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As process optimization becomes an established and mature technology for process simulation,
analysis and operation, it becomes important to consider larger and more creative problem
formulations and applications, as well as the development of efficient algorithms to tackle them.
Here, some novel process optimization applications are briefly reviewed in the following areas of
process design and analysis:

• treatment of constrained and nonsmooth simulation problems, particularly in phase equilibrium
• synthesis of chemical reactor networks through the application of targeting strategies
• more efficient strategies for process optimization and postoptimality analysis
• treatment of uncertainty through multiperiod optimization problems
• the role of automatic differentiation tools in process optimization

An outline of the concepts behind each of these topics will be presented and process examples are
briefly described in order to demonstrate the effectiveness of these optimization-based applications.

Introduction

Over the last few years there has been renewed interest in optimization methods for a broad range of
tasks in process engineering. Process optimization has always been a natural task for every process
engineer, but only recently have reliable and efficient optimization tools been integrated into the
engineers toolkit. As these tools are further applied, the size and complexity of the applications will
certainly increase, but also the types of applications will change, much the same way that the scope
of process simulation has evolved and broadened. In particular, the efficient performance of
optimization tools will sharpen optimization problem formulations from vague, poorly defined
descriptions to precise and clear tasks. Moreover, with frequent application the purpose of an
optimization study will shift from a single optimal design to a decision-making tool where "what-if'
questions can be explored at a higher level

In this paper, a few applications and examples are described to reflect this philosophy and to
highlight recently developed optimization approaches for novel and untypical applications. A special
class of optimization algorithms, Successive Quadratic Programming with reduced space
decomposition, was reviewed in Biegler (1992) and Schmid and Biegler (1992). An important
aspect of these algorithms is that they can be tailored to the structure of specific process
applications, such as separation and reaction systems. Because of the availability and easy
applications of these and other related optimization tools, new problems and applications can be
addressed readily. In this paper, for example, through relatively simple reformulations with
optimization methods, results are obtained on problems that are difficult to handle with existing
simulation tools. In the following sections we consider a number of process applications that are not
normally considered through an optimization framework. For these we stress the use of
optimization strategies as a tool that guides decision-making at a higher level and handles many of
the tedious lower-level decisions automatically.



In the next section, we consider the application of Successive Linear Programming strategies for
constrained simulation problems. Here a process simulation problem can easily incorporate variable
bounds and inequality constraints. Moreover, many combinatorial aspects of simulation problems
including nonsmooth functions, checkvalves in flow networks and phase changes in vapor-liquid
equilibrium can be addressed through the addition of inequalities and linear penalty terms. A
constrained simulation method is briefly summarized with examples. In addition, simulations of a
column below the minimum reflux ratio are described.

Section three then explores a different approach to reactor network synthesis, based on targeting
concepts driven by nonlinear programming. Over the last decade, process synthesis has yielded a
wealth of applications for novel optimization-based strategies; examples abound for energy and
separation networks. While a survey of process synthesis is beyond the scope of this paper, the
concept of attainable regions is outlined here for reactor networks. To aid in this synthesis process,
simple nonlinear programs are formulated to explore the attainable region in higher dimensions.
Moreover, this optimization-based approach can be integrated within larger process problems in
order to synthesize a reactor network that accounts for interactions with the flowsheet.

Section four deals with flowsheet optimization and briefly sketches the advantages of obtaining
analytic derivatives from the process simulator. Here, benefits for optimization include drastic
reductions (up to 80%) in computational effort, in addition to more reliable performance. There is
also an important side benefit, a straightforward and cheap method for post-optimality analysis.
Based on the structure of reduced Hessian methods, sensitivity of the optimal flowsheet is obtained
with, at most, a few additional flowsheet passes. This analysis yields second order sufficiency
tests, directions along which the objective function is insensitive or nonunique, and changes in the
minimizer as a result of changes in external parameters. A typical process example is summarized
for illustration. With this capability, one can also consider the related problem of optimization under
uncertainty, and formulate it as a multiperiod design problem. Here each design scenario is
incorporated as a set of constraints in the optimization problem and a much larger problem results.
Fortunately, efficient decomposition strategies have been developed for these problem classes so
that the computational effort increases only linearly with the number of periods.

Finally, the paper concludes with a brief summary of future developments and directions. These can
be classified as better methods and interfaces for optimization modeling as well as a changing
perspective toward optimization as a tool for a broad range of process applications. This change is
driven by the awareness of better tools coupled with a shift in the designer's education, from
optimization methods to more sophisticated problem formulations.

Constrained Simulation through Successive Linear Programming

For the past thirty years, Newton's method has been the standard algorithm for solving nonlinear
equations in process engineering. Through clever problem implementation and initialization, it is
virtually the only method used for large-scale, equation-oriented process simulations. While this
method has generally been successful, its disadvantages are also well-known. In particular, poor
starting points, ill-conditioned problems and singularities lead to poor performance and failure of
the method. Moreover, on typical process problems (h(x) = 0) the variables, x, are usually confined
to physically well-defined regions (e.g., lower and upper bounds, 1 < x < u) and inequality
constraints (g(x) £ 0) can often be derived in order to isolate desirable solutions. Such restrictions
are difficult to incorporate systematically within a Newton solver; therefore we consider an
algorithm where we replace the linear equations within each Newton iteration,
h(xk) + VhT(xk) (Ax) = 0, with the following linear program (LP):

Min X (Pj+nj)
d j

st h(xk) + VhT(xk) d = p - n

l < x k + d<u
p, n > 0



where p and n are artificial variables that are forced to zero at the solution and d is the search
direction in x. Duff et al. (1987) developed an LP-based algorithm that uses a trust region approach.
For bounded regions, we also note that global convergence can also be enforced through a line
search procedure. Moreover, Bullard and Biegler (1991) proved the following properties for a
Constrained Successive Linear Programming (CSLP) algorithm:

•The algorithm converges quadratically (as fast as Newton's method) near the solution

•The merit function \L(X) = ]T |hj (xj)| + £gk(*i)+
 wil1 a^ways decrease for d^O.

j *

•A descent direction d and improved points can always be obtained for a non-zero solution of the
LP

•The algorithm terminates at a non-solution point only in the case of a pseudosolution, in which d =
0 and \i(xi) *0. Systematic methods to recover from pseudosolutions are described in Bullard and
Biegler (1991).

Thus, while there is no guarantee that the method will converge under all conditions (a global
optimization algorithm is required for this.) the approach can handle most singularities and always
remains within variable bounds. In Bullard and Biegler (1991) we provide a summary of this
approach on 68 test cases, many of which are process examples. Here we compared the CSLP
approach with the results reported in Buzzi-Ferraris and Tronconi (1986) and S waney and Wilhelm
(1989); in most cases our results were quite favorable. In addition, results are obtained for MINOS
(which for these problems is essentially a sparse Newton solver). Here CSLP was successful on all
problems while MINOS fails on 23. Also, our approach required fewer function evaluations than
MINOS on 42 out of the remaining 45 problems.

In addition, the constraint handling features of CSLP lend another advantage to process simulation.
Here process equations and relations with nonsmooth terms (e.g., absolute values, floor functions
and max operators) can cause difficulties for Newton-based solvers. On the other hand, these can
be handled through straightforward reformulations that involve inequality constraints in CSLP. For
example, an absolute value term in y can be rewritten as z = max(y,-y) and reformulated by the
following inequalities:

z£ y, z£ -y , (Xi-X2)y^ z, 0 < X i , X 2 < l (2)

Note that the X variables ensure that at least one of the elements in the max operator is active. This
approach was applied in Bullard and Biegler (1992a) to pipe networks with (on/off) checkvalves as
well as fluid flow problems with laminar/turbulent transitions. In both cases, combinatorial
decisions in the model are made automatically through appropriate constraint activity from the max
operators. As a result, only a single simulation is required here and no corrective decisions are
needed by the designer. Moreover, the number of CSLP iterations (equivalent to Newton iterations)
required for these problems is similar to those for the corresponding "smooth" simulation.

Finally, we consider a simplified case of vapor-liquid equilibrium where transitions may occur
from/to one and two phase regions. Within a modular simulation engineering such problems are
handled procedurally by first calculating bubble and dew points. In nonprocedural environments
(e.g. equation oriented steady-state, multi-stage or dynamic), this becomes much more difficult and
expensive to handle. Using a penalty successive linear programming (PSLP) formulation, on the
other hand, one can derive a simple, automatic strategy to handle phase transitions. This approach is
supported by two arguments:

•the PSLP approach is equivalent to performing a Gibbs free energy minimization of the vapor-
liquid system. This was proved in Bullard and Biegler (1992b) and can also be extended to more
complex multi-phase systems

•the PSLP approach can be visualized intuitively by introducing a new parameter (such as a pseudo-
pressure) and observing that in the single and two phase regions a consistent set of equations
results. As a result single phases can be viewed as bubble or dew points evaluated at "pseudo-



pressures .

Here we summarize this approach and illustrate it with some simple examples.

F , z :
= K i(x i ,T,P)x i

L, x.

Figure 1. Isothermal flash operation.

Consider the simple flash unit in Figure 1 with the following set of vapor-liquid equilibrium
equations. For the moment we assume that vapor fugacity and liquid activity coefficients are
independent of pressure (in a more general formulation this assumption is not required). Here we
have:

i ( i y i
F-(L + V) = 0 (3)

yi - Kj (P, T, x) xi = 0, i = l,...n

where the notation is defined from Figure 1. Introducing a pseudo-pressure variable, Pp. within the
equilibrium expression and its absolute deviation (5) from the specified pressure, Ps,leads to the
following relations:

PP (4)

y i -Ki(P P ,T ,x)x i = 0

In the two phase region, (3) and (4) reduce to the square system
8 = 0
Ps = Pp
Zj F = Xi L + yi V, i = l,...n
F L V (5)

i-l i-1

For the single phase liquid region, this formulation reduces to:
V=0
8 = P s - PP



i i
F = L (6)

|

and Pp is the bubble point pressure. A similar reduction occurs for the single vapor reqion where Pp
becomes the dew point pressure. The following optimization problem allows us to obtain these
solutions:

Min 5
st h(x, y, L, V, PP) = 0

5 > P s - P P (7)
8 > PP - P s
5 > 0
0 < L, V < F
0 < xi, y i < 1

where h(x, y, L, V, Pp) = 0 are the flash equations given in (3). This NLP has a vertex solution and
can be solved through PSLP by solving the following linear program at each iteration (instead of
taking a Newton step):

min

st hj + V hj d =

5£PS-Pp

8 > PP - Ps

8, pj, nj > 0
0<L ,V<F
0 < xif y i < 1

(8)

100"

T(K)
Figure 2. Vapor flowrate versus temperature for Nonideal Flash (Methanol, Acetone, Methyl
Acetate, Benzene, Chloroform)

where o is a small positive constant The application of this approach on a small nonideal IP flash
is presented in Figure 2 (see Bullard and Biegler, 1992b, for more details). Note here that the vapor
flow rate increases as a function of temperature, from zero at the bubble point to the feed rate at the
dew point Our single problem formulation captures all of these characteristics.



This approach has been demonstrated on many examples including ideal and nonideal mixtures and
even retrograde condensation (Bullard and Biegler, 1992b). More importantly, however, it can
easily be incorporated into multi-stage separation systems to describe limiting behavior of
equilibrium-staged columns. Here the familiar mass-equilibrium-summation-heat (MESH)
equations are modified with pseudo-pressure variables on each tray (the ith tray), in a similar
manner as in (7). An objective function is formed through summation of the penalty variables (80
and the combined system is solved by the PSLP approach.

The advantage of this strategy is seen for distillation columns that are specified below the minimum
reflux ratio or below a minimum heat duty. In these cases, the PSLP approach will yield solutions
with dry trays or vaporless trays, respectively. For example, the (methanol, acetone, methyl acetate,
benzene, chloroform) column described in Figure 3 exhibits the following output concentrations in
Table 1 as a function of the reflux specification. Note that below the minimum reflux (about 0.1),
PSLP allows the tray above the feed to be dry and thus the liquid path is broken.

Figure 3. The McCabe-Thiele diagram (lower) illustrates the distillation case
having low reflux and highboilup rate with saturated liquid feed When reflux ratio
is below its minimum value, liquid flow becomes zero on trays above the feed



Reflux
ratio

8.5
7.0
6.0
5.5
4.5
4.0
3.0
2.5
2.0
1.5
1.0
0.75
0.10
0.001
5E-05
4E-05

XM

0.013
0.010
0.009
0.008
0.007
0.006
0.006
0.007
0.008
0.013
0.025
0.036
0.075
0.075
0.075
0.075

bottom product
XA

0.350
0.356
0.340
0.362
0.367
0.373
0.391
0.385
0.389
0.389
0.391
0.391
0.393
0.393
0.393
0.393

XMA

0.053
0.055
0.055
0.056
0.056
0.057
0.057
0.058
0.058
0.058
0.058
0.057
0.055
0.055
0.055
0.055

XB

0.283
0.281
0.280
0.279
0.278
0.276
0.275
0.274
0.272
0.269
0.264
0.260
0.240
0.240
0.240
0.240

xc

0.301
0.298
0.296
0.294
0.291
0.287
0.284
0.281
0.277
0.271
0.262
0.256
0.236
0.236
0.236
0.236

XM

0.373
0.377
0.379
0.380
0.382
0.384
0.384
0.383
0.380
0.372
0.353
0.335
0.271
0.271
0.271
0.271

top product
XA

0.482
0.472
0.465
0.461
0.453
0.443
0.437
0.431
0.424
0.418
0.415
0.415
0.411
0.411
0.411
0.411

XMA

0.044
0.042
0.041
0.041
0.040
0.039
0.038
0.038
0.037
0.037
0.038
0.038
0.042
0.042
0.042
0.042

XB

0.065
0.068
0.070
0.071
0.073
0.076
0.078
0.080
0.083
0.088
0.096
0.103
0.135
0.135
0.135
0.135

xc

0.035
0.041
0.044
0.047
0.052
0.058
0.063
0.068
0.076
0.085
0.099
0.108
0.141
0.141
0.141
0.141

Table 1. Top and bottom liquid mole fractions of methanol, acetone, methyl acetate, benzene, and
chloroform obtained by PSLP. Note the constant compositions below a reflux ratio of 0.1. Here
tray 13 (above the feed) is liquidless.

Finally, the equivalence of PSLP to Gibbs minimization can also be extended to multiphase
systems. Therefore, future work will extend this strategy to more complex separation systems, such
as heterogeneous distillation and liquid-liquid extraction. In addition, the conceptual simplicity of
this strategy (replace the Newton step by a linear program) allows application to any equation-
solving environment (steady-state or dynamic) and thus leads to more reliable and powerful
simulation strategies for complex process models.

Targetting for Reactor Networks using Optimization Tools

Process synthesis has yielded a wealth of applications for optimization-based formulations.
Examples of linear and nonlinear programming formulations can be found in the synthesis of heat
exchanger networks (Gundersen and Naess, 1988) and mixed integer formulations (with discrete
decision variables) are widespread for energy systems, separation sequences and the synthesis of
total flowsheets. A detailed review of these approaches is beyond the scope of this paper and
excellent surveys of these approaches can be found elsewhere (e.g, Grossmann, 1990). Moreover,
research in this area proceeds at a healthy pace through the efforts of Floudas, Grossmann,
Pibouleau, Westerberg and many others. In this section we discuss the application of simple NLP
formulations to a particularly difficult process problem, the synthesis of reactor networks. Unlike
the synthesis of energy or separation systems, this area has seen relatively little development and
still contains a number of open, unresolved problems. Moreover, as with many optimization-based
approaches to process synthesis, most research relating to reactor networks has concentrated on
superstructure optimization (Chitra and Govind, 1985; Pibouleau et al, 1988; Kokossis and
Floudas, 1990; Achenie and Biegler, 1990). With this approach, a network is constructed that
captures a large family of potential solutions, to be determined by a (mixed integer) optimization
strategy.

While the superstructure approach has been useful in discovering innovative and improved
networks for complex reaction mechanisms, this approach can suffer from three limitations. First,
one is seldom certain that the proposed superstructure is rich enough to capture the "best" reactor
network. Second, modeling equations tend to be nonlinear and therefore lead to nonconvex
optimization problems (unlike MILP formulations for energy and separation systems); possibilities



for local optima with poor characteristics are likely. Finally, multiple networks can be derived that
yield identical performance characteristics. (For example, compare a network with two tubular
reactors in parallel to a single reactor with an intermediate exit stream.) In addition to finding a local
optimum, the synthesis procedure may also yield a reactor network that is more complicated than
necessary. To avoid these limitations, the alternative (and often complementary) approach of reactor
targeting can be extremely useful. Using an analogy with heat exchanger network synthesis
developed initially by Linhoff and coworkers (Linnhoff et al., 1982), targeting provides realistic
bounds on system performance before the network is constructed.

For reactor networks, such bounds or targets can be developed through the concept of attainable
regions initially proposed by Horn (1964). More recently, Glasser, Crowe and Hildebrandt (1987)
developed powerful geometric properties for reactor networks, and derived necessary conditions for
which the attainable region is closed and cannot be extended by additional reactors. In developing a
constructive approach, Glasser et al show that the attainable region, created by the operations of
reaction and mixing, is a convex hull of reactor trajectories. This region can only be extended by
rate vectors within the convex hull pointing outward (extension by a plug flow reactor) or rate
vectors outside the convex hull projecting backwards into the convex hull (extension be stirred tank
or recycle reactors). By searching the attainable region, a network is derived constructively and
extended until the attainable region is complete. Any point in the attainable region can then be
realized from the reactors used in the construction and thus the reactor network is no more
complicated than it needs to be.

The geometric targeting approach was applied to isothermal reactors with two to four species. Later
studies (Hildebrandt, Glasser and Crowe, 1990; Hildebrandt and Glasser, 1990) extended this
approach to residence time optimization and nonisothermal systems. However, the chief advantage
of the geometric approach, visualizing the attainable region, is also its limitation. To date, problems
have only been solved that could be plotted in two (and in some cases, three) dimensions. More
complex reaction mechanisms cannot be treated completely with this constructive, geometric
approach.

On the other hand, the principles that govern this strategy can also be adapted to an optimization-
based framework. Here, one can explore higher dimensions through nonlinear programming
formulations. An attainable region is first constructed using limiting assumptions about the system
and further extensions to this region can then be found by solving small nonlinear programs. To
outline this approach, consider an isothermal system described by an arbitrarily complex reaction
mechanism.

\ \ \ \ \
Figure 4:: Segregated flow model

If we assume that the reactions take place only in segregated flow, as shown in Figure 4, the
optimization problem can be given by:

Max J ( Xexit > t)

& * - = R(Xseg), Xseg(0) = X o

tmax tmax tmax
Xexit = / f(t) X s e g (t) dt, J t f(t) dt = X, J f(t) dt = 1 (9)

0 0 0
where t is the age of the molecule in the system, f(t) is the residence time distribution, Xseg is the
dimensionless concentration of molecules in the segregated environment, R(X) is the dimensionless
rate vector, x is the mean residence time and Xexit is the exit concentration. Here, the objective
function, J, is specified by the designer and can be any function of Xexit and x. One can see that
the differential equation system can be solved offline for X seg if XQ (feed concentration) is



constant. Once Xseg is determined, Gaussian quadrature is applied on finite elements in t and we
have:

Max J (Xexit, t) (10)
EiZj w(j)f(i,j)oc(i) = 1
x = S iE jwG)f ( i j ) t ( i j ) a ( i )

= 2iEjw(j)f(i,j)XSeg(ij)a(i)

Here, f(i,j) and Xseg(i,j) correspond to the profile values in the i^1 finite element and j ^ 1 quadrature
point; i is the index of finite elements; j is the index of the quadrature points; w(j) and a(i) are
constants that denote the Gaussian quadrature weights and the fixed length of the i^1 finite element,
respectively. Note that the constraints in (10) are linear and if the objective function is either yield or
selectivity, problem (10) is simply a linear program (UP).

Solution of this LP will yield an optimal isothermal reactor network under the assumption of
segregated flow; these solutions consist of at most two parallel plug flow reactors (PFRs). Often
this assumption alone will generate an optimal network; Balakrishna and Biegler (1992a) derive
convexity conditions for the PFR trajectories for which a segregated flow solution is sufficient. If
these convexity conditions are not satisfied, small NLPs can be solved and the goal is now to find
additional (mixed) reactors that allow extensions to the attainable region. From the assumption of
segregated flow and global solutions resulting from the LP, it is clear that no further PFRs can be
found that improve the objective. To find a continuous stirred tank reactor that allows these
extensions, one need only solve the following problem:

Max JCSTR (Xexit) dD
XS = £i Zj wG) f (i j) Xseg (i,j) cc(i)

=XS +TR(Xexit)

where t and Xexit refer to the CSTR extension and Xs is the output from the segregated region.
Similarly, a recycle reactor extension that improves the objective can be found by:

Max Jrr (Xexit) (12)
s.t. XS = EiEj w(j)f(ij)X s eg(ij)a(i)

Ei Lj wG) fr(ij) a(i) = L0, Zi Zj wG) fr(ij) t(ij) a(i) = x < xmax

with the residence time distribution, fr, dimensionless concentration, Xn> and Xexit defined for the
recycle reactor extension, A new candidate region is then formed by the convex hull of either of
these reactor extensions coupled with the segregated flow region. As illustrated in Figure 5 this
strategy continues until no further extensions can be found. Further details of this approach are
presented in Balakrishna and Biegler (1992a). Here it is interesting to note that this optimization
based approach is equivalent to geometric targeting as long as the extensions to the attainable region
yield monotonic improvements in the objective function. Since the geometric approach considers all
extensions to the attainable region (not just those that improve the objective), it is possible that
nonmonotonic improvements in the objective can lead to better designs with the geometric
approach. On the other hand, the optimization-based targeting approach has conceptually no
limitations on the problem dimension that can be considered.
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Figure 5: Flowchart for stagewise synthesis

To illustrate the optimization-based targeting approach, consider the isothermal Denbigh reaction
with the following mechanism:

ki k2

A -> B -> C
k3 i I U

D E
The dimensionless reaction rate vector for components A,B,C,D,E respectively, is given by R(X)
= [-XA(k3 + kiXA), kiXA

2 - XB(k4XB + k 2) , k2XB , k3XA, k4XB
2 ], where ki = 6.0 s"1, k2

= k3 = 0.6s-1, k4 =0.6 s"1, CAO = 6 mol/L, CDO= 6 mol/L The objective here is to maximize the
yield of product C subject to 95% conversion of A. Following the stagewise approach in Figure 5,
we observe a CSTR extension from the seg flow model, which gives a C yield of 3.726 mol/1 with
a CSTR residence time of 3505 sec. The residence time in the segregated environment is 0.766 sec
(with a Dirac delta function for f(t), which corresponds to a PFR). No further extensions are
observed beyond this point. By mixing Xexit with the feed 95% conversion of A can be achieved,
which corresponds to a C yield of 3.54 mol/lit. Glasser et. al (1987) observe similar results with a
CSTR with infinite space time.

Finally, an important advantage to optimization-based targeting is that it can be integrated within
larger process synthesis formulations. In particular, designing a reactor network that interacts with
the separation and energy systems in a process flowsheet can be done straightforwardly and
efficiently - without proposing a reactor network in advance. Here the problem formulations
described above are extended to include interactions with the rest of the flowsheet and the approach
described in Figure 5 follows as before. To illustrate this concept, consider the Williams and Otto
process illustrated by the flowsheet in Figure 6.



Prod

To fuel

Figure 6: Williams and Otto Flowsheet

The plant consists of a reactor, a heat exchanger to cool the reactor effluent, a decanter to separate
a waste product G, and a distillation column to separate product P. A portion of the bottom product
is recycled to the reactor, and the rest is used as fuel. The following reactions are involved in the

* manufacture of compound P:
A + B -»C, C + B -> P + E, P + C -> G

with rate vectors summarized in Balakrishna and Biegler (1992a). Decision variables include the
reactor temperature, residence time and the purge fraction. In previous studies, the reactor was
specified as a CSTR and the return on investment (ROI) was maximized. Here we replace the
CSTR with a segregated flow targeting model embedded within the flowsheet. It should be noted,
however, that the targeting problem is slightly complicated by a nonconstant feed vector; a
discretization of (9) is solved here. As defined in previous studies, the ROI objective function
includes all raw material and separation costs for the plant and a maximum ROI of 130% can be
obtained with a fixed CSTR model. With the targeting model integrated within the flowsheet, an
ROI of 278% was obtained. Moreover, no CSTR extensions can be found that improve the ROI;
here the optimal network is just a PFR with a residence time of 0.0111 hr. These results indicate
that significant savings can be obtained by integrating the reactor with the flowsheet, even with
simple targeting models.

Balakrishna and Biegler (1992b) have extended this approach to nonisothermal reaction systems as
well. Here, in addition to defining and extending candidate attainable regions through nonlinear
programming formulations, optimal temperatures and temperature profiles are determined that allow
for general heating and cooling strategies. Also, this NLP formulation can easily be coupled to
synthesis strategies for heat exchanger networks, by appending the targeting formulation of Duran
and Grossmann (1985). As a result of this approach, optimal reactor and heat exchanger networks
can be derived simultaneously and trade-offs between raw material conversion, energy and capital
costs are considered and optimized directly. Balakrishna and Biegler (1992b) illustrated this
simultaneous reactor and energy targeting approach on a process flowsheet with a van de Vusse-
type mechanism. As a result of the simultaneous strategy, overall raw material conversion to
product increased from 49.6% to 61.5% and the profit was over 90% higher when compared to a
sequential strategy, with the best reactor targeting strategy followed by energy integration!
Interestingly, both approaches lead to single plug flow reactors but with only small differences in
temperature profiles. Note again, that the compact nature of the targeting formulation (as opposed
to a large superstructure of reactors) leads to a tractable optimization problem for a complex
process.

Uncertainty and Optimal Flowsheets

In many design studies the process model and optimization problem specification may be subject to
uncertainty. Consequently, it is often argued that the optimal solution may not be reliable and of
little value to the designer. As optimization tools become more reliable, efficient and user-friendly,
the ability to obtain multiple optimization cases quickly becomes an effective counter to this
argument Also, the results of the optimization study can reveal additional information other than an



optimal design. In this section we explore two optimization-based tools, postoptimalty analysis and
multiperiod optimization, in order to cope with process uncertainty.

Once an optimum design is obtained, one is frequently interested in the sensitivity of the objective
function and the optimal decisions. Questions such as "Is the optimum flat?", "What are the binding
constraints?", "How does the objective change if I relax this constraint?" are often asked and these
can be resolved either by examination of the Kuhn-Tucker multipliers or by running additional
cases. Additional sensitivity analysis is not only possible, but is often quite inexpensive, compared
to the cost of obtaining the optimum solution. Indeed, such an analysis is a standard tool in linear
programming. Extensions of this approach have been made to nonlinear programming as well,
particularly in the context of SQP. To illustrate this analysis, consider the following general
optimization problem:

Min f(x,p) (13)
s.t. h(x,p) = 0

< x < u(p)

where p are specified parameters, and 1 and u are bounds on x. First order Kuhn-Tucker conditions
. for this system are given by:

VxL(x, X, \i) = Vf(x) + Vh(x) A. + jiu - w = 0 (14)
h(x,p) = 0
0 < ^iu, [i\; l(p) < x < u(p)

where L(x, X, |i) is the Lagrange function. To address the problem of sensitivity of the optimum,
we also consider the second order Kuhn-Tucker sufficient conditions; i.e., the reduced Hessian of
the Lagrange function, ZTVxxL(x, A,, \i) 7+ must be positive definite at the optimum. Here the Z
matrix lies in the null space of (all of) the active constraint gradients and a strict local optimum
requires positive curvature of the Lagrange function, in the space spanned by the degrees of
freedom of the problem. All other variables are determined by the set of active constraints, provided
they are linearly independent. Since there are generally few degrees of freedom for process
optimization, evaluating the reduced Hessian in this space is inexpensive, even if it needs to be
determined by finite difference. Evaluating the eigenvalues of this matrix quickly resolves the
questions of positive curvature or leads to the following considerations.

Are any eigenvalues zero or very small? Under these conditions, one can argue that the objective
function is relatively insensitive (flat) in a neighborhood about the optimum. For zero eigenvalues, a
ridge of nonunique optima can often be found along the corresponding eigenvector, which can be
explored to gain further insight about the problem.

Are any eigenvalues negative? Because most NLP methods are constructed to find only first order
Kuhn-Tucker points, second order conditions are rarely checked. This is also true among SQP and
reduced gradient methods that use line searches. In the case of saddle points (indefinite systems
with positive and negative eigenvalues), it is easy to restart the problem by moving along a direction
of negative curvature (e.g. the eigenvector corresponding to the negative eigenvalue) and solve the
problem again. Because any step along this direction leads to an immediate decrease in the
objective, any reasonable optimization method is guaranteed not to revisit the saddle point, and to
move to an improved point

Related questions deal with parametric sensitivity of the optimum solution, particularly with respect
to parameters that cannot be specified with certainty. Here we may be interested in sensitivities of
the optimal decision vector as well as the change in the objective. The sensitivity analysis follows
directly from the first order Kuhn-Tucker conditions. If the active constraints are independent at the
optimum, differentiating these conditions implicitly with respect to p leads to the following
expressions:

VxpL(x, X, \i) + VxxL(x, X, \i) VpxT + Vh(x) VpXT + (Vp^u - VpW)T « 0 (15)



Vph(x,p)T + Vxh(x,p)TvpxT = 0
Vpxb = Vpl(p) or Vpu(p)

where Vpx is the sensitivity of the minimizer to p and xb are the bounded variables at the optimum.

These equations easily lend themselves to decomposition. First, note that bounded variables (xb)
have sensitivities given directly by the sensitivities of the bounds. The remaining variable
sensitivities can be determined by partitioning them into dependent components, py, which lie in the
range space Y of Vh, and independent components, pz, which lie in the null space Z of VhT. The
combined contribution to the remaining (free) variables Xf is given by Vpxf = Ypy + Zpz. Similar
concepts are developed in Fiacco (1982) and Ganesh and Biegler (1987). The resulting sensitivity
equations are therefore:

VpxN = Vpl(p) or Vpu(p) (16)
pY = -(Vxh(x,p)TY)-l(Vph(x,p)T + Vxh(x,p)T VpxN)
PZ - -(ZTvxxL(x,p) Z)-l ZT[VxpL(x,p) + VxxNL(x,p) VpxNT + VxxL(x,p) Ypy)]
V Y Z

Note that sensitivities within the range space are given directly by the gradients of the equality
constraints while sensitivities for the independent variables also require the reduced Hessian matrix.
Thus the only additional information that is required at an optimal point is the derivative information
on the right hand side and possibly the reduced Hessian (if second derivatives are not used for
optimization). These are readily obtained with a few additional perturbations. Finally, once the
sensitivities in the optimal decision variable vector are determined, estimated changes to the
objective function, with respect to finite parameter perturbations, can be determined through a
Taylor series expansion. A detailed description of this approach is provided in Wolbert et al (1992).

Ganesh and Biegler (1987) applied this approach to small flowsheeting problems. More recently,
Wolbert (1992) refined this approach and implemented it within the PROSIM simulation
environment, along with tailored RND/SQP methods (Biegler, 1992) for simultaneous optimization
and recycle convergence. The PROSIM implementation has a major advantage in that derivatives for
all modular inputs and outputs are calculated analytically. As a result, one of the most time-
consuming steps for flowsheet optimization is streamlined. Moreover, the availability of accurate
derivatives allows faster and more reliable behavior of the optimization algorithm. With an efficient
RND/SQP optimization strategy Wolbert noted 70 to 80% reductions in effort when using analytical
derivatives over derivatives obtained by perturbation. In addition, the availability of analytic first
derivatives allows rapid calculation of reduced Hessian matrices, either for the RND/SQP algorithm
or for sensitivity analysis.

Wolbert et al. (1992) analyze a number of PROSIM flowsheet examples with this postoptimality
approach. To illustrate this approach, consider the ammonia process shown below. Here Wolbert
(1992) showed that using analytical derivatives leads to a 74% reduction in effort for flowsheet
optimization. At the solution it interesting to note that the eigenvalues for the reduced Hessian
matrix (of order four) range from 10"10 to 10"4, indicating that the optimal solution is relatively flat
for the four independent directions. Moreover, as shown in Wolbert (1992), sensitivity of this
optimal flowsheet to the feed and reactor conversion is nearly linear. Therefore the sensitivity
analysis outlined above gives an accurate representation of the changes in objective and decision
variables for this example.

Further consideration of uncertainty can be handled through the framework of multiperiod
optimization and flexibility analysis (Grossmann and Straub, 1991). While sensitivity analysis
gives an indication of the effect of uncertain parameters on the optimum design, it is usually
important to guarantee that an optimum design remains feasible for a specified range of
uncertainties. Here Grossmann and coworkers have advanced the concept of process flexibility and
developed sufficient conditions to guarantee feasibility for a given design. In general, this analysis
applies to linear systems and can be extended to systems that meet certain convexity requirements.
In addition, the flexibility of a process to parameter uncertainties has been quantified using both
deterministic and stochastic measures. Finally, Pistikopoulos and Grossmann (1989) and Straub
and Grossmann (1990) have developed optimization-based analysis tools that allow trade-offs of an



economic objective and flexibility or reliability, respectively. In this way one can obtain a
quantitative measure for the optimal overdesign of a process.

While a detailed discussion of flexibility analysis is beyond the scope of this paper and is covered
elsewhere, uncertainties for general process optimization problems can often be captured by a finite
(but possibly large) set of discrete design scenarios. A useful formulation for an optimal design for
these scenarios is given by the following multiperiod optimization problem:

Min fo(d) [, d) (17)

s.t. hi(xif d) = 0
li < xi < ui
l < d < u

where wi are weights for each scenario i with the objective function terms corresponding to each
period- Here the ith scenario (or period) is represented by a different set of variables xi and
constraints hi; coupling of the scenarios is effected through decision variables d, which are fixed for
all periods (e.g., equipment parameters). Thus the optimal design represented by these decisions
needs to satisfy all of the scenarios as part of the problem formulation.
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Figure 7: Ammonia Process Optimization and Sensitivity Analysis

The multiperiod approach successfully captures the concept of a reliable optimal design as long as
the uncertainty of the process can be represented by discrete scenarios. However, note that the
problem size increases directly with the number of design scenarios. Application of a general
purpose optimization strategy can be expensive here because the computational effort generally
increases polynomially (quadratically or even cubically) with the size of the optimization problem.
To remedy this drawback, NIP decomposition strategies have been developed to allow for faster
performance. Grossmann and Halemane (1982) developed a projection/restriction strategy for
inequality constrained systems that generally has linear performance characteristics with respect to



the number of periods. More recently, Varvarezos et al. (1992) developed an efficient OA/RLP
(Outer Approximation/Relaxed Linear Programming) strategy for convex problems and even
extended this to problems with discrete decision variables. Comparisons on batch design and
planning problems showed that this approach was several times faster than conventional NLP and
MINLP solvers.

Currently, we are extending the DSQP strategy developed for EVM (errors-in-variables method)
estimation problems to multiperiod problems in (17). As described in Tjoa and Biegler (1992)
DSQP can be ten to a hundred times faster than MINOS or SQP on larger paramter estimation
problems. EVM problems have the same structure as (17), but here the challenge remains to deal
with bound activity on xi as well. Interior point (or barrier) formulations seem to be promising for
this task.

With this approach global and superlinear convergence properties of the SQP algorithm still hold
and an efficient decomposition strategy is applied period by period. Consequently, the effort
required by the optimization algorithm increases only linearly with the number of periods and the
effort per period is comparable to that required for an efficient single period optimization.
Consequently, with improvements in process optimization interfaces and models, as well as NLP
strategies for multiperiod problems, it is clear that solving problems like (17) will not be difficult for
larger systems. Thus, optimal and flexible designs can be generated relatively easily and quickly in
the future.

Summary and Future Directions

As optimization strategies are further developed, more attention can be paid to novel problem
formulations with a wider scope of process application. This paper addresses a few applications of
novel formulations that are now realizable as a result of better algorithms* First we describe
constrained simulation problems (systems of equations with inequality constraints) that can be
addressed systematically and solved efficiently through Successive Linear Programming strategies.
This approach allows nonsmooth problems, such as pipe networks with checkvalves and
multiphase equilibrium systems, to be addressed. Next we consider optimization formulations to
probe higher dimensions in reactor network synthesis. Here geometric concepts for network
targeting were invoked in order to define an attainable region. Constructing this region was enabled
by defining a region sufficient for segregated flow reactors and then extending it by allowing mixed
reactors that improve the objective function. This concept has the further advantage that it can be
integrated within larger process models with interactions from energy and separation subsystems.
Finally, the ability to obtain optimal solutions quickly leads us to reconsider uncertainties in the
process model and their effect on the desired solution. Here it was shown that sensitivity of the
optimal solution to specified parameters can be obtained only at the cost of a few function
evaluations, once the optimum is available. A typical process example was briefly described to
illustrate this approach. Also, accurate treatment of design uncertainty can be performed through
multiperiod optimization. Here several design scenarios are incorporated within the optimization
problem and these are all satisfied by the final design. While the resulting optimization problem
becomes larger than for the single design case, NLP-based decomposition strategies are briefly
sketched above which yield optimal designs efficiently.

Future work in process optimization can be expected to evolve along the following paths:

• optimization and modeling strategies for larger and more complex process systems
• novel and more creative optimization applications.

In Biegler (1992) optimization strategies were presented that could be tailored to the structure of
process models. This allows a more efficient approach to large, complex systems. Similar reduced
SQP strategies have been considered for finite element models in shape optimization for mechanical
parts, aerospace systems and materials processing (Kodiyalam, 1992; Ruigertz, 1992; Ghattas and
Orozco, 1992; Kupfer and Sachs, 1992). Moreover, with the development of more efficient
interfaces and modeling tools, the development of these strategies will be made easier.



A key aspect to these tools is the availability of accurate derivative information. The importance of
accurate derivatives was illustrated dramatically for process optimization by Wolbert. Moreover, a
number of derivative generating codes are currently available or under development, that can be
used directly with existing FORTRAN-based process models (see Griewank and Corliss, 1991, for
a survey). In general, these tools parallel the model's calculation sequence with a derivative
calculation that applies the chainrule to the sequence and handles the bookkeeping to keep track of
intermediate values. Such strategies are preprocessors or coprocessors that use the model's
FORTRAN source code directly and generate derivative FORTRAN code that is run along with the
model. Examples of these include:

•JAKE-F, which has seen many applications but is limited to a subset of FORTRAN (Hillstrom,
1982)

•DAPRE, which has been developed for use with the NAG library (Pryce and Davis, 1987)
•ADOL-C, which is implemented very efficiently using operator overloading features of C++
(Griewank et alf 1990)
•ADIFOR, the most recent development (Bischofet al, 1992), which uses a source transformation
approach within the ParaScope environment (Callahan et al, 1988). This environment is used for
dependency analysis among the variables as well as parsing the FORTRAN code .

•
In ADIFOR, for example, an adiabatic flash block was processed and Jacobian matrices were
calculated by an ADIFOR-generated derivative code, for all outputs with respect to all inputs. No
changes were required in the original model and the total time for evaluating both the flash block
and its Jacobian was only twice that of evaluating the function. A number of similar examples were
solved in other disciplines with up to a 70-fold increase in performance. Future development and
application of ADIFOR as well as other tools will deal with calculation of higher derivatives,
undoubtedly for use in optimization algorithms as well as nonlinear analysis.

Creative problem formulations that result from the evolution of powerful optimization tools extend
far beyond traditional optimal designs. As noted in the third section, optimization formulations were
used to "see11 in higher dimensions in order to determine attainable regions. For example, a simple
tubular reactor can frequently be found to be an optimal network, without further model refinement
or complexity. Similarly, these approaches can be used to evaluate the goodness of a process
model. Here, instead of building and refining a process design or control model to describe a base
case, it is more useful to observe the behavior of the process model in the desired (optimal?)
direction of the process. By using the optimization strategy within the model-building loop one can
determine whether:

• many sophisticated modeling details are unnecessary in order to identify the optimum, or
•the current model is inadequate in order to predict or extrapolate to optimal process performance.

Closer examination can then uncover misleading assumptions, limiting correlations or transitions to
other mechanisms. Of course, this is only possible if there is a quick turnaround for optimization
modeling and solution.

Finally, advancing the use of optimization tools also needs to be guided by an educational
component. As noted in numerous studies in process synthesis, the success of process
optimization is driven equally by efficient and precise problem formulations as well as efficient
algorithms. Examples of equivalent process models and representations with great differences in
computational effort have been described by Grossmann (1990). In addition, appropriate guidelines
for optimization modeling are developed in Amarger et al. (1992) and Grossmann (1992).
Awareness of these guidelines, as well as greater knowledge (advantages and limitations) of
current optimization tools will change the engineer's perspective toward optimization strategies and
lead to their greater appreciation as indispensible design and analysis tools.
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