
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



CEPHDA
Chemical Engineering Process Hierarchical Design with

Ascend
Kay C Dee, Arthur ¥. Westerberg

EDRC 06-140-92



 



CEPHDA: CHEMICAL ENGINEERING PROCESS
HIERARCHICAL DESIGN WITH "ASCEND"

K. C. DEEt and A. W. WESTERBERG

Department of Chemical Engineering and Engineering Design Research Center,
Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

t Currently graduate student, Department of Biomedical Engineering,
Rensselaer Polytechnic University, Troy, NY 12180, U.S.A.

EDRC Research Report Series #06-140-92

This work has been supported by the National Science Foundation.



CEPHDA: CHEMICAL ENGINEERING PROCESS
HIERARCHICAL DESIGN WITH "ASCEND"

K. C. DEEt and A. W. WESTERBERG

Department of Chemical Engineering and Engineering Design Research Center,
Carnegie Mellon University, Pittsburgh, PA 15213, U.SA

t Currently graduate student, Department of Biomedical Engineering,
Rensselaer Polytechnic University, Troy, NY 12180, U.S JL

Abstract — CEPHDA is a computer-aided chemical engineering process design tool,
which we implemented in the 'ASCEND* (Advanced System for Computations in
ENgineering Design) modeling environment. CEPHDA contains models for levels 2
(treating a whole process as a "black box*) and 3 (implementing recycle flows) of the
hierarchical design process which Douglas (1988) developed in his text 'Conceptual
Design of Chemical Processes.' We have tested CEPHDA by modeling a three step
process from toluene to benzene to ethyl benzene to styrene. The CEPHDA library
was created so that inexperienced process engineers can readily create, evaluate,
and optimize such models.

1. INTRODUCTION

The process of designing a system in any
engineering discipline is inherently
creative. Typically, engineering problems
are under-defined, making it necessary for
the engineers involved to supply missing
information crucial to the problem in
question. When faced with a process design
problem, experience in designing similar
processes is an important asset, providing
knowledge of reliable design heuristics and
useful "back of the envelope calculations'1.
These methods are generally used to sort
through process alternatives, helping
engineers select optimal system components
and conditions, resulting in a well-designed
process. Often, when an engineer is in a
learning position (either as a student in a
process synthesis course or as a new process
engineer in industry) constructive use of
these design heuristics is hampered by
inexperience and unfamiliarity with the
engineering design process. A tool to help
such 'engineers in training* become familiar
with the design process, and to assist
experienced engineers in quickly evaluating
process alternatives, will be a valuable asset
in a design environment.

James M. Douglas is credited with
articulating one methodological approach to
the design of chemical engineering systems,
outlined in his textbook 'Conceptual Design
of Chemical Engineering Processes' [1]. The
"Douglas Method" is based on hierarchical
decision-making, using economic feasibility
as a main criterion for process evaluation.
A complex problem is gradually solved
through completion of a number of arbitrary
"stages", or levels of analysis.

The ASCEND (Advanced System of
Computations in ENgineering Design)
modeling system, currently under
development at the Engineering Design
Research Center at Carnegie Mellon
University, is an interactive model-building
environment currently available on the
Apollo computer for use in the X window
environment. The ASCEND system is
heavily structured, declarative, strongly
typed and incorporates object-oriented
programming [2, 3, 4].

CEPHDA, (Chemical Engineering Process
Hierarchical Design with ASCEND)
combines the arbitrarily structured design
approach of the Douglas method and the
inherently structured ASCEND computing
environment to create a flexible modeling
tool. The user proceeds at will through the



Douglas stages, choosing which design
variables to specify and which variables
ASCEND will compute or optimize.

CEPHDA has been successfully used to
model a typical undergraduate chemical
engineering process design problem: a
three-step styrene synthesis from toluene to
benzene to ethyl benzene to styrene.
Compared with manual use of the Douglas
method, the CEPHDA-generated design
allowed for rapid detection and location of
design errors, swift formulation of material
balances and reactions, easy generation and
evaluation of process alternatives, and
quick formulation of primary levels of
analysis.

2. THE DOUGLAS METHOD

James M. Douglas divides the conceptual
design of chemical processes into five
generic steps, or stages of thought. These
vary from rapid, simple estimates to
detailed calculations. Economic feasibility
is used as a main criterion for process
evaluation at every stage of the Douglas
method. While initial order-of-magnitude
process cost estimates have been quoted to
possess a probable accuracy of ±40%, a
simulation based on costing major items of
equipment can allegedly result in a cost
estimate accuracy of ±25%, and a
preliminary budgeted estimate can
allegedly again raise the predicted accuracy
to ±12% [9]. It has been claimed that
definitive estimate using high levels of
analysis in the Douglas method and almost
complete process data can result in an
accuracy of ±6% (Douglas, 1988). Checking
the projected economic potential at early
stages of the design process, as is done in
the Douglas method, allows for quick
elimination of non-feasible design
alternatives.

Following are brief discussions of
individual levels contained within the
Douglas method, detailing the types of
decisions and design alternatives to be
considered at each stage and some
heuristics commonly used as design
guidelines for each level of analysis.

2.1 LEVEL ONE
Level One assimilates very basic process

information. The user need only know the
basic chemistry for the main reactions that
will occur in the process: reaction
stoichiometry and molar flow rates of either
feed components or exit components. The
user may assume that the reactions will go
to full completion or may either specify or
optimize the extent of each reaction. The
user may assume that there are no
competing or side reactions. This level of
analysis assumes that the user has input
the correct stoichiometric coefficients and
had accounted for all main reactions in the
process. A mass balance is performed to
determine input or output molar flows, and
it is possible to perform a simple economic
analysis of the process based solely on
market worth of chemicals comprising input
and output streams specified by the user.

It is generally assumed that the process in
question is a continuous process. A batch
process would be designed on consideration
of three process characteristics: production
factors, market forces, and scale-up factors.
If the production factors were such that the
production rate was less than 1x10* lbs/yr of
product or the process to be designed was a
multiproduct plant, the process should be
designed as batch. If demand for the
product was seasonal or if the product had a
short lifetime, market forces would indicate
a batch design. Finally, scale-up problems
that would indicate a batch process include
very long reaction times and handling of
slurries at low flow rates or rapidly fouling
materials.

2.2 LEVEL TWO
Level Two sets the basic input-output

structure of the process flow sheet. The
user must decide whether or not to purify
feed streams to the process based on
product purity requirements. A perfect
separation system is assumed in this level
of analysis. Thus, the user may recycle
reactants or purge streams as desired. A
process alternative that should be
considered at this level involves reversible
by-products: they may be recycled to the
reactor and allowed to build to an
equilibrium level, but the design engineer



should keep in mind that the equipment
will have to be oversized to handle the
increased stream flow. This presents
additional costs in equipment and possibly
utilities as a tradeoff for increased reaction
selectivity.

2.3 LEVEL THREE
Hard-core process flow sheet decisions are

finalized in Level Three. The user may
choose how many reactors will be needed,
and whether or not some components
should be separated between reactors. The
user specifies how many recycle streams
will be present, and whether or not gas
compressors or pumps will be needed for
those streams. At this level, reactor
operating conditions are considered: is
adiabatic operation possible? Will heating
and cooling be needed? Reactor,
compressor, and pump costing helps provide
a more complete economic potential at this
level, as does a comparison of reactant
conversion versus reactor cost.

2.4 LEVEL FOUR
Level Four involves the design of the

separation system. Depending on the phase
states of the process streams involved, a
vapor or liquid recovery system must be
designed.

There are four basic choices for the
location of a vapor recovery system: a purge
stream, a gas-recycle stream, or a flash
vapor stream. The most common vapor
recovery systems include condensation,
absorption, adsorption, membrane
processes, and reaction systems.

When designing the liquid recovery
system, it should be remembered that in
general, distillation is the least expensive
means of separating mixtures of liquids.
The sequencing of columns is an intensive
design problem. A number of heuristics can
be used to help sequence a series of
distillation columns: corrosive components
should be removed quickly, as should
reactive components or monomers.
Products and recycle streams should be
removed as distillates, not condensates.
More plentiful components should be
removed quickly, as should the lightest

components. Equimolar splits should be
favored, and difficult separations should be
saved for last. While distillation is an
attractive separation alternative, if the
relative volatilities of two components with
similar boiling points is less than roughly
1.1, distillation becomes very expensive: a
large reflux ratio is required which means
large condensers and reboilers, large
column diameter, and expensive utilities.
Alternatives to continuous distillation with
reflux include extraction, extractive
distillation, azeotropic distillation, reactive
distillation, crystallization, adsorption, and
reaction. A detailed economic analysis is
possible at this level, taking into account
capital equipment costs and projected
maintenance and replacement costs.

2.5 LEVEL FIVE
A heat-exchanger network is designed in

Level Five. It is necessary to calculate the
temperature/enthalpy curves for each
process stream to design an effective
network: often, the use of software packages
such as FLOWTRAN© is useful to help find
the minimum heating and cooling
requirements of a process, match streams
on a cascade diagram, and determine the
minimum number of heat exchangers
needed.

As of August, 1992, CEPHDA can design
up to and including Level Three in the
Douglas method.

8. ASCEND

The ASCEND environment has been
evolving since the early 1980*8 through the
interest and support of a combination of
academic and industrial factors, including
the Engineering Design Research Center,
Carnegie Mellon University, Exxon,
DuPont, Kodak, and Mobay. Papers on
ASCEND have been published in Research
in Engineering Design, Computers in
Chemical Engineering, the Engineering
Design Research Center Research Report
Series, the Carnegie Mellon University
School of Urban and Public Affairs Working
Paper Series, and presented at the Fourth



International Symposium on Process
Systems Engineering and national
American Institute of Chemical Engineers
meetings. Modification, refinement, and
utilization of the ASCEND environment is
an ongoing process at the Engineering
Design Research Center, involving an
interdisciplinary group of faculty, staff, and
students.

While many problems in engineering
design can be characterized as systems of
mathematical relations, this approach is
complex; typical equational systems in
engineering are large, tightly coupled,
nonlinear, and difficult to visualize. The
need for computer-aided design is obvious;
however, "aided" is the key word in this
phrase. The role of human interaction in
the design process is one which currently
cannot be replaced by automation for tasks
such as problem formulation, verification,
and debugging. The quality of human
intervention with and influence on an
equationally based system is directly
proportional to the quality of the modeling
tools in use. The ASCEND modeling
environment allows the user to interact
with and influence any level of model
analysis, while providing mechanisms for
problem examination and debugging.
Though ASCEND was primarily motivated
by the needs of chemical engineers, its use
is not limited to the discipline of chemical
engineering.

ASCEND was developed with the goal of
producing an equation-oriented modeling
environment for use in engineering design
with the following attributes: rapid,
modular problem formulation, the capability
to solve large sets of nonlinear algebraic
equations, hierarchical interaction with and
modification of all levels of model
formulation, and substantial user support
for problem formulation, examination, and
debugging.

The ASCEND modeling language achieves
these goals through a combination of
factors. The language is strongly typed,
allowing variables to be defined as any
meaningful concept. For example, a
variable may be defined as a flow rate, a

temperature, or a chemical compound.
ASCEND requires that all equations within
models are dimensionally consistent,
significantly reducing debugging time and
increasing a user's understanding of and
confidence in models. Two other important
features of the ASCEND language are
incorporated from object-oriented
programming: refinement hierarchies and
partial/complete merging of models,
illustrated below in Figure 1.

NUdl
UidMiM

SULrai

NUcbl
Mdota

Sim ttT ^

MUdil

Figure 1.
ftnd l^fcrcfing of IModcls

The user/machine interface consists of a
number of windows which correspond to
types of model manipulations, including
storing libraries of code and compiled
simulations, browsing through a simulation,
or solving a system. ASCEND provides
significant support for debugging. Typical
error messages are very specific, including
where error is and where and why it is
occurring. At the request of the user,
ASCEND will search for possible errors in a
model which have not yet manifested
themselves. ASCEND also displays a
wealth of information about the system,
including the number and types of
equations and variables in models and sub-
models, and the solving status of the
system.

4. CONCEPTUAL DESIGN OF CEPHDA

4.1 FLEXIBILITY OF ENVIRONMENT
Both ASCEND and the Douglas method of

chemical engineering process design are
highly structured, yet combine to form a
flexible, easily interactive
environment.



The ASCEND environment allows a user
to declare groups of equations and variables
called models, and then manipulate these
models using a set of language-defined
operators. Any level of data may be
accessed through the ASCEND interface. It
is possible to quickly "refine" an existing
model using ASCEND operators. Once
initial models have been created and linked
to form a generic flow sheet, any user may
change which design variables have fixed
values specified by the user, and which are
computed by ASCEND. ASCEND can solve
systems of equations with a Newton-step
solver, the MINOS package [5], and a
successive quadratic programming package
under development by Dr. L. T. Biegler,
Carnegie Mellon University.

It is commonly noted in the literature on
ASCEND that this flexibility and structural
integrity is optimal for modeling units in an
engineering process: for example, a
distillation column. All equations pertinent
to a tray of the column may be contained in
one block of code: a model of a tray.
Another block of code may be used to link as
many "trays" as necessary in series. Models
can also be constructed of a reboiler and a
condenser for the column, and an all-
encompassing model of the column itself can
be created to contain the trays, reboiler, and
condenser.

What is not noted as yet is that this
structural integrity also lends itself well to
modeling a design process. While there are
many different specific articulations of an
"interdisciplinary problem-solving design
process," there are general underlying
principles which are addressed in many
different articulations [6,7,8], many of
which can be exploited in the ASCEND
environment.

4.2 CONCEPTUAL DESIGN STAGES
The first stage of a conceptual design

process is generally termed the
"Recognition" stage, where an engineer
recognizes a problem and decides to tackle
it. This stage would be used to decide what
type of chemical process needs to be
designed: the example used in this paper is
that of a styrene production plant. The

second stage is often termed "Definition".
In order to rationally refine a broad problem
statement, one must understand the
physical parameters of the problem: the
'boundary conditions', as it were. Any
limitations and restrictions on problem
solutions should be determined, and the
overall problem decomposed into sub-
problems if need be.

The third stage, "Preparation", is one of
research. Prior and current art should be
compiled here, as well as data from the
problem and any assumptions that will be
made to facilitate a solution. When all
applicable background information and data
are collected and analyzed, stage four,
"Synthesis", can occur. Here, solutions are
developed from the information compiled
earlier. "Evaluation", stage five, follows
synthesis. Any solutions that have been
generated should be verified and evaluated
for presentation as an effective solution.

As noted previously, the blocking nature of
ASCEND lends itself well to these stages.
It is possible to construct certain blocks of
code meant solely for problem definition,
while others may be designated for
preparation, synthesis, and evaluation.

5. CEPHDA STRUCTURE AND CODE

The overall goal of CEPHDA is to simplify
the design process for engineers in a
learning position. Since the ASCEND
environment requires a user to interact
directly with source code to simulate a
process, the code structures need to be
designed in such a way that a user with
minimal ASCEND programming experience
can discern where and how to change any
code necessary to modify a wide variety of
processes. CEPHDA code was designed to
coincide with stages of the design process in
order to assist design engineers who will
need to maneuver easily through the source
code.

Each of the current CEPHDA libraries are
discussed below. It should be noted here
that CEPHDA was created in the summer
of 1992, at which time the only



sophisticated computer programming
structures available in ASCEND was the
"for loop" and certain operations permissible
on sets of data. Throughout this
documentation of the libraries, any required
set operations within the code are outlined
in some detail to illustrate the inner
workings of CEPHDA for those who may be
using the environment. CEPHDA is
available for inspection and use on the
Apollo network at the Engineering Design
Research Center in Pittsburgh, PA

5.1 KECOGN1TION.UB
Because the first stage of the engineering

design process is often the recognition that
a problem exists and that one has the tools
to address it, the recognition library loads
the source code necessary for ASCEND to
recognize model components.

Two libraries of code loaded into ASCEND
through the CEPHDA recognition.lib are
'cephdaatoms.lib' and 'cephdacomps.lib'.
'cephdaatoms.lib' reads in the default
library of atoms, while adding two new
definitions: cashflow, having dimensions of
currency/time, and species_value, having
dimensions of currency/mole. These atoms
were added to facilitate economic
evaluations of processes under
consideration, following the Douglas
method of process evaluation. The
terminology "atoms" is used here in the
ASCEND sense, meaning a generic concept
which is used often and can have a defined
type, dimensionality and default value. To
illustrate, the code for the atom "cashjflow"
is presented here:

ATOM cashjlow REFINES generic_real
DIMENSION currency/t
DEFAULT 0.00 {USdollar/s};

END cashjlow;

CEPHDA also loads in 'cephdacomps.lib': a
structurally altered version of the standard
ASCEND components library. The
ASCEND "component_constants" model has
been expanded to include a listing of
elements which make up each compound
and a tally of how many atoms of each
element are present in each compound.
While it is possible to load in only selected

components to an ASCEND model, all
possible components are loaded for use with
CEPHDA to provide flexibility for users and
allow modeling of as wide a variety of
processes as possible. The standard
components library has been expanded as a
result of CEPHDA's development, and now
includes the following molecules.

Note that within CEPHDA, it is very
important to follow the naming system
presented here. For example, while it may
seem structurally intuitive to name
diphenyl as M(C6H5)2" instead of as
"C12Hl(r, "(C6H5)y will not be recognized
as a compound within ASCEND.

COMPONENT
Hydrogen
Carbon Dioxide
Water
Chloroform
Methane
Methanol
Ethane
Ethanol
Ethylene
Propylene
Acetone
Propane
n-Propanol
i-Propanol
n-Butane
i-Butane
n-Butanol
i-Butanol
n-Pentane
i-Pentane
Benzene
n-Hexane
Toluene
n-Heptane
Styrene
Ethyl benzene
Diethyl benzene
Diphenyl

NAMING
H2
CO2
H2O
CHC13
CH4
CH4O
C2H6
C2H6O
C2H4
C3H6
C3H6O
C3H8
nC3H8O
iC3H8O
nC4H10
1C4H10
nC4H10O
iC4H10O
nC5H12
iC5H12
C6H6
nC6H14
C7H8
nC7H16
C6H5C2H3
C6H5C2H5
C8H9C2H5
C12H10

As a further illustration, the code for the
component "Hydrogen" is presented below.
Note that the model "Hydrogen" is a
'universal model': in other words, it can be
used at any level of any simulation once it
has been loaded into memory. Note also
that "Hydrogen" is a refinement of the
model "componentjconstants". Physical
data for all components used in CEPHDA



was taken from Reed, Prausnitz and
Sherwood (1991).

MODEL componentjconstants;
name IS_A set OF string;
groups KLA set OF string;
subgroups IS_A set OF string;
nufsubgroups] IS_A constant;
elements IS^A set OF string;
number[elements] IS_A constant;
mw, Tb, Tc, Pc, Vc, Zc, omega, cpvapa, cpvapb,
cpvapc, cpvapd, Hf, Gf, vpa, vpb, vpct vpd,Hv,
Tliq, Vliq, TO, PO, HO, SO ISJV constant;
INITIALIZE

PROCEDURE reference;
TO := 298.15 {K};
PO := 1.0 {atm};
HO := Hf;
SO:=(Hf.Qf)/TO;

END reference;
END componentjconstants;

UNIVERSAL MODEL Hydrogen REFINES
componentjconstants;

name := [H2']}
groups := Q;
subgroups := Q;
elements := fHf];
INITIALIZE

PROCEDURE values;
mw := 2.016 {g/gm_mol};
Tb := 20.37 {K};
Tc:=33.3{K};
Pc := 12.8 {atm};
Vc := 66.0 {cmA3/gm_mol};
Zc := 0.305;
omega := -0.22;
cpvapa := 6.483 {cal/gm.mol/K};
cpvapb := 2.215e-3 {cal/gm_mol/K};
cpvapc := -3.298e-6 {cal/gm.mol/K};
cpvapd := 1.826e-9 {cal/gm_mol/K};
Hf:=0.00{J/gm_mol};
Gf := 0.00 (J/gmjnolJ;
vpa := -5.57929;
vpb := 2.60012;
vpc := -0.85506;
vpd:= 1.70503;
Hv := 904 {J/gm_mol};
Tliq := 20.0 {K};
Vliq := 28.3944 {cmA3/gm_mol};
numberfH1] := 2;
RUN reference;

END values;
END Hydrogen;

5.2 DEFIN1TION.UB
This library consists of building blocks for

a chemical process: blocks of code which
define concepts CEPHDA needs in order to
understand a process design problem. In
other types of process flow simulations, the
user would connect these building blocks
together in a systematic way, imitating the
physical flow of chemicals through a plant.
While ASCEND allows a user access to all
levels of code libraries, and thus the option
of designing processes in that linear
manner, it is anticipated that at lower
levels of process design, users may not
perform such operations. To accommodate
use by these engineers, there are models
stored in this library which correspond to
the pre-designed Douglas levels of analysis,
in addition to typical process flow blocks.

Following is documentation of the models
within the Definition library. The order of
documentation here follows the order of the
models within the library. This
documentation is primarily intended for
those who are implementing CEPHDA in
their own research, and have access to the
complete code. Others may wish to proceed
to Section 6, Styrene Synthesis Problem.

STREAM A stream is defined here as
consisting of a set of species, the mole
fractions of each species, the total molar
flow rate, and the parameter 'datafspecies]1,
which is a device to relate the species
names to the corresponding component
properties in the cephdacomps.lib. The
equations describing a stream are that the
total molar flow rate equals the sum of the
individual molar flow rates, and that the
individual molar flow rates equal the
individual mole fraction times the total
molar flow rate.

To illustrate, the CEPHDA code for the
model 'stream* is presented here.



MODEL stream;
species IS_A set OF string;
x[species] IS_A fraction;
F, M[species] IS_A molar_rate;
datafspecies] IS^A component .constants;

F = sum(m [species]);
FOR i IN species CREATE

m[i] = x[i]*F;
END;

END stream;

STREAMS Throughout CEPHDA, once a
model is defined, a plural model is usually
defined as well. Thus, 'streams1 allows an
array of type 'stream1 to be formed.

To illustrate, the code for 'streams' is
presented here.

MODEL streams;
njstreams IS^A integer;
s[l..n_streams] IS_A stream;

END streams;

REACTION A generic reaction contains the
set of chemical species which are used
within that reaction and the stoichiometric
coefficient of each of those species. There is
a set of string termed 'flag' which is
automatically assigned a value elsewhere
when a reaction is refined. The variable
'flag' is used to determine which type of
reactor or reactor mechanism is needed for
that reaction. It may have values
indicating a reaction governed by
selectivity, extent, or conversion.

REACTIONS Reactions creates an array of
type 'reaction1.

EXTJIEACTION (refines reaction) The
naming convention for reaction and reactor
types is as follows: the prefix 'ext' denotes
an extent-governed mechanism, the prefix
'sel* denotes a selectivity-governed
mechanism, and the prefix 'con' denotes a
conversion-governed mechanism. This
extent-governed reaction contains the
parameter 'extent', which is the extent of
reaction. The variable "flag11, contained in
the original data type 'reaction', is set to
•extent' by CEPHDA

EXTJREACTIONS Creates an array of type
extjreaction.

SEL.REACTION (refines reaction) The
parameter 'selectivity* is defined here as the
ratio of a desired product formed to the
ratio of an undesired product formed. The
species which are desired and undesired are
specified by the user, as is the selectivity
value. The variable "flag", contained in the
original data type 'reaction', is set to 'select'
by CEPHDA.

SELJEtEACTIONS Creates an array of type
seLreaction.

CON_REACTION (refines reaction) The
user must specify the reactants in the
reaction as a set of species as well as which
of those species will be the limiting reagent.
The conversion of the limiting reagent is
also specified. The variable "flag",
contained in the original data type
'reaction', is set to 'conversion' by CEPHDA.

CON.REACTIONS Creates an array of type
con_reaction.

UPDATE.DATA This is more of a compiler
instruction than an actual model. Basically,
when a stream is passed into 'update_data',
the individual components within that
stream are refined from the generic type
'component.constants' to the component
corresponding to the species name. This is
currently done through one of a number of
possible set interactions due to the lack of
an "if* condition in ASCEND. No plural for
this model currently exists.

ADD.STREAM This is a mixer, with the
number of inputs specified by the user. An
array of feed streams and an output stream
is created. An array called 'streamjfor* is
created to contain integers. The species in
the output stream are declared to be the
union of the species within all the input
streams. The array 'streamjbr* for any
component contains the numbers of all
streams which contain that component, and
the output molar flow rate of each
component is then set to the sum of the
molar flow rates of that component in each
feed stream, where the number of each feed

8



stream needs to be contained in the array
'streamjbr1 for that component.

ADDJ9TREAMS Creates an array of type
addjstream.

REACTOR A generic reactor contains an
input and an output stream and a number
of reactions.

REACTORS Creates an array of type
reactor.

EXT_REACTOR (refines reactor) An extent
reactor contains an array of extent
reactions and array of integers termed
'needed* for each species in the output
stream. The species in the output stream
are set to the union of all species involved in
all reactions and the species in the input
stream. The array 'needed1 is filled in the
same way that the array 'streamjbr* is
filled in the model fadd_stream\ where the
integers correspond to the reaction array
number where that species is needed. For
all species in the output stream, the output
molar flow rate minus the input molar flow
rate (if such a flow rate exists: a set
manipulation involving sums is used here.
If there is no input molar flow rate, the set
is empty and the sum skips that parameter)
is set equal to the sum of the stoichiometric
coefficient of each component multiplied by
the extent of reaction, provided that the
reaction is in the array 'needed' for that
component.

Since the other reactor types are similar in
structure to the extent reactor, code for the
extent reactor is presented here for
illustrative purposes.

MODEL extjreactor REFINES reactor;
rxn[l..n__rxns] IS_A ext_reaction;
needed[output.species] IS_A set OF integer;
update IS_A update_data;

output.species:=UNIO N(rxn [1. .n_rxns}.involved,
input.species);

FORj IN output.species CREATE
needed[j] := [k IN [l.n.rxns) I j IN
rxn (k] .involved];

END;
FOR a IN output.species CREATE

(output.m[a] - SUM(input.m[j] I j IN
INTERSECTION (a,input.species))) =

SUM(rxn[b].stoich[a]*rxn[b].extent | b
INneeded[a]);

END;
output, update.strm ARE.THEJSAME;
END extjreactor;

EXT_REACTORS Creates an array of type
extjreactor.

SEL_REACTOR (refines reactor) A
selectivity-governed reactor. Creates an
array of selectivity reactions and sets which
function purely as storage space, used in
finding die differences between sets of
reacting species. There is also an array of
streams called "temp", used as
intermediates between reaction blocks:
reactions are run sequentially through this
reactor in an order determined by the user.
The stream 'temp[l]' is set to be equivalent
to the input stream. Throughout the
reaction mechanism, streams termed
temp[(i+l)] may be thought of as an output
stream for each separate reaction and the
streams temp[i] may be thought of as input
streams for each separate reaction. The
basic equations operating here are: 1) The
moles of desired product formed divided by
the moles of undesired product formed
equals the selectivity, and 2) The ratio of
the stoichiometric coefficient of the desired
product over that of another species
involved in a reaction is equal to the ratio of
the moles of the desired product formed
over the moles of the other species which is
either formed or consumed.

SEL__REACTORS Creates an array of type
seLreactor.

CON_REACTOR (refines reactor) This is a
conversion-governed reactor. An array of
conversion reactions is formed. Sets are
created for storage when finding the
differences between sets of reacting species.
Streams termed "temp1* are used as the
intermediates between reaction blocks:
reactions are run sequentially through this
reactor in an order determined by the user.
The stream 'temp[l]v is set to be equivalent
to the input stream. Throughout the
reaction mechanism, the streams termed
temp [(i+1)] may be thought of as output



streams for each separate reaction and the
streams temp[i] may be thought of as input
streams for each separate reaction. The
basic equations operating here are: 1) The
molar flow rate of the limiting reagent
times the conversion of that reagent is
equal to the molar flow of that reagent
which is consumed in the reaction and 2)
The ratio of the stoichiometric coefficient of
the desired product over that of another
species involved in a reaction is equal to the
ratio of the moles of the desired product
formed over the moles of the other species
which is either formed or consumed

CON_REACTORS Creates an array of type
con_jreactor.

PFR The term 'plug flow reactor' is used to
denote a multi-function reactor here. A pfr
contains an input and an output stream, an
array of reactions of a size determined by
the user, and an array of reactors of
unspecified type (simply the generic
reactors) which each correspond to a
different reaction. There are again streams
termed "temp" which are used as the
intermediates between reaction blocks:
reactions are also run sequentially through
this reactor in an order determined by the
user. The stream 'temp[l]f is set to be
equivalent to the input stream. Throughout
the reaction mechanism, the streams
termed temp[(i+l)] may be thought of as
output streams for each separate reaction
and the streams temp[i] may be thought of
as an input stream for each separate
reaction. For each reaction 'n' fed into the
pfr, the reaction variable 'flag' is checked.
The reaction 'nf is then refined to the
appropriate type of reaction (extent,
selectivity, or conversion), according to the
value of the variable "flag", the reactor 'n* is
refined to the appropriate type of reactor
(extent, selectivity, or conversion), the
temp[i] stream is defined as the input
stream for reactor 'n' and the stream
temp[(i+l)] is defined as the output stream
for the reactor 'n\ Only one type of reaction
and reactor may be utilized for each
reaction.

PFRS Creates an array of type pfr.

RECYCLE The recycle block has an input,
an output, and a recycle stream. 'Recycle*
calls in the model 'sep.stream' to create a
perfect separation. The user specifies which
species are to be recycled. The output
stream can continue through a flow sheet.

RECYCLES Creates an array of type
recycle.

PURGE The purge block consists of three
streams: an input, an output, and a 'release'
stream, where the 'release' stream is the
purge stream. There also exists a
parameter 'tract1, which is the fraction of
the input stream which will go to the purge
stream.

PURGES Creates an array of type purge.

BASIC JJNIT This is the Douglas Level One
pre-defined process unit. It consists solely
of an addstream and a pfr in series. The
number of addstreams and pfrs are
specified here as a CEPHDA default, as is
the input/output structure.

EECYC_UNIT This recycle unit consists of a
basic unit with a recycle block added after
the reactor. The recycle is added in to the
addstream.

RECPURGJJNIT This is a Douglas Level
Two pre-defined process unit. It consists of
an addstream, a pfr, a recycle block and a
purge block. The recycle stream occurs
after the reactor. A fraction of the recycle
stream is purged.

5.3 EVALUATION.LIB
This library consists of models intended to

help a user evaluate system performance.
Currently, it contains two evaluation
models.

The economics model is filled with market
prices for chemicals from August 1992. The
'evaluation' model has a number of cost
streams and a number of product streams
defined by the user. The user may declare
any process stream to be either a cost or a
product stream. The economic potential
model is in terms of money coming in from

10



the process and total amount of money
being spent for the process. The economic
potential evaluated at Level One of the
Douglas Method is the economic potential of
the process in terms of stream values.

The atom balancer is a check on
stoichiometry. For every kind of element [i]
in every species fi] involved in a reaction, it
sums the number of atoms of [i] in each
species involved in the reaction multiplied
by the stoichiometric coefficient of the
species containing that type of atom. If the
stoichiometry for the reactions has been
input incorrectly by the user, an error
message appears.

5.4 PREPARATION.LIB
The user need only interact with the code

presented in the preparation libraries. All
of the code in the other libraries can be
arranged in any configuration to simulate
any process through modification of the
models in preparation.lib. All models
requiring user interaction are named with
the prefix "prep*1, and are outlined below.

PREP.STREAMS The user must specify the
number of process streams they wish to
designate information about. The species
contained in each stream must be
designated here also. Each stream is
initialized in a separate procedure, which
gives the user the option to create a number
of streams and include or exclude them at
will.

PREP_RXNS Prep_rxns prepares the
reaction information. The user declares
each reaction as a specific type:
con.reaction, seljreaction, or ext.reaction
for reactions governed by conversion,
selectivity, or extent respectively. Each of
the three types of reactions must have all
involved species designated here. All
conversion reactions must have the
reactants and limiting reagent explicitly
specified as well. All selectivity reactions
must have the desired and undesired
components specified.

PREPJEVALUATION The number of
streams which are to be evaluated

economically as process costs (containing
chemical species which must be purchased)
and product streams (containing chemical
species which are to be sold) are specified
here.

PREPJJNIT Prepjunit is intended to
prepare a reactor block: to assign the
corresponding reactions to the reactor in
the sequential order they are to be carried
out The number of reactions within the
reactor must also be designated. If a recycle
or purge stream is to be used, the chemical
species to be recycled or purged must be
specified here as welL

BLACKJ3OX The "black box" here, in
keeping with Douglas's terminology,
contains all the inner workings of the
process. The number of input and output
streams to the entire process must be
specified by the user. Any streams which
had been prepared in "prepjstreams" and
are to be used in the simulation must be
assigned to the corresponding system parts.
The streams which will be included in the
economic evaluation should also be
designated here.

6. STYRENE SYNTHESIS PROBLEM

The problem used to test CEPHDA's
performance was that of styrene synthesis
from the dehydrogenation of ethyl benzene.
This process is considered here as a three
part system followed by a styrene
purification sequence. First, toluene is
hydrodealkylated into benzene, separated,
and sent to the second stage. The benzene
is then catalytically converted to ethyl
benzene. The ethyl benzene is converted in
a catalytic reactor into styrene. An
inhibitor (for example, dinitrophenol
inhibitor or DNP) may be added to increase
product purity.

Following is the chemical reaction
stoichiometry. Brackets indicate reactions
grouped into one of the stages specified
above.

11



(1)

(2)

(3)

(4) HiC asCHr

(5)

(6)

(7)

(8)

•o
BENZENE

o

ETHVLENE ETHVLSENZENE

O • OH.

BENZENE METHANE

OIPHENYl HYDROGEN

ETMVLBENZENE

OtETHYLBENZENE

ETHVLBENZENE

ETMUBENZENE

ETMVLBENZENE

ETHVLBEttZENE WATER

16 H*0

WATER

ttC SsCHi 4-

ETHYLENE

CK. 4-

METHANE

a oo +

CARBON VONOJODE

o
BENZENE

6
TOLUENE

13 Hi

HYDROGEN

Figure 2.
Stvrene Synthesis Reactions

Specific product and feed specifications
were set as follows. Three feed streams
were assumed to be readily available from
existing processes: an ethylene feed stream
of 98 mol% ethylene and 2 mol% methane at
100 psia and ambient temperature, a
toluene feed stream at 99 mol% toluene and
1 mol% benzene at 1 atm and ambient
temperature, and a hydrogen feed stream at
96 mol% hydrogen and 4 mol% methane at
300 psia and ambient temperature.
Utilities are assumed to be available at
standard market prices.

This problem is commonly used as a design
task for engineering students. Plant
designs composed for course 06-302, Process
Engineering and Synthesis, (Fall 1991,
Department of Chemical Engineering,
Carnegie Mellon University) using the
above design parameters and the Douglas
method manually [10] were compared with
CEPHDA-generated plant designs.

6.1 LEVEL ONE
The same assumptions were made using

CEPHDA and in the exercise of the Douglas
method manually: namely, that the main
reactions would dominate in the reactor
(thus, side and competing reactions could be
ignored), that the process was continuous,
and that the reactions would go to near
completion. Only reactions # 1, 3, and 5
from Figure 2 were used in this Level One
analysis.

6.2 LEVEL TWO
Assumptions made for Level Two included

that the reactor was operating adiabatically
and that a perfect separation system is
implemented. All nine reactions from
Figure 2 were used as synthesis reactions.
Hydrogen was recycled, and a thirty
percent purge was specified.

7. CONCLUSIONS

At the Level One stage of analysis, given
the product specifications and the species
involved in the reactions, CEPHDA
successfully solved for other process
parameters, creating a process with a
positive economic potential. The time
required to formulate this simulation was
orders of magnitude less than that required
to formulate such a simulation manually.
The plant designs produced for course 06-
302 by students had errors in material
balances and reaction formulation while the
CEPDHA plant design did not.

While CEPHDA again successfully
produced an economically feasible plant
design at Level Two, the design was
operating under non-optimum conditions,
resulting in a low yield of styrene product.
Interestingly, the plant design created by
CEPHDA at this level is remarkably similar
to a plant which was designed for 06-302,
implying that the same conceptual errors
had been made in both plants. However, it
took three student chemical engineers two
months of work to reach the design level
that was reached in less than half an hour
by one student chemical engineer using
CEPHDA. Using CEPHDA, it was possible

12



to produce alternate designs in a time
period of less than half an hour, instead of
in a time period of days.

Compared with manual use of the Douglas
method, the CEPHDA-generated designs
allowed for rapid detection and location of
design errors, swift formulation of material
balances and reactions, easy generation and
evaluation of process alternatives, and
quick formulation of primary levels of
analysis.

8. CONTINUING DEVELOPMENT

CEPHDA should be expanded to include
the higher levels of the Douglas method.
The components library may be expanded
as use of CEPHDA warrants, and the
existing code may be refined as the
ASCEND programming language becomes
more sophisticated. An extension of the
Douglas design method may be added:
notably, the addition of ASCEND/CEPHDA
models which would allow for the
hierarchical design of a process control
system [11]. A hierarchical design of a
process control system would be
advantageous in that the convoluted system
of control loops on a complete flow sheet can
be reduced to a foundation of those which
are strategically important and then built
upward from there. Designing a process
and the corresponding control system at the
same time would allow for unusually
complimentary designs, with the control
system design exerting some influence on
the process design. [11] As of December,
1992, refinement of CEPHDA code
continues as the ASCEND environment
becomes more sophisticated.

9. ACKNOWLEDGEMENTS

This work has been supported by the
Engineering Design Research Center, a
National Science Foundation Engineering
Research Center, as a part of the REU
(Research Experience for Undergraduates)
program.

The author would like to acknowledge the
invaluable assistance and patience of her
advisor, Dr. Arthur Westerberg, as well as
that of Peter Piela, Joe Zaher, and Bob
Huss.

X windows system is a trademark of M.I.T.
Copyright © Massachusetts Institute of
Technology, 1986,1987, 1988

Apollo Domain/OS S1210.3
Copyright C Hewlett Packard Co., 1986,
1987, 1988, 1989, 1990
Copyright O University of California, 1980,
1985,1986,1987,1988
Copyright O AT & T, 1980, 1984, 1985,
1986,1987,1988

FLOWTRAN Copyright O Monsanto
Corporation

10. REFERENCES

1) Douglas, J. M., Conceptual Design of
Chemical Engineering Processes, McGraw-
Hill Chemical Engineering Series, McGraw-Hill
Book Company, New York (1988).

2) Piela, P., McKelvey, R., and
Westerberg, A., An Introduction to ASCEND: Its
Language and Interactive Environment,
Engineering Design Research Center, Carnegie
Mellon University (1991).

3) Piela, P.C., Epperly, T. G., Westerberg,
K. M., and Westerberg, A. W., "ASCEND: An
Object-Oriented Computer Environment for
Modeling and Analysis: The Modeling
Language," Computers Chem. Engng, Vol. 15,
pp. 53-72 (1991).

4) Piela, P., Katzenberg, B., and
McKelvey, R., Integrating the User into Research
on Engineering Design Systems, EDRC Report,
Engineering Design Research Center, Carnegie
Mellon University, Pittsburgh, PA, 15213 (1991).

5) Murtagh, B. A., and Saunders, M. A.,
MINOS User's Guide, Technical Report SOL 83-
20, Systems Optimization Laboratory, Dept. of
Operations Research. Stanford University
(1985).

13



6) Sturges, R., Professor of Mechanical
Engineering, Mechanical Engineering
Department, Carnegie Mellon University, "The
Creative Design Process", seminar, Engineering
Design Research Center, Carnegie Mellon
University, Pittsburgh, PA, 15213 (1992).

7) Future Problem Solving Association, the
University of Michigan, Ann Arbor, MI (1985).

8) Dee, K. C, "Engineering Design of an
Angioplasty Catheter," Carnegie Mellon
University, Department of Biomedical
Engineering, Pittsburgh, PA, 15213 (1992).

9) Pikulik, A., and Diaz, H. E., "Cost
Estimating Major Process Equipment," Chem.
Eng., 84 (21): 106 (1977).

10) Bauer, M., Dee, K.C., and Lehrer, R.,
"Design of a Styrene Production Plant", Process
Engineering and Synthesis, (course #06-302),
Carnegie Mellon University, Department of
Chemical Engineering, Pittsburgh, PA 15213
(1991).

11) Ponton, J., Professor of Chemical
Engineering, Chemical Engineering
Department, the University of Edinburgh, "The
Creative Design Process", seminar, Engineering
Design Research Center, Carnegie Mellon
University, Pittsburgh, PA, 15213 (1992).

14


