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ABSTRACT 
This paper develops a new approach to an old and 
difficult problem: how to make and update plans for 
correcting a given set of contingencies. The 
approach is to decompose the problem into a set of 
loosely coupled, much smaller problems that can be 
solved by a team of cooperating agents. The team is 
expandable and its agents are autonomous, work in 
parallel, and communicate asynchronously. Most of 
the current cadre of agents use algorithms that are 
either well known or fairly obvious. One type, 
however, uses a new algorithm for finding starting 
points for nonlinear programming codes. This 
algorithm is described and the performance of the 
team illustrated with small examples. 

1. INTRODUCTION 

1.1 Terminology 
Think of a power system as a network containing m 

switches, each of which can be either open or 
closed. Thus, the system can adopt M - 2 m different 
configurations, denoted by Co, Ci,... Cm, where Co 
is the current configuration. Let X n be a vector 
whose elements are the bus voltages and bus power 
injections of C n . Though X n contains both state and 
control variables, we will, for the purposes of brevity, 
call it a state vector. 

The concerns in operating a power system can be 
divided into two broad categories: cost and quality. 
Cost is usually represented by a function: f(X n). 
Quality concerns are usually expressed as a set of 
nonlinear relations (sometimes, called load and 
operating constraints) that are configuration-specific, 
and have the general form: 

Gn(Xn.D(t)) = 0 
Hn(Xn.D(t)) * 0 

where t is time and D is a vector of exogenous, time-
varying quantities, such as customer demands for 
electric energy. 

X n is said to be a normal state if it satisfies these 
constraints. S n , the set of all normal states for 

configuration C n , is called the normal set of C n . 
Configurations for which S n is empty are said to be 
uncorrectable; all other configurations are said to be 
correctable. 

Two sorts of events can cause a system state to 
become abnormal: gradual changes in the 
exogenous variables, D, and sudden disturbances 
that result in random configuration changes. The 
latter can cause far larger excursions, and hence, are 
much more dangerous. 

Let Tn(Xna> xnb) be the least time required to 
change the state of C n from X n a to X nb through a 
sequence of control actions. We will call x n a 
transition delay. Note that in is non-zero because 
many control actions are rate limited. The output of a 
typical generator can, for instance, be increased at 
most by a few megawatts per minute. 
1.2 Focus 

This paper deals with control actions to counter the 
ill effects of sudden disturbances. These actions can 
be discrete (switching operations) or continuous 
(changes in the independently controllable 
components of the state vector). The paper 
concentrates on the latter. 
2. PROBLEM FORMULATION 

2.1 Optimum Power Flows (OPFs) 
One of the simplest operating philosophies is to 

minimize instantaneous costs while keeping the 
state normal. In other words: 

(OPF): Min f(Xo) 
s.t. Go(Xo,D) = 0 

Ho(Xo,D) * 0 
Since the dimensions of Xo, Go, and Ho are often 

of the order of 1000, this is a large problem; available 
techniques are barely able to solve it fast enough for 
the results to be useful in real-time operations [1, 2, 
3]. 

2.2 Adding Contingency Constraints 
How can one limit the ill effects of the random 

configurational changes that result from sudden 
disturbances? By far the most common practice 
involves two steps [4, 5, 6]. First, a set of critical 
configurational changes (called contingencies) is 
identified. Second, plans are made to reestablish a 
normal state within some short period after the 
occurrence of each contingency. 

The identification of critical contingencies requires 
system-specific knowledge, much of which can be 
encoded in expert systems [7]. In other words, much 
if not all of the identification process can be 



automated with existing techniques. The same is not 
true for planning responses to these contingencies. 
To understand why, suppose that the n-th 
contingency would cause the system's state to 
change from Xo to X nc- I* *nc i s a b n o r m a , » t h e 

planning problem is to find a normal state, X n , that 
can be achieved within an acceptably short time, say 
T n . There are two different ways to formulate this 
problem: the first treats correction times as hard 
constraints; the second treats them in a softer way, 
specifically, as terms of an objective function. The 
modifications that result to (OPF) from these two 
treatments are indicated below: 

(CCP1): Min f(Xo) 
s.t. Go(Xo,D) » 0 

Ho(Xo,D) <i 0 
Gn(Xn,D) = 0 
H n(X n ,D) * 0 n = 1,2 N 
xn(Xn-Xo) * T n 

N 
(CCP2): Min f (Xo) + X w nx n(Xn - Xo) 

i=1 
s.t. Gn(Xn,D) = 0 

n-0,1,.. . tN 
H n(X n ,D) * 0 

where: N is the number of contingencies to be 
considered; T n is the time allowed for the n-th 
contingency to be corrected, w n is a weight 
assigned to the n-th contingency; and it has been 
assumed that x n (X n - X n c ) can be approximated by 
xn(Xn-Xo). 

Both these formulations are very large-at least 
N+1 times as large as (OPF). As such, both are 
beyond existing capabilities for fast, reliable and 
repeated solution. In addition, each requires the 
user to select some parameters: {T n} in the case of 
(CCP-1) and {wn} in the case of (CCP-2). It happens 
that the selection of {T n} is much more difficult. The 
explanation is as follows. Let Z = [Xo,X«|,...,X|M] be a 
vector called a super-state. Let S1 be the feasible 
set of (CCP1), that is, the set of all values of Z that 
satisfy the constraints of (CCP1). Let S2 be the 
feasible set of (CCP2). Then S1 is small and 
sensitive to the values selected for {T n} while S2 is 
much bigger and insensitive to the values of {wn}. 
Another way of putting it is that the constraints of 
(CCP1) require all the contingencies be correctable 
and also, all the corrections be completed within time 
limits, {T n}, that must be selected apriori. In contrast, 
the constraints of (CCP2) require only that all the 
contingencies be correctable. In selecting {Tn} there 
is a considerable risk of making S1 empty, in which 
case little useful information is likely to result from 
attempts to solve (CCP1), even though these 
attempts be long and painful. In selecting {w n}, 

however, the user is merely expressing an opinion 
on the relative importance of the contingencies and 
can adjust this opinion interactively. 

Because of (CCP1)'s profound disadvantages 
relative to (CCP2), we will henceforth consider only 
(CCP2). Also, recall that the vector of exogenous 
variables, D, is time varying, and therefore, the 
solution of (CCP2) is time varying. 

2.3 A Decomposition 
Notice that the constraints of (CCP2) consist of 

N+1 independent blocks. As a result, (CCP2) can be 
decomposed into a set. {(IPn)}. of N+1 subproblems 
each having the form: 
(IPn): Min f n (X n ,Zn) 

Xn 
s.t: Gn(Xn,D) = 0 

n = 1,2, ...,N 
H n(X n ,D) <l 0 

where: 
Z n • Z\Xn, that is, the super-state Z with the 

elements of Xn removed 
N 

fO(Xo,Zo) « f(Xo)+X wnTn (Xn -Xo) 
n=1 

fn(Xn.Zn) = xn(Xn-Xo) forn = 1,2,...,N 
Let {(IPn)} be the set of all the (IPn) and Z* be a 

simultaneous solution of this set. Then, it can easily 
be shown that Z* is also a solution of (CCP2); hence, 
{(IPn)} and (CCP2) are equivalent [8]. 

2.4 A Skewed Approximation 
Can the couplings among the members of {(IPn)} 

be loosened so their parallel solution becomes 
easier? 

Note that the exact solution of {(IPn)} is 
unobtainable because the exact value of the 
exogenous vector, D, is unknown. The elements of 
D are time varying and are measured by sensors that 
can be hundreds of miles apart. There is always 
some delay and time skew in making and collecting 
these measurements. What if delays and time skews 
were allowed for the values of Z n? More specifically, 
suppose that each (IPn) is treated as a separate 
problem that is solved iteratively for X n , while Z n and 
D are treated as exogenous variables whose values 
are updated as new estimates of them become 
available. Then we have a set, {(IPn*)}. of more 
loosely coupled problems, each of the form: 
(IPn«): Min fn(Xn.Z'n) 

X n 

s.t: Gn(Xn.D') = 0 
Hn(Xn,D*) * 0 

where Zn and Dv are the latest available values of Z n 

and D. 
Consider the case where (IPn) has multiple 

solutions. Intuitively, one would expect each 
solution of (IPn') to track the corresponding solution 
of (IPn) as it varies in time with an error that increases 



smoothly with the skew in the values of Z*n and D\ 
That this is actually the case is easily proved [8,9]. 

3. MULTI-AGENT SOLUTION PROCESSES 

3.1 Asynchronous Teams (A-Teams) 
The preceding sections have decomposed the 

contingency constrained problem, (CCP2), into a 
set, {(IPn')}, of N+1 smaller problems, each of the 
form and size of an optimum power flow. The smaller 
problems are very loosely coupled and can be 
solved by a team of agents working in parallel, 
provided the team is properly organized. 

The organization we will use is called an A-Team 
and is described in [10]. Its main features are: 
• Agents with a multitude of skills are combined so 

they complement and help one another 
• All the agents are autonomous. Most agents use 

only locally available data. All the agents work in 
parallel and communicate asynchronously (that is, 
no agent has to wait for results from another). 

• The organization is very open. The addition of a 
new agent may require some modifications to that 
agent, but none to the rest of the organization. As 
a result, the number of agents tends to grow 
continually. 

• The agents develop and maintain populations of 
solutions to the overall problem and its 
components. 
The structural features of A-Teams make them well 

suited to distributed implementations in networks of 
computers. The key question is: can an A-Team be 
made to do anything useful? After all, autonomous 
agents, each deciding for itself what it is going to do 
and when, if ever, it will communicate with its team 
mates, can act at cross purposes. Surprisingly, there 
are simple strategies to keep this from happening. 
One of them is to balance agents that create 
solutions with agents that destroy them. In difficult 
integer programming problems (travelling salesman 
and robot design) this strategy has been shown to 
produce scale efficient behavior (as agents are 
added better solutions are obtained more quickly 
and speed of the team increases) and even 
synergistic cooperation (the capabilities of the team 
appear to be greater than the sum of the capabilities 
of its agents) [10]. 

To visualize how this strategy works, think of an A-
Team as a distributed collection of memories (Fig. 1). 
One of these memories contains a population of 
solutions to the overall problem being considered. 
The others contain populations of solutions to sub-
problems. Each population is continually 
transformed by agents working in parallel. Some, 
called creators, add members to the population, 
others, called destroyers, cull members from it. 
Suppose that for each population there are several 
criteria by which the goodness of members can be 
measured. Think of the population as a set of points 
in the space whose axes represent these criteria. We 
want the creators and destroyers to act so that 
together, they herd the population into a desirable 

part of the space. It has been demonstrated that this 
happens even with very narrow creators and 
destroyers, each able to take only a single criterion 
into account in making its decisions [11]. In essence, 
each creator works to produce solutions that are 
better in terms of its criterion; each destroyer tests 
solutions with respect to its criterion and eliminates 
those that fail. 
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Fig 1: The structure of an A-Team. Memories are 
represented by rectangles; agents, by arrows. 

3.2 Agents 
Like rules in an expert system, the number of 

agents in an A-Team tends to grow continually. We 
do not have the space to describe all the agents now 
in the team for solving (CCP2). Instead, we will list the 
agents involved in maintaining a population of 
solutions to its principal sub-problem, (IPn'), and 
describe one of them in some detail. These agents 
are: 
• Data importers: to collect the latest values of Z n 

and D\ 
• Probes: to perform fine searches of 

neighborhoods, that is, to find local minima of 
(IPn1) from given starting points. This capability is 
provided by conventional nonlinear programming 
codes [12]. 

• Voyagers: to provide starting points for the 
probes. The voyagers do this by conducting 
coarse searches that locate neighborhoods in 
which good solutions of (IPn') are likely to lie. 

• Inhibitors: to place "fences" (implemented in the 
form of constraints) around neighborhoods that 
have been investigated, and thereby, to keep 
voyagers from wasting effort on revisiting these 
neighborhoods. (The fences are similar in 
concept to the discrete restrictions in tabu search 
[13], and can be viewed as their extension to 
continuous domains.) 

• Destroyers: to perform two functions. First, to 
eliminate obsolete solutions and fences (Recall 



that the solutions of (IPn1) are time varying. 
Therefore, solutions that are valid at time t are less 
valid at time t+At.) Second* to eliminate results from 
voyagers that have become trapped in some 
unproductive part of their search space and force 
these voyagers to jump to a new location. 
Except for the voyagers, these agents use either 

well known methods or fairly obvious heuristics. The 
voyagers, however, use a new trajectory-based 
heuristic that is described below. 

4. THE VOYAGER ALGORITHM 

4.1 Coarse Search by a Relaxed Interior 
Point Method 

Consider an optimization problem with multiple 
solutions, some better than others. The purpose of a 
voyager is to find points close enough to the better 
solutions to serve as starting points for conventional 
nonlinear programming codes (these codes 
invariably employ greedy algorithms that head for the 
nearest local optimum, regardless of its quality). Fig. 
2 illustrates how the voyagers and probes cooperate 
to find solutions. 

The two main ideas behind the voyager-algorithm 
are: 
• Replace the objective and constraints of the 

optimization problem to be solved ((IPn1) in our 
case) by a binary vector field T)'(Xn). The magnitude 
of this field is 1 everywhere except at the solutions 
of the optimization problem, where it is 0. Every 
field line passing through an infeasible point leads 
to a feasible region; every field line that passing 
through a feasible point leads to a minimum. 

• Each voyager behaves as a Newtonian particle 
under the influence of two forces. The first force 
acts to align the particle's velocity with the vector 
field ; the second, to keep the magnitude of the 
particle's velocity constant. As a result, particles are 
attracted by feasible regions and minima but 
circulate at near-constant speed, never stopping. 
Once a voyager enters a feasible region it can only 

escape if the region is small. The constraints that 
delineate the boundaries of the region behave as 
elastic membranes, forcing the voyager back into the 
interior whenever it violates them. Thus, the voyager 
can be thought of as using a relaxed interior point 
method. (Traditional interior point methods [14, 15, 
16] treat constraints as rigid rather than elastic 
boundaries. This requires a great deal of 
computational effort. Since there are few if any 
benefits, the relaxed approach seems preferable.) 

• solution 
x launch point 

X w m probe trajectory 
— > • voyager trajectory 

Fig 2: A voyager conducts a coarse search which 
takes it close to solutions of problem BH-2 (described in 
the appendix). Its purpose is to find starting (launch) 
points from which conventional nonlinear programming 
algorithms (called probes) can begin fine searches for 
the solutions. 
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Fig 3: The vector field for the problem in Fig. 2 



4.2 The Vector Field 
The process for replacing (IPn') by a vector field is 

as follows. First, the equality constraints: G n ( X N , 
D')=0 are approximated by inequalities: 

G N ( X N , D ^ a 
Gn(Xn,D-)2i-a 

where a is a non-negative, user-selected parameter. 
Thus (IPn1) is replaced by a problem with only 
inequality constraints which, for the purposes of 
rotational brevity, we will write as follows: 
(VP): Min f(X) 

s.t. Cj(X)£0, H , M 
where M is the total number of inequality constraints. 
Let: TV(X) be the field vector at point X; I be the set of 
constraints that are violated at X, that is, I - { j | CJ(X) > 
0}; 0 be the null set; V be the gradient operator; and 
11.11 be the Euclidean norm. Then: 

f -Zq(X)Vq(X) 
| 

I Hlq(X)Vq(X)|| 

iel, ifl*0 

-Vf(X) 

H Vf(X) |I 

I 

ifl = 0 
and 
l|Vf(X)||*0 

ifl = 0 
and 
IWQH-0 

force B2 is co-linear with V and proportional to the 
difference between ||V|| and E in magnitude. B2 acts 
to make ||V|| equal to the desired speed, E. 

4.4 Discussion 
By using only the direction, not the magnitude, of 

the vector field as a guide, the voyager is able to 
travel at near constant speed and thereby, keep from 
being trapped by minima. This feature distinguishes 
voyagers from other trajectory based algorithms [17, 
18]. 

Besides voyagers, how can one pick starting 
points for nonlinear programming codes? Perhaps 
the most widely applicable technique is to pick the 
points randomly. Table 1 compares the results 
obtained from starting points generated by a voyager 
to starting points generated randomly (random multi-
start or RMS). The results were calculated by a 
nonlinear programming code (SQP routine VF13 
from the Harwell Library) for several small but difficult 
optimization problems that are described in the 
Appendix. Calculations were continued until the 
global optimum was found. The results shown are 
the averages over three trials. The "function 
evaluation" counts include both function and 
gradient evaluations. "Good solutions" are those 
within 30% of the global optimum. 
Table 1: Voyagers vs. random selection (RMS) for 
generating starting points for optimization problems. The 

In words, the field V is of unit magnitude 
everywhere except at solutions to (VP) . Also, at 
infeasible points the field is directed towards feasible 
regions; at feasible points, it is directed towards 
solutions of (VP). 

4.3 Voyager Dynamics 
The dynamics of the voyager are described by the 

following differential equations: 
^ - i f B ^ + B^X)) 

*£=V(X) 
dt 

where: 
BI(X)=||T,(X)-V(X)||N(X) 

B^X) = W ( E - | | V ( X ) | | ) ^ 

TI(X) = iy(X) ||V(X)||; x is the mass of the voyager; N(X) 
is a unit vector that is normal to V(X) and in the plane 
of V(X) and TV(X); E is the speed to be maintained; 
and W is a constant. 

In words, the force B1 is normal to V in direction 
and proportional to the angle between V and T)1 in 
magnitude. B1 acts to align V with r\\ In contrast, the 

Problem Starting 
point 

generation 

No. of 
function 

evaluations 

No. of 
solutions 

found 

No. of 
good 

solutions 
found 

He-6 Voyager 36.587 13 7 He-6 

RMS 44,030 10 3 

Gr-10 Vovaqer 217,963 49 47 Gr-10 

RMS 659,853 48 38 

Gr-15 Vovaqer 467,653 49 49 Gr-15 

RMS 1,850,368 45 38 

Gr-20 Vovaqer 1,454,397 86 85 Gr-20 

RMS 5,916.456 85 71 

Notice that the voyager picks better starting points 
than RMS and its advantage increases with problem 
size and dimension. 
5. A SMALL POWER SYSTEM EXAMPLE 

Some results from tests on a system with 6 buses, 
11 lines and 3 generators [19] are reported here. 
Nine contingencies were considered, each involving 
the outage of a single line. Operating cost was 
approximated by a weighted sum of generations. 
Correction times were those required to make the 
generation shifts necessitated by each contingency. 



An A-Team containing 10 voyagers (one for the 
base-case and one for each contingency), 10 
probes and sundry other agents (c.f. Section 3), 
distributed over a net of 7 workstations was used to 
produce the results given in Table 2. The four cases 
vary in the weights assigned to the terms of the 
objective function of (CCP2). Specifically, the 
weights were chosen so only cost was minimized in 
Case-1; only the correction time for contingency-2 
was minimized in Case-2; cost and all correction 
times were equally weighted in Case-3; and 
contingency-2 was given a greater weight, than cost 
or any other contingency, in Case-4. Thus, by 
varying the weights it is possible to explore the 
tradeoffs among cost and contingency correction 
times. In an EMS an operator could conduct such an 
exploration periodically and from the results, select 
the tradeoff he/she liked most. 

Table 2 
Results for a 6 bus, 11 line, 3 generator s\ 'stem 

Case-1 Case-2 Case-3 Case-4 

Relative 
operating 

Cost 

19.32 20.59 20.03 18.65 

Contingency 

correction -

time (min). 

CI 4.61 29.67 5.13 0.24 

Contingency 

correction -

time (min). 

G2 31.76 4.67 28.07 13.03 

Contingency 

correction -

time (min). 

C3 20.41 9.75 14.32 3.78 

Contingency 

correction -

time (min). 

C4 4.52 30.32 0.76 21.77 Contingency 

correction -

time (min). 

C6 8.18 32.68 8.03 24.30 

Contingency 

correction -

time (min). 06 11.90 29.41 5.97 21.20 

Contingency 

correction -

time (min). 

C7 11.08 35.70 11.78 27.07 

Contingency 

correction -

time (min). 

08 1 28.75 30.72 6.62 22.29 

Contingency 

correction -

time (min). 

091| 3.24 30.42 0.82 22.02 

6. CONCLUSIONS 
This paper has developed a process for solving 

contingency constrained optimum power flows. The 
process has two main components. First, the overall 
problem is decomposed into a set of N+1 loosely 
coupled, smaller problems, each of the form and size 
of an optimum power flow, where N is the number of 
contingencies to be considered. Second, the 
smaller problems are solved by an asynchronous 
team of agents working in parallel. This team is open 
(so new agents can be easily added), distributable 
(so it can be readily implemented in a network of 
computers), and effective (so it finds good solutions 
quickly). The openness and distributability result 
from using autonomous agents that communicate 
asynchronously. The effectiveness is a result of two 
factors. First, the skills of several agents (particularly, 
voyagers and probes) are combined so they can find 
solutions that none of them could find alone. 
Second, the team maintains populations of solutions 
and so has greater coverage than an approach 

confined to working with a single solution. The 
populations are herded in profitable directions by the 
combined actions of agents that create solutions and 
agents that destroy them. We believe that in dealing 
with difficult problems, it is at least as important to be 
able to recognize and destroy bad solutions as to 
create good ones. 

The solution process has, as yet, only been tested 
on small problems. Many implementation questions 
must be answered before the process can be 
applied to full-sized power systems and real time 
operations. Chief among these is: will the process 
scale-up to full-sized power systems? We believe 
that the answer is "yes." As a first approximation, the 
computational complexity of our A-Team is the 
complexity of its most complex agent. This agent is 
the nonlinear programming code used to find 
solutions to optimum power flows. Such codes have 
been in existence for some time and are known to 
perform fairly well on full-sized systems. Therefore, it 
is reasonable to expect the A-Team to perform at 
least as well. 
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There is a global minimum at x* • (5,1,5,0,5,10) 
with value-310 
Gr-10, Gr-15, Gr-20 

N 2/ N 

Min £ X j / d - n COS(XÌ/VT) + 1 

i -1 i -1 
s.t. -600^Xi£600 , i = 1, 2,... N 

N p 2 
Xx ¡£(1800) 
i-1 

For Gr-10, d»4000, N = 10 
For Gr-15, d » 80,000, N«15 
For Gr-20, d = 800,000, N = 20 
All three of these problems have a global minimum 

at the origin with value zero. There are several 
thousand local minima. 

APPENDIX 
Some small but difficult optimization problems, 

adapted from [20], are listed below. 
BH-2 

Min (X2^ix?+5.x Ì-6) 2+10(1 - U c o s X ì +10 

S.t. (xi - 5 ) 2 + (X2- 1 0 ) 2 2>52 

(xi - 5 ) 2 + (X2- IO) 2£ 1 0 2 

The problem has 3 minima at ( -3.142, 12.275), 
(3.142, 2.275), (9.425, 2.475) with objective 0.398. 

He-6 
Min 

s.t. 

- (25(X1 - 2 ) 2 + (x2 - 2)2 + (X3 - 1 ) 2 

+ (X4 -4)2 + ( X 5 - 1 ) 2 + (X6 -4 ) 2  

X 1 , X 2 ^ 0 , 1 ^ X 3 ^ 5 , 0 ^ X 4 ^ 6 , 1 <;x 5£5, 
0 ^ X 6 ^ 1 0 , 2 ^ X 1 + X 2 ^ 6 , - x 1 + x 2 £ 2 , 
X1 - 3 X 2 £ 2 , 4 £ ( X 3 - 3 ) 2 + X 4 , 4 < ; ( X s - 3 ) 2 + X6 


