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Abstract 

The Medial Axis Transform (MAT) was defined by Blum in the sixties as an alternate description 
of the shape of an object Since then, its potential applicability in a wide range of engineering domains 
has been acknowledged. However, this potential has never quite been realized, except recently in two 
dimensions. One reason is the difficulty in defining algorithms for finding the MAT, especially in three 
dimensions. Another reason is the lack of incentive for modeling designs directly in MAT's. 

Given this impasse, some lateral thinking appears to be in order. Perhaps the MAT per se is not 
the only skeleton which can be used. Are there other, more easily derived skeletons, which share those 
properties of the MAT which are of interest in engineering design? 

In this work, we identify a set of properties of the MAT which, we argue, are of primary interest. 
Briefly, these properties are dimensional reduction (in the sense of having no interior), topological 
equivalence, and invertibility. For the restricted class of discrete objects, we define an algorithm for 
identifying a point set, generically called a skeleton, which shares these properties with the MAT. 

The algorithm will be defined for two dimensions, and a proof will be outlined. The true focus of 
our work, however, lies in the extension of this to three dimensions. We present ideas on how the 2D 
algorithm can be extended to 3D objects, and also present a line of argument which should extend the 
proofs of the 2D algorithm to three dimensions. 
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1 Introduction 
For the purposes of modeling, an object will be regarded as the closure of a bounded open set in space. An 
object can then be represented as the union of the closure of some finite number of open sets, or (since it 
is bounded) by representing its boundary. Most geometric modelers conform to this. However, there is an 
equivalent way of representing the closure of bounded open sets in space, called the Medial Axis Transform 
(MAT), defined first in [2]. By equivalent we mean that the closure of any bounded open set in space can be 
represented using the MAT. 

For a two-dimensional (2D) object, the medial axes are the locus of the centers of maximal discs which 
can be fit into the object, where a disc is considered maximal if it is not a subset of any other such disc 
Figure 1 shows how to determine medial axes by fitting maximal discs into a polygon. A radius function is 
defined at each point on the medial axes, giving the minimal distance from that point to the original object 
boundary. Figure 2 shows a polygon and its medial axes. 

The MAT definition is similarly extended to three-dimensional objects. The MAT then consists of a 
set of medial surfaces (instead of axes) and a radius function. The medial surfaces are identified from the 
boundary of the solid using a set of maximal balls (instead of discs). Figure 3 shows a rectangular plate, and 
it's MAT, which consists of four triangles, eight trapezia, and a rectangle. 

The MAT of an object facilitates analysis in several domains. In particular, such a representation is 
very useful in automating manufacturability analysis for net-shape manufacturing of thin-walled parts, as in 
injection molding and die-casting [7]. Briefly, many numerical analysis packages for such processes take 
advantage of the plate-like nature of such parts, and simplify the analysis by assuming laminar flow. With 
this assumption, it is now possible to approximate the part by a collection of so-called 2 jD patches, with 
associated thickness information (see figure 4). It is possible to use portions of the MAT as the elements of 
such a 2 jD representation. The MAT can also play a very important role in extracting shape features useful 
in a knowledge-based approach to moldability analysis (see [7], [3].) 

Despite this, it is neither convenient nor easy to use the MAT as the primary representation of a design. 
Firstly, any form-function relationships which designers use to create the design are likely to be in terms of 
the spatial properties of the point-set to be represented. In general, it is not easy to visualize this from the 
MAT. Secondly, in manufacturing processes where the surface of the design must be created by shaping or 
removing material, a representation which directly yields this information must surely be preferred. 

2 Voronoi Diagrams and the MAT 
Given a finite set of points in space, the Voronoi diagram is defined to be the set of points which are 
equidistant from two or more of the given points (see, e.g., [17]). As Wolter points out in his recent paper 
[22], both the MAT and Voronoi diagrams are special cases of a more general concept, which he terms the 
cut locus of a set. More precisely, the cut locus of a closed set A is defined to be the set of points which have 
at least two shortest paths to the set A. If A is the boundary of some open set (solid), then the (closure of) 
parts of the cut locus properly contained in the solid are the medial axes. If the set A is finite, then the cut 
locus is precisely the Voronoi diagram. 

2.1 Finding the MAT 
The relationship between the MAT and Voronoi diagrams in the plane has been exploited in earlier work by 
Lee ([13], [12]), who describes efficient algorithms to find the medial axes of planar objects as subsets of 
their generalized Voronoi diagrams. However, the extension of this work to three dimensions has proved 
formidable. 
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XV. Polygon 

Maximal discs 

Figure 1: Definition of 2D MAT 

Many people have investigated the "direct" problem, i.e., that of finding the MAT given a description 
of the boundary. Although success has been reported for two-dimensional objects [5] the three-dimensional 
case has proved much harder. Dutta and Hoffman have reported some preliminary work in this area [4] 
[9], but their focus has been on getting a solution to the problem of finding point sets which are equidistant 
to a given pair of boundary elements. While this would be an essential component of any MAT-finding 
algorithm, a major difficulty they do not address is the identification of so-called critical points (edges) in 
the MAT. A critical point can be defined as a point at which more than two branches of the medial surfaces 
(axes) meet. The identification of such critical points (which are equidistant to more than two components 
of the boundary) is an essential step in finding MAT's. 

2.2 Approximate MAT'S via Voronoi Diagrams 
The concept of a Voronoi diagram can be used to find an approximation to the MAT of a planar object, as 
reported by Tarn et al [20] and also by Yu et al [23], Since the medial axes of a planar figure are, given a 
sufficiently abstract view of the problem, a generalization of the Voronoi diagram, it is natural to ask if the 
Voronoi diagram of a finite subset of the boundary of a planar object can be useful in finding the MAT. As 
Tarn et al report, this is indeed so. The Voronoi diagram of a sufficiently well-chosen "representative" set 
of points from the boundary of a planar object is found to be a good approximation for several engineering 
purposes, including automatic mesh generation [19]. 

Suppose a finite point-set A is chosen from the boundaries of some object O. Tarn et al proceed by 
first finding the Delaunay triangulation of this set. For a good treatment of this subject, see [17]. In 
two dimensions, this consists of polygons having the property that the circumscribing circle of any of the 
polygons does not enclose any points of the set A. It is usually assumed that the polygons arc all triangles, 
but this need not be so in general. In any case, the Voronoi diagram of these points is the straight-line dual 
of the Delaunay triangulation. Since the circumscribing circles can be considered to be approximations to 
maximal disks, the Voronoi diagram could be considered an approximation to the MAT. 

Since the Delaunay tessellation of a set of points is defined without reference to any solid, it can be 
seen that this can be defined only for the convex hull of the set A. Since engineering objects arc usually 
far from convex, it is necessary to ensure that the edges marking the original boundary of the object be a 
subset of the Delaunay edges. If the set of points A is sufficiently well-chosen, then this can be assured. 
Unfortunately, "well-chosen" is difficult to define a priori. Tam et al get around the problem by introducing 
additional points into A from the missing elements of the boundary, if any. The Delaunay tessellation can 
be recomputed in the neighborhood of such additional points. 

In investigating this approach, however, it was found that the problem of extending the ideas to 3D 
is quite formidable. The necessity of handling higher order polyhedra, as also ensuring that the set A is 
well-chosen, are both much harder in 3D than in 2D, 
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Figure 2: Example of MAT for a simple polygon 
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Figure 4: A rectangular plate and the l\D skeleton 
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3 Digital Thinning 
Quite independent of research in engineering design, there has evolved an area of research in computer 
vision called digital thinning. The literature in this area is vast, covering problems posed in both two- and 
three-dimensions. Instead of describing individually the different approaches taken by various authors, we 
refer instead to the work of Kong and Rosenfeld [11], in which a unifying view of the field is presented. 
The problem, as stated therein, is as follows: 

Objects (images) arc binary arrays (i.e., have value 0 or 1) in two or three dimensions. Each element 
is identified with an integer tuple (i.e., an element of Z"). They can thus be referred to as lattice points, 
or points. Each point is considered to be adjacent to several others, depending on the type of adjacency 
chosen. If two points differ by unity in at most one of their coordinates, they are said to be 4-adjacent in 2D 
and 6-adjacent in 3D. If two points differ by at most unity in any (or all) of their coordinates, they are said 
to be 8-adjacent in 2D, and 26-adjacent in 3D. Obviously, the latter type of adjacency includes the former. 
Note that these two types of adjacencies are related to the discrete analogues of the L\ and the norms, 
respectively. The immediate neighborhood of a point p, denoted by N(p), is defined to be the set of all points 
adjacent to it. Note that N(p) does not include p. 

In order to get a consistent topology on the image, it is necessary to require the object and its complement 
to have different types of connectivity. Thus, in 3D, the compatible pairs of connectivity type for the object 
and for the complement are (26, 6), (6, 26). A digital picture is then defined as P = (Z 3 ,m,n,S), where 
(m,n) = (6,26) or (m,n) = (26,6), and denotes the connectivity type of the object and the complement, 
respectively. B denotes the set of points which define the object. Using this definition, it is not difficult to 
define standard notions of topology such as connectedness, components, paths, etc. 

The topology of the object is concerned with the number of components of the object, whether and 
where components of the object (complement) are enclosed (surrounded) by the complement (object), and, 
for three-dimensional images, the number and location of holes (also called handles, or tunnels). A thinning 
process should clearly preserve all these. An Eider characteristic, denoted by x» is a means of capturing the 
topological properties of the object. 

In order to get skeletal or thinned versions of the object, a thinning process is then defined. The process 
deletes points which are called simple, defined below: 
A point is simple only if 

1. p is adjacent to just one component of N(p) 0 B. 

2. p is adjacent to just one component of N(p) \ B. 

3. x(Z 3,m,n,BnJV(p)) = X(Z 3 ,m,n,i!nJV(p). 

The above can be said to be the topological properties of simple points; these specify necessary conditions 
for "simplicity". Topologically, however, a billiard ball is equivalent to a baseball bat. Hence it is necessary 
to impose other "geometric" constraints. Such constraints attempt to identify so-called edge points, i.e., 
points which lie at the extremes of skeletal components of the thin image, and require such points to be 
non-simple. Tsao and Fu [21], and Morgenthaler [15] present different methods to achieve these same 
ends. Hafford and Preston (see [6]) take an approach which allows them to unify all these criteria (or their 
equivalent) into a uniform framework; as it turns out, however, their approach also leads to the same goal: 
a discrete skeleton. 

Thus, the objective of the thinning process has traditionally been set at reducing the discrete object to a 
set of points (pixels/voxels) which together define an image which has thickness as close to unity as possible, 
while preserving "lengths" of components of the skeleton, so that they do not get shortened. Clearly, this is 
related to the MAT of an object. Unfortunately, from the design perspective at least, there is one fundamental 
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Figure 5: An example of a 2D thinned object which remains too dense to allow a continuous skeleton to be 
fit to it. 

shortcoming in such algorithms. These algorithms consider the job to be complete when all points are either 
a single layer thick (so to speak), or no points can be deleted without changing the topological properties of 
the object. Note, however, that these are still points in a "discrete" space. If these points are regarded as 
being the centers of unit cells,2 there is no reduction in dimension; and if they are regarded as points on a 
lattice (as, for instance, in [11]), there is no continuous skeleton to be inferred in their distribution. 

The separate problem of inferring a continuous line/surface on the borders of discrete objects has 
been addressed at some length in the literature (see [10], [IS]). However, these papers describe methods 
for inferring continuous surfaces onto boundaries which are assumed to be 1-manifold and 2-manifold 
(appropriately mapping these "continuous" topology concepts into the discrete topology), for 2D and 3D 
objects respectively. In general, a skeleton will not satisfy these assumptions. Furthermore, specific instances 
of objects can be found where no point can be removed while thinning (since that would change the topology 
of the object,) yet the points are so densely packed that no skeletal interpretation (in the continuous sense 
just mentioned) can be found. Figure 5 shows a 2D example of just such a case: no point is "simple", yet 
there is a 3 x 3 block in the center which defies any skeletal interpretation. 

It seems to us that the research in digital thinning, motivated as it is by the needs of computer-based 
imaging, is always concerned with digital-, or discrete images. Hence, no attempt appears to have been 
made to define, and then search for, what might be termed a skeletal point. Instead, simple (= non-skeletal) 
points are identified, and removed. It might appear at first sight that, since points can be one of simple 
or skeletal, defining simple points automatically defines skeletal points as well. While this is true, it 
leaves unanswered the question of what, precisely, the characteristics of the skeleton are. Seemingly, the 
only skeletal characteristics of interest in image analysis are those which can described as "non-simple. 
Unfortunately, the only thing which can be said about non-simple points vis-a-vis the continuous skeleton 
is that the skeleton must pass through these points. Where the neighborhood of these points is sufficiently 
sparse, adjacency information could be used to construct the continuous skeleton, but, as figure 5 shows, 
this cannot be relied upon. 

4 How is the MAT useful? 
We have suggested that the MAT is potentially a very useful tool in design/manufacturing. However, given 
the undesirability (and difficulty) of using the MAT as the primary representation of a design, as also the 
difficulty of deriving the MAT (exact or approximate) of a given object, we appear to have reached an 
impasse. It is then worthwhile to take a closer look at why the MAT appears to be so useful. To this end, we 
examine one application: numerical analysis of injection molding. 

As mentioned before, numerical analysis packages for injection molding represent the geometry of the 
part as a set of 2jD facets, with thickness information stored at the vertices. Clearly, such a representation 

2i.e., as pixels (unit squares) in 2D and voxels (unit cubes) in 3D, which is a common way of visualizing the object in R* 
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should be topologically equivalent to the original object. Where the skeleton divides into plate-like com­
ponents between junction points/edges, the proportions between these components should reflect the shape 
of the object. Surface properties of the part, such as notches or flutings, appear to affect the mold-filling 
analysis minimally, and should influence the skeleton also minimally. This suggests that any acceptable 
skeleton must meet the following specifications: 

1. The skeleton should be a set with no interior. 

2. The skeleton should be topologically equivalent to the original object. 

3. The shape of the skeleton should be strongly influenced by that of the object. As we shall see, this 
can be tied to the reconstructibility of the object from the skeleton. 

5 Terminology and Notation 
Before proceeding further with the presentation, it is useful to define the terminology and notation to be 
used. The following terms arc understood to have their usual meanings from mathematics, and are not 
defined here (see a text such as [16]): 

open set, closed set, closure, interior, neighborhood, norm, L\ (diamond) norm, (box) norm, fiat 
span (affine hull) 

R is the set of real numbers 
P={x\x>0},Px = / > \ { 0 } . 
£ is the modeling (flat) space, one of R2 or R3. We shall sometimes refer to /?", but it should be 

understood in such cases that n G {2,3}. 
If/ : A B denotes a mapping, and if A\ CA and B\ C B. then/>(Ai) denotes the image of A\ under 

/ , and/ <(B\) denotes thepre-image or inverse image of B\ under/. 
The symbol Clo is used to denote the closure, and Int to denote the interior of a set. 
An object is the closure of some open set in space; we usually denote objects by 0 , perhaps with a 

subscript. Thus, O = Clo(lnt(0)). In later sections, the term object shall be used to refer to a more restricted 
class of discrete objects. 

Given a norm d.ExE / > x , a norming cell based on that norm is the set {JC | d(0,x) < 1}. 
A cell is defined as the set C(d, c, r) = {x | d(x, c) < r} , where d is a given norm, c is the center of the 

cell, and r € P*, generically called the radius, is specified somehow. 
A cell contained in some object O is a cell which is a subset of O. A maximal cell contained in O is any 

cell, contained in 0 , which is not a subset of any other cell also contained in O. 
The terms disk and ball are reserved for cells defined using the euclidean norm, in 2D and 3D respectively. 

Similarly, the term box is reserved for use with the box norm (L^ norm). 

6 Skeletal Abstraction 
The MAT is defined in terms of maximal euclidean cells (disks or balls) contained in the object. This is a 
covering of the object by elemental balls, abstractly represented by the set of centers of these cells. The word 
elemental is used to capture our sense of the simplicity of the shape of the disk or ball — it is sufficiently 
simple that a point located at its center is a good abstraction of its shape. It is worthwhile to note that it is in 
this sense that the MAT represents the shape of an object. 

It is conceivable that under appropriate circumstances another shape would be considered simple. For 
instance, consider Figure 6. If the object shown in part (a) is to be turned on a lathe, its MAT (part (b) of 
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(a) A cylindrical part 

(b) The Medial Axis of the part 

(c) The generalized cylinder axes of the part 

Figure 6: (a) A cylindrical part, (b) Its MAT, (c) The "generalized cylinders" skeleton 

the figure) is not of much help in planning the tool path. On the other hand, if one applies the concept of 
generalized cylinders [1], shown in part (c) of the figure, then the axis of the cylinders, along with radius 
information, can be seen to be immediately useful. This suggests that alternate skeletons can be defined, 
based upon different notions of "simplicity" of shape, and reinforces our statement above that the MAT 
abstracts the shape of an object only to the extent that the euclidean ball is well-abstracted by its center. 

The euclidean cell is thus seen to be just one of a class of elemental cells upon which to define a skeleton. 
We suggest that other skeletons could be defined upon the norming cells of other norms, such as the box 
norm (Loo norm), or the diamond norm (L\ norm).3 Accordingly, we term the MAT the euclidean skeleton. 

Definition 1: Given an object and a norm, the closure of the set of centers of maximal cells contained in the 
object is defined to be the skeleton of the object, denoted by S. Associated with this skeleton is a function 
r : S —• P x , called the radius function, which gives the norm of the maximal cell at each point in the 
skeleton. 

The term shape abstraction is sometimes used by authors in describing the usefulness and properties 
of the euclidean skeleton. It is also used to describe the concept of shape features [7]. It is worthwhile 
to note that shape is a very fuzzy concept, and shape features are sometimes simply defined as geometric 
configurations of interest. If the claim is made that the euclidean skeleton abstracts the shape of the object, 
on what is this claim based? It is our contention that shape abstraction in the skeleton is a property of the 

3This was also suggested by Lee [13] 
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Figure 7: Figure for Theorem 1. 

norming cell used for defining the skeleton. A euclidean skeleton is a "good" abstraction only if the ball is 
the simplest possible shape for the application at hand, as illustrated in figure 6. 

Given an elemental cell, what can be inferred about the connectivity properties of the skeleton defined 
thereby? This appears to be a rather difficult question. Familiarity with the euclidean skeleton (MAT) leads 
one to suppose that the euclidean skeleton has the same homotopy type as the original object. However, this 
has been shown rigorously only very recently by Wolter [22], and that too only for objects with C 2 smooth 
boundaries. Certainly, this is not true for a skeleton defined on, say, the box norm, as Figure 8 shows. We 
speculate that, in general, the connectivity properties of objects are shared by the skeleton if and only if the 
cell boundaries are not flat anywhere. 

Another property widely believed to be held by the euclidean skeleton, and recently shown by Wolter, 
is what we call dimensional reduction. More properly, this is the property of having no interior. It remains 
to be shown that this is true of all skeletons, and we present this as our first result: 

Theorem 1: A skeleton has no interior. 

We need the following lemma: 
Lemma 1: A maximal cell touches the boundary of its containing object. 
Outline of Proof of Lemma: Assume there is some maximal cell, C(rf, c, r) which does not touch the boundary 
of its containing object, O. Then all points in C are in Int(O), and Vx € Bdy(C(d, c, r)) we can find e € P* 
such that C(d, x, e) C O. Let p be the infimum of all such e. Then, clearly, the cell C(d, c, (r + p)) c O. This 
contradicts the maximality of cell C(d, c, r). 

Outline of Proof of Theorem 1: This can be shown by contradiction. Assume, then, that the skeleton S of 
some object O does, in fact, have a non-empty interior. Choose some component of this interior, say D, and 
a point x € D. Let Cx be the maximal cell at xf with radius r(x). Refer to figure 7. 

By lemma 1, Bdy(Cx) n Bdy(O) is not empty. Choose some y € Bdy(C*) D Bdy(O). If (x,y) denotes 
the line segment between x and y, then clearly (jc,y) DD ^ <j>. Choose some z e (x,y) n D. Since z € 5, 
there must be a maximal cell centered at z. The value of the radius function at z, r(z), must be less than the 
distance to the boundary along (x,)0, d(y, z), since otherwise y would not be on the boundary of O. That is, 
r(z) <d(y,z). 
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Figure 8: A simple object and its Box-skeleton. Note that the skeleton is disconnected, although the object 
is not. 

Let C z denote the maximal cell at z, i.e., C2 = C(d, z, r(z)). For any p 6 C z , the following holds by the 
triangle inequality: 

d(x,p) <d(x,z) + d(z,p) 

Since d(z,p) < r(z) < d(y, z), this becomes 

d(x,p) <d(x,z) + d(y,z) 

Since z e (x,y), clearly z) + d(y, z) = dOt,y) = r(x), and hence 

d(x,p) < r(x) 

Since p € Cz was arbitrary, we conclude that Cz C C x , which contradicts the assumption that Cz is maximal. 

We next present an algorithm to derive a skeleton. We shall show that this is the box-skeleton. Since 
the box-skeleton need not be connected, and we want a skeletal set which is preserves the topology of the 
object, we present a procedure for augmenting the box skeleton with additional elements, thus yielding a set 
which 

1. has no interior, 

2. has the same homotopy type as the original object, 

3. is a superset of the box skeleton which "fills-in" the gaps in the box skeleton, 

and thus is a good abstraction of the shape of the object, at least for some applications. 

7 Dual-based Thinning 
In order to describe our thinning process, we first define some additional terms. 

A unit box is a pixel if £ is 2D, and a voxel if it is 3D. 
A space graph G* is a partition of the space, £. The subsets under this partition, called the elements 

of G*, are all connected components, and furthermore arc restricted to being open sets in their flat spans 
in £. This means that the elements of G* are points, straight line segments, planar polygons, and (for 3D) 
polyhedra. The dimension of a subset is understood to be the dimension of its flat span. Then, the OD 
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A 2D discrete object as a graph 
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Figure 9: Graphs and duals. 

subsets are called vertices, the ID subsets are called edges, 2D ones are faces, and 3D ones are solids. Thus, 
£ = Ui€G*i** 

Two elements A and £ of G* are said to be adjacent if Clo(A) fl CIo(B) y 
is the set of all subsets of A. 

VG(£) is the set of all space graphs of £. 
The dual mapping V* : G* -+ GMM, where G*M 6 VG(£\ is an adjacency- preserving mapping. The 

image of G* under this mapping, 2?*>(G*), is also a graph. For the case where £ is 2D, the mapping, and 
hence G**, is specified as follows (see figure 9): 

1. The image of every face is a dual vertex contained in the face. 

2. The image of every edge is a dual edge crossing the given edge. The end-points of the dual edge are 
the dual images of the two faces adjacent to the given edge. 

3. The image of every vertex is a dual face in which the vertex lies. The corners of this dual face are the 
dual images of faces adjacent the given vertex. 

This can be extended to 3D as below: 
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1. The image of every solid is a vertex contained in the solid, 

2. The image of every face is a dual edge through the face. The ends of this dual are the images of the 
two solids on either side of the face. 

3. The image of every edge is a dual face through which it passes. The corners of this dual face are the 
images of the solids adjacent to the edge. 

4. The image of every vertex is a dual solid, bounded by the images of the edges adjacent to the vertex. 

That Z>* is adjacency preserving can be seen by constructing an adjacency graph, as follows. The 
elements of the adjacency graph are termed nodes and links, to avoid confusion. Each element of G* has a 
corresponding (unique) node in the adjacency graph. The links of the adjacency graph join two nodes whose 
corresponding elements in G* are adjacent. Then it is easy to see that the adjacency graph of any G* and that 
of 2?*>(G*) are isomorphic. It is thus apparent that the dual graph of any G* is an abstract representation of 
the adjacencies of elements in G*. 

Given any object 0 , the restriction of any G* € VG(£) to the object 0 is defined to be the subgraph of 
G* whose vertices are in 0 , and denote it by G* \o. We use the notation VG \O to denote the set of all such 
restrictions. 

If a restriction to 0 , G = G* \o, is such that 0 = UA€G^» ^en G* IS s a * d t 0 ^ compatible with 0 , and 
the restriction G is called the object graph of 0 . 

Let 0 be an object, let G* € VG(£\ and G = G* \o. Then it is of interest to examine the restriction of 
the dual to 0 , V*(G*) |o. Since this will be of great use later, a new mapping is defined from VG \O to itself, 

V : VG | O - VG \O 

which associates each element G € VG \O with an image, also in VG |O« such that this image is the restriction 
ofD*(G*)to0. 

7.1 Duals of Discrete Objects 
As mentioned in the section on digital thinning (see section 3), a discrete object can be described using a 
"lattice" of integer tuples. It can also be interpreted as an object in A", by considering each point to be a 
unit box centered at the coordinates given by the integer tuple. It is immediately apparent that under the 
definition of a graph given above, the set of vertices, edges, faces, etc. of this object is also an object 
graph, say G. If the centers of these boxes are regarded as being at the integer tuple, then the comers are 
at non-integral coordinates. For simplicity, we assume instead that the comers of these boxes are at integer 
coordinates. It is then clear that all edges of the graph so defined are of unit length, all faces are unit squares, 
and all solids are unit cubes. 

The dual mapping V* defined above for any space graph is enhanced to be geometrically precise when 
the objects are discrete. This can be achieved by simply requiring the image under D* of any pixel/voxel 
to be a vertex located at its center. Note that this achieves geometric precision only for restricted space 
graphs, since the description of a discrete object would typically not define any structure on the components 
of the background. 

A very important point is that if the space £ is assumed to be the union of closed unit boxes (pixels/voxels), 
then the interior of these boxes defines the n-dimensional cells of some space graph G*, and their boundary 
elements define the lower-dimensional cells. Then the dual of every such G* 6 VG(£) is also composed 
of closed unit boxes. That is, duals of discrete objects are also discrete objects in the same sense, although 
"shifted" in space by one-half length. Therefore, P*(D*(G*)) = G*. The thinning procedure (to be described 
below) uses this property implicitly. From here on in this document, we assume this to be the case. 
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(a) Vertex neighbors (b) Dual consists of two vertices 

Figure 10: Vertex neighbors and their dual. 

Virtual edge 

V 

(a) (b) (c) 

Figure 11: Virtual edge and its dual. 

One other issue needs to be addressed. In such a discretized object, it is not necessarily true that Int(O) 
is connected. If Int(O) is not connected, but O is, as can be seen in figure 10, then the question arises 
whether we wish to regard the object as being a single component or not. This is precisely the problem 
of what connectivity to impose on discrete objects (see section 3), and the results of digital topology can 
be used here. As has been noted by Rosenfeld, it is necessary to have different types of connectivity for 
the object and the complement, in order to avoid inconsistencies (see [11]). Although many choices exist, 
for our purposes we find that one is superior to the rest: once and for all, we choose the most extensive 
connectivity for the object, and the most restrictive one for the complement. Thus, in 2D the connectivity 
pairs of the object and the complement are (8,4), and in 3D they are (26, 6). 

This needs to be reflected in the dual. As defined, the dual of the graph in figure 10 would be two uncon­
nected vertices. This does not reflect our understanding that the two are, in fact, connected. To get around 
this problem, define the immediate neighborhood of a point to be some cell of size smaller than the resolution 
of the discretization. Define the immediate neighborhood of an edge to be the immediate neighborhood of 
its midpoint. Denote the immediate neighborhood by N. Examine the immediate neighborhood of the edges 
(for 3D) and vertices (both 2D and 3D) of the graph. Let n be the number of connected components in N n O, 
and n1 be the number of connected components in N \ O. If either n > 1 or n1 > 1, then we capture the 
requirement of connectivity by inferring a "virtual" face at the edge or vertex in the 3D case, and a virtual 
edge at the vertex in 2D. This is illustrated for 2D in figure 11. The purpose of so "promoting'* some of the 
lower-dimensional entities of the graph of the object is to enable the dual to correctly reflect the connectivity 
properties required of the object. That this works in two dimensions is immediately obvious from the figure. 

In 3D, this is less obvious, but equally effective. Even in 3D connectivity could still be a matter of having 
just an edge between two edge-neighboring or vertex-neighboring voxels. In the first case, the common 
edge gets promoted to a virtual face, and its endpoints to virtual edges. This is illustrated in figure 12. In 
the latter case, the vertex gets promoted directly to a face. In both cases, it is trivial to see that the dual edge 
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Virtual face 

Virtual edge 

Dual edge 

(a) (b) 

Figure 12: One example of virtual entities in 3D. 

Virtual faces 

Virtual edge 

(c) 

Dual face 

(a) (b) (c) 

Figure 13: A dual face inferred by identifying a circuit of solids around a virtual edge. 

does get constructed. For the more complex 3D situations where the construction of a dual face is necessary, 
note that there must be a circuit of solids around some vertex in the graph. One example of this is shown in 
figure 13. This common vertex gets promoted to a virtual edge when one or more of its neighboring edges 
gets promoted to a face. Then this virtual edge is surrounded by the object, and a circuit of solids can be 
found around it; this circuit then defines a dual face. 

7.2 Dual-based Thinning Procedure T 
The thinning properties of the dual mapping are first illustrated in figure 14 for a 2D example. The sequence 
of figures there shows the results of the repeated application of P , starting with an object graph G. Define 

F ' " f • • I 

I 
a 

Y- a T . •\ 
la< aaflai aa la i 

1 
a J a i 

- T -
iiiami 

Figure 14: A sequence of duals, showing the object getting thinner. 
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0\ = Clo(Int(U 2>(G))). We denote the set U P(G) \ 0\ by S i . Clearly, 0\ is also composed of pixels, and 
thus has an associated object graph, say G\. The process can be repeated for G i , and yields a family of sets 
S,-, i € N. The process terminates when (and if), for some i € N, Oi = <f>. 

Proposition 2 (Shrinking Proposition): If an n-dimensional object O and its object graph G are given, then 
V{G) consists of strictly fewer n-dimensional cells than G. 
Discussion: Let G* be some space graph compatible with O. Then G C G*. The n-dimensional cells of 
P(G) are images under V* of the vertices of G*. Since P(G) is the subgraph of P*(G*) whose vertices 
are properly contained in O, it is clear that the vertices of G which are on the boundary of O have no 
corresponding n-dimensional cell as their image in V(G). Thus, the number of n-dimensional cells in the 
dual is strictly less than the number of vertices of G which are in the interior of O. It remains to be shown 
that the number of such vertices is strictly less than the number of n-dimensional cells of G. We expect to 
show this by using, perhaps, the work of Morgenthaler reported in [14]. 

This suggests the definition of thinning procedure T, as follows: the procedure starts with some object 
0, and an associated object graph G. Let G* denote the space graph of which G is a restriction. We define 
OQ = O, Go = G, So = <j>, and i = 0. Then the following steps are applied: 

1. If Ox\4 <f>, identify P(G,). 

2 . Let (9 l + i ^CloOntdJ^G,)) ) , 

3. SM = Clo(U V(GI)\OM). 

4. Ifl is even, G*i =G* \ 0 m . If i i sodd,G l + i = V*(G*) \ 0 m . 

5. If Oi+i 4 4>t increment i by 1, and repeat from step 1. 

By Proposition 2 , procedure T terminates. Then define So© = \JSi, for all i G N for which Si is defined. 
We contend that 5<x> is a skeleton, specifically, 

Proposition 3: Thinning procedure T yields the set Soo which is the box-skeleton of the object. 
Discussion: By definition of each Si (above), Soo has no interior. We will show that all the points of Soo are 
the centers of maximal boxes which can be fit in the object. 

It can be seen that each step of T is invertible. That is, given some D(G;), it is possible to reconstruct 
the graph G,- by simply replacing all vertices in 2?(Gj) with unit boxes centered at those vertices. Moreover, 
it is clear that if each point in (J V(Gi) is replaced by a unit box, then the union of all these is precisely 
01. Then, if at every stage i of procedure T, we associate with each point of SM the integer U it should be 
equally clear that the original object O can be recovered by replacing each point of S^ by a unit box of size 
specified by the integer associated with that point. 

Proposition 4: Under procedure T, 2?(G;) is a deformation retract of Gj, for each i e N for which Oi 4 <t>. 
Discussion: We expect to show this by constructing a retract mapping, and a homotopy. This closely 
follows the spirit of Wolter's work in exploring the properties of the euclidean skeleton [22]. 

The retract 
Rt:Oi^[jV(Gi) 

is a continuous map, such that Rt(x) = x, Vx 6 (J ̂ (G*). 
The homotopy 

Kx,t):0iXl-+[JV(Gi) 
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where / = [0,1], is such that 
A(x, 0) = x, and h(x, 1) = K,(x), Vx € 0, 

and 
ACM) = x ,Vx€UWi) 

Figure 15 depicts, in 2D, the retraction mapping in two regions of the digital asterisk. The arrows 
depicting the retract mapping in figure 15(c) can themselves be regarded as the homotopic "traces", as the 
parameter t varies from 0 to 1. We expect to show that there are really only three types of geometries (locally 
speaking) in the dual-based thinning of 2D discrete objects: endpoints of skeletal arcs, junctions of skeletal 
arcs and either some object component or other skeletal arcs, and lastly an object component inside another 
object component. By enumerating such situations, we expect to show that proposition 4 is true for 2D. It 
is also expected that a similar classification of the types of geometries can be done for 3D. 

7.3 Shrink Wrap Procedure W 
From figure 8, it is clear that the box skeleton does not share the topological properties of the original object 
Although we expect to show that the dual of a graph is a deformation retract of the graph, procedure T does 
not operate with such duals. There is a step whereby a new object is identified by taking the closure of the 
interior of the point-set represented by the dual (step 2 of procedure 7~), and this step leads to a disconnection 
between Si and SM. 

We now define a procedure, called the shrink wrap procedure W, which guarantees that the retract 
and the homotopy defined above, are maintained across the stages of procedure T. These mappings under 
W are identical to their counterparts under T, except in the vicinity of points of Si D Ou which are the points 
where connection is lost between Si and \JV(Gi). Informally, the procedure operates like a plastic wrap 
around the object. As the object thins, the wrapping "shrinks", but does not tear. 

The retract mapping under procedure W is not different from the one shown in figure 15 if Si D Ox = <f>. 
If the set is not empty, then W redefines the mapping for points in O, in the vicinity of points in Si D <9 t, as 
shown in figure 16. This is further illustrated in figure 17. 

The general procedure for constructing the retraction mapping Rw under the shrink-wrap procedure W 
is given next. As mentioned before, this mapping is identical to Rh except in the vicinity of points in 5, fl O,. 
By vicinity is meant a neighborhood smaller than our resolution, which is unity. Once again, we first explain 
the 2D case, and the reader is referred to figure 16. Consider the immediate neighborhood of some point 
x 6 Si; n Oi to be a box of size less than unity, centered at x. Denote this neighborhood by N*(x). Recalling 
from the previous section that h : Oi x / -» (J V(Gi) is the homotopy between points of Oi and points of 
(J V(Gi)9 the mapping Rw for points in Bdy(0,) 0 N*(x) is as follows: 

1. Augment V(Gd with the set C^i = {y G Ot \ y = h(x,t),t 6 [0,1]}, Vx € Si D C\. 

2. Vp € Bdy(Of) n Bdy(AT(*)), Rw(p) = /?,(*). 

3. Points of Bdy(Oi) between x and each point in Bdy(0,-) fl Bdy(N*(x)), map to an appropriate point in 
CM. That is, Bdy(0|) n (N*(x) is a 1-manifold segment containing x; then 

Rw>(Bdy(Oi) fl ATCc)) c CM 

and 
Rw(x) = x, Vx6 5 . nO , 

16 
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(c) The retraction mapping in two regions 

Figure 15: Illustration of retract mapping for 2D. 
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(a) Retract mapping under procedure T 

(b) Retract mapping under W 

Figure 16: The construction of the retract mapping, under the shrink-wrap procedure. 
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Figure 17: Illustration of shrink-wrap procedure, and skeleton of the asterisk. 
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In figure 16, y = Rt(£)> and Bdy(0,) n Bdy(JV*(x)) = {c,d}. Hence, c and d map under flw to y, which was 
the image of x under the earlier map Rt. The point x € Si fl Oi maps to itself under Rw. The straight line 
segment (x,y) is the the path under homotopy (in procedure T) of x, and hence the segments (x, c) and (x,d) 
map to this segment, and Rw(x) = x. 

This extends to 3D cases also. The difference is that Si n 0/ need not be isolated points, but could also 
be edges (segments). In this case, we identify the immediate neighborhood for each point on the segment, 
as before, but consider the union of all such neighborhoods together. Consider figure 18. Part (a) shows a 
simple 3D figure and its dual, which happens to be skeletal. Part (b) is the same 3D figure, except with a 
skeletal component adjacent to it. Part (b) shows the construction of the composite immediate neighborhood 
of edge segment (a,b). If we use the notation NS€i(a,b) = Uxe&fiN*^ ^en NS€g(a,b) fl Bdy(Oj) is the 
shaded region on the faces of the voxels in part (b) of the figure. All points in Bdy(Nseg(a,b)) n Bdy(Oi) 
map to Rt>((a,b)). Part (d) of the figure shows the set CM = {y € O; | h(x,t) = y>t € [0,1]}, for each 
x 6 Si fl Oi Thus, Nseg(a, b) f] Oi (shown shaded in part (b) of the figure), maps to the figure marked CM in 
part (d). Part (d) shows the skeletal components from the two iterations, Si and CM. 

Proposition 5: Procedure W yields a set Soo which has the following properties: 

1. Soo has no interior. 

2. The box skeleton of O is a subset of S<x>-

3. Soo has the same homotopy type as the original object. 

8 Applications 
In this section, some possible applications of the box-skeleton are presented. These applications are, broadly, 

1. Numerical analysis of injection molding. 

2. Feature recognition in injection molding design. 

3. Automatic mesh generation. 

4. Initial solution to finding critical points in tracing the euclidean skeleton. 

5. Shrinkage analysis. 

The first two have been explored in some detail using the results of our early attempts at skeletonization. 
Some of the ideas in this work are reported in [7], and also in [8]. An early implementation of our ideas was 
carried out, and showed great promise in handling complex injection molding parts from industry. 

The use of the euclidean skeleton in automatic mesh generation has been well-explored by Gursoy [5], 
Tarn et al [18], and others. It is the extension of their methods to three dimensions that we plan to explore. 

Hoffman and others are interested in extracting the euclidean skeleton of 3D objects. To this end, they 
have carried out substantial work in finding the cut locus of two disjoint components of the boundary of 3D 
obects. As mentioned earlier, one important aspect of the problem of finding the euclidean skeleton is the 
identification of the so-called critical points, which they do not address. We expect that the critical points of 
the skeleton we identify could be used as good initial guesses for the critical points of the euclidean skeleton. 
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9 Summary 
We have indicated that the euclidean skeleton (MAT) is a useful alternate description of the geometry of 
physical objects. Nevertheless, it has proved very difficult to use the euclidean skeleton in engineering 
design, since it is very hard to define algorithms for finding the euclidean skeleton of 3D objects. We have 
indicated that although the 3D euclidean skeleton remains elusive, other skeletons can be defined which 
share some of the properties of the euclidean skeleton. 

We have described a procedure for finding one such alternate skeleton, and have indicated that this 
skeleton is closely related to the box skeleton. Our procedure yields a skeleton which, we contend, shares 
the following properties with the euclidean skeleton: 

1. dimensional reduction (i.e., no interior) 

2. topological equivalence (i.e., the skeleton is a deformation retract of the object) 

3. shape abstraction (i.e., the skeleton is based upon a fundamental shape which is simple, just as the 
euclidean ball is simple) 

It is the basic contention in this work that the skeleton so defined will prove useful in a wide variety of 
engineering design problems, and also in tracing the euclidean skeleton of objects. 

Readers will note that the technique presented here has a strong resemblance to the Voronoi-based 
approximation techniques of Tarn [20] and Yu [23]. That is to say, if the initial object is thin (in the sense 
that all the vertices in the object graph are on the boundary of the object), then the skeleton we obtain is 
very similar to the Voronoi-based approximate skeletons. In this sense, this work is a generalization of the 
concept, since our technique can handle the case of internal vertices as well. Since we can only operate with 
discrete (pixel/voxel based) objects, our technique does not converge to the euclidean skeleton. However, 
as discussed, this does not deter the applicability of our work in engineering design. 

The proofs of various propositions put forth in this document is the focus of current work. 
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