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Abstract

This paper deals with the global optimization of heat exchanger networks with fixed topology.
It is shown that if linear area cost functions are assumed, aswell as arithmetic mean driving
force temperature differences in networks with isothermal mixing, the corresponding NLP
optimization problem involves linear constraints and linear rational functions in the
objective whic_h are nonconvex. A rigorous algorithm is proposed that is based on a convex
NLP underestimator that involves linear and nonlinear estimators for rational and bilinear
terms which provide a tight lower bound to the global optimum. This NLP problem is used
within a gpatial branch and bound method for which branching rules are given. Basic
properties of the proposed method are presented, and its application isillustrated with several
example problems. The results show that the proposed method only requires few nodes in the

branch and bound sear ch.



M athematical mode

Two mgor smplifications have been assumed in the optimization model of heat exchanger
networks that provide a mathematical structure that can be exploited for the global
optimization. The area cost is given by a linear function and the driving force for the heat
exchangers is calculated by the arithmetic mean temperature difference at both ends of the

heat exchanger.

For a given heat exchanger network (HEN) configuration consisting of n exchangers of
which the subset EU are utilities, the mathematical formulation can be stated as a linearly
constrained NLP problem of the following form:
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where Q; correspondsto the heat load of the heat exchanger i and AT, isthe driving force for the
heat exchanger; Histhe heat transfer coefficient, g isthe area cost coefficient and d* the utility
cost The lower bounds for the driving forces, AT, are strictly positive since fixed network
configurations are considered and they haveto be greater or equal than a minimum_exchanger
approach temperature, EMAT. The heat loads Q are nonnegattve, although valid finite lower
and upper bounds as isthe case for AT; can be obtained by preanalysis of a given network
structure. Thevariablesx are all the additional variablesin the formulation (Le. intermediate
temperatures). The function g involves a set of linear constraintsthat describe networks that
can be embedded in the superstructure of Yee and Grossmann (1991) in which isothermal
mixing of streams is assumed. These constraints include heat balances, definition of driving
forces and approach temperature constraints. An example of problem (P) isgiven later in the

paper (model (PEX)).



The difficulty in solving problem (P) lies in the fact that it has a nonconvex objective
function that can have multiple local minima. Furthermore, these local solutions will not
necessarily correspond to extreme points of the feasible region since the objective function is
the sum of linear fractional functions. Each of these functions is pseudolinear (pseudoconvex
and pseudoconcave), which means that they can project either as monotonically increasing or
monotonically decreasing functions. In this way the complete objective function is neither

convex nor concave and the local solutions can be extreme or non extreme points (

M otivating Example

Congder the HEN illustrated in Figure 1. This network hasfour heat exchangers and consists
of one cold stream, ClI, which is split and directed into exchangers 1 and 2. The two hot
streams, HI and H2, exchange heat in serieswith cold streams C2 and Cl, and C3 and ClI,
respectively. The inlet and outlet temperatures and the heat capacity flowrates are given in
Table 1. Notethat the outlet temperaturesfor the cold streamsC2 and C3 arenot specified. The
objective in this problem isthe minimization of the cost of the total area C In which the cost
coefficients are ¢,= 2,700$/m?, ¢* 7,200 $/m?. ¢t= 2.400 $/m2 and C= 9.000 $/m?and the
overall heat transfer coefficientsare U; = U,= 0.1 bOT/Km?and U3S U, = IkW/K m?).

Based on modd (P), the mathematical formulation. for rHeHmi®pg the cost In this

network is given by:
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in which avalue of EMAT = 5 (minimum exchanger approach temperature) has been assumed.
Sincethe problem hasatotal of 12 variablesand 11 independent equationsit has one degree of
freedom. Figure 2 shows the objective function of this formulation, the total area cost of the
network, plotted against Qi, the heat load of thefirst heat exchanger. Thefeasible region for
the network, Qi € [ 5.55, 97.81], isdefined by the minimum approach temper atur e constraints.
Asit can be seén in Fig. 2 there are two local optimal solutions. Thefirst local solution with
cost O$ 45,687 islocated in the convex portion of the projection of the objective function and
it corresponds to the interior point Qi= 16.84 kW with atotal area of 9.351 m?. The second
local solution with cost C=%$36,160 corresponds to the global optimum. It lies at an extreme
point in the concave part and is defined by the approach temperature constraint of heat
exchanger 2; it islocated at Qi = 97.812 kW with atotal area of 9.254 m?. When alocal search
technique isused for solving this problem, the solution will depend of the initial point that is
given. The next sections will develop a solution method that will rigorously détermine the

global optimum for this problem regardless of the initial point that is selected.




Underestimator and overestimator functions

Problem (P can be reformulated by introducing the variables A for the scaled areas (the
product of the area and the overal heat transfer coefficient) of the exchangers, and extra
constraints to relate each of these to its heat load and driving force. This yields the following
problem formulation.

min C= f‘. S—IAwk};u do

st. A|AT,—-Q, 20, i=l

80 .£T x)<0 (P)
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whereA, ={Q'£ Q< Q. AT' < AT<AT' A"AAAABL 1=1...n

In problem (P) the nonconvexitles appear in the form of bilinear terms in the
constraints. In order to develop a valid lower bound to the global optimum, the nonconvex
termsin (Pl) can be replaced by the linear overestimating functions proposed by McCormick

(1983) (see Appendix A eq A4). These functions can be expressed by the set of two inequalities

for each exchanger U i=I-..n,
AAT£ASATI + AAT“-AFAT 1)
A AT, EA'ATt < A AT -AYAT )

The above inequalities can be used toreplacethe bilinear termsin (PI) yieldingan LP
underestimator problem. However, the predicted bounds by this problem are often not very
tight For thisreason a new set of nonlinear convex underestimator functions are proposed
that can be generated from the original formulation (P) over the linear fractional terms of the
objective function (see Appendix A eq Al4). Expressing the proposed nonlinear

underestimators in the form of inequalities yields:
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The following mathematical properties can be established between the linear and

nonlinear estimator functions in (1) and (2) and (3) and (4).
QL QU

Property-1: WhenA™*J-JJ (orA”"r¢ ) the linear overestimator (1) (or (2) is alinearization
of the nonlinear underestimator (3) (or (4)).
Proof Consider the linear overestimator (1) and the area constraint form (P1),

&E AMTt+AATA-ANAT,H (©)

Rearranging (5) leadsto:
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Using the condition that A® Jj”| » equation (6) yields
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The nonlinear underestimator (3) givesriseto the constraint
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Thefirst term of equations (7) and (8) arethe same. Now comparetheterm’fr’\f - }*T
1 ATZ -
the nonlinear underestimator (8) with theterm @t "“Faryr 2) ™" '"®linear equation (7).

Both termsareequal at AT{". Furthermore, alinearization of the nonlinear term of (8) at AT =

AT yieldsthelinear term:

1 1 AT .
“(AT Y) 3 - a: - WEM)T

Thus, (3) isalinearization of (1) ]




Corallary 1. The nonlinear underestimator (3) (or (4)) is stronger than the linear overestimator
(1) (or (2) when AA Aj (o Al= 'A%T-

Proof. From Property 1 and the fact that the nonlinear underestimators in (3) and (4) are

convex in ATy any linearization is smaller or equal than the function ( see Fig. 3).

The following property, however, establishes that the linear overestimators in (1) and

(2) are not necessarily redundant

QU
Property2. When Al >515J (or AN <Mrc ) thereis a part of the feasible region in which the

linear overestimator (1) (or (2)) is stronger than the nonlinear underestimator (3) (or (4)).
Proof. Consider a feasible point in A, such that N =AN with Qi* > Q and AT* < TV.

Evaluating the linear overestimator (1) at (Q+, AT,) yields:

L O _AATY . _AVAT:  AkaT (0]
2410 T ATV AT aTp ¢

Then the linear overestimator for that point reducesto,
A *A" (11)

The nonlinear underestimator (3) for thispoint is,

A2 + Qs i) (2)

and usng therdation "‘7: = At for expressing (12) in terms of A” yields.

A2 AT -l--Q—IAJ‘--ET—U (13)
Defineas-"| and p=-8p-.theeguation (13) can beexpressed as.

Azlo+Bl Ab-of Ab=Al]a+B(1-a)] (14)
StaceOfa< 1andO£p<1

l=a+(l-a)>a+p(l-a) =- (15)

then the nonlinear underetimator reducesto
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AzeAl ,  ¢<| (16)
Hence, the linear overestimator (1) is stronger at the point (Q:\ AT"). B

In a smilar way that nonlinear underestimator functions are used to obtain a convex
Q.
approximation for the terms Aj = Ay underesimating functions can be generated for the

teemsAT, >/,
%2%,-+Q< - N 17,
1 1
%:z%i +Q:“(-X—l--xlt] (18)

However, Inthiscase the limitation isthat (17) and (18) are only defined for the case when the

lower bound Afis greater than zero.
Geometrical Interpretation

The underestimator and overestimator functions (1) - (4) presented Inthe previous section have
the property that they match exactly the original function at the boundary of the feasible
region A, of problem (PI) (see Appendix B for a proaf). The fact that these estimator functions
are nonredundant over the feasible region can be interpreted geometrically in a 2-dimensional
diagram (see Figure 4). For a particular heat exchanger It Is possible to represent itsfeasible
region A;in a 2-dimensional figure by plotting its driving force versus its heat load. In this
diagram the area of the heat exchanger Is given by the straight lines that pass through the
origin and have a positive slope. The nonlinear underestimators (3) and (4) provide an exact
approximation along the boundaries defined by the lower and upper bounds for the heat load,
Q, and the driving force, AT. The linear underestimators (1) and (2) provide an exact
approximation at the lower and upper boundsfor thearea. A, and thedrivingforce, AT. Inthe
casethat A" :Zl(igill_j.] (°"AY :ZFQ‘L.JT) the line that defines thisboundary does not cut any part of
the feasible region that Is already defined by the bounds of the heat load and the driving force

resulting In a redundant linear overestimator. When thisisnot the case, then there exists a

part of the feasible region in which the bound of the area Is stronger than the boundaries
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determined by the bounds of the heat load and driving force (see Fig. 4). At these boundaries
(A". AY), the linear overestimators provide an exact representation of the origina functions
while the nonlinear underestimators give a weaker approximation. In this way both

estimators complement each other in the approximation of the fractional terms.

Bounds.

Vadid lower and upper bounds of the area, driving force and heat load of each heat exchanger
(A4 ATy QJ are required for the under and overestimator functionsin (1) - (4). These bounds can
be specified by nonnegativity conditions and approach temperatures specifications. However,
in order to take advantage of the fact that the feasible region of problem (PI) is convex and
described by a set of linear constraints, oﬁe can explicitly obtain the strongest bounds possible

since these are the ones that determine the tightness of the approximation functions.

For generating the strongest upper and lower boundsit is necessary to solve a sequence
of LP'sin which the objective function is either min (or max) AT, or min (or max) Q; over the set

of linear constraints. In the case of the bounds for the areas the objective function is min (or

Q-
max) -Adx. This correspondsto a linear fractional programming problem that is equivalent to

an LP by using the transfor mation proposed by Charaes & Cooper (1962). The LP problemsfor
determining variable bounds have the same feasible region and are Independent, so they can be
easly updated or solved in paralléd.
From the bounds It is also possible to know in advance if some of the approximating
QU Qi

a &1
functions are redundant Based on Property 1o if A" = TAT (or if A|L =-SJJ) tjienthc linear

overegimator (2) that InvolvesA™ (or A") will be redundant.
Projections

Since the linear fractional terms in problem (P) are pseudolinear they can give rise to
monotonically increasing (convex) or monotonically decreasing (concave) directions in the

feasible region. The convex envelope of a concave function is the straight line between the
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extreme points. In the case of a convex function, its convex envelope is the function itself. In
the 2-dimensional diagram of the feasible region of a particular heat exchanger, there are both
concave and convex directions of the fractional term defining the area of that heat exchanger.
It is easy to show that the straight lines with positive slope represent the concave directions,
while the straight lines with a negative slope correspond to the convex directions (see Fig. 5).

Specifically, let

ATj =a+bQ; (19)

Then for At EAQ'[] .

A2 o (20)

the right hand side of (20) has a positive second derivative for b < 0 (see also Property 3 later in

thispaper).

Since the nonlinear underestfmator and linear overestimator functions (1)-(4) do not
provide exact approximations in convex directions such as the ones shown in Fig 5, It is
possible to develop exact nonlinear underestimators in the convex directions. These are
obtained by expressing thelower and/or upper bounds of onevariable as a function of the other
variable involved in the estimator. In thiscase it is necessary to ensure that this nonlinear

functionality does not destroy the convexity of the approximating function*

The proposed underestimator described above corresponds to a projection along the
convex direction. Asshown below, thisprgjection can be obtained without any extra cost when
bounds are generated for the variables in the approximating functions since the Lagrange

multipliers of the bounding subproblems can be used to generate thisprojection.

Consder the casethat the upper bound (equivalent for the lower bound) of the driving
force AT ,of a given heat exchanger is projected over itsrespective heat load Qq(in a similar way

projections can be obtained for the heat load over itsdriving force).
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min -AT;

st. g( Q. AT, <0 | (P2)

A Benderscut for problem (P2) isgiven by:

AT 2 AT +1£%,0j(Q. AT, Xi (21)
J

where Aj are the Lagrange multipliers and x* is the solution of all the remaining variablesin the

LP problem in (P2). The above projection resultsin.

02 Y480 AT, x) 22)
j

Thisis alinear function that can be expressed as,
AT <a+b& (23

This function hasto have a negative dope (b < 0) to represent a convex direction of the
objective function as was shown previoudy* Therefore, it is possible to generate an additional
convex nonlinear underestimator that |s nonredundant to the previous ones (see Property 3),
and itisgiven by:

I et —1) 24)

—

AT * GTBR TPIAT, " 2t b0,

Property 3 The nonlinear inequality (24) is avaid convex underestimator when b < O, and In

some part of thefeasbleregion A, is stronger than the nonlinear underestimators (3) and (4),
EEBfiLFor the first part of the proof the constraint (23) can be expressed as:
1 1
AlT-iTho;~° CEN

Multiplying by the lower bound constraint for the heat load (Q, 2 Q{-) yields a the valid
inequalities:

1 1
Q'Q“)(ﬁ'_)a+bgl 20 (26)
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Rearranging yields:

A_%_ AT+(Q‘ -GG +bQ, (27)

which correspond to the nonlinear underestimator (24).

The Hessian matrix of the underestimating function in (24) Is given by

_2b(a+bQ.)

0
(a+bQ0O3
0 2Q"
AT2 (28)

The term (at+bQ),) is positive over all the feasible region since,

a+bQ, £AT,>EMAT >0 (29)
AlsoQ, £0, and therefore.

L
2—Q:§>0 (Q,;"> 0 if not the function reducestojust one convex term) (30)

and
] Z?afg L>0 ifb<0 @
Therefore, 1fb<0 the Hessian matrix |'s positive definitive and the function |I's convex.

Now consider afeasible point Inthe strict Interior in A, such that AT*=a+ b Q,and AT*

<AT,". Equation (24) for the nonlinear underestimator with projection reducesto.

Q9 1., O
AT¢ 9”5’1‘*'1—1'._*"‘ AT (82)

and therefore I's an exact approximation of the linear fractional term in (24). Since AT+ does

not lieIn theboundary of A, the nonlinear underestimator (3) yields.

ot 0-0F 0 6-0f O 33)

A'r, ATt < ATy Y AT ATy
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which is a strict inequality. Thus the underestimator (24) is stronger than the nonlinear

underestimator (3) in some part of the interior feasible region.

For the other underestimator (4) consider now a point such that Q" = (AT -a)/b and Qf <

Q.", such a point exists since the proj ections are nonredundant constraints.

Equation (24) for the nonlinear underestimator with projection reduces to,

_Qr ax 1o 1, __Qr _g¢ (34)
atbQ*A"AYAT, T atbQ*' T athQ’ AT,

which is an exact approximation of the fractional term. The nonlinear underestimator (4)
yields,

Lhr L 1 1 |

ATE “STAT L CATTS ATE VAATS Af2 AT, (35)

which is an strict inequality.

Hence, therearepartsof thefeasible region wherethe projected underestimator (24) is stronger

than the nonlinear underestimator (4). ..

It can happen that when the projection in (24) is obtained using the LP solution of
problem (P2), only a simple bound over thevariable is obtained (i.e. b=0; a = AT,") instead of a
linear inequality. In this case it is possible to solve an additional problem fixing the

projection variable at afixed valuewithin thebounds(Le Q,=Qfwith Q- <Qf< Q).

The projected nonlinear underestimators in (24) are clearly useful when the feasible
region of a given heat exchanger has Interior faces with convex directions, since it is possible
to obtain exact approximations of this exchanger at these faces. The usefulness of these

under estimator swill be shown with example 3 later in the paper.

In a similar way, projection terms can be generated for the lower bound of the driving

forcewith respect toitsdriving force and substituted in (4),
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9 Q: 1 1
AR EHBQ, O VAT, TEAD G, (36

wherea' +b' Q, 2 AT,

The projections that can be obtained for the bounds of the heat load in terms of its

driving forces are reduced to the same ones.
Convex nonlinear underestimator problem

Having derived a number of linear and nonlinear bounding approximations for the bilinear
and rational terms in (P) and (Pl), a convex nonlinear underestimator problem (NLPJ for
problem (P can be defined as follows. Valid bounds over the areas, driving forces and heat
loads are generated to define the set Q=uA;; i=l..oi, and the nonconvexities of the original
problem are substituted by the convex approximating functions (1) - (4). (17), (18), (24) and (36).
The projectionsfor the upper and lower bounds of the driving for ces over Its heat load are given
by functions KQ) = a+ bQ; where the conditions of 'Property 3 are satisfied. The form of the

underestimator problem NLP_Is the following:

minCL=$:QA+“§Jd|Q

1 1
st AZAT'T +OHGr, Fr )

Ql 1 . 1
A2 37T +QP -5 T) (NLPJ
- ySAMAT (+A, ATV - A, »ATiY 1=1..n

Q, SA°AT, +A, AT,--AYAT -

A‘I‘ta%h +Q:‘-(—i—; -fAllu) t=1..n and AL >0
1 1
AT 2 f—:p -l-Ql‘-'('A—' 'TF]

Az 'V_\?(?f Q"'(Tl‘r_,‘ﬁ i=l...nfor which 4>isalinear

A2 F‘(%ﬁ +QP(—E;.—' '_G;_QJ] of 0, with negative slope

¢l0. AT, X) SO
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(Q,AT.A)Ef

Property 4. Any feasible point (Q, AT, A, x) in problem NLP_ provides avalid lower bound to the

objective function of problem (PI). Furthermore, the optimal solution C* of (NLPJ provides a

valid lower bound to the global optimum (C) of problem (PI).

Proof. Any feasible point (Q, AT, A x) for problem (NLPJ is also a feasible solution to problem
(P since the inequalities g(Q, AT, x)< 0 are satisfied in both problems. Since the approximating
functions in (NLPJ represent a relaxation of the bilinear Inequalities in (Pl), they have the
effect of underestimating the objective function C of problem (PI). Thus it follows that at the

given feasible point C_ £ C.

For the global optimum (Q\ AT, A\ x) of problem (PI) it thenfollowsthat C"£ CL\ where
C.' isthe objective of NLP_ evaluated at that point. Since C.\ the optimal solution of NLP,_ is

unique dueto its convexity. Cl* £ C.*; andthusC £ CL". m

Corollary ™ If the optimum solution C * from NLP,_ is equal to the objective function value C

from (PI) it corresponds to the global optimum of (PI).

BB If C is not the global optimal solution of problem (P1) then there exists a solution C* < C.

But by Property 4, Q* £ C* which contradictsthe assumption that Q>C Is asolution to NLP,

=
Partitioning Scheme pH*1 2w bound)

Problem NLP_ will in general provide a tight lower bound to the original problem (PI).
However, since there will often be a gap between the lower bound CL from NLP_ and the actual
objective function C, a spatial branch and bound search will be required to find the global
optimal sol thion. Corollary 2 provides atermination criteriato this search. Inthis section an
algorithm is presented that employs a partitioning scheme of the feasible region for the branch

and bound search.
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During this search procedure, valid lower bounds C™* over subregions Q* and upper
bounds C" of the global solution are generated. The lower bounds are provided by the solution
of convex underestimator problems NLP_ over given subregions ii* of the feasible space
(Property 4). Each éubregion ft* is defined by a set of lower and upper bounds of the area, heat

load and driving force of the heat exchangers.

Any feasible solution of the set of original linear constraints clearly provides a valid
upper bound to the global solution of problem (P). Feasible solutions are obtained when the
bounds for the variables are calculated. Additionally the solution of the convex NLP
underestimator problem is a feasible solution. For all these points only an evaluation of the
original objective function is necessary to determine an upper bound. The best upper bound C"

is stored as the incumbent solution C\

In some cases, it may prove to be useful to solve the original nonconvex problem (P)
‘ with a given set of bounds (Q¥) and a particular initial point (a solution of a convex
underestimator problem). This is mainly used in the case that the difference between the
convex underestimator C,* and the incumbent solution C* is small and the nonconvex problem
can help in adjusting the value of the variables, particularly if the objective function has only

small variations between local solutions.

When the lower bound C.* of a particular subregion Is greater or equal that the
incumbent solution C\ It Is an Indication that not further examination of this subregion Is
required. Ifagap existsbetween the lower and upper bounds, the subregion Q¥ isdivided Into
smaller subregions Q*** and Q"+2 so It Is possible to have tighter convex underestimator
problems. To dividethe subregionsit is necessary to select the nonconvex term corresponding
to aheat exchangerj over which the partition of the feasble region ismade. This selection rule
Isbased on thelargest weighted difference between the exact value of the nonconvex term In CB
and the convex approximation obtained by the solution of the convex under estimator problem

(see also Al-Khayyal and Falk (1983), Sherali and Alameddine (1990)). Thisruleisgiven by:




19

Rule 1. '
Determinej e arg max; [ g (%‘ir - Ajl as the nonconvex term over which partitioning is to be

performed.

The motivation for this criterion is to select the term for which the difference in the
approximation affects the most the value of the objective function, so that the existent gap can

be reduced by partitioning its corresponding region Aj.

A second selection rule, that is a variation of Rule 1, can be considered. Inthisrule a
parameter 8 e (O1J is included and it defines a interval over which some candidate heat

exchangers are considered.

Rule2
ApplyRuIelandsetUj:c,l%r]-A,)

e Q
Defineie kaorc‘(AT, -A) 28y

Selectj e I asthe nonconvex term over which partitioning isto be performed.

When 6=1 this selection rulereducesto Rule 1. When &\ > |; aheat exchanger that has
not been previoudy used is selected. The advantage of thisruleisthat exchanger sthat have not
been previoudy selected can be partitioned and this allows for atightening of their bounds asit

will be discussed later .

Oncethat thejth heat exchanger hasbeen selected it is necessary to decide over which
variable Aj, Qj or AT, the partitioning should be performed. It is possible to restrict the
algorithm to make partitions exclusively over the space of the areas, heat loads or driving
forces® although a combination of these may prove more useful. This aspect depends on how
inter dependent arethe bounds of thevariableswith respect to the partition variable. Oncethat
thevariable boundsthat define the partition of the feasble region are selected, an update in the

bounds of the other variables of that particular heat exchanger is done for each of the new
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subregions. For these bounding problems the partition constraints that defined the subregion

are added to the linear constraints to provide tighter approximations.

In this work, the variable that is normally chosen for the partitions is the area Aj. In
case that exchangerj has been previoudy sdected it is convenient to check if the bounds of the
driving force, AT,, and the heat load, Q, were updated. If there was a change in these bounds
then the partition variable can remain the same. But if the bounds of a variable did not
change, then it is more effident to choose it as the partition variable in this iteration. Also, in
cases where the bounds for the areas indicate that the linear overestimators are redundant it is

better to select the heat load or driving force over the area as the partition variable.

The vaue of the variable at which the partition is made correspond to the one of the
incumbent solution. Two subregions are created by the addition of the constraints:
Eitherz<*Z or 3*Z{ 37

where ziseither A}, AT} or Q] depending on which variablewas selected.

The partition scheme Isillustrated In Fig. 6.The divisions over the heat load and the
driving force correspond to rectangular partitions. The divisions over the area are partitions

of the feasible region in the nonconvex direction of the linear fractional. term.

It can happen that the value of the partition variable in the incumbent solution is at
one of itsbounds*® In this situations a different variable of the exchanger j isconsidered asthe
partition variable. If novariable (A, ATj and Q) has a incumbent value that is not at a bound
then a different exchanger is selected for partition. When no variable can be selected for the
exchangers that do not have an exact approximation, then the value of the variables at the

solution of the convex subproblem is used for the partition constraints.
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Algorithm
The subregion k is defined by the sets of bounds for each exchanger (A") which are stored in ft*,
The solutions of the convex NLP underestimators are referred as (C) and the incumbent
solution as 0. The candidate subregions that require further examination are stored in the set
F.
Step 0. Initialization.
Set C=m F=0, select toleranceseand y
For each heat exchanger i=l,...n generate
-lower and upper boundsfor the area, heat load and driving force (Al, Ai's QK
QtY, AT| ATi"), i=l...n by solving a sequence of linear programs similar to (P2).
-Optional: obtain projectionsof thevariables (Le asin (22)) using either the
solutions of the previous bounding problems or problems at afixed level for the
projection variable
-Evaluate the original objective function for each of these feasible solutions. If
C<C* set C=C and storethe solution asthe incumbent solution f).
Storetheboundsin ft° 'and set F=F»{0} |
Step 1. Convex underestimator problem
-Solve problem NLP_ for Q° to obtain Q,’.
-Evaluatethe original objective function C°. If C°<CT set C*=C° and storethe
solution as the Incumbent solution O.
Step 2. Convergence
-Forthe subregionsj I nF; If C_J- C*SeC” delete subregion J from F (F=F\(J))
-If F=0 thec-global solution is given by the Incumbent solution.
Step 3. Partition
-Takethelast region k In F(tf) and apply the selection rule (Rule 1 or Rule2)

and choose the partition constraint (37)
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-Subdivide subregion Q¥ in subregions Q“** and CI*+?2 by adding the respective
bound or inequality. Delete subregion Q* from F and store subregions Q“** and
w2 in g (FE(R{K}) u{k+l,k+2})
-Update the bounds in subregions k+1 and k+2 for the exchanger selected for the
partition.

Step 4. Convex underestimator problems
-Solve problem NLP_ for ft“** and Q“2 to obtain C,“"* and C **2
-Evaluate the original objective function for each of these feasible solutions. If
C< C* set C* =C and storethe solution asthe incumbent solution f).
-Optional: When the difference between the objective function of the convex
underestimator problem NLP_and the incumbent solution C* is smaller than a
giventolerance ((C* - CJ/C* <>). solvethe original nonconvex problem (P) for
Q*** and/or Q2 using its convex solution astheinitial point If C< C* set C* =C
and storethe solution asthe incumbent solution (*)
Afc < *?invert CI*+ and Q*2inF.

-gotostep 2

Convergence

Asfor the convergence of the algorithm, it should be noted that Al-Khayyal and Falk (1983)
and Sherali and Alameddine (1990) presented branch and bound algorithms with partition
rulesthat are smilar to the one used here. The convergence proof given below isin the same

spirit of the one given by Sherali and Alameddine.

Broperty_S. The algorithm will either terminate in a finite number of partitions at a global

optimal solution, or generate a sequence of botindsthat conveige to the global solution.

Proof Given the branch and bound procedure, there are two possibilities. Inthefirst one, at a
given nodethe lower bound C, of the underestimator NLP_ isidentical to the original objective

function In which case the algorithm terminates in a finite number of partitions.
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In the second possibility an infinite sequence of partitions is generated. This in turn
implies that there is a subregion that is being infinitely partitioned. Let the sequence of

solutions be denoted by () and z=[Q, A, AT, x]. By the termination criteriait is known that,
CU.R' - q‘k' =0 (38)

Since the upper bound is at least as strong as the evaluation of the actual objective function for

the current solution z¥,
C&)-CI*)=C4* -C“>0 (39)

there must exist an exchanger, m, for which its feasible region is infinitely partitioned. By the

partition rule 1,

9 -
(51, - A §;;eﬂ..1.. . n (40)

Summing up over all the exchangersi, it followsthat.

8- - A) 206K - Cyfz) 2 C%¥ - Ci¥ >0 (41

The variables for exchanger m have some bounds defining an interval. Since the
partition Is of the same nature that the one used by Al-Khayyal and Falk, thevariablesin the
sequence must converge to one of the bounds. Moreover, the seﬁes hasto converge to a point
since when one of the bounds of a variable are not changing thisone I s selected asthe partition

variable in the algorithm. When one of the variables is at the boundary the representation is
exact-~-=A,,. Therefore

-

which means that equality between the lower bound C, and the original cost function C must
hold. Sinceby Property 4 C* is alower bound to theglobal optimal solution, it correspondsto

the global solution. m
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Examples

In this section several examples are presented that illustrate the performance of the algorithm.
The size and computational results of the examples are summarized in Table 2. The NLP time
is the time used for solving the NLP_ problems and the LP time is the time for solving linear
problems to obtain the initial bounds and subsequent updates. Note that in three of the
examples only 1 node was required, which means that the problem was solved with the
underestimator NLP_ without requiring branch and bound enumeration. These problemswere
solved with MINOS 5.2 using the modeling language GAMS on a IBM/R6000-530. Notethat all
the examplesrequired lessthan 10 seconds of CPU-time. Moreover, the time for solving the LP

bounding problems can be further reduced by using awarm start

Example 1

Consider the mativating example introduced earlier in thispaper. If boundsare first computed
for thevariables, thisyields the values shown in Table 3.The solution that had the lowest cost
among these calculations has a cost of C*=$36,160 and the areas (Ai/U,) are shown in Table 4 as
the incumbent solution. The initial NLP_ is constructed using the nonlinear and linear
estimator functions. Inthisexampleit ispossible to obtain prgjectionsfor the upper bound of
the driving force over its heat load for exchangers 3 and 4 that can be used to generate

under estimator softheform(24). These projections are given by:
AT3£210-2Q3 (43)
AT 4£360-3Q, (44)

The importance of these projections is that they provide an exact approximation for

exchangers 3 and 4 asit can be seen by the solution of thefirst NLP_ in Table 4. The solution is

C.°=$32,300.

The actual objective function and the objective function of the convex NLP_ are plotted

versusQi in Fig. 7. Sincetherelsagap between the Incumbent solution C*and CL °. apartition
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ismade. The largest difference in the approximations corresponds to exchanger 1. Since the
incumbent solution lies at an extreme point it cannot be used to partition the space. Instead
the convex solution is used to generate two subregions (A2 = 2.7 m?and A* < 2.7 m? for Q' and
Q?, respectively). For each one of these subregions the bounds on Q, and AT, are recal cul ated
taking into account the partition constraint. The solutions of these two new convex problems
are C.'= $39,360 and C,*= $36,070 C,'. Thefirg is greater than the incumbent solution (C'=
$36,160) so no further partition of this subregion is required. For the second subregion the
lower bound is below the incumbent solution (0.2%) and a new partition is done similar to the
firg one. The only difference is that now the second exchanger is selected for partition. The
solutions of the new subregionsare C.*= $36,270 (A! < 7.30m?) and C.= $36,160 (A* £ 7.30 m?).
The firgt of these subregions can be reected while the first is equal to the incumbent solution,
and therefore the global solution with Al =7.35, A2 =0.424, A;=0.0.11, A4 = 1.469 m?and C=
$36,160 has been obtained. The approximations of the objective function in the different
subregions can be seen In Fig.8. The problem required a total of 4.1 sec. to find the global

optimal solution as seen in Table 2.

Exampic 2

The same network asin example 1 is considered with the data given in Table 5 with g = 1000
$/m?and the overall heat transfer coefficientsareUj =U,=0.1 KW'/K m?andU;=U,= 1.5kW/K
m?). Inthiscasetherearetwo local minimaand their objective function are close (C=$19,520
and C=%$19.160). The algorithm obtains a tight lower bound In thefirst iteration (0$18.640)
and behavesin a similar fashion as In thefirst example. The global optimum with A; =9.647,
Aa = 7.75. As = 0.577, A4 = 1.188 m* and O $1,9160 is obtained after the solution of S NLP

underestimator problems (see Table 2).

Examplc 3
The relevance of the prqjected underestimators (24) is illustrated by the following example.

Consider the problem in Fig. 9. It consists of a cold stream that goes through two heat
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exchangers In series. For the two hot streams the Inlet temperature are given and the outlet

temperatures are not specified (see Fig 9).

In this case the cost function is given by the total area and the formulation is given by:

__ 9 S
MINA=GTAT, Y0.1 AT,

150 -T+T,
T 1
SL AT}*— 2

- T.
AT2=100 ‘gl-l- 2

(p3)
Q!=T-300

Q,=450-T,

Cp=400-T

Q2=500-T,

300<T<40aT ;<450.T,£500

1, Q2. AT), AT, T, T220

Although the formulation of this problem is nonconvex, there is only one optimal
solution. Moreover, if the objective function is plotted versus the heat load of the first heat

exchanger (QI) it isaconvex function (see Fig. 10a).

When the algorithm is applied only using the nonlinear underestimator and linear
overestimator functions (1) to (4) to approximate the nonconvex terms, it is not possible to
obtain an exact approximation of the convex objective of this problem which is shown in Fig.
10b. If projectionsare generated for the upper bound of the driving forcesin terms of their heat
loads (22), the following inequalities are obtained:

AT!7150-Qi (45)

AT <100 (46)

In this way, from (24), a new underestimator function can be generated for the first

exchanger:
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A2 JI_ _LQ.Q. 100 ':1/|771
AT:-150Q ‘AT, " 150-Q, t47)

Once this projected underestimator (47) is added to the NLP underestimator problem,
an exact approximation is obtained. When the objective function of NLP.°is plotted, it
matches exactly the original function in Fig. 10(@). In this way the solution of the
underestimator problem has a total area of AL°=9.49 m? and it is possible to prove global
optimality in one iteration, by simply evaluating the actual objective function of this feasible
solution and obtaining an incumbent solution of A*=9.49 m? with Al = 2.34 m? and A" = 7.15

m?. AsseeninTable 2, the solution of this problem only required 0.75 sec.

Example 4

This example consists of one cold stream and three hot streams in a network of three heat
exchangersin series (Fig. 11). Thedataaregivenin Table 6. Tills network issimilar to the one
presented In example 2 with the difference that now the problem does not project In a convex
form. The objective function isto minimize the cost where Cr= 000 $/m? and U; = 1 kW/K m?Z.
Hie algorithm is applied and it is possible to generate two extra projected underestimators (24)
with the projections

ATL<150-0.1Qi (48)

AT »£200-0.1Q2 (49)

The solution of the first convex underestimator problem is C = $6,420 and when the
real objective function for this feasible solution |s evaluated the Incumbent solution is C* =
$6,420 and hence the global solution with A;=0m? A,= 1.54m? and Aa= 4.88 m?isobtained in

only one Iteration. Asseen InTable 2, thisproblem required 1.77 sec

Example 5
The same network as In the previous example isconsidered, with the new data given in Table

7. In this case the global solution is not an extreme point like in the previous one and the
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approximations are not exact in the first iteration. The solution of this first convex problem is
C.° = $6,269 and the incumbent solution is C* = $6,482. The approximations for the first and
third heat exchangers are exact, so then the second heat exchanger is selected. Here the linear
overestimator are redundant and the partitions are made over the heat load. Two subregions
are obtained with the constraints Q, * 26.8 and Q. £ 26.8 with convex solutions of C.* = $6,408
and C .’= $6,278, respectively. The incumbent solution now is C* = $6,408 so the first

subregion does not require more partitioning. For the remaining subregion a partition is made |

taking now the driving force of the second heat exchanger. The subregionsare AT, < 165.89 and
AT, £ 165.89 with solutions C* $6,355 and C, "= $6,373 respectively. No better upper bound is
obtained and since the lower and upper bound are close the original problem is solved given a
new incumbent solution of C* = $6,398. The subregions are within a 0.6% of the incumbent
solution, and the algorithm stopswith Al = 0.6253 m?. Aa = 1.219 m?and A; = 4.55m?. Ifa
smaller eisused (e = 0.2%) four more NLP_'s are solved. Thus, with the larger tolerance 3.95
seesand 5 NLPswere reguired, whilewith the smaller tolerance 9 NLPswererequired with 5.1

seesasseenin Table 2.

Example 6

The next exampleisthe one presented by Colbeig and Morari (1990) and Yee et aL (1990). Here
afixed configuration is considered and the network is shown in Fig. 12 and the objective Isto
minimize the area. Two local solutions are listed In Table 8. Applying the algorithm it Is
possible to generate projections for three of the seven heat exchangers. In the Initial
underestimator a lower bound of 242.78 m?|s obtained. The actual objective function for this
solution 1s252.8 m%. The laigest difference correspondsto the Acmi* and the level chosen for
the partition 1s24.696. For Ac y, £ 24.696 the convex solution has an ohjective of A = 246.39
m?, and for the other subregion the solution ISA = 245.1 m?. A better Incumbent solution I's
obtained with an objective of A = 245.6 m? and the solution Iswithin 0.2% of the global
solution. Only three convex NLP under estimator subproblemswere required to convergein a

total of 7.33 seesasseen In Table 2.




29

Example 7

The following example consists of a network reported In Grossmann and Floudas (1987). The
configuration isillustrated in Fig. 13 and the data isgiven in Table 9. The objective function is

to minimize the total area of the network and U, = 0.5 kW/K m?

For this problem it was possible to identify the following six projection terms:
A" £89.5-0.022 Q!

AT=89.5-0.022 Q,

AT < 46.24-0.008 Q4 (50)
AT=< 63.66-0.011 Qs

ATe< 13-0.005 Qe

ATg2 13- 0.005 Qs

The solution of the first underestimator problem IsC,' = 537.966 m? and the evaluation
of the original function hasthe samevalue. Therefore, the optimal solution with Ai= 53.33 m?.
Aa= 100 m?. Aa= 34.28 m? A*= 87.95 m®. As= 149.94 m? A" 52.17 m?, Ay= 26.66 m® and
Ae=36.61m" | sobtained after 5.46 sees, (see Table 2).

Conclusions
*

This paper has presented a global optimization algorithm for heat exchanger networks that
can be formulated In terms of linear rational functions In the objective function and linear
constraints. The key element in the proposed algorithms are the proposed convex nonlinear
underestimators for rational terms which complement the linear underestimators for bilinear
termsby McCormick (1983). Ashasbeen shown with the numerical results, theresulting NLP
underestimator problem provides rigorous tight lower bounds to the global optimum with

which the computational effort in the spatial branch and bound method is greatly reduced. In




30

fact for al cases except one only a maximum of 5 nodes had to be enumerated in the example

problems.

Finally, it should be noted that the method proposed in this paper has been generalized
to nonlinear programs that involve convex, linear rational and bilinear terms in the objective
function and constraints (Quesada and Grossmann, 1992). Also, work is under way to be able
to handle concave cost functions and logarithmic mean temperature differences in the heat

exchanger network, as well as the optimization of the configurations.
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Appendix A. Linear and nonlinear under and over estimators.
A concave overestimating function of a product of functions is given by (McCormick (1983)),
fix) gly) < minf Cy) + g Cda) - U g - Cgy) + gOfx) - & ¢ (Al)

where (<)) and Cg) are concave functions such that for all x and y in some convex set:
Q(X) =«x) (A2
aoy) *a(y) (A3)

Considering the function Ai AT, where f(x) = A, and g(x) =AT,, the concave functions Cf(x) and
Cgly) are functions f(x) and g(y), respectively. The concave overestimating function, which is

linear. Is given by:
AjATAmInlAjLAT] +AjATA-AJLAT,%. A YAT, +A, AT -A VAT ] (A4)

In a similar way as in (Al), the convex underestimating function of a product of functions is

given by:
fix) giy) 2 maxif ¢ ) + gV o) - 10 g0, f-cghy) + goa - £ g} (A5)
whereF°, G"J'-and G* are positive bounds over thefunctionsfix) and g(y) such that
fsfid <V (AB)
g<gy<gl (A7)

and q(x) andCdfy) areconvex functionssuch that for all x and y in some convex set:
a<x) <0x) (AS
¢ sgy (A9)
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Based on (A51) one can generate nonlinear underestimators for the rational terms in the
objective function of problem (P) as follows. In particular, consider the function 21 \where fix)

AT1

=Q, ad g(y)-%. The functions and bounds are given by:

o) =Q; (A10)

e =1 r (All)

Q"<Qi<Q." (A12)

1 1 1

AT luS AT, © AT (A13)
From (A51) the convex underestimator function is given by:

9 9 1 ) A 11J |

aT, 2mex byrg +OF Gy ATlU) ate " e T (Al4)

Appendix B. On the exact approximation of the linear and nonlinear estimators in the

boundary.

The estimator functions (A4) and (A14) have the property that they match the function when
one of the variables is at a bound. This Is because the individual convex and concave

approximation functions in (A2). (A3), (A8) and (A9) are the functions themselves.

Equation (A4) for the linear overestimator reduces as follows:

fA =AY

AMATEMIN[AMAT, +A" AT - A FAT «, A, "AT,J =min [ A'ATj + (A,"-AHATY - ATJ. A°AT, ]
= AV AT, (BI)

if A =AL

At- AT,£Emin | AAT, Al"AT, + (A"- AN(AT, - ATfll = A AT, (B2)

if AT=AT"

AAT"Amin[A,AT,>. A,AT,"+(A,"-AJ(AT,%-ATNI=A,AT " (B3)

if AT=AT}

A ATAAmin[A AT, <f (A, -A")(AT - ATH .A ATH = A, AT )
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Equation (A14) for the convex nonlinear underestimator reduces as follows:

if ATj = AT
o G 1 - 9 9 6 G L
E%E _MIATU'ATL QIU(AT‘U - ATII-”"maxlAT" ATL AT“ ATu+gU(ATiu AT,L“
- 1 .. 8
SMEXUATU ATV *(Q‘U'Q'XAT,U "2t 1= arp (B5)
similarly when AT, = AT
9 _Q_ _Q_ __Q_ 2_ -9
(56)
for Q= QY
U : U " 1 U U
& rmadlp.am? -4y 8 =mag B Q-QHt -y =&
(B7)
finally for Qj = Qi
o - OF 11 . I_Qn_" aQ 5 -1 1, 9
AT, 2maxbag. arg +QV G, - aTE 1= T AT, c@F A A AT - aTEN=aT,

(B8)
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Table 1. Data for motivating example.
Temperature
Streams Fco (KW/K) Inlet (K) Qutlet K)
Cl 1 300 400
C2 555 365 —
C3 3.57 358 —
HI 454 575 395
H2 3.125 718 398

Table 2. Size and computational results of example problems.

Sizel Initial objective |Global No. of LP NLP
Problem {Original | NLP | C, c__toptimum| nodes | time? | time?
Exl 12.13 16.31)§ 327200 1 36.160 36.160 5 3.20 0.90
Ex 2 12.13; 16.31)§ 18.640 { 19.160 19.160 5 3.20 105
Ex 3 7.6) (9.11) 9.49 9.49 9.49 1 0.65 0.10
Ex4 11.9 (14.23)] 6.420 6.420 6.420 1 1.50 0.22
Ex 5 11.9; (14.23)] 6.269 6.482 6798 5 2.70 125
(e=0.2%) ) (3.90) | (2.20)
Ex 6 SZO.Zlg (27.52)] 242.78 252.8 245.5 3 5.23 2.10
EJC7 26.30 (27.68)] 537.97 } 537.97 537.97 1 5.03 0.43
Y (m, n)y m= # of variables, n= # of constraints
Z CPU secondsin a | BM/R6000-530
Table 3. Initial lower and upjper bounds for example 1,
Heat CBArea UBArea L B Heat | oad| UBHeat LB AT UB AT |
Exchanger |(m?) (m?) (KW) LoadfkW) | (K) (K)
1 111 1352 5.55 973125 20 133.03
2 0.425 4.743 2.1875 94.44 515 199.11
3 0.0106 4.474 2.1875 94.44 21.11 205.625
4 0.0162 1.469 5.55 97.8125 66.5625 |34333

Table 4. Areafor first convex underesdmator In example 1.

Heat Convex Exact Incumbent
|éhcctifloger § Solution Solution Solution
1 5.95 6.74 7,35
2 1.46 2.70 0.424
3 0.14 0.14 0.0106
4 0.60 0.60 1.469
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Table 5, _Data for example 2.
Temperature
Streams Fcp (KWIK) Inlet (K) Outlet (K)
Cl 1 250 400
Cc2 1 370 —
C3 1 352.5 —
HI 1 580 380
H2 1 512.5 362.5
Table 6. Data for example 4.
Temperature (K) Fcp
Stream [nlet Qutlet (KW/K)
Cl 300 400 10
HI 450 — 10
H2 500 — 10
H3 550 — 10
Table 7, Datafor example 5.
Temperature (K) Fcp
stream [nlet Quitlet (KW/K)
Cl 300 400 10
HI 490 . 10
H2 500 e 10
H3 550 — 10

Table 8« Areasfor local solutions|n example5,

roam*Mil| y vy =
1 %——%‘i—%n; ﬁﬁ A?J% ‘1\5'5 42.76 | 491.61
2 30.53 45.41 107.9 6.70 2.74 0.00 52.34 245.62
Table 9 Datang example 7
Stream Pep Inlet T Outlet T
HI 40 400 325
H2 20 450 £350
H3 20 400 £360
H p— 540 530
Cl 50 310 380
Cc2 60 290 410
C3 20 285 340
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Figure 1. Network for motivating example.
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Figure 2. Cost of the netwoik ver susfor the motivating example.
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Figure 10. (a) Original objective function for example 3. (b) Objectivewith linear and nonlinear

underestimators.

Figure 11. Network for example 4.
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