NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Mixed-Integer Optimization Techniques for the
Design and Scheduling of Batch Processes

I.LE. Grossmann, |. Quesada, R. Raman, V.T. Voudouris

EDRC 06-137-92




Mixed-Integer Optimization Techniques for the
Design and Scheduling of Batch Processes

Ignacio E, Grossmann, Ignacio Quesada, Ramesh Raman and Vasilios T. Voudouris

Department of Chemical Engineering and Engineering Design Research Center, Carnegie Mellon

University, Pittsburgh, PA 15213, U.S.A.
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I ntroduction

The design, planning and scheduling of batch processes is a very fertile area for the
application of mixed-integer programming techniques. The reason for this is that most of
the mathematical optimization models that arise in these problems involve both discrete and
continuous variables that must satisfy a set of equality and inequality constraints, and that
must be chosen so as to optimize a given objective function. While there has been the
recognition that many batch processing problems can be posed as mixed-integer
optimization problems, the more extensive application of these techniques has only taken
place in the recent past




It isthe purpose of this paper to provide an overview of mixed-integer optimization
techniques. We will firs present a brief review of the application of these techniquesin
batch processing. We then provide a brief introduction to mixed-integer programming in
order to determine a general classification of major problem types. Next we concentratein
both mixed-integer linear (MILP) and mixed-integer nonlinear programming (MINLP)
techniques, introducing firs the basc methods and then the recent developments that have
taken place. We then present a discussion on modelling and reformulation, and finally,
some numerical examples and resultsin various areas of application.

Review of applications

In this section we will present a brief overview of the application of mixed-integer
programming in batch processing. More extensivereviews can be found in Papageor gaki
and Reklaitis (1990c) and Reklaitis (1989,1991).

Mixed-integer nonlinear programming techniques have been applied mostly to
design problems. Based on the problem considered by Sparrow et al (1975), Grossmann
and Sargent (1979) were the firg to formally mode the design of multiproduct batch plants
with paralld units and with single product campaigns as an MINLP problem. These
authors showed that if one relaxes the numbers of paralld units to be continuous, the
associated NL P corresponds to a geometric program that has a unique solution. Rather
than solving the problem directly asan MINLP, the authors proposed a heurigtic rounding
scheme for the number of paralld units usng nonlinear condraints based on the solution of
theredaxed NLP. Since this problem provides avalid lower bound to the cost, optimality
was established within the deviation of the rounded solution. This MINLP mode was
subsequently extended by Knopf et al (1982) in order to handle semi-continuous units. A
further extension, was the MINLP model for a special type of multipurpose plants by
Suhami and Mah (1982) in which smultaneous production was only allowed if products
did not require the same processing stages. This model was subsequently modified by
Vasdenak et al (1987) and by Fagir and Karimi (1989) to embed the selection of
production campaigns. However, all these works did not rigoroudy solve the MINLP, but
they relied on the rounding scheme by Grossmann and Sargent (1978) for obtaining an
integer number of paralld units.

Thefirg design application in which an MINLP modd was rigoroudy solved was
the work by Vasdenak et al (1987) who considered the retrofit design of multiproduct
batch plants. These authors applied the outer-approximation method by Duran and
Grossmann (1986) with a modification to. handle separable nonconvex terms in the




objective. Recently, Fletcher et al (1991) removed the assumptions of equal volume for
units operating out of phase by Vasdenak et al (1987), and formulated a new MINLP
model that again was solved by the outer-approximation method. Also, Kocis and
Grossmann (1989) formulated the MINLP mode by Grossmann and Sargent (1978) in
terms of 0-1 variables for the paralld units and solved it rigoroudy with the outer-
approximation method asimplemented in DICOPT. Subsequently, Wellons and Reklaitis
(1989) applied this computer code to an MINLP mode for multiproduct plants under
uncertainty with staged expansions.

An important limitation in all the above applications was that convexity of the
relaxed MINLP problem was a major requirement. Also, it became apparent that the
solution of larger design problems could become expensive. The first difficulty was
partially circumvented with the augmented penalty version of the outer-approximation
algorithm proposed by Viswanathan and Grossmann (1990) and which was implemented
in the computer code DICOPT++. This code was applied by Birewar and Grossmann
(1990) for the smultaneous synthesis, sizing and scheduling of multiproduct batch plants
which givesriseto a nonconvex MINLP modd.

Papageorgaki and Reklaitis (1990a,b) developed a comprehensive MINLP mode
for the design multipurpose batch plants which involved nonconvex terms. They found
that the code DICOPT would get trapped into suboptimal solutions and that the computation
time was high. For thisreason they proposed a special decomposition method in which the
subproblems are NL Fs with fixed 0-1 variables and campaign lengths and the magter
problem corresponds to a smplified MILP. Faqgir and Karimi (1989) also modelled a
special class of multipurpose batch plants with multiple production routes and discrete sizes
as an MINLP problem that involves nonconvexities in the form of bilinear congtraints.
These authors proposed valid underestimators for these congtraints and reduced the design
problem to a sequence of MILP problems. Recently, Voudouris and Grossmann (1992a)
have shown that several batch design problems, convex and nonconvex, can in fact be
reformulated as MILP problems when they involve discrete sizes. Examples include the
design of multiproduct batch plants with single product campaigns and the design of
multipur pose batch plants with multiple routes. Finally, Ravemark and Rippin (1991) have
reported computational experience in solving a variety of batch design problems as MINLP
problems using the computer code DICOPT ++, while Straub and Grossmann (1992) have
applied it in the optimization of flexibility of multiproduct batch plants.

As for scheduling and planning, there have been a large number of MILP models

reported in the Operations Resear ch literature. However, in chemical engineering the first
major MILP model for batch scheduling was proposed by Rich and Prokopakis (1986) for




the case of multipur pose batch plants in which the products wer e preassgned to processng
units. They used the computer code LINDO (Schrage, 1986) to solve this problem, and
later extended it to handle the production of a product over several predefined sets of units
(Rich and Prokopakis, 1987). Ku and Karimi (1988) developed an MILP mode for
selecting production sequences that minimize the makespan in multiproduct batch plants
with one unit per stage. Their model, which can accomodate a variety of sorage policies,
was also solved with the computer code LINDO.

A very general approach to the scheduling of batch operations was proposed by
Kondili et al (1988) in which they developed a sate-task network representation to model
batch operations with complex process network structures. By discretizing the time
domain they posed ther problem as a multiperiod MDLP model that has the flexibility of
accomodating variable batch sizes, splitting and mixing of batches, finite, unlimited or no
sorage, varioustranger policies and resour ce congraints. Furthermore, the model has the
flexibility of assigning equipment to different tasks. Recently, Shah et al (1991) have been
able to considerably tighten the LP relaxation for this problem and develop a special
purpose branch and bound method with which these authors have been able to solve
problems with more than one thousand 0-1 variables. These authors have also extended
their MILP mode to some design and planning problems (Shah and Pantelides, 1991).

For the case of the no-wait flowshop scheduling problem Miller and Pekny (1991)
(see also Pekny and Miller, 1991) formulated the problem as an asymmetric traveling
salesman problem (see Gupta, 1976). For thismode they developed a paralld branch and
bound method that was coupled with a matching algorithm for detecting Hamiltonian
cycles. The specialized implementation of their algorithm has allowed them to solve
problems to optimality with more than 10,000 batches, which effectively trandates to
problems with more than 20,000 congtraints and 100,000,000 0-1 variables.

Finally, MINLP models for scheduling of multipurpose batch plants have been
formulated by Wellons and Reklaitis (1991) to handle flexible allocation of equipment and
campaign formations. Due to the large size of these problems, these authors developed a

"gpecial decomposition drategy for ther solution. Sahinidis and Grossmann (1991a)
considered the cyclic scheduling of continuous multiproduct plants with parallel lines and
formulated the problem as a large-scale MINLP problem. They developed a solution
method based on Generalized Benders decomposition for which they were able to solve
problemswith up to 800 0-1 variables, 23,000 continuous variables and 3000 congtraints.

In summary, what this brief review shows is that both MILP and MINLP
techniques are playing an increasngly important role in the modeling and solution of batch
processing problems. Thisreview also shows the importance of exploiting the sructure of




these problems for developing reasonably efficient solution methods. It should also be
mentioned that while there might be the temptation to resort to simpler optimization
approaches such as smulated annealing, mixed integer programming provides a rigorous
and deterministic framework, although it is not always the easiest one to apply. On the
other hand, many mixed-integer problems that were regarded as unsolvable 10 years ago
are currently being solved to optimality with reasonable computing requirements due to
advancesin algorithms and increased computer power .

Mixed-integer programming

Initsmost general form a mixed-integer program cor responds to the optimization problem,

tnin  Z = f(x,y) (MIP)
st. h(x,y) =0
g(x,y)£0

xe R" yeN,"

in which x is a vector of continuous variables and y is a vector of integer variables. The
above problem (MIP) specializes to the two following cases:

I. Mixed-integer linear programming (MILP). The objective function f, and the congraints
hand garelinear in x and y in thiscase. Furthermore, most of the applications of interest
are regricted to the case when the integer variables y are binary, i.e. ye {0,1}™. A
number of important classes of problems include the pure integer linear programming
problem (only integer variables) and a large number of specialized combinatorial
optimization problems that include for instance assgnment, knapsack, matching, covering,
facility location, networks with fixed charges and traveling salesman problems (see
Nemhauser and Wolsey, 1988).

I1. Mixed integer nonlinear programming (MINLP). The objective function and/or
congtraints are nonlinear in this case. The most common form is linear in the integer
variables and nonlinear in the continuous variables (Grossmann, 1990). More specialized
forms include polynomial 0-1 programs and 0-1 multilinear programs which can be
trandormed into MILP problems (eg see Balas and Mazzola, 1984).

The difficulty that arises in the solution of MILP and MINLP problemsis that due
to the combinatorial nature of these problems, there are no optimality conditions like in the




continuous case that can be directly exploited for developing efficient solution methods
(see paper by Wedterberg at thismeeting).

In this paper we will concentrate on the modelling and solution of ungructured
MHJP problems, and MINLP problemsthat are linear in the O-1 variables. Both types of
problems correspond to the more general type of mixed-integer optimization problems that
arisein batch processing. It isvery important however, to recognize that if the model hasa
mor e specialized sructure, general purpose techniques will be inefficient for solving large
scale version of these problems, and specialized combinational optimization algorithms
should be used in this case.

Mixed-integer Linear Programming (MILP)

We will assume the more common case in which the subset of the integer variablesy are
redricted totakeonly Oor 1 values. Thisthen givesriseto the MILP problem:

mnZ= c'x+b'y (MILP)
st. Ax + By~ d
x2 0,ye {0,1)m

In attempting to develop a solution method to solve problem (MILP), the firs
obvious alternative would be to solve for every combination of 0-1 variables the
corresponding LP problem in terms of the variables x, and then pick as the solution the 0-1
combination with lowest objective function. The mgor drawback with such an approach is
that the number of 0-1 combinations is exponential. For example, an MILP problem with
10 0-1 variables would require the solution of 2° = 1024 L Ps, while a problem with 50 0-
1 variables would require the solution at 2°° = 1.13xI0™ LPs! Thus, this approach is, in
general, computationally infeasible. _

A second alternative is to relax the O-1 requirements and treat the variablesy as
continuous with bounds, 0 £y < 1. The problem with such an approach, however, is that
except for few special cases (e.g. assgnment problem), there is no guarantee that the
variablesy will take integer values at therdaxed L P solution. Asan example, consder the
pureinteger progra

min Z = -1.:2yi -ey2
st. bopx-«)57251 ¢
yi ty2s1

yiyZZOJ




By relaxing yi and y2 to be continuous the solution yields the noninteger point
yi=0,715, y2=0.285, Z= -1.143. Assume we smply round the variables to the nearest
integer value, namdy yi = 1, y2=0. This, however, is an infeasible solution asit violates
the firgt congraint. In fact, the optimal solutionisyi =0,y2=1,Z =-1. Thus, solving
the MDLP problem by relaxation of the y variables and rounding them to the nearest integer,
will in general not lead to the correct solution. Note, however, that therelaxed LP hasthe
property that its optimal objective value provides alower bound to theinteger solution.

In order to obtain a rigorous solution to the problem (MILP) the most common
approach is the branch and bound method which originally was proposed by Land and
Doig (1960) and later formalized by Dakin (1965). In the branch and bound technique the
objectiveis to perform an enumeration without having to examine all the 0-1 combinations.
Thebascideaisfirs torepresnt all the 0-1 combinations through a binary tree such asthe
example shown in Fig. 1. Here at each node of the tree the solution of the linear program
subject to integer congraints for the subset of the y variables that are fixed in previous
branchesisconsdered. For example, in node A theroot of the tree involves the solution of
theredaxed LP, while node B involves the solution of the L P with fixed yi =0, y2=1 and
withO £y3 " 1.

In order to avoid the enumeration of all the nodesin the binary tree, we can exploit
the following basic properties. Let k denote a descendent node of nodel in thetree (e.g.
k=B, *=A) and let (P*) and (P*) denote the corresponding LP subproblems. Then the
following properties can be easly established:

1. If (P") isinfeasible then (P) is also infeasible.

2. If (PY) isfeasible then (P) is also feasible, and (Z')* < (Z¥)*. That is, the optimal
obj ective of subproblem (P") corresponds to a lower bound of the optimal objective at
subproblem (PY).

3. If the optimal solution of subproblem (P¥) is such that y = 0 or 1, then (Z¥)* > Z*.
That is, the optimal objective of subproblem (P¥) corresponds to an upper bound of
Z*, theoptimal MILP solution.

The above properties can be usad to fathom nodes in the tree within an enumeration
procedure. The question of how to actually enumerate the tree involves the use of
branching rules. Firgtly, one does not necessarily have to follow the order of the index of
the variables y for branching as might be implied in Fig. 1. A smple alternative is to
branch instead on the O-1 variable that is closest to 0.5. Alternatively, one can specify a




priority for the 0-1 variables, or else use amore sophisticated scheme that is based on the
use of penalties (Driebeck, 1966; Tomlin, 1971), Secondly, one has to decide as to what
node should be examined next having solved the LP at a given node in the tree. Here the
two major alternatives are to use a depth-first (last in-first out) or a breadth-first (best
second rule) enumeration. In the former case one of the branches of the most recent node
Isexpanded first; if al of them have been examined we backtrack to another node. In the
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Fig. 1. Binary tree representation for three 0-1 variables

latter case the two branches of the node with the lowest bound are expanded successively;
in this case no backtracking is required. While the depth-first enumeration requires less
storage, the breadth-first enumeration requires in general an examination of fewer nodes.
In practice the most common scheme is to use depth first, but by branching on the 0 and 1
values of abinary variable at each node.

In summary, the branch and bound method consists in first solving the relaxed LP
problem. Ify takesinteger values we stop. Otherwise we proceed to enumerate the nodes
in the tree according to some specified branching rules. At each node the corresponding LP
subproblem is solved, typically by updating the dual LP problem of the previous node
which requires few pivot operations. By then making use of the properties cited before,
we either fathom the node (if infeasible or if lower bound > upper bound) or keep it open
for further examination. Clearly the computational efficiency is largely dependent on the
quality of the lower bounds of the LP subproblems.

As an example, consider the following MILP problem involving one continuous
variable and three 0-1 variables:




mnZ=x+yi +3y2+2y3
st.  -x+3yi +2y2+y3~70 (2
- 5yi - 8y,-3ys< -9
x20,y1,¥2,y3=01

The branch and bound tree using a breadth-first enumeration is shown in Fig. 2.
The number in the circles represents the order in which 9 nodes out of the 15 nodes in the
tree are examined to find the optimum. Note that the relaxed solution (node 1) has alower
bound of Z = 5.8, and that the optimum is found in node 9 where Z = 8, yi=0, y2=y3=l,
and x=3.

Z-5.8

Infeas. vl

Fig. 2. Branch and bound tree for example problem (2)

The branch and bound method is currently the most common method used for
MILP in both academic and commercial computer software (eg. LINDO, ZOOM,
SCICONIC, OSL, CPLEX, XA). Some of these codes feature a number of special
features that can help to reduce the enumeration in the tree search. Perhaps one of the most
noteworthy are the generalized upper bound constraints (Beale and Tomlin, 1970) which
are integer constraints of the form,

ZYi= 1 3)

iel




In thiscase instead of performing branching on individual variables, the branching
isperformed by partitioning the variables into two subsets (commonly of equal size). Asa
sample example consider the problem:

min. Z=yi + 2y2 + 3y3 + 4y4

st. yi +y2-y3-y4n0 (4)
yi+Y2+y3+y4d=1|

yi-0,1 i-1,4

Therelaxed UP solution of thisproblemisZ =2,yi =y$=0.5,y2=y4=0. Ifa
gandard branch and bound search is performed, 4 nodes are required for the enumeration
asshown in Fig. 3a. However, if we ingead treat the last condraint as a generalized upper
bound congraint, only two nodes are enumerated as shown in Fig. 3b.

(a) Branching on individual variables

y +y,=0

I nfeas.

(b) Branching with generalized upper bounds

Fig.3. Standard branching rule and generalized upper bounds.
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Closdly related to the generalized upper bound congraints, are the special ordered
sets (see Beale and Tomlin, 1970; Tomlin, 1988). The most common are the SOS1
congraintsthat have theform,

Yyi=L  x=X ajy (5)

iel iel

in which the second congraint is denoted as a reference row where x is a variable and od
arecongtantswith increasing value. In this case the partitioning of the 0-1 variables at each
node is performed according to the placement of the value of the continuous variable x
relative to the points (Xi. SO0S2 congraints are those in which exactly two adjacent 0-1
variables mugt be nonzero, and they are commonly used to mode piecewise linear concave
functions. Again, consderable reductions in the enumeration can be achieved with these
types of congraints.

Anocther important capability in branch and bound codes are preprocessing
techniques that have the effect of fixing variables, eiminating redundant constraints, adding
logical inequalities, tightening variable bounds and/or performing coefficient reduction (see
Brearly et al, 1975; Crowder et al, 1983; Martin and Schrage, 1985). A smple example of
coefficient reduction isfor instance converting theinequality 2yi +y2Sz lintoyi +y2” 1
which yields a tighter representation in the 0-1 polytope. An exampleof alogical congraint
are minimum cover condraints. For ingtance, given the congraint 3yi + 2y2 + 4y3 £ 6,
yi + y37 1 is a minimum cover since it eliminates the simultaneous selection of
yi =y3 = 1 which violates this congraint. Preprocessng techniques can often reduce the
integrality gap of an MILP athough their application is not always guaranteed to reduce the
computation time.

Although the LP based branch and bound method is the dominant method for MILP
optimization, there are other solution approaches which often complement this method.
These can be broadly classified into three major types. cutting plane methods,
decomposition methods and logic based methods. Only a very brief overview will be given
for these methods.

The basic idea of the original cutting plane methods was to solve a sequence of
successively tighter linear programming problems. These are obtained by generating
additional inequalities that cut-off the fractional integer solution. Gomory (1960)
developed a method for generating these cutting planes, but the computational performance
tends to be poor due to slow convergence and the large increase in size of the LP
subproblems. An alternative approach is to generate strong cutting planes that correspond




to facets, or faces of the integer or mixed-integer convex hull. Strong cutting planes are
obtained by considering a separation problem to determine the strongest valid inequality
that cuts off the fractional solution. This, however, is computationally a difficult problem
(it is NP-hard) and for this reason unless one can obtain theoretically these cuts for
problems with special sructure, only approximate cutting planes are generated. Also,
grong cutting planes are generated from the L P relaxation and during the branch and bound
search to tighten the LP. Crowder et al (1983) developed strong cutting planes for pure
integer programming problems by considering each congtraint individually and treating
each of them as knapsack problems. Van Roy and Wolsey (1987) considered special
network structures for MILP problems to generate strong cutting planes. In both cases,
subgtantial improvements wer e obtained in a number of test problems.

A morerecent approach for cutting plane methods has been based on the important
theoretical result that is possible to trandorm an ungructured MILP problem into an
equivalent LP problem that corresponds to the convex hull of the MILP. This involves
converting the MILP into a nonlinear polynomial mixed integer problem which is
subsequently linearized through variable transformations (L ovacz and Schrijver, 1989;
Sherali and Adams, 1989). Unfortunately, the transformation to the LP with the convex
hull is exponential. However, these transformations can be used as a basis for generating
cutting planes within a "branch and cut™ enumeration, and thisis for instance an approach
that isbeing explored by Balas et al (1991).

As for decomposition methods for MILP, the most common method is Benders
decomposition (Benders, 1962). This method is based on the idea of partitioning the
variables into complicating variables (commonly integer variables in the MILP) and
noncomplicating variables (continuous variablesin MILP). Theideaisto solve a sequence
of LP subproblems for fixed complicating variables yk,

Z¥=minc'x + b"y* (LPB)

st. Ax<d - By
x20

and magter problems that correspond to projectionsin the space of the binary variables and
that are based on dual representations of the continuous space. The form of the master
problem given K feasible and M infeasible solution pointsfor the subproblemsis given by:
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Z{= mince

a2 Td- By} (=1,..K (me)
@™ Td-Byk)€0 m=1,..M

aeR?', ye {0,1}"

Since the master problem provides valid lower bounds and the LP subproblems
upper bounds, the sequence of problems is solved until equality of the bounds is achieved.
Benders decomposition has been successfully applied in some problems (eg. see Geoffrion
and Graves, 1976), but it can also have very slow convergence if the LP relaxation is not
tight (see Magnanti and Wong, 1981). Nevertheless, this method isin principle attractive
in large multiperiod MILP praoblems. Finally, another type of decomposition techniques are
L agrangean relaxation methods which are applied when complicating constraints destroy
the special structure of a problem.

L ogic based methods were developed by taking advantage of the analogy between
binary and boolean variables. Balas (1974) developed Disjunctive Programming as an
alternate form of representation of mixed-integer programming problems. MILP problems
are formulated as linear programs with disjunctions (sets of constraints of which at least
one must be true). Balas(1975) characterized the family of all valid cutting planes for a
disjunctive program. Using these cuts, digunctions were re-expressed in terms of binary
variables and the resulting mixed-integer problem is solved.

Another class of logic based methods are based on using symbolic inference
techniques for the solution of pure integer programming problems. Hooker (1988)
demonstrated the analogy between unit resolution and first order cutting planes. Jeroslow
and Wang (1990) solved the satisfiability problem using a humerical branch and bound
based scheme but solving the nodal problems using unit resolution. An alternate symbolic
based branching rule was also proposed by these authors. Motivated by the above ideas,
Raman and Grossmann (1991) considered the incorporation of logic in general mixed-
integer programming problems in the form of redundant constraints to express with logic
propositions the relations among units in superstructures. Here one approach is to convert
the logic constraints into inequalities and add them to the MILP. Although this has the
effect of reducing the integrality gap, the size of the problem is often greatly increased
(Raman and Grossmann, 1992a). Therefore, these authors considered an alternate scheme
in which symbolic inference techniques were used on a the set of logical constraints which
are expressed in either the digunctive or conjunctive normal form representations. The idea
is to perform symbolic inference at each node during the branch and bound procedure in
order to perform branching on the variables so as to fix additional binary variables. Orders




of magnitude reductions have been reported by these authors using this approach (Raman
and Grossman, 1992Db).

Finally, it should be noted that the more recent computer codesfor MILP, such as
OSL (IBM, 1992) and MINTO (Savelsbergh et al, 1991) have an "open software
architectur€' that gives the user considerably more flexibility to control the branch and
bound search. For instance, these codes allow the addition of cutting planes and
modification of branching rules according to procedures supplied by the user.

Mixed-integer Nonlinear Programming (MINLP)

Although the problem (MIP) given earlier in the paper correspondsto an MINLP
problem, for most applications the problem is linear in the O-1 variables and nonlinear in
the continuousvariablesx; that is,

minZ= f(x) +c'y
st. h(x)=0 (MINLP)
g(x) +By <0
XER", y€{0,I}"

This mixed-integer nonlinear program can in principle also be solved with the
branch and bound method presented in the previous section (Gupta and Ravindran, 1985;
Naber and Schrage, 1990; Borchersand Mitchdl, 1991). The major difference hereisthat
the examination of each node requires the solution of a nonlinear program rather than the
solution of an LP. Provided the solution of each NLP subproblem is unique, smilar
properties asin the case of the MBLP would hold with which the rigorous global solution of
the MINLP can be guaranteed.

An important drawback of the branch and bound method for MINLP is that the
solution of the NL P subproblems can be expensive since they cannot be readily updated as
in the case of the MILP. Therefore, in order to reduce the computational expense involved
in solving many NLP subproblems, we can resort to two other methods: Generalized
Benders decomposition (Geoffrion, 1972) and Outer-Approximation (Duran and
Grossmann, 1986). The basic idea in both methods is to solve an alternating sequence of
NLP subproblems and MILP master problems. The NLP subproblems are solved by
optimizing the continuous variables x for a given fixed value of y, and ther solution
yields an upper bound to the optimal solution of (MINLP). The MILP master problems
consist of linear approximations that are accumulated as iterations proceed, and they have
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the objective of predicting new values of the binary variablesy as well as a lower bound on
the optimal solution. The alternate sequence of NLP subproblems and MILP master
problemsis continued up to the point where the predicted lower bound of the MILP magter
isgreater or equal than the best upper bound obtained from the NL P subproblems.

The MILP master problem in Generalized Benders decomposition (assuming
feasble NL P subproblems) isgiven at any iteration K by:

ZGp = min o (MGB)
st aff(x*) +c'y + (**)" [g(x*) + By] k=1,2..K
acR' , ye{o}™

where aisthe largest Lagrangian approximation obtained from the solution of the K NLP
subproblems; x and |i* correspond to the optimal solution and multiplier of the kth NLP
subproblem; ZF)B correspondsto the predicted lower bound at iteration K.

In the case of the Outer-Approximation method the MILP master problem is given

by:

Z&\ =min a (MOA)
St a £ foox) + VEXK)T (cxk) + CTY|
TVh(x>9"(x-x") £0 J k=1,2,..K
g(xk) + Vg(xk)T(x-xk) +By<0 )
aeR' ,xeR",ye{0,I}"

where aisthe largest linear approximation of the objective subject to linear approximations

of the feasible region obtained from the solution of the K NLP subproblems. T isa
Y k k

diagonal matrix whose entries tfj = sgn (k\), where X\ is the Lagrange multiplier of
equation hi at iteration k, and is used to relax the equations in the form of inequalities
(Kocis and Grossmann, 1987). This method has been implemented in the computer code
DICOPT (Kocisand Grossmann, 1989). . N

Note that in both master problems the predicted lower bounds, ZQg, and ZQA,
increase monotonically asiterations K proceed since the linear approximations are refined
by accumulating the lagrangian (in MGB) or linearizations (in MOA) of previous iterations.
It should be noted also that in both cases rigorous lower bounds, and therefore
conver gence to the global optimum, can only be ensured when certain convexity conditions
hold (see Geoffrion, 1972; Duran and Grossmann, 1986).

In comparing the two methods, it should be noted that the lower bounds predicted
by the outer approximation method are always greater than or equal to the lower bounds
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predicted by Generalized Benders decomposition. This follows from the fact that the
Lagrangian cut in GBD represents a surrogate congtraint from the linearization in the OA
algorithm (Quesada and Grossmann, 1992a). Hence, the Outer-Approximation method
will require the solution of fewer NLP subproblems and MILP master problems (see
example4 later in thepaper). On the other hand, the MILP master in Outer-Approximation
is more expensive to solve so that Generalized Benders may require less time if the NLP
subproblems areinexpensiveto solve. Asdiscussed in Sahinidis and Grossmann (1991c¢),
fast conver gence with GBD can only be achieved if the NL P relaxation is tight
Asa smple example of an MINLP consder the problem:

min Z =yi + |-5y2 + 0.5y3 + xj* + X2*
st.  (xi-2)%-x250
Xi-2yi=0
X1-X2-4(l1-y2)<0
- x1-(1-ypP20
x2-y220 ©)
X1 +x3 2 3y3
yi +y2+y3"i
O<xi <4, 0<x2<4
Y1, ¥2,¥3=0.1

Objective function

10f
r Upper bound
Upper PREED
s ; m l-ucul—“l-qn
A = .
(1] .o"'-..'
L ower o
bound D-.------------"'U"" L ower bound
St CA s’ GBD
10F ..."
-15 " _o/‘
-20F '..".
g A ‘ A |
1 2 3 4 Iterations

Fig. 4. Progress of iterations of OA and GBD for MINLP in (6).

Note that the nonlinearities involved in problem (6) are convex. Fig. 4 showsthe
conver gence of the OA and the GBD methods to the optimal solution using as a garting
point yi asy2=y3 = 1. The optimal solution isZ =3.5, with Y\ =0,y2=1,y3=0, xi =
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1, X2 = 1. Notethat the OA algorithm requires 3 major iterations, while GBD requires 4,
and that the lower bounds of OA are much stronger.

Other related methods for MINLP include the extension of the OA algorithm by
Yuan et al (1989) who considered nonlinear convex terms for the 0-1 variables, and the
feasibility technique by Mawekwang and Murtagh (1986) in which a feasible MINLP
solution is obtained from the relaxed NLP problem. The latter method has been recently
extended by Sugden (1992).

In the application of Generalized Benders decomposition and Outer-Approximation,
two major difficulties that can arise are the computational expense involved in the master
problem if the number of 0-1 variables is large, and non-convergence to the global
optimum due to the nonconvexities involved in the nonlinear functions.

To circumvent the first problem, Quesada and Grossmann (1992a) have proposed
for the convex case an L P/NLP based branch and bound method in which the basic idea is
to integrate the solution of the MILP master problem and the NL P subproblems which are
assumed to beinexpensive to solve. Thisis accomplished by a tree enumeration in which
an NLPisfirst solved to construct an initial linear approximation to the problem. ThelLP
based branch and bound search is then applied; however when an integer solution is found
anew NLP subprablem is solved from which new linear approximations are derived which
are then used to update the open nodes in the tree. In this way the cold sart for a new
branch and bound tree for the MILP master problem is avoided. It should be noted that this
computational scheme can be applied to Generalized Benders and Outer-Approximation.
As mentioned before the latter will yield stronger lower bounds. However, in this
integrated branch and bound method the size of the L P subproblems can potentially become
large. To handle thisproblem Quesada and Grossmann (1992a) proposed the use of partial
surrogates that exploit the linear substructures present in an MINLP problem.

In particular, consider that the MINLP has the following structure,

Z=min c'y +a'w +r(v)

st Cy+Dw+t(v)<0 (MINLP)
Ey + Fw + Gv <b

yeYwE€W, veV

in which the equality constraints are relaxed to inequalities according to the matrix 1* and
included in the inequality set. Here the continuous variables x have been partitioned in two
subsets w and v such that the constraints are divided into linear and nonlinear constraints,
and the continuous variables into linear and nonlinear variables. In this representation
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'T T Dw - t(V)l
f(x)=aT w + r(v), BT =[ C/E]T, g(x)= [Fw + Gv J, and X= WxV. By condructing a

partial surrogate congraint involving the linearization of the nonlinear termsin the objective
and nonlinear congraints, the modified master problem has the form:

Z,X = min p (MMOA)
¢ c'y+a'w+b-a=0
p2>r(v) + (X*) [ Cy+Dw+t(v¥)] - ()T G(v-v k=l,..K
Ey + Fw + Gv £b
y €EY,WEW, veV,aeRpeR

where X* and [X* are the optimal multipliers of the kth NL P subproblem. It can be seen that
as opposed to the Benders cuts, the linearizations are defined in the full space of the
variables, requiring only the addition of one new congraint for the nonlinear terms. It can
be shown that the lower bound Z L * predicted by the above master problem isweaker than
the one of OA, but stronger than the one by GBD. Computational experience has shown
that the predicted lower bounds are in fact not much weaker than the ones by the OA
algorithm.

Asfor the question of nonconvexities, one approach is to modify the definition of
the MELP magter problem so as to avoid cutting off feasible mixed-integer solutions.
Viswanathan and Grossmann (1990) proposed an augmented-penalty version of the MILP
mader problem for outer-approximation, which has the following form:

K
§a=mina+ > (PIT(pE +q¥)
Z8p = mi glp pk+q MOAP)

st. a2> f(xX¥) + V(X )T (x-x*) + cTy\
TVh(xX*)"(x-x¥) < p* i k=1,2,..K
g(x) + Vg(x)"(x-x) + By < g )
aeR!, xeR", ye (0,1}M

in which the sacks p¥, g*, have been added to the function linearizations, and in the
obj ective function with weights p* that are sufficiently large but finite. Since in this case
one cannot guarantee a rigorous lower bound, the search is terminated when there is no
further improvement in the solution of the NLP subproblem. This method has been
implemented in the computer code DICOPT++ which has shown to be successful in a
number of applications. It should also be noted that if the original MINLP is convex the
above magter problem reduces to the original OA algorithm since the dacks will take a
value of zero.




An important limitation with the above approach is that it does not address the
question whether the NLP subproblems may contain multiple local solutions. Recently
there has an important effort to address the global optimization of nonconvex nonlinear
programming problems (e.g. see Horst, 1990). The current methods are either stochastic
or determinigtic in nature. In theformer, generally no assumption about the mathematical
dructure of the problem is made. Simulated annealing is an example of a method that
belongsto thiscategory which in fact has been applied to batch process scheduling (Ku and
Karimi, 1991; Patd et al, 1992). This method however hasthe disadvantages that no strict
guarantee can be given about global optimality and that its computational expense can be
high. Deter ministic methods require the problem to have some particular mathematical
dructurethat can be exploited to ensure global optimality.

Floudas and Visweswaran (1990) developed a global optimization algorithm for the
solution of bilinear programming problems. Valid lower and upper bounds on the global
optimal solution are obtained through the solution of primal and relaxed dual problems.
The primal problem arises by fixing a subset of complicating variables which reduces the
bilinear NLP into an LP subproblem. The relaxed dual problems arise from the master
problem of GBD but in which the Lagrangian function is linearized and partitioned into
subregions to guarantee valid lower bounds. An implicit partition of the feasible space is
conducted to reduce the gap between the lower and upper bounds. A potential limitation of
this method is that the number of relaxed dual problems to be solved at each iteration can
grow exponentially with the number of variablesinvolved in the nonconvex terms.

Another approach for solving nonconvex NLP problems in which the objective
function involves bilinear terms is the one presented by Al-Khayyal and Falk (1983).
These authors make use of the convex envelopes for the individual bilinear terms to
generate a valid lower bound on the global solution. An LP underestimator problem is
imbedded in a spatial branch and bound algorithm to find the global optimum. Sherali and
Alameddine (1990) presented a reformulation-linearization technique which generates tight
LP underesimator problems that dominate the ones of Al-Khayyal and Falk. A smilar
branch and bound search is conducted to find the global solution. Although this method
requires the enumeration of few nodes in the branch and bound tree, it has the main
disadvantage that the size of the L P underestimator problems grows exponentially with the
number of constraints.

Swaney (1990) has addressed the problem in which the objective function and
congraintsare given by bilinear terms and separable concave functions. A comprehensve
L P underesimator problem provides valid lower bounds that are used within a branch a
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bound enumeration scheme in which the partitions do not increase exponentially with the
number of variables.

Quesada and Grossmann (1992b) have considered the global optimization of
nonconvex NL P problemsin which the feasibleregion is convex and the objective involves
rational and/or bilinear termsin addition to convex functions. The basic ideais based on
deriving an NL P underegstimator problem that involves both linear and nonlinear estimator
functions that provide an exact approximation of the boundary of the feasibleregion. The
linear undergimators are smilar to the ones by Al-Khayyal and Falk (1983), but these are
srengthened in the NLP by nonlinear convex underestimators. The NL P underestimator
problem, which allows the generation of tight lower bounds of the original problem, is
coupled with a spatial branch an bound search procedure for finding the global optimum
solution.

Modelling and reformulation

One of the difficulties involved in the application of mixed-integer programming
techniques is that problem formulation is not always trivial, and that the way one
formulates a problem can have a very large impact in the computational efficiency for the
solution. In fact, it is not uncommon that for a given problem one formulation may be
essentially unsolvable, while another formulation may make the problem much easer to
solve. Thus, model formulation is a crucial step in the application of mixed-integer
programming techniques.

While modd formulation still remains largey an art, a number of guiding principles
are darting to emerge that are based on a better understanding of polyhedral theory in
integer programming (see Nemhauser and Wolsey, 1988). In this section we will present
an overview of modelling techniques and illustrate them with example problems. These
techniques can be broadly classified into logic based methods, semi-heuristic guidelines,
reformulation techniques and linearization techniques.

It is often the case in mixed-integer programming that it is not obvious how to
formulate a condraint in thefirs place, let alone formulate the best form of that congraint.
Herethe use of prepodgtional logic and its sysematic trandormation to inequalities with 0-1
variables can be of great help (e.g. see Williams, 1988; Cavalier and Soyster, 1987; Raman
and Grossmann, 1991). In particular, when logic expressions are converted into the
conjunctive normal form, each clause has the form,

PivP2v ..v Py (7
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where Pi isapropostion and v isthe logical operator OR. The above clause can bereadily
trandormed into an inequality by relating a binary variable yi to the truth value of each
propostion Pi (or 1 - yi for its negation). The form of the inequality for the above clause
IS,

yi +yi+...+ym i )

As an example consider the logical condition, Pi v P2 =* P3 which when
converted into conjuctive normal form yields, (-1 Pi v P3) A (-1 P2v P3) . Each of the
two clauses can then be trandated into the inequalities,

1-yi+tys21 y3 £Yi ©)
1-y,+ys3" 1 or Y3 =Y

Similar procedures can be applied when deriving mixed-integer congtraints.

Once congtraints have been formulated for a given problem, the question that arises
iswhether alternative formulations might be better suited for the computation, and herethe
firg techniques to be consdered are semi-heurigtic guidelines. These are rules of thumb on
how to formulate " good" models. A smple example are variable upper bound constraints
for problemswith fixed charges,

Xi - Uy; <0 (10)

Hereit iswell known that although for representation purposes the upper bound U can be
large, one should try to select the smallest valid bound in order to avoid a poor LP
relaxation. Another well known example is the congraint that often arises in multiperiod
MDLP problems (selecting unit z implies possible operation yj in period i, i=I,2,...n),

n

Y yi-nz<0 | (11)

i=1
Herethe disaggr egation into the condraints,
yi-z <0 i=1,2,.n (12)

will produce a much tighter representation (in fact the convex hull of the 0-1 polytope).
These are incidentally the congraints that would be obtained if the logical conditions for
thiscondraint are expressed in conjuctive normal form.
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Themain problem with the disaggregated form of congraintsisthe potentially large
number of them when compared with the aggregated form. Therefore, one has to balance
the trade-offs between model size and tighter relaxations- For example Voudouris and
Grossmann (1992) report a model in which the disaggregated variable upper bound
congraintswere used in theform

Wijsn A Uysn yj:n Vij,Sn (13)
An equivalent aggregated form of the above condraintsis

X Wijg £ Uijd yjn Vi,Sn Q4)
| |
When the firg set of congtraints is used the modd involved 708 constraints and required
233 CPUsec using SCICONIC on a VAX 6320. When the second set of congtraints is
used, the modd required only 220 constraints, but the time was increased to 649 sec
because of the looser relaxation of (14).

While the above modelling schemes are somewhat obvious, there are some which
arcnot. A very good example arisesin the MILP scheduling model of Kondili et al (1988).
In thismodé, the following congtaints apply:

(@  Atanytimet, an idle item of equipment j can only gart at most one task
ij.

(b)  Iftheitem] does dart performing a given tak i € Ij, then it cannot gart any
other task until the current oneisfinished after pi time units.

Kondili et al (1988) formulated the two above condraints as:

Y Wisl Vit

idli (15)
t+prl

£ Z Wi-1<M(1-Wijy) Vij«=Kit

where M is a suitably large number. Note that the second congtraint has the effect of
imposing condition (b) if Wyt = 1. Asone might expect the second congraint yields a poor
relaxation due to the effect of the "big MM. Interestingly, Shah et al (1991) found an
equivalent representation for the above two congtraints, which is not only much tighter, but
requiresmuch fewer congraints These are given by,
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t-pi+1

T Wikl Vit (16

Thus, thisexample clearly showsthat formulation of a " propa™ modd is not always trivial or
even well understood. Nevertheless, an analyss of the problem based on polyhedral theory
can help one undergand the reason for the effectiveness of the constraint A detailed proof
for congraint (16) is given in the Appendix.

However, not everything in MHJP modellingisan art A morerational approach that
has been emerging is the idea of reformulation techniques that are based on variable
disaggregation (e.g. see Radrin and Choe, 1979; Jerodow and Lowe, 1984, 1985), and
which have the effect of tightening the L P relaxation. The examplepar excellenceis the lot
sizing problem that in its "naive™ form is given by the MHJP (see Nemhauser, Wolsey,
1988):

NT
min X (Pt*t" "t % +%VYt)
t=i
st. sdi+x=d+s t=I,NT (a7
th.Xuyt t=I,NT
So=0

St,XtAO, yt€ {0,1} tzl,NT

where xt isthe amount to be produced in period t, yt is the associated 0-1 variable, and & is
the the inventory for period t; Ctj*ht, are the set-up, production and storage costs for time
period t, t= 1, NT.

As has been shown by Krarup and Bilde (1977) the above MILP can be reformulated
by disaggregating the production variables xt into the variables gx, to represent the amount
produced in period t to satisfy thedemand in period X > t; that is,

NT
Xt=X g« (18)

The MILP isthen reformulated as,

NT NT NT
: A +he +hi; + +hg - n o+ %,

min 2,2, <R +H T TM) Q" T2, Gyt (19)
t=l T=t t=I
C

st. X <ta=dt t=I,NT
t=i

Atx £dtyt t=I NT, X =tNT

qﬂa 0’ YI={0!1)
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Asit turnsout thisreformulation yields the absolute tightest L P relaxation since it yields 0-1
valuesfor they variables; thusthis problem can be solved as an LP and thereis no need to
apply abranch and bound search asthereisin theoriginal MDLP (17). It should be noted that
although this example is quite impressive, it is not totally surprisng from a theoretical
viewpoint The lot sizing problem is solvable in polynomial time and therefore one would
expect that it should be possible to formulate this problem asan LP that is polynomially sized
in the number of variables and congraints. It should be noted that the lot sizing problem is
often embedded in MELP planning and scheduling problems with which one can reformulate
these problems to tighten the LP relaxation as discussed in Sahinidis and Grossmann
(1991b).

Finally, ancther case that often arisesin the modelling of mixed-integer problemsare
nonlinearities such as bilinear products of 0-1 variables or products of 0-1 with continuous
variables. Nonlinearitiesin binary variables usually involve the transformation of a nonlinear
function into a polynomial function of 0-1 variables and then transforming the polynomial
function into a linear function of 0-1 variables (Sherali and Adams, 1988). For cross
products between binary and continuous variables Petersen (1971) proposed a linearization
method which was later extended by Glover (1975). The main idea behind these linearization
schemes was the introduction of a new continuous variable to represent the cross product.
The equivalence between the bilinear term and the new variable was enfor ced by introducing
a set of equivalence congraints. For the specific case in which the model has a multiple
choice dructure, an efficient linearization scheme was proposed by Grossmann et al (1992).
This scheme compared to the one proposed by Glover givestighter LP reaxations with fewer
number of congtraints. The multiple choice sructure usually arisesin discrete design models,
in which the design variables ingead of being continuous, take values from afinite set Batch
process desigh problems often involve discrete sizes and as such the latter linearization
schemeiswell suited. Asan example, condder the the bilinear congtraints:

NG)

«ij 2 Ysyisvj - AW <0 j€J(i), i=l,.n (20)
s=

in which yisisa0-1 variable and vj is continuous, and where the following congtraint holds:

NO)
l'| Yu=1 (21)
S=

In order to remove the bilinear termsyigvj in (20), define the continuous variables vij s such
that
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N
vi= Y, vis  jeld), i=l,.n (22)
s=l

V3" yis< Vie<EMU vis  jed(i), s=I, N(i), i=l..n 23)

where Vj", Vj" are valid lower and upper bounds. Using the equationsin (21) to (23), the
condraintsin (20) can bereplaced by the linear inequalities
N@
ay X “svijs- pywj £0 JEJ@) , i=l,..n (24)
s=I
The bilinear congraintsin (20) can also be linearized by consdering in addition to the
inequalitiesin (24), the following congraints proposed by Glover (1975):

V- yis£viis £V yis
Viis £VJ - VIU(L- yig)  J€J(), s=I, N(i), i=l..n (25
Vijs S Vj - it(1- yis)

Thislinearization, however, requires almost twice as many congraints as (22), (23) and (24)
Furthermore, while a point (vijs, vj, yis) satisfying (22) and (23) satisfies the inequalitiesin
(25), the conver se may not be true. For instance, assume a non-integer point yis such that
vijs=vj'yis. Using (21) it follows from (25) that

Ae(WWjvjOyis < VI < W (26)

while (22) yields vj =vjU. Thus, the inequalities in (25) may produce a weaker LP
relaxation.
For the case when the bilinear congraints in (20) are only inequalities, Torres
(1991) has shown that it is sufficient to consider the following congraints from (25):
vl' yis € vij'S
vijs 2 V5 - viP(1- yi)  jeJ(), s=I, N(i), i=l..n (27)

which requires fewer constraints than the proposed linearization in (22) and (23).
However, the above inequalities also can produce a weaker LP relaxation. For instance,
setting vijs = vjLyisfor a non-integer point yis yields,

VIS VF - (W - Vi) Vis (28)

while (22) yiddsvj = vj".
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While the modelling techniques described in this section have been mostly aimed at
MILP problems, they are of course also applicable to MINLP problems. One aspect
however, that is particular to MINLP problems are the modelling of nonlinearities of the
continuous variables. In such a case it is important to determine whether the nonlinear
congraints are convex or not. If they are not, thefirg attempt should be to try to convexify
the problem. The most common approach is to apply exponential transformations of the
form x = exp(u), where x are the original continuous variables and u the transformed
variables; if the original nonlinearities correspond to posynomials these tranformations will
lead to convex congraints. A good exampleisthe optimal design of multiproduct plants with
single product campaigns (Grossmann and Sargent, 1978), with which Kocis and
Grossmann (1988) were able to rigoroudy solve the MINLP problem to global optimality
with the outer -approximation algorithm. When no transormations can be found to convexify
a problem, this does not necessarily mean that the relaxed NLP has multiple local optima.
However, nonconvexities in the form of bilinear products and rational terms are warning
signals that should not be ignored. In this case the application of a global optimization
method such as the ones described previoudy will be the only way to rigoroudy guarantee
the global optimum.

Finally, it should be noted that another aspect in moddlling is the computer software
that is available for formulating and solving mixed-integer optimization problems. At this
point the modelling syssem GAMS (Brooke et al. 1988) has emerged asamaor tool in which
problems can be specified in algebraic form and automatically interfaced with codes for
mixed-integer linear and nonlinear optimization (e.g. ZOOM, SCICONIC,; OSL,
DICOPT++). Modélling tools such as this one greatly reduce the time that isrequired to test
and prototype mixed-integer optimization models.

Examples

In this section we will present several examples to illustrate a number of points and the
application of techniques for mixed-integer programming in batch processing.

Example 1. The MILP for the State Task Network mode for the scheduling of
batch operations by Kondili et al. (1991) has been used to compare the performance of
three MILP codes: ZOOM an academic code, and OSL and SCICONIC which are
commercial codes. This example which has 5 tasks, 4 units, 10 time periods and 9 states
(seeFig. 5), also demongtrates the effect of modelling schemes on the solution efficiency.
The objectiveis to maximize the production of the two final products. Theresulting MILP
model, which incor porates the congtraints in (16), involves 251 variables (80 binary) and
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309 condraints (see Shah et al, 1991). The results of the benchmark comparison between
the three codes for this problem are shown in Table 1. The problems were solved to
optimality (0% gap) by using GAMS as an interface. As can be seen in Table 1 the
performance of the codes is quite different SCICONIC had the lowest computing
requirements. about less than a tenth of the requirements of ZOOM.

Product 1
IntAB

O. Heating _..O_.. Reaction 2 ——k)‘

Feed A Hot A ImpureC Product 2
ar ation
now O—~1= -0
FeedB V
4
eaction 1 Reaction 3

]

Fig. 5. State-task network for example problem

It should be noted that Shah et al (1991) solved this problem with their own branch
and bound method in two forms. In the first the MILP was identical as the one solved in
this paper. In this case 1085 nodes and 437 sees on a SUN1- Sparcstation were required
to solve the problem within 1% of optimality. In the second form, the authors applied a
solution strategy for reducing the size of the relaxed LP and for reducing degeneracies. In
this case only 29 nodes and 7 sees were required to solve the problem, which represents a
performance comparable to the one by SCICONIC.

To illustrate the effect that aternate formulations may have, two cases were
considered and the results are shown in Table 2a. Firstly, realizing that the objective
~ function does not contain any binary variable, the second column involves the addition of a
penalty to the objective function in which al the binary variables are multiplied by avery
small number so as not to affect the optimum solution. The ideais smply to drive the 0-1
variablesto zero to reduce the effect of degeneracies. In the third column, 18 logic cutsin
the form of inequalities have been added to the MILP model to reduce the relaxation gap
(Raman and Grossmann, 1992a). These logic cuts represent connectivity of units in the
state task network. For example, in the problem of Fig. 5, since no storage of impure C is
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dlowed, the separation step has to be immediatdy performed after reaction 3. Ascan be
seen from Table 2a, both modelling schemes lead to a substantial improvement in the
solution efficiency with OSL, while with SCICONIC only the addition of logic cuts
Improves the solution efficiency. Furthermore, the effect of adding these logic cutsin this
problem have been studied for the case of 10, 20, 40 and 50 time periods. The results,
shown in Table 2b, demonstrate an increase in the effectiveness of the logic cuts in
improving the efficiency of the branch and bound procedure. Thereduction in the number
of nodes required in the branch and bound search due to the logic cuts increases from a
factor of 3 for the 10 period case to afactor of more than 6 for the 40 period case. The 50
time period problem, with 1251 variables (400 binary) and 1509 congtraints could not be
solved by OSL within 200,000 iterations and 1 hour of CPU time on the IBM POWER
530. With the addition of the logic cuts, the problem is solved in 158-84 sec requiring only
698 nodes and 5017 iterations.

Table 1. Comparison with several MILP codes

nodes iterations CPU time *
ZOOM 410 7866 39.44
oL 350 918 14.85
SCICONIC 61 318 3.63

* IBM POWER 530

Table 2a. Computational results with modified formulations
(OSL / SCICONIC)

Origina Modd with altered Modd with

Mode Objective Function Logic Cuts
number of nodes 350/61 40/61 108/33
number of iterations 918/318 336/318 620/233
CPU time* 14.85/3.63 2.51/3.65 5.98/2.13
Reaxed Optimum 257.2 257.2 257.2
Integer Optimum 241 241 241

* sec IBM POWER 530
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Table 2b. Example 1. Effect of logic cuts for different time periods

Origina Modd
Mode with Logic Cuts

10 Time Periods
251 variables
80 binary
Congraints 309 327
Number of nodes ' 350 108
Number of Iterations 918 620
CPU Time* 14.85 5.98
20 Time Periods
501 variables
160 binarv
Congraints 609 643
Number of nodes 123 67
Number of Iterations 755 658
CPU Time* 10.22 7.81
40 Time Periods
1001 variables
320 binary
Congraints 1209 1279
Number of nodes 2098 315
Number of Iterations 25964 - 3423
CPU Time ¢ 424.68 67.17
50 Time Periods
1251 variables
400 binary
Congraints 1509 1597
Number of nodes >20,000 698
Number of Iterations >100,000 5017
CPU Time* >3,600 158.84

*seclBM POWER530

Example 2. In order to illustrate the effect of preprocessng and the use of SOSI
congtraints, consider the design of multiproduct batch plants with one unit per stage,
operating with single product campaigns, and where the equipment is available in discrete
sizes (Voudouris and Grossmann, 1992a). The MILP modd is asfollows:

min :
. sYjs (RP1)




Qi Sij
sit. Tizg( vjsJ )¥is TLi i=1,.,N , j=1,..M
>Ti<H
i
EYs=i J=1,..M
S
Ti 220 i=l,.,N , vVjse {0, 1} j=l,..M , s=I,..,ng

The example consdered involves with 6 stages and 5 products. To illugtrate the effect that
the number of discrete sizes has in the size of model (RPI) aswell asin the computational
performance, three problems one with 8, one with 15 and another with 29 discrete sizes
were considered. The MILP problems were solved using SCICONIC 2.11 (SCICONIC,
1991) through GAM S 2.25 in a Vax-6420.

Table 3: Computational results for example 2

# DIS. SIZES CONSTRAINTS | VARIABLES 0-1 VAR'S CPU-TIME - 1 ITERATIONS NODES

ITHOUT SOSI. DOMAIN REDUCTION AND CUTOFF

8 38 54 48 293 181 89

38 96 © 90 25.09 985 731

29 38 180 174 44.94 1203 979
WITH SOSI, DOMAIN REDUCTION AND CUTOFF

8 38 Ime 40 193 5v 53

38 82 76 2.85 9:!. 64

29 38 14 148 6.64 182 150

* IN VAX-6420 SECONDS

As seen from Table 3, the number of discrete sizes has a significant effect in the
number of 0-1 variables, and hence in the number of iterations and the CPU time. One can,
however, reduce significantly the computational requirements by performing a domain
reduction of the 0-1 variables through the use of bounds to fix a subset of them to zero,
treating the multiple choice constraints as SOSI constraints and applying and objective
function cutoff as described in Voudouris and Grossmann (1992a). As seen in Table 3,
reductions of up to one order of magnitude are achieved.




Example 3. This example will illustrate how strong cutting planes may
significantly improve the computational performance of MILP problems with poor
continuous relaxations. A good example are jobshop scheduling problems. Consider the
case in which one has to schedule atotal of 8 batches, 2 for each one of 4 products A, B,
C, D so as to minimize the makespan in a plant consisting of 5 stages. The processing
times for each product are given in Fig. 6, where it can be seen that not all products require
all the stages, and that they all require zero-wait transfer policy.

o 8
St
’ 6
Stg2 3
Stg3
3 4 |3 4
Stg5 — . 755555 D s mR
PriA [] PixiB PrdC @ PrdD B Tune

Figure 6. Processing times of products in various stages.

As noted in Voudouris and Grossmann (1992b) the makespan minimization problem
described above can be formulated as an MILP problem of the form:

min Ms (PI)
_ M
st Ms28i+X'"ik Vi
k=l
- K k-1
Sj - Si + W(l-yijk) » (X tik-X ) V (i,j,k)e C
k=l k=l
o k' k-l
Si -§ +Wyije>(X t-£tik) V(ijkecC
k=l k=l _
yijk€ {0,1} VI,J,k S0 Vi

In the above formulation the potential clashes at every stage are resolved with a pair of
digunctive constraints that involve a large bound W. The difficulty with these constraints
is that they are trivialy satisfied when the corresponding binary variables are relaxed,
which in turn yields a poor LP relaxation. For this example, the LP relaxation had an
objective value of 18 compared to the optimal integer solution of 41, which corresponds to
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a relaxation gap of 56%. The MILP was solved with SCICONIC 2.11 on a Vax-6420
requiring 55 CPUsecs, and the solution is shown in Fig.7. In order to improve the LP
relaxation basic-cut inequalities have been recently proposed by Applegate and Cook
(1991), and they have the form,

z tikSik2>Erktik+ z tiktjx Vk
ieT {ieT, jeT, i<j}
Z tik(Ms—Sik)>Frktik+ E t%k + z tiktjk Vk
ieT ieT {ieT jeT kj}
M
where Sik = the garting timeofjob i on machinek (Six =S + ]£ tik)
T sasubsat of the set ofjobs kssl

E" =theearliest possble gartingtimeofj on k (which isjust the sum of
j'sprocessing times on the machines before k)

[N =theminimum of Ej over allj € T

Fjx =theminimum completion timeof | after it isprocessed on k (which is
just the sum of j's processing times on the remaining machines)

Fry =theminimum of Ejy over allj € T

Theimpact of these congraintsin the MILP was very sgnificant in this example. The LP
relaxation increased to 38 which correspondsto a gap of only 7. In this case the optimal
solution was obtained in only 8 CPUsecs.

Sig1 sz M

stg2

Sig3

Sig4d

Sigs % I—

papE 41  Time

Prda [] PrdB B

Figure 7. Optimal schedule for example 3.

Example 4. The optimal design of multiproduct batch plants with paralle units
operating out of phase (see Fig. 8) will be used to illugtrate the computational performance
of the different MINLP algorithms.
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Two different cases are considered. One consists of 5 products in a plant with 6
processing stages process with a maximum of 4 parallel units per stage (batch5). The
second one has 6 products in a plant with 10 stages and a maximum of 4 parallel units per
stage (batch6). The MINLP formulation and the data for these examples are reported in
Kocis and Grossmann (1989) and the size of the problemsis given in Table 4. The model
IS a geometric programming problem that can be transformed into a convex MINLP
through exponential transformations.

Table 4 : Data for problems in Example 4.

problem Binary Continuous | Constraints

variables variables
batch5 24 22 73 '
batch6 40 32 141

The GBD and OA algorithms were used for the solution of both examples and the
computational results are given in Table 5. The GBD algorithm was implemented within
GAMS, while the version of the OA algorithm used was the one implemented in
DICOPT++ with the augmented penalty. MINOS 5.2 was used for the NLP subproblems
and SCICONIC 2.11 for the MELP master problems. Note that in both cases the OA
agorithm required much fewer iterations than GBD which predicted very weak bounds and
alarge number of infeasible NLP subproblems during the iterations. For problem batch5
both algorithms found the globa optimal solution. For batch6, both algorithms aso found
the same solution which however is suboptimal since the correct optimum is $398,580. In
the case GBD, the agorithm did not converge as it had a large gap between the lower and
upper bounds after 66 iterations. In the case of the OA algorithm as implemented in
DICOPT ++ the optimal solution was suboptimal due to the termination criterion used in
this implementation.




Table 5 : Computational results of Example 4

GBD algorithm OA algorithm
problem Solution iterations | CPU time* Solution iterations { CPU time*
batchS $285,506 67 766.88 $285,506 3 26.94
batch6 $402,496 66+ 2527.2 $402,496 4 108.58

‘sec Vax 642U  + Convergence ot bounds was not achieved

In both the above examples the solution of the MILP master problem in the OA
algorithm was of the order of 80%. A rigorous implementation of the OA agorithm for the
convex case (Duran and Grossmann, 1986) and the LP/NLP based branch and bound
algorithm by Quesada and Grossmann (1992a) were also applied to compare their
computational performance with respect to the number of nodes that are required for the
MILP master problem. The results are given in Table 6. As can be seen, both algorithms
required the solution of 4 and 10 NLP subproblems, respectively, and they both obtained
the same optimal solution. However, the LP/NLP based branch and bound required a
substantially smaller number of nodes (36% and 16% of the number of nodes required by
OA).

Table 6. Results on MILP solution step for problems in Example 4.

optimd Outer Approximation LP/NLP branch and bound
problem solution nodes NLP nodes NLP
batch 5 $285, 506 90 4 32 4
batch 6 $398, 580 523 10 84 10

Example 5. In order to illustrate the effect of nonconvexities, consider the design
and production planning of a multiproduct batch plant with one unit per stage. The
objective is to maximize the profit given by the income from the sales of the products minus
the investment cost. Lower bounds are specified for the demands of the products and the
investment cost is assumed to be given by a linear cost function. Since the sizes of the
vessels are assumed to be continuous, this gives rise to the following NLP model:

max P=ZpiﬂlBi'Zaj VJ
1 J
st. Vj 28 B; i=I, N, j=I,M (NLPP)
Zl‘li TisH
1
& Bi<o =i, N
V,B;,ni20




where iii and Bjis the number and size of the batches for product i, and Vj is the size of the
equipment at stagej. The first inequality is the capacity constraint in terms of the size
factors Sy, the second is the horizon constraint in terms of the cycle times for each product
Ti and the total time H, and the last inequality is the specification on lower bounds for the
demands Qi". Note that the objective function is nonconvex as it involves bilinear terms,
while the constraints are convex. The data for this example are given in Table 7. A
maximum size of 5000 L was specified for the unitsin each stage.

Table 7. Data for Example 5

T, = Qi Sg(leg
Product (hrs) ($Kq) (Kg) 1 3
A 16 15 80000 2 3 4
B 12 13 50000 4 6 3
C 136 14 50000 3 2 5
D 184 17 25000 4 3 4

& =50, d2=80, a3 =60 ($/L); H=8,000 hrs

When astandard loca search dgorithm (MINOS 5.2) is used for solving this NLP
problem using as a starting point NnA=nB=nc=60 and no=300 the predicted optimum profit
IS $8,043,800/yr and the corresponding batch sizes and their number are shown in Table 8.

Table 8. Suboptimal solution for example 5

A B C D
1250 833. 33 1000 1250
a 79.15 60 50 289. 868

Since the formulation in (NLPP) is nonconvex there is no guarantee that this
solution is the global optimum. This problem can be reformulated by replacing the
nonconvex terms by underestimator functions to generate a valid NLP underestimator
problem as discussed in Quesada and Grossmann (1992b). The underestimator functions
require the solution of LP subproblems to obtain tight bounds on the variables, and yield a
convex NLP problem with 8 additional constraints.

The optimal profit predicted by the nonlinear underestimator problem is
$8,128,100/yr with the variables given in Table 9. When the objective function of the
original problem (NLPP) is evaluated for this feasible point the same value of the objective
function is obtained proving that it corresponds to the global optimal solution. This
problem was solved on a IBM/R6000-530 with MINOS 5.2, and 1.6 sees were required to
solve the LP bounding problems and 0.26 sees to solve the NLP underestimator problem.




It isinteresting to note that both the local and global solutions had the maximum equipment
sizes. The only difference was in the number of batches produced for products A and D.

Table 9. Global optimum solution for example 5

A B C D
B 1250 833. 33 1000 1250
n 389.5 60 50 20

Concluding Remarks

This paper has given a general overview of mixed-integer optimization techniques for
the optimization of batch processing systems. As was shown with the review of previous
work, the application of these techniques has increased substantially over the last few years.
Also, aswas discussed in the review of mixed-integer optimization techniques, a number of
new methods are emerging that have the potential of increasing the size and scope of the
problems to be solved. While in the case of MILP branch and bound methods continue to
play a dominant role, the use of strong cutting planes, reformulation techniques and the
integration of symbolic logic hold great promise for reducing the computational expense for
solving large scale problems. Also, it will be interesting to see in the future what impact
interior point methods will have on MILP optimization (see for instance Borchers, and
Mitchell, 1991, for preliminary experience). As was aso shown with the results, different
computer codes for MILP can show very large differences in performance despite the fact
that they all rely on similar ideas. This clearly points to the importance of issues such as
software and hardware implementation, preprocessing, numerical stability and branching
rules-

In the case of MINLP, the application of this type of models is becoming more
widespread with the Outer-Approximation and Generalized Benders Decomposition methods.
The former has proved to be generally more efficient, although the latter is better suited for
exploiting the structure of problems (e.g. see Sahinidis and Grossmann, 1991a). Aside from
the issue of problem size in MINLP optimization, nonconvexities remain a major source of
difficulties. However, significant progress is being made in the global optimization of
nonconvex NLP problems, and this will surely have a positive effect on MINLP optimization
in the future. Finally, as has been emphasized in this paper, problem formulation for MILP
and MINLP problems has often avery large impact in the efficiency of the computations, and
in many ways still remains an art for the application of these techniques. However, a better




understanding of polyhedral theory and establishing firmer links with symbolic logic may
have a substantial effect on how to systematically formulate mixed-integer problems.
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Appendix : On the reduced set of inequalities by Shah et al
(1991).

In order to prove the equivalence of constraint (15) and the onein (16) by Shah et al
(1991), one must first state the following lemma

Lemma : Theinteger constraint,
yitV2+.+yK+i £ 1 (D

is equivalent to and sharper than the set of integer constraints

yi+y2+-+yic < 1 (AO)
YRattyi N (Al)
YKet Fy DN (A2)
YK+ YK N i (AK)

Proof :

First we note that (1) can easily be seen to be equivaent to the constraints (AO) to (AK)
since in these at most one variable y can take an integer value of 1. Multiplying constraint
(AO) by (K-1) and adding it with the constraintsin (Al)-(AK) yields,

K(yi+y+..+yk+) » K-1+K
yity2+. 4y N 1+(K-1)/K
Sinceyi e {0,1}, theright hand side can be rounded below to obtain the inequality

yi+y2+"+yicHi N i

Proof of congraint :
We know, fram (15)

EWi(,tsi vj,t wijii€ {01} vij.t
16li
ie. Wiij t+Wiot+ +Wisjjt £ 1 forallj,t

If pii > 1, since no unit can process two tasks simultaneously,

Wilje1+Wip i £ 1

Wirj1+Wizjt < 1

-V.Vi]_.j’l.l-FWiHj.j.t <1
From the lemma, we get

Wit 1+ Wi ot Wigjut. .+ Winjje S 1

3




If Pi2> 1
Wizi1+Wirie S 1
51

Wizt-1¥Winjje S 1
Also, Wi2,j,t-i+Wii,;,nfE 1
Thisleadsto Wi2,j,t-i"Wii,j.t-i+Wii, t+Wi2.j+. . +Wsnj j,t £ 1
Repeat for all WAt-i where pi* > 1 to get
Wii,j,M+Wi2.j H+ +Winj i, i+ Wi+ Wi 2] 14" + Wi j e S 1
Now, ifpa>2

w 11T t-1 S 1
Wiij,.2+Wi2j ,H € 1

Wil j -2+ Winjoed S 1
Wuj.rf+wuj.t ~ 1

W”,j .t.2+Wi2.j.t <
_ Winjji S 1

Wile !'[-2+
From thelemma, we get

Winj-2t Wil g1+ Wizja 1+ Wi j1 + Wi b Wizt A Winjje £ 1
Repeat for all Wr,j-2 for pr> 2
Repeat for all Wj'j..3 for pr > 3
Repeat for all Wi'yj.pi.i for pr > pi-i

Finally, we get

Witir itet+ +Winja+ Wi, t+Wi2j -7 1+Wig jer+.+ Wiz ot Wing jpnje1 + Wing j-
l+.+Wn,jj. " 1

Grouping terms in the above inequality yields

4 t L
X Wil o+ X Wi2jf 4eer X Winjjf =1
f=t-pl+I ™ t-pl+l t'=t-pnj+l

Further summing over all i, we get the constraint by Shah et al. (1991)

X X Wy, < 1

ielj t'=t-pi+l
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