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Abstract

We consider the problem of finding the shape of an airfoil which produces a pressure dis-
tribution closest to a desired one. The flow is modeled by the nonlinear potential equations
of compressible flow. The problem is formulated as an optimization problem constrained
by a discrete approximation to a nonlinear boundary value problem. We present a new
parallel infeasible path method for this class of optimization problem. The method is based
on a null space representation tailored to the structure of the constraint Jacobian matrix.
The resulting null space projections formally involve inverses of the stiffness matrix. The
algorithm requires only two stiffness matrix solves per optimization iteration, in contrast
to a conventional path-following method, which resolves the full physics at each iteration.
The algorithm has been implemented on a CM-2, and requires no new data structures or
communication patterns beyond those needed for numerical solution of the boundary value
problem. We discuss numerical evidence for the superiority of the new method relative to
a conventional path-following approach.



Chapter 1

Introduction

In recent years there has been growing interest in developing the capability of performing
optimal design of aerospace vehicles, e.g. [11]. Computational aerodynamics has matured
to such a point that inviscid transonic flows about geometrically complex three-dimensional
bodies can be accurately resolved in a few hours on modern supercomputers, e.g. [19, 29].
Given this capability for analysis of certain classes of flow, it is natural to seek methods for
automating the process of design.

In its most general form, aerodynamic design can be posed as a nonlinear optimization
problem consisting of an objective function reflecting design goals, and constraints which
include both the partial differential equations governing behavior and additional design
constraints. Variables are of two types: design variables which describe geometry (e.g.
shape^ thickness), and state variables which describe system behavior for a fixed geometry
(e.g. pressure, velocities). Solving the (discretized form of the) behavioral equations at each
optimization iteration simplifies the optimization problem by both reducing the number of
constraints and eliminating the state variables from the set of optimization variables. The
optimization approach to aerodynamic design has rarely been taken, essentially due to the
existence of more efficient techniques for linear flows about simple geometries, and the
difficulty of the analysis problem for more complex flows (for example, simulation of high
Reynolds number viscous flows is still an open problem). In contrast, a large body of theory,
methodology, and application has been developed over the past 30 years for the sensitivity
analysis and optimal design of solids and structures (see [16] or [14]). Calculations of this
type are routinely performed for finding optimal shapes of structures ranging from dams
[30] to aluminum cans [3]. There is increasing recognition that such an approach will be
necessary for general aerodynamic design problems [11, 20].

The optimal design problem associated with a complete aerospace vehicle possesses sev-
eral complicating features, which make much of the methodology of structural optimization
unsuitable:

• Aerodynamic design is typically governed by nonlinear partial differential equations,
which is the exception, not the norm, for structural design problems. The nonlineari-
ties can be quite severe, as in problems with shocks, and may require many iterations
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and special techniques (such as continuation and artificial dissipation) to resolve [29].
Intractability can ensue from having to perform analysis iterations within design it-
erations.

• Aerodynamic design can be very large scale: state variables number in the millions
for a complete vehicle (without even attempting to resolve viscous effects); design
variables can number in the tens of thousands (for example those needed to describe
the shape of an entire aircraft).

A successful strategy for aerospace design optimization must address these two factors.
It is desirable that such a strategy avoid a full Newton solution at each optimization iteration
of the nonlinear algebraic equations that arise upon discretization of the governing partial
differential equations. It is desirable that the optimization strategy exploit the structure and
characteristics of the problem, especially those of the governing equations. Furthermore,
it is desirable that the strategy be compatible with existing analysis software. Advanced
architecture computers will be needed to solve these problems due to the considerable
expense associated with analysis, and due to the large problem size (both in state and
design variables). It is clear that a successful strategy cannot be devised independently of
the computers that will deliver the throughputs necessary to solve such problems.

The goal of this report is to present an optimization strategy that:

• is tailored to engineering systems governed by nonlinear partial differential equations,

• avoids full solution of the flow equations at each optimization iteration,

• exploits existing solver technology for large-scale sparse algebraic systems arising from
PDE's, and

• maps well onto scalable, massively parallel private memory systems.

We demonstrate the strategy through an application to shape optimization of subsonic
airfoils. The physical model we employ is the full-potential approximation to the Navier-
Stokes equations. For steady subsonic flows, these equations are elliptic and nonlinear.
Although moderately-sized, the problem is a useful vehicle for examining the behavior of
our analysis and optimization algorithms. We have implemented our shape optimization
strategy on a CM-2, and we report performance on problems employing unstructured finite
element meshes.

The rest of the report is organized as follows. In chapter 2 we discuss the general
problem of airfoil design and formulate one instance of it as a shape optimization problem.
In chapter 3 we present an optimization algorithm that contains the four desirable features
itemized above. In chapter 4 we discuss relevant features of the CM-2 implementation, and
in chapter 5 we compare our approach with a conventional one. Conclusions are drawn in
chapter 6.



Chapter 2

Aerodynamic Design of Airfoils

The designer of modern airfoils is faced with conflicting requirements and constraints dic-
tated by different disciplines such as aerodynamics, solid mechanics, and control theory.
With respect to aerodynamics, performance characteristics like low drag and high lift influ-
ence the design. From the structural point of view, the thickness of the airfoil and/or its
enclosed area are critical, and for control, stall severity and pitching moment govern [10].

Although our ultimate objective is to solve interdisciplinary optimal design problems,
we focus here on a simplified airfoil design problem obtained by neglecting the coupling
among the different behavioral equations. The corresponding airfoil design problem is often
reduced to that of finding the shape that will exhibit a prescribed velocity or pressure
distribution. This distribution is generally known to favor a desirable performance feature,
like low drag or favorable boundary layer behavior. It is important that the flow remains
attached to the surface of the airfoil or that it separates very close to the trailing edge.
A positive pressure gradient on the upper surface of the airfoil is known to produce an
increment in the boundary layer thickness or even complete separation. Target pressure
distributions are then devised to avoid separation of the flow, for some values of the design
parameters (cruising speed, angle of attack, etc.). Most airfoil design techniques assume
that such a target pressure or velocity distribution is available.

Numerous techniques exist for establishing the shape of an airfoil once a pressure or
velocity distribution has been identified. The simplest approach is a trial and error proce-
dure: the shape of the airfoil is manually modified with the aid of an analysis code until the
target distribution is obtained. A more sophisticated idea is to take an "inverse problem"
approach and attempt to manipulate coefficients of the governing equations to produce the
desired pressure profile. This was first suggested by Lighthill [21], who conformally mapped
the profile to the unit circle and made use of the known solution for incompressible flow to
find the mapping function. Generalizations of these techniques to compressible flow become
iterative in nature, e.g. [28, 27], and it becomes useful to examine them within the context
of optimization problems. Optimization approaches, e.g. [17], have the advantage of gen-
erality in choice of objective and constraints functions, and applicability to more complex
geometry and flows. They historically have been used in conjunction with path-following



methods, i.e. resolving the flow fully at each design iteration, and have been considered
inefficient relative to other techniques [20]. Motivated by a desire to improve the efficiency
of optimization-based methods, we present in the next chapter an efficient infeasible path
method, which simultaneously converges the flow equations while improving the design. In
the remainder of this chapter, we present a mathematical formulation of the design problem
as a nonlinearly-constrained optimization problem.

2.1 Shape Optimization approach

We first define our flow approximation, employing a Galerkin finite element method, al-
though this is not critical for our optimization method. Consider the problem shown in
Figure 2.1, where ft represents the domain of definition, Ts the surface of the airfoil, Tw a
split boundary intended to model the wake, Too the farfield boundary, UQQ the freestream
velocity, and a the angle of attack of the airfoil. The problem is to find the pressure distribu-
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a
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Figure 2.1: Two dimensional domain for airfoil analysis problem.

tion over Ts for subsonic flows with Mach numbers above 0.4, so that compressibility effects
cannot be neglected. The equation of continuity V • (pu) = 0 and boundary conditions take
the form:

V - { [ l - ^ = - ( V < ;

(2.1)

7=i V(f>} = 0 in ft

• • n = 0 on T s

n = n on
in which (/> is the velocity potential, 7 is a constant and poo is the freestream density. A
numerical approximation can be found by solving the Galerkin problem, which is to find
<t>h € Uh such that:

/ [1 - ^ ^ ( V ^ ) 2 ] ^ V ^ - V t i * <*ft= / wh (/wioo) • n dT , Vwh£Uk (2.2)



Introducing the finite element interpolation (j>h = N T $ , where N represents a vector of
global basis functions and # nodal potentials, and taking Q = VN (VN)T, we obtain a set
of nonlinear algebraic equations of the form h($) = f:

/ [1 - ^ ( ^ T Q * ) ] ^ Q * dil = [ N (pooUoo). n dT (2.3)

The Jacobian of this nonlinear system of equations represents the "stiffness" matrix of the
system and is obtained from (2.3) by differentiating the left hand side with respect to <&:

K(#) = / [1 - I—^($TQ #)]^r Q - [1 - ^—^(*TQ #)]£? Q * *TQ dfl(2.4)
./nh 2 2

This is an n x n symmetric matrix that can be constructed using standard finite element
ideas. It is positive definite for subsonic flow [6].

The split boundary in Figure 2.1 is provided to allow for lifting flows. The potential <f>
is discontinuous across this boundary, i.e.

P = 0 r + - <t>r. (2.5)

In this way the jump in <j) is equal to the circulation around the airfoil. The introduction of
this line of discontinuity or split boundary corresponds mathematically to transforming the
originally multiply connected domain into a simply connected domain for which the value
of the potential is unique. The value of the jump in <f> across the wake is unknown. This
value is determined by enforcing the Kutta condition which establishes that the circulation
(3 is such that the flow leaves the trailing edge smoothly and the velocity is continuous [1].
This condition implies that the velocities of the flow immediately above and below the line
of discontinuity, at the trailing edge, are equal and that their direction is parallel to the
bisector of the angle of the airfoil at that point. It also means that the pressure has a unique
value at the trailing edge.

The airfoil design problem of finding a shape that induces a desired pressure distribution
can now be stated as:

minimize /((!,#)= / \p(&)-p*]2 dT (2.6)

subject to / [1 - ^ - ^ ( * T Q # ) ] ^ " Q * dil = f N (pooUoo) • n dT (2.7)
Jtoh 2 Whoa

* ) T S - = 0 (2.8)

where p(&) is the predicted pressure on the airfoil, p* is the prescribed pressure, and the
last equation represents the Kutta condition written in terms of pressures at the trailing
edge.



Chapter 3

An Infeasible Path Method for
Optimization of Systems
Governed by Nonlinear Partial
Differential Equations

In this chapter we present an optimization strategy tailored to systems governed by non-
linear boundary value problems. We limit our discussion to problems that are constrained
only by (a suitable discretization of) the governing partial differential equations. Extensions
to problems that include additional constraints on design variables will be discussed in a
future article.

Our approach is to avoid solution of the governing equations at each optimization it-
eration by including the governing PDE's as constraints in conjunction with projected La-
grangian optimization methods, which do not in general satisfy nonlinear constraints until
the final iteration. Such strategies are termed infeasible path. Though well-established in
chemical engineering optimization problems ([8, 4, 9]), their use in structural optimization
[7, 18, 13, 15, 24] has been the exception rather than the rule. There are two principal diffi-
culties with such an approach: first, inclusion of the governing equations forces the analysis
software to be embedded within the optimizer; and second, the PDE constraints induce
sparse constraint Jacobian and Lagrangian Hessian matrices [24], thus necessitating sparse
optimization strategies for large problems. Addressing the second problem with a general-
purpose sparse optimizer, such as MINOS [22], is problematic: the favorable structure of
the constraint Jacobian with respect to state variables (i.e. the tangent stiffness matrix,
which in the subsonic flow case is symmetric positive definite with nonzeroes corresponding
to edges of a planar graph) cannot be exploited. An alternative approach to projected
Lagrangian methods which does not require sparsity considerations is to employ the in-
feasible path idea within a quadratic penalty method [13] and minimize by a matrix-free
method such as nonlinear conjugate gradients; of course, such an approach implies inherent



ill-conditioning [12].
Although special nonlinear least squares techniques (e.g. employing Gauss-Newton

ideas) can be developed for (2.6)-(2.8), we have here in mind both large residual prob-
lems and problems with more general objective functions. Given the success of Sequential
Quadratic Programming (SQP) methods for general problems (e.g. [26]), it is natural to
seek an SQP strategy tailored to optimal design problems with discrete PDE constraints.
Typically the number of design variables is much smaller than the number of state variables,
and the full Hessian is sparse, indefinite, and of order of the total number of variables. It
is therefore advantageous to seek a strategy which updates the projected Hessian matrix,
which is positive definite at the optimum, and of the order of the design variables. Because
of the special structure of the constraint Jacobian, we seek a corresponding basis for its null
space that exploits this structure.

3.1 An SQP Method

We begin with a generalization of the optimization problem (2.6)-(2.8):

minimize /(x) (3.1)

subject to h(x) = 0 (3.2)

/ : » n ^ K , h : » n ^ » m , x G f (3.3)

Here, / represents the design objective, and h is a system of nonlinear algebraic equations
arising from discretization of a boundary value problem, for example by a Galerkin finite
element method. The n variables x consist of the m state variables u and n — m design
variables b. Typically m >• n — ra, especially in shape optimization in which a shape is
parameterized by a small number of variables, and a large number of state variables arise
from discretization of the domain.

SQP can be considered as a Newton solution of the first order optimality conditions. A
Newton step defines the following quadratic program (QP):

minimize pjfg* + -p£GLpfc (3.4)

subject to AATPA; = -h* (3.5)

where g is the gradient of the objective function, G^ is the Hessian matrix of the Lagrangian
function, Ak is the Jacobian of the discrete PDE's, p^ is the search direction, and the
subscript k indicates evaluation at x^.

For clarity we drop the subscript k; it is understood that all quantities depending on x
are evaluated at x&. Let us write p^ as the sum of range and null space components:

p = Zp* + Ypy (3.6)



in which Z G Knx^n m) is a matrix whose columns form a basis for the null space of A, and
Y £ $ftnXm is a matrix whose columns span the range space of AT . The range space step is
completely determined by substituting (3.6) into (3.5), resulting in the m x in system:

AYpy = -h (3.7)

The null space move is found by substituting (3.6) into (3.4) and minimizing with respect
to p.,:

ZTGLZp, = -ZT(g + GLYPy) (3.8)

The (n — m) x (n — m) projected Hessian matrix ZTGiZ is dense but of the order of the
design variables, and is naturally approximated by a Quasi-Newton update. A feasible-
path method would require this storage as well, since the optimization variables in that case
are just the design variables. On the other hand, the "long and thin" matrix ZTG^Y would
increase storage requirements considerably over a path-following approach. Our approach is
to ignore this term; Nocedal and Overton have shown that the resulting algorithm exhibits
two-step Q-superlinear convergence [23], in the sense that

|| - x* || Q k ( 3 9 )

3.2 Decomposition Strategy

The critical step is the definition of appropriate range and null space bases. Since A is large
and sparse, a standard QR factorization is unacceptable. To examine the structure of the
constraint Jacobian, let us consider a partitioning of state and design variables:

xT = [uT,bT] (3.10)

in which u € Um and b 6 &n~m. The partitioned constraint Jacobian becomes

A-[K,»] (MI)

in which we have identified the Jacobian of the discrete PDE's with respect to the state

variables as the "tangent" stiffness matrix K. It is desirable to exploit the inverse of K,

since this is the central computation of a Newton step of the analysis problem. We can

define a matrix Z whose columns are orthogonal to the rows of A as:
K

x SE (3.12)

Here, we write K"1 formally; we shall however see that its inverse is not required, and
the computations can be arranged in such a way that solution of only two linear systems
involving K is required, using any direct or iterative technique.



The range space basis is defined simply as

Y =
I
0

(3.13)

Clearly, the matrix
Q = [ Z Y ] (3.14)

is nonsingular provided K is nonsingular, and hence Z and Y form a basis for 3?n. The
invertibility of K is established by the well-posedness of the boundary value problem. The
resulting range space step for py from (3.7) becomes:

Kpy = -h (3.15)

We observe that this is simply a Newton step for the nonlinear system h = 0.

Using the null space definition (3.12), the null space move p2 can be found from

B*p2 - -g2 (3.16)

where

g2 = ZTg = - ^ - K- T g u + g t (3.17)

Here B2 represents a Quasi-Newton approximation to the projected Hessian, and gu and
gt represent objective gradients with respect to the state and design variables, respectively.
Note the close connection between the expression for the projected gradient (3.17), and
the gradient of the objective using a path-following method (in conjunction with implicit
gradients, e.g. [16]). The difference, of course, is that in (3.17) K need not be evaluated at
the u for which h = 0, in contrast to path following methods, which converge the governing
equations at each design iteration.

Using (3.6), the moves in the state and design variables take the form

fiYt

pu = -K~l — p, + py (3.18)

P6 = Pz (3.19)

The recipe for the update of the state variables (3.18) can be interpreted as being comprised
of two components. The first term gives a first-order approximation of the change in state
variables due to a change in design variables p&; the second term is the change that would
occur if the design were held constant, and the state variables were updated according to a
Newton step.

3.3 Algorithm

The steps of the method can be arranged into the following algorithm, in which we have
made use of the symmetry of K:



• Set k = 0, H° = I, u = u0 , b = b 0 ,

• Solve K°A° = g£

• F i n d g° = -(

• While Hg l̂l > e and k < maxiter do:

- Find pk = - H * g ,

- Find dk = §|**p* + hk

- Solve Kfcp£ = - d ^

- Find ak from a line search

- Update variables: ufc+1 = uk + akvk
u, b ^ 1 = b* + akpk

- Solve K * + 1 A * + 1 = g * + 1

- F i n d g*+1

- Find yk =

- Update H£+ 1 using y^ and pk

- Set fc = k + 1

• Endwhile

We refer to the system Kfcp£ = -d f c as the state variable update, and Kfc+1AA;+1 = g£+ 1

as the adjoint system, and we note that the main work associated with this algorithm is
the solution of these two linear systems.
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Chapter 4

Implementation on the
Connection Machine CM-2

The infeasible path optimization method presented in the previous chapter simultaneously
drives the design towards an optimum one while converging the state equations. It derives
its advantage over the path-following method by relaxing the need to fully resolve the state
equations at each optimization iteration—an advantage which grows with increasing nonlin-
earity of the state equations. As a consequence of the particular range and null space bases
employed, the primary effort per iteration associated with this algorithm is the solution of
two linear systems involving K, the state variable update system and the adjoint system. In
fact, these two systems are precisely "analysis"-like problems, or more properly single steps
of an analysis problem. Thus, for these two subproblems, we can exploit massively parallel
algorithms for the numerical solution of partial differential equations. Typically, K is large
and sparse, and often (as in subsonic flow) symmetric positive definite. Its sparsity struc-
ture is typical of weighted-residual schemes which employ low-order, compactly-supported
basis functions. Efficient iterative solvers have been developed for such problems.

In our current CM-2 implementation, we assume that the number of design variables is
"small", and therefore the null space move (3.16) is computed on the front end workstation,
rather than distributing it to the processors. Accordingly, the null space vectors p*, g£, b*,
g£, and yk

z are stored on the front end. Under these conditions, the algorithm defined in
the previous chapter induces no new communication patterns nor parallel data structures
beyond those required for the analysis problem h = 0. In particular, the range space vectors
d*, J^ , p£, Afc, and g£ are of the same dimension and share the same relationship to the
underlying mesh topology as the state equations h* and the state variables u*. Therefore,
they are partitioned and mapped to processors and manipulated by the data-parallel rou-
tines in the same way as are the state variables. In our CM-2 implementation, we employ
a simple Cuthill-McKee ordering and unstructured element-based partitioning; however,
more sophisticated graph partitioning and mapping methods (e.g. [5]) can be invoked for
the range space vectors.

The adjoint linear system is solved in identical fashion to the state variable update. In
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our current CM-2 implementation, we have used an unpreconditioned unstructured-mesh
conjugate gradient solver for the two linear systems involving K; again, more sophisticated
solver-preconditioner pairs may be used, e.g. [2]. Since the linear systems involve K, the
same issues that arise in massively parallel solution of PDE's arise here as well. In particular,
routing contention associated with unstructured meshes can degrade performance [25]. We
employ the FASTGRAPH communication compiler to speed up global communications
induced by unstructured meshes. We repeat for emphasis that the optimization problem
can be decomposed to a form that, with respect to parallelism, requires no new tools beyond
those developed for the analysis problem.
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Chapter 5

Numerical results

In this chapter we compare, using two examples, a CM-2 implementation of our infeasible
path method with sequential versions of the both the infeasible path method and a feasible
path method. The design variables are chosen as the basic parameters of the NACA family
of airfoils, namely, the maximum thickness r, the position of the maximum camber p,
and the maximum camber e. These parameters are illustrated in Figure 5.1. The Kutta

t(x)

Figure 5.1: Four-digit NACA airfoil

condition is satisfied by treating the circulation as a variable, and including the square of
(2.8) in the objective function.

When dealing with pressure distributions over bodies, it is convenient to refer to the
pressure coefficient, instead of the absolute pressure. The pressure coefficient is defined
as Cp = ip~p°% • In what follows, we refer to the distribution of the pressure coefficient
over the airfoil simply as the pressure distribution. In both examples, the target pressure
distribution corresponds to a NACA 2412 airfoil, for which r = 0.12, p = 0.40, e = 0.02.

Figure 5.2 shows the mesh topology used in our numerical simulation. This mesh is
shown for illustration purposes only; it was not used to obtain the results reported here.
To obtain accurate results for pressure distributions, the exterior boundary must be placed
much farther away from the airfoil than shown in Figure 5.2. Although the mesh is struc-
tured, we do not treat it as such, in anticipation of more general problems.

Example 1
The data for the first example are:
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Figure 5.2: Discretized two dimensional domain with airfoil

• Target pressure distribution: NACA 2412 at zero angle of attack, M^ = 0.57

• Initial values of parameters: r = 0.08, p = 0.35, e = 0.01

• Number of finite elements: 16,200

• Number of nodes: 8,296

A sequence of airfoil shapes is displayed in Figure 5.3. The final shape is indistinguishable
from the target. Numerical results are tabulated in Table 5.1. The first two columns present

Figure 5.3: Sequence of airfoil shapes

results from a sequential implementation of the path following (PF) method (using SQP)
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Table 5.1: Algorithm performance

PATH FOLLOWING, IBM

0.12000308
0.39982421
0.02000018

0.2309865D-06

0.1697D-03

20

Average i

12,641

INFEASIBLE PATH, IBM INFEASIBLE PATH, CM-2

Optimal values of parameters

0.11990874
0.39977783
0.01998744

Optimal objective
0.6310934D-06

Norm of projected gradient
0.3834D-03

Number of optimization iterations
18

number of conjugate gradient iterations

Total CPU time (seconds)
5,932

0.11987302
0.39913902
0.01998177

0.445447D-05

0.7606D-03

19

per solve
1,102

1,511

and the proposed infeasible path (IP) algorithm on an IBM RS6000-320H workstation. The
linear systems involving K are solved with a direct band solver. The number of iterations
is about the same for the two methods—which is not surprising since the dimension of
the null space is identical in both. The IP method derives its advantage by avoiding the
need to resolve the flow at each optimization iteration. This problem is not particularly
nonlinear—convergence of the flow equations is usually obtained in 6 to 7 Newton iterations
for freestream Mach numbers of the order of 0.6. Yet, the CPU times reflect a 53% reduction
in effort. With greater nonlinearity imposed by higher Mach numbers, the improvement
will become more dramatic.

The third column of Table 5.1 lists results obtained on a single 8K sequencer of the
CM-2. The algorithm differs from that in the second column: a conjugate gradient method,
rather than a direct band solver, is used to solve the linear systems at each iteration. The
CM-2 provides only a factor of four improvement, for several reasons: (1) the expressions
3£- are computed by finite differences; since the controlling null space vectors reside on
the front end, this induces frequent front end-to-processor communication (which we have
not optimized); (2) the conjugate gradient solver is inefficient relative to a direct method
for a problem of this small size (8296 unknowns); (3) the conjugate gradient solver is not
preconditioned; and (4) the unstructured mesh induces global communication. The first
three problems can be easily addressed when we solve larger problems by introducing a
preconditioner and analytic derivatives. The last is inherent to the CM-2, and can be

15



alleviated by moving to a coarser grained machine, and using an algorithm that has a
gvreater computation-to-communication ratio. The algorithm of the previous chapter maps
well to such an architecture, again requiring only an appropriate solver for the "analysis"
problems.

Example 2
To examine the effect of an incorrect physical model on the optimal design, we solve the

airfoil design problem assuming linear (incompressible) flow but with a target distribution
based on nonlinear (compressible) flow. The target pressure distribution corresponds to
a NACA 2412 airfoil at zero angle of attack and 0.6015 freestream Mach number. The
pressure distribution is shown in Figure 5.4.

0 . 8 -
0.7 -
0 . 6 -
0 . 5 -
0 . 4 -
0 . 3 -
0 . 2 -
0 . 1 -

-0.0 • -
-0.1 -
-0.2 -
-0.3 • -
-0.4 • -
-0.5 -
-0.6 -
-0.7 -
-0.8 -
-0.9 -
-1.0 -
-1.1 -
-1.2+—

-0.6
I j _ I I I J_ I J_ I J_

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Chord length

• Upper Surface
A Lower Surface

Figure 5.4: Pressure coefficient: NACA 2412 at zero angle of attack,

Moo = 0.6015

The initial guesses for the parameters of the airfoil are taken as r = 0.02, p = 0.35, e =
0.0002. The airfoil with the corresponding pressure distribution is shown in Figure 5.5. Since
this airfoil is essentially symmetric, it produces no lift force and therefore the circulation is
zero. This value was taken as the initial guess for the circulation. Since there is no lift force,
the pressures for the upper and lower surfaces practically coincide, and since this airfoil is
very thin, the pressure coefficient is very close to zero.

For linear flow, the full potential equations reduce to Laplace's equation. A discretization
using 2520 elements and 1333 nodes is used. The algorithm performs 24 optimization
iterations that take 286 seconds of CPU time on an IBM RS6000-320H workstation. The
algorithm terminates for a value of the projected gradient of 0.9410 X 10~7, corresponding
to an objective value of 0.7773114 X 10"3. The optimal values of the design variables
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Figure 5.5: Initial airfoil and pressure distribution, Example 1

are r = 0.14983768, p = 0.40093774, e = 0.02608220. The final value of the circulation is
/3 = 26.83437313. The resulting airfoil shape and pressure distributions are shown in Figure
5.6. As can be observed, although the target and optimal pressure distributions agree well,
the optimal and target shapes differ due to the differing models employed. In fact, the
optimal shape is 25% thicker than the target one.
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Figure 5.6: Target airfoil shape and optimal (based on linear flow)
shape with corresponding pressure distributions, Example 1
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Chapter 6

Conclusions

We have presented an infeasible path method for the optimal design of systems governed by
nonlinear boundary value problems. In particular, we have considered shape optimization
of airfoils in compressible potential flow. The infeasible path method avoids full resolution
of the flow at each iteration by including the governing equations as equality constraints.
Nonorthogonal range and null space bases for the constraint Jacobian are defined, resulting
in an algorithm which requires solution of just two linear systems at each optimization iter-
ation. The coefficient matrix of these two systems is just the finite element stiffness matrix,
thereby enabling the method to leverage efficient finite element solvers. The algorithm has
been shown to map well to massively parallel systems, in the sense that it requires no new
parallel data structures nor communication patterns beyond those required for the analysis
problem. An example demonstrates that the overall number of iterations is about the same
as a path-following method, while significantly reducing the work per iteration. Even for a
mildly nonlinear problem, the resulting reduction in CPU time is over 50%.
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