over the last few years.

Also, as was discussed in the review of mixed-integer optimization techniques, a number of

new methods are emerging that have the potential of increasing the size and scope of the

problems to be solved. While in the case of MILP branch and bound methods continue to

play a dominant role, the use of strong cutting planes, reformulation techniques and the

integration of symbolic logic hold great promise for reducing the computational expense for

solving large scale problems. Also, it will be interesting to see in the future what impact

interior point methods will have on MILP optimization (see for instance Borchers, and

Mitchell, 1991, for preliminary experience). As was also shown with the results, different

computer codes for MILP can show very large differences in performance despite the fact

that they all rely on similar ideas. This clearly points to the importance of issues such as

software and hardware implementation, preprocessing, numerical stability and branching

rules-

In the case of MINLP, the application of this type of models is becoming more

widespread with the Outer-Approximation and Generalized Benders Decomposition methods.

The former has proved to be generally more efficient, although the latter is better suited for

exploiting the structure of problems (e.g. see Sahinidis and Grossmann, 1991a). Aside from

the issue of problem size in MINLP optimization, nonconvexities remain a major source of

difficulties. However, significant progress is being made in the global optimization of

nonconvex NLP problems, and this will surely have a positive effect on MINLP optimization

in the future. Finally, as has been emphasized in this paper, problem formulation for MILP

and MINLP problems has often a very large impact in the efficiency of the computations, and

in many ways still remains an art for the application of these techniques. However, a better

36



understanding of polyhedral theory and establishing firmer links with symbolic logic may

have a substantial effect on how to systematically formulate mixed-integer problems.

Acknowledgment

The authors gratefully acknowledge financial support from the National Science Foundation

under Grant CBT-8908735, and from the Engineering Design Research Center at Carnegie

Mellon.

37



Appendix : On the reduced set of inequalities by Shah et al
(1991).

In order to prove the equivalence of constraint (15) and the one in (16) by Shah et al
(1991), one must first state the following lemma

Lemma : The integer constraint,

yi+V2+...+yK+i £ 1 (1)

is equivalent to and sharper than the set of integer constraints

yi+y2+-+yic < 1 (AO)
yi ^ i (Al)
y 2 ^ i (A2)

y yK ^ i (AK)

Proof :

First we note that (1) can easily be seen to be equivalent to the constraints (AO) to (AK)
since in these at most one variable y can take an integer value of 1. Multiplying constraint
(AO) by (K-l) and adding it with the constraints in (Al)-(AK) yields,

K(yi+y2+..+yK+i) ^ K - l + K

yi+y2+..+yK+i ^ 1+(K-1)/K

Since yi e {0,1}, the right hand side can be rounded below to obtain the inequality

yi+y2+"+yic+i ^ i

Proof of constraint :

We know, from (15)

£ w i ( j , t < i vj , t wijt€ {0,1} vij.t
16 Ii

ie. Wiij.t+Wi2o.t+..+Wi»jj.t £ 1 forallj,t

If pii > 1, since no unit can process two tasks simultaneously,

iz.j.t < 1

inj.j.t < 1

From the lemma, we get

38



If Pi2> 1

Also, Wi2,j,t-i+Wii,j,n£ 1

This leads to Wi2,j,t-i+Wii,j.t-i+Wii,j,t+Wi2.j,t+..+W5nj,j,t £ 1

Repeat for all W^t-i where pi1 > 1 to get

Wii,j,M+Wi2.j.H+..+Winj,j,t.i+Wii,j,t+Wi2j,t+"+Winj,j,t

Now, if pa > 2

Wiij,t.2+Wi2j,H

Wii,j,t-2+Winj,j>t.i
Wuj.rf+Wuj.t ^

Wil,j.t.2+Wi2.j.t <

Wil,j,t.2+
From the lemma, we get

Repeat for all Wr,j,t-2 for pr > 2

Repeat for all Wj'tj,t.3 for pr > 3

Repeat for all Wi'tj,t.Pi+i for pr > pi-i

Finally, we get

i j , t+Wi2j , t -^
l+.+Wn,jj.t ^ 1

Grouping terms in the above inequality yields

X W i l . i .f + X Wi2.j.f +•••+ X Winj.j.f
f=t-pl+l t^t-pl+l t'=t-pnj+l

Further summing over all i, we get the constraint by Shah et al. (1991)

X X Wy., < 1
ielj t'=t-pi+l

39



References
Al-Khayyal, F.A. and Falk, J.E. (1983) Jointly constrained biconvex programming, Mathematics of
Operations Research 8,273-286.

Applegate D. and Cook W. (1991). A Computational Study of the Job-Shop Scheduling Problem, ORSA
Journal on Computing, 3, No. 2, pp 149-156.

Balas, E (1974). "Disjunctive Programming : Properties of the Convex Hull of Feasible Points." MSRR
#348, Carnegie Mellon University.

Balas, E. (1975). "Disjunctive Programming : Cutting Planes from Logical Conditions". Nonlinear
Programming 2 , 0 . L. Mangasarian et al., eds., Academic Press, 279-312.

Balas, E., Ceria, S. and Cornuejols, G. (1991). A Lift-and-Project Cutting Plane Algorithm for Mixed 0-1
Programs. MSRR No. 576, Carnegie Mellon University.

Balas, E., and Mazzola, J.B. (1984). Nonlinear 0-1 Programming: Linearization Techniques. Mathematical
Programming, 30,1-21.

Beale, E. M. L, and Tomlin, J. A. (1970). Special Facilities in a Mathematical programming System for
Nonconvex problems using Ordered Set of Variables, in Proceedings of the Fifth International Conference
on Operational Research* J. Lawrence, ed., Tavistock Publications, pp 447-454.

Benders, J. F. (1962). Partitioning Procedures for Solving Mixed Integer Variables Programming
Problems, Numerische Mathematik, 4, 238-252.

Birewar D.B and Grossmann I.E (1990). Simultaneous Synthesis, Sizing and Scheduling of Multiproduct
Batch Plants, Ind. Eng. Chem. Res., Vol 29, Nol 1, pp 2242-2251

Borchers, B. and Mitchell, J.E. (1991). Using an Interior Point Method in a Branch and Bound Method for
Integer Programming, R.P.I. Math. Report No. 195.

Borchers, B. and Mitchell, J.E. (1991). An Improved Branch and Bound Algorithm for Mixed-Integer
Nonlinear Programs, R.P.I. Math. Report No. 200.

Brearly, A.L., Mitra, G. and Williams, H.P. (1975). An Analysis of Mathematical Programming Problems
Prior to Applying the Simplex Method, Mathematical Programming, 8, 54-83.

Brooke, A., Kendrick, D. and Meeraus, A. (1988). GAMS: A User's Guide. Scientific Press, Palo Alto.

Cavalier, T. M. and Soyster, A. L. (1987). Logical Deduction via Linear Programming. IMSE Working
Papa: 87-147, Dept of Industrial and Management Systems Engineering, Pennsyvania State University.

Crowder, H. P., Johnson, E. L., and Padberg, M. W. (1983). Solving Large-Scale Zero-One Linear
Programming Problems, Operations Research, 31,803-834.

Dakin, R. J. (1965). A Tree search Algorithm for Mixed Integer Programming Problems, Computer
Journal, 8,250-255.

Driebeek, N., J. (1966). An Algorithm for the solution of Mixed Integer Programming Problems,
Management Science, 12, 576-587.

Duran, M.A. and Grossmann, I.E. (1986). An Outer-Approximation Algorithm for a Class of Mixed-
Integer Nonlinear Programs. Mathematical Programming 36,307-339.

40



Faqir NM and Karimi I.A (1990). Design of Multipurpose Batch Plants with Multiple Production Routes,
Proceedings FOCAPD'89, Snowmass Village CO, pp 451-468

Fletcher R, Hall J.A. and Johns W.R. (1991). Flexible Retrofit Design of Multiproduct Batch Plants,
Comp & Chem. Eng. 15, 843-852

Floudas, CA. and Visweswaran, V. (1990). A global optimization algorithm (GOP) for certain classes of
nonconvex NLPs-I Theory, Computes chem. Engng. 14,1397-1417

Geoffrion, A.M. (1972). Generalized Benders Decomposition. Journal of Optimization Theory and
Applications, 10(4), 237-260.

Geoffrion,A.M. and Graves, G. (1974). Multicommodity Distribution System Design by Benders
Decomposition, Management Science, 20, 822-844.

Glover F.(1975). Improved Linear Integer Programming Formulations of Nonlinear Integer Problems,
Management Science, Vol. 22, No. 4, pp 455-460

Gomory, R. E. (1960). An Algorithm for the Mixed Integer Problem, RM-2597, The Rand Corporation..

Grossmann, I.E. (1990). Mixed-Integer Nonlinear Programming Techniques for the Synthesis of
Engineering Systems, Research in Eng. Design, 1,205-228.

Grossmann LE and Sargent R.W.H, (1979) Optimum Design of Multipurpose Chemical Plants ,
Ind£ng.Chem.ProcJDesDev., Vol 18, No. 2, pp 343-348

Grossmann IE, Voudouris V.T., Ghattas 0.(1992). Mixed-Integer Linear Programming Reformulation for
Some Nonlinear Discrete Design Optimization Problems, Recent Advances in Global Optimization (eds.
Floudas, C.A.. and Pardalos, P.M.), pp.478-512, Princeton University Press

Gupta, J.N.D. (1976). Optimal Flowshop Schedules with no Intermediate Storage Space. Naval Res.
Logis. Q. 23, 235-243.

Gupta, O.K. and Ravindran, V. (1985). Branch and Bound Experiments in Convex Nonlinear Integer
Programming. Management Science, 31(12), 1533-1546.

Hooker, J. N. (1988). Resolution vs Cutting Plane solution of Inference Problems: some computational
experience. Operations Research Letters, 7,1(1988).

Jeroslow, R. G. and Lowe, J. K. (1984). Modelling with Integer Variables. Mathematical Programming
Study, 22, 167-184.

Jeroslow, R. G. and Lowe, J. K. (1985). Experimental results on the New Techniques for Integer
Programming Formulations, Journal of the Operational Research Society, 36(5), 393-403.

Jeroslow, R. E. and Wang, J. (1990). Solving propositional satisfiability problems, Annals of
Mathematics andAI, 1,167-187.

Knopf F.C, Okos MR, and Reklaitis G.V. (1982). Optimal Design of Batch/Semicontinuous Processes,
Ind.Eng.Chem.ProcDesDev., Vol 21, No. 1, pp 79-86

Kocis, GJR. and Grossmann, I.E. (1987). Relaxation Strategy for the Structural Optimization of Process
Flowsheets. Industrial and Engineering Chemistry Research, 26(9),1869-1880.

Kocis, G.R. and Grossmann, I.E. (1989). Computational Experience with DICOPT Solving MINLP
Problems in Process Synthesis Engineering. Computers and Chem. Eng. 13, 307-315.

41



Kocis G.R., Giossmann LE. (1988) Global Optimization of Nonconvex MINLP Problems in Process
Synthesis, Ind£ngng.ChemJies. 27, 1407-1421

Kondili E, Pantelides C.C and Sargent R.W.H. (1988). A General Algorithm for Scheduling Batch
Operations, Proceedings IntSymp. Process Syst.Eng., 3rd, pp62-75

Krarup, J. and Bilde, O. (1977). Plant Location, Set Covering and Economic Lot Size: An 0(mn)
Algorithm for Structured Problems in L. Collatz et al. (eds), Optimierung bei graphentheoretischen und
ganzzahligen Problemen, Int. Series of Numerical Mathematics, 36,155-180, Birkhauser Verlag, Basel.

Ku, H. and Karimi, I. (1988) Scheduling in Serial Multiproduct Batch Processes with Finite Intermediate
Storage: A Mixed Integer Linear Program Formulation, Ind. Eng. Chem. Res. 27,1840-1848.

Ku, H. and Karimi, I. (1991) An evaluation of simulated annealing for batch process scheduling, Ind. Eng.
Chem. Res. 30, 163-169.

Land, A. H., and Doig, A. G.(1960). An Automatic method for solving Discrete Programming Problems,
Econometrics 28,497-520.

Lovacz, L. and Schrijver, A. (1989). Cones of Matrices and Set Functions and 0-1 Optimization, Report
BS-R8925, Centrum voor Wiskunde en Informatica.

Magnanti, T. L. and Wong, R. T. (1981). Acclerated Benders Decomposition: Algorithm Enhancement
and Model Selection Criteria, Operations Research, 29,464-484.

Martin, R.K. and Schrage, L. (1985). Subset Coefficient Reduction Cuts for 0-1 Mixed-Integer
Programming, Operations Research, 33,505-526.

Mawekwang, H. and Murtagh, B.A. (1986). Solving Nonlinear Integer Programs with Large Scale
Optimization Software. Annals of Operations Research, 5,427-437.

Miller D.L and Pekny J J7. (1991). Exact solution of large asymmetric traveling salesman problems,
Science, 251, pp 754-761.

Nabar, S.V. and Schrage (1990). Modeling and Solving Nonlinear Integer Programming Problems. Paper
No. 22a, Annual AIChE Meeting, Chicago, IL.

Nemhauser, G. L and Wolsey, L (1988). Integer and Cominatorial Optimization. Wiley, New York.

OSL Release 2 (1991) Guide and Reference, IBM, Kingston, NY.

Papageorgaki S. and Reklaitis G.V (1990a) Optimal Design of Multipurpose Batch plants-1. Problem
Formulation , Ind.Eng.ChemJZes.,Vol 29, No. 10, pp 2054-2062

Papageorgaki S. and Reklaitis G.V (1990b). Optimal Design of Multipurpose Batch plants-2. A
Decomposition Solution Strategy , Ind.Eng.Chem.Res.,Vol 29, No. 10, pp 2062-2073

Papageorgaki S. and Reklaitis G.V. (1990c). Mixed Integer Programming Approaches to Batch Chemical
Process Design and Scheduling, ORS A/TIMS Meeting, Philadelphia.

Patel AJN., Mah R.S.H. and Karimi LA. (1991). Preliminary design of multiproduct noncontinuous plants
using simulted annealing, Comp & Chem Eng. 15, 451-470
Pekny J.F and Miller D.L. (1991). Exact solution of the No-Wait Flowshop Scheduling Problem with a
comparison to heuristic methods, Comp & Chem. Eng., Vol 15, No 11, pp741-748.

Petersen C.C.(1991). A Note on Transforming the Product of Variables to Linear Form in Linear
Programs, Working Paper, Purdue University.

42



Quesada I. and Grossmann I.E. (1992a). An LP/NLP based Branch anc Bound Algorithm for Convex
MINLP Problems. To appear in Comp. & Chem Eng.

Quesada I. and Grossmann I.E. (1992b). Global Optimization Algorithm for Rational and Bilinear
Progams. Manuscript in preparation

Rardin, R. L. and Choe, U.(1979). Tighter Relaxations of Fixed Charge Network How Problems, Georgia
Institute of Technology, Industrial and Systems Engineering Report Series, #J-79-18, Atlanta.

Raman, R. and Grossmann, I. E. (1991). Relation between MILP modelling and Logical Inference for
Process Synthesis, Computers and Chemical Engineering, 15(2), 73-84.

Raman, R. and Grossmann, I.E. (1992a). Integration of Logic and Heuristic Knowledge in MINLP
Optimization for Process Synthesis, Computers and Chemical Engineering, 16(3), 155-171.

Raman, R. and Grossmann, I.E. (1992b). Symbolic Integration of Logic in Mixed-Integer Programming
Techniques for Process Synthesis, submitted to Computers and Chemical Engineering.

Ravenmark D. and Rippin D.W.T. (1991). Structure and equipment for Multiproduct Batch Production,
Paper No. 133a, Presented in AIChE annulal meeting, Los Angeles, CA

Reklaitis G.V (1990) Progress and Issues in Computer-Aided Batch Process Design, FOCAPD
Proceedings, Elsevier, NY, pp 241-275

Reklaitis G.V. (1991). "Perspectives on Scheduling and Planning of Process Operations", Proceedings
Fourth Int.Symp. on Proc. Systems Eng., Montebello, Quebec, Canada.

Rich SM and Prokopakis G J. (1986). Scheduling and Sequencing of Batch Operations in a Multipurpose
Plant, Ind.Eng.Chem.Res, Vol. 25, No. 4, pp 979-988

Rich S.H and Prokopakis GJ. (1987). Multiple Routings and Reaction Paths in Project Scheduling,
Ind£ng.ChemJles, Vol. 26, No. 9, pp 1940-1943

Sahinidis, N.V. and Grossmann, I.E. (1991a). MINLP Model for Cyclic Multiproduct Scheduling on
Continuous Parallel Lines, Computers and Chem. Eng., 15, 85-103.

Sahinidis, N.V. and Grossmann, I.E. (1991b). Reformulation of Multiperiod MILP Models for Planning
and Scheduling of Chemical Processes, Computers and Chem. Eng., 15,255-272.

Sahinidis, N.V. and Grossmann, I.E. (1991c). Convergence Properties of Generalized Benders
Decomposition, Computers and Chem. Eng., 15, 481-491.

Savelsbergh, M.W.P., Sigismandi, G.C. and Nemhauser, G.L. (1991) Functional Description of MINTO, a
Mixed INTeger Optimizer, Georgia Tech., Atlanta.

Schrage, L. (1986). Linear, Integer and Quadratic Programming with LINDO, Scientific Press, Palo Alto.

SCICONIC/VM 2.11 (1991). Users Guide", Scicon Ltd, U.K.

Shah N. and Pantelides C.C., (1991). Optimal Long-Term Campaign Planning and Design of Batch
Operations, Ind. Eng. Chem. Res., Vol 30, No. 10, pp 2308-2321

Shah N., Pantelides C.C. and Sargent, R.W.H. (1991). Efficient Solution Techniques for Optimal
Scheduling of Batch Operations. Working paper, Imperial College.

Sherali, H.D. and Alameddine, A. (1990) A new reformulation-linearization technique for bilinear
programming problems, presented at ORS A/TIMS meeting Philadelphia

43



Sherali H. and Adams W.(1988) A hierarchy of relaxations between the continuous and convex hull
representations for zero-one programming problems, Technical Report, Virginia Polytechnic Institute./

Sherali, H. D. and Adams, W. P. (1989). Hierarchy of relaxations and convex hull characterizations for
mixed integer 0-1 programming problems. Technical Report, Virginia Polytechnic Institute.

Sparrow RJ2, Forder GJ, Rippin D.W.T (197S) The Choice of Equipment Sizes for Multiproduct Batch
Plant Heuristic vs. Branch and Bound , Ind.Eng. ChemJProcDesJDev., Vol 14, No. 3, pp 197-203

Straub, D.A. and I.E. Grossmann (1992). Evaluation and Optimization of Stochastic Flexibility in
Multiproduct Batch Plants, Comp.Chem.Eng., 16, 69-87.

Suhami I. and Mah R.S.H, (1982) Optimal Design of Multipurpose Batch Plants, Ind. Eng. Chem. Proc.
Des. Dev., Vol 21, No. 1, pp 94-100

Sugden, S J. (1992). A Class of Direct Search Methods for Nonlinear Integer Programming. Ph.D. thesis.
Bon University, Queensland.

Swaney, R.E. (1990). Global solution of algebraic nonlinear programs. Paper No.22f, AIChE Meeting ,
Chicago, EL

Tomlin, J. A. (1971). An Improved Branch and Bound method for Integer Programming, Operations
Research, 19,1070-1075.

Tomlin, J. A. (1988). Special Ordered Sets and an Application to Gas Supply Operations Planning.
Mathematical Programming, 42,69-84.

Torres, F. E. (1991). Linearization of Mixed-Integer Products. Mathematical Programming, 49,427-428.

Van Roy, T. J., and Wolsey, L. A. (1987). Solving Mixed-Integer Programming Problems Using
Automatic Reformulation, Operations Research, 35, pp.45-57.

Vaselenak J.A, Grossmann I.E. and Westerberg A.W. (1987). An Embedding Formulation for the Optimal
Scheduling and Design of Multipurpose Batch Plants, Ind.Eng.ChemJRest26, Nol, ppl39-148

Vaselenak J.A, Grossmann I.E. and Westerberg A.W (1987) Optimal Retrofit Design of multipurpose
Batch Plants, Ind.Eng.Chem.Res, 26, No. 4, pp718-726

Viswanathan, J. and Grossmann, I.E. (1990). A Combined Penalty Function and Outer-Approximation
Method for MINLP Optimization. Computers and Chem. Eng. 14(7),769-782.

Voudouris V.T and Grossmann I.E. (1992a). Mixed Integer Linear Programming Reformulations for Batch
Process Design with Discrete Equipment Sizes, Ind. Eng. Chem. Res., 31, No.5, pp 1314-1326

Voudouris V.T and Grossmann I.E. (1992b). MILP Scheduling Model for Multipurpose Batch Plants. In
preparation.

Wellons H.S and Reklaitis G.V. (1989). The Design of Multiproduct Batch Plants under Uncertainty with
Staged Expansion , Com . & Chem. Eng., 13, Nol/2, ppl 15-126

Wellons M.C and Reklaitis,G.V. (1991). Scheduling of Multipurpose Batch Chemical Plants. 1. Multiple
Product Campaign Formation and Production Planning, Ind.Eng.Chem.Res, 30, No. 4, pp688-705

Williams, P. (1988). Model Building in Mathematical Programming. Wiley, Chichester.

Yuan, X., Piboleau, S., and Domenech, S. (1989). Une Methode d'Optimisation Non Linaire en Variables
Mixtes pour La Conception de Precedes. RAIRO Recherche Operationnele

44


