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An approach for the accurate solution of optimal control problems that arise in batch
digtillation isdeveloped and demonstrated Sincethe optimal control problem has a natural
partitioning of control variables and state variables, we develop a nonlinear programming
decomposition strategy to (1) exploit the block matrix form of the discretized differential
equations that results from using collocation on finite elements, and (2) perform the
rtimization in thereduced space of the control variables. State variables for each finite
ement. aredetermined by linearized differential equations and information is passed from
element to element by chainruling the state information. In addition, the nonlinear
programming strategy has a great deal of flexibility to determine control variable
discontinuities and enfor ce awide variety of sate and control variable congraints.

In thisstudy, we also consider characterigtics of the maximum batch distillate problem and
show that our approach is especially useful for the optimization of detailed tray-by-tray
modelswith tray and condenser holdups. Here we discusstwo formulations: an inequality
path congtrained problem and the classical endpoint constrained problem. In both cases
interesting and unusual optimal policies are determined and compared to current practice.
Moreover, parallels are observed between optimal reflux policies for these two problems,
and these are also reated to findings from previous studies. To handle these problems,
nonlinear programs of up to 8000 variables are solved reasonably quickly on a small
workgation. Finally, it is observed that more complex batch ditillation problems can be
handled in a graightforward manner through this approach.
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1. Introduction

The determination of optimal control profiles for large chemical processes described by
differential and algebraic equations (DAES) remains a challenging problem. In particular,
DAE optimization methods must handle state and contral variable (equality and inequality)
congraints. In the smultaneous approach described here, the DAE system isconverted to a
set of algebraic equations using orthogonal collocation on finite elements, and one can deal
with gstate path congtraints and control path congraints smply by including them in the
nonlinear programming formulation. This approach has been used by Cuthrdl and Biegler
(1987,1989), Renfro et al. (1987), Eaton et al. (1988), and L ogsdon and Biegler (1989) to
addressthe optimal control problem.

While the smultaneous approach offers a number of advantages for dynamic optimization
problems, the resulting nonlinear programming formulations for these problems can
become large. Consequently, problem structure mugt be exploited in order to solve the
resulting NLP problem efficiently. Vasantharajan and Biegler (1988) and Vasantharagjan et
al. (1990) develop a general purpose decomposition algorithm for Successive Quadratic
Programming (SQP) and demondtrate its efficiency and rdiability with respect to other
general purpose NLP solvers. Logsdon et al. (1990) also applied this approach to the
optimal operation of batch digtillation systems. Morerecently, Logsdon and Biegler (1992)
develop several algorithmstailored to the block lower-triangular sructure of the collocation
equations.

In this sudy, we apply this sructured decomposition algorithm to the maximum distillate
problem for batch columns and also relate this problem to more general optimization
problems for batch processing. Here we consider tray-by-tray distillation modelswith tray
and condenser holdups. With an accurate optimal reflux policy for morerealistic models,
we also compar e these results to current operating policies and methods of analysis. In the
next section we provide a brief review of previous work. Then, in section 3 we outline the
general NLP formulation for optimal control problems and briefly sketch a structured,
reduced gradient optimization approach tailored to this problem class. This approach is
based on concepts of finite element collocation and Successive Quadratic Programming
(SQP). Section 4 discusses the maximum distillate problem and presents some interesting
optimal reflux policies for path congtrained and endpoint congtrained maximum distillate
problems. The solutions of these two process examples are also compared to constant




optimal reflux policies and piecewise constant reflux policies; sgnificant differences and
advantages are observed with our approach. Also, we briefly discuss extensions of the
maximum distillate problem to more complex problem classes. Finally, in Section 5 we
‘draw conclusions and discuss directionsfor futurework.

2. Batch Distillation Literature Review

The determination of distillation policies for batch columns has received considerable
attention since the 1940's. Early work concentrated on the development of approximate
methods for dynamic smulation of these columns (see the review by Luyben (1971)).
Batch didtillation models are composed of differential and algebraic equationswhich arethe
mass and energy balances, the thermodynamic relationships, and the dynamic plate
relationships. Short cut methods have also been used to reduce the size of the systems of
the DAE's, otherwise the number of equations increases with the number of components
and number of plates under consider ation.

Optimization studies have been reported for binary systems by Luyben (1971), Coward
(1967), Robinson (1971), Mayur and Jackson (1971), and Keikhoff and Vissers (1978),
and for ternary systems by Luyben (1988). The optimal control variable is usually the
reflux ratio, since it can be shown that the optimal boilup rate frequently remains at its
upper bound (see discussion in section 5). Contral profiles have been reported for various
optimization studies classified according to the objective functions being considered.
Normally problemsfound in the literature are defined asfollows:

1. Maximum Digtillate Problem - M aximize the amount of distillate of a pecified
concentration for a specified batch time.

2. Minimum Time Problem - Minimize the batch time needed to producea
prescribed amount of didtillate of a specified concentration.

3. Maximum Profit Problem - Maximize a prdfit function for a specified
concentration of digtillate. ‘

Converse and Gross (1963) firs solved the maximum distillate problem using dynamic
programming and Pontryagin's maximum principle. The minimum time problem has been
studied by Coward (1967), Robinson (1970) and Mayur and Jackson (1971) and the




maximum profit problem has been studied by Kerkhof and Vissers (1978). Murty et al
(1980) compare several optimal control methods for batch distillation optimization while
Hansen and Jorgensen (1986) apply orthogonal collocation to solve the (unconstrained)
optimality conditions. Most of the work found in the literature is restricted to binary
mixtures with the assumptidns of no holdup on the trays, and fixing column design
variables such asthe number of trays and vapor boilup. '

Morerecently, Diwekar et al. (1987), Mujtaba and Macchietto (1988), Farhat et al. (1990)
and Logsdon et al. (1990) haveinvestigated batch digtillation asoptimization problemsfor
multicomponent systems. Diwekar et al (1987) used shortcut models along with
Pontryagin's maximum principle to obtain control policies for the maximum profit
problem. Mujtaba and Macchietto (1988) considered tray to tray dynamics and included
material and energy balances, plate holdup, and rigorous phase equilibrium to solve the
maximum digtillate problem. They also considered more general problemsthat involve the
recycling of intermediate ditillation cuts, asdid Faihat et al. (1990). L ogsdon et al (1990)
used the shortcut mode to smultaneoudy optimize the design of the column and to obtain
the optimal reflux policy to maximize a profit function, which includes capital costsalong
with operating costs.

For the design of batch ditillation systems, Al-Tuwaim and Luyben (1991) developed a
shortcut design method to determine the number of trays and reflux ratio. Implicit in this
approach is a congtant reflux policy (see also Luyben (1971, 1988). Diwekar and
Madhavan (1991), on the other hand, develop the BATCH-DIST package which
incor porates various levels of complexity for batch distillation models, from Fenske-
Underwood-Gilliland corrdationsto tray-to tray batch columnsmodels. In many cases, the
shortcut models compar e quite well with morerigoroussimulations and lead to savings of
up to two orders of magnitude in compational effort. This approach also allows for
different optimization problem formulations as well. Finally, Mujtaba and Macchietto
(1991) sudied the effects of tray and condenser holdups on batch digtillation optimization.
Assuming congtant reflux ratios they obtained optimal holdups and determined conditions
under which holdups can improve column performance.

In this work we consider a tray-by tray H_ol_iﬂup moded for batch digtillation and study the
influence of the optimal reflux poIiCy. As mentioned above, our approach determines
accurate optimal reflux policies under a variety of congraints and these are exploited to
uncover some unusual behavior. These are then compared to optimal policies determined




by other approaches in order to demonstrate the effectiveness of our procedure. Also, we
investigate the characterigtics of the optimal solution of higher "index" systemswhich are
often bypassed with smpler tray dynamicsand reflux policies.

3. NLP Formulation

In this section we briefly review the NL P formulation with collocation on finite elements.

Congder the following general optimization problem fort e [a,b]:

Min *<»(b),p) + 1 G( z(1),u(t),p) dt
u(t).z(t), p @
st z(t) = F(z(t),u(t),p)
g (u®),0) £ 0
gi(z(b)) < O
z(d) = 20
Z(t)" S Z) £ ()"
u)- < ut) ~ u)’
where
*P(z(b)) = objective function terms evaluated at final conditions
G(z(t), u(t), p) = time dependent obj ective function term

z(t) = dateprofilevector

u(t) = control profiles

p = design parameters, not time dependent
g = inequality design congraint vector

g = inequality congraints at final conditions
Zo = initia condition for gate vector

z(t)L, z(t)U = dateprofile bounds

u(t)L, u(t)U = control profile bounds

Here, we discretize the DAE system by-using a piecewise polynomial approximation on
finite dements and by applying orthogonal collocation to construct the algebraic resdual
equations. These resduals are evaluated at the shifted roots of an orthogonal Legendre
polynomial. Consder now the initial value problem over a finite element, i, with time




18 Ci > Ci+i] with stateand control profiles approximated by L agrange-type polynomials
over thiseement. Recall that the Lagrange polynomial has the desirable property that, for
2K+ (0, for example,

Z K (-tij) = zj, 2

Thispolynomial also allowsfor thedirect impostion of path congraints within the problem
formulation. Applying K point, orthogonal collocation on finite eements and defining the
basis functions so that time is normalized over each element, one obtains the following
resdual equation for the ODE:

At = 325 dyte) -0 F (G UiK) = 0 ®3)
j=0
i = 1,..NE
ic = 1,..&

wherethe basisfunction ;H(Tk) = (:E_* iscalculated offlineand to = & + A&TK Thisformis
convenient to work with when the element lengths are included as decision variables,
becauseit is still defined even if AE goes to zero during the solution of the optimization
problem. Note also that element lengths play two roles. Firs, they need to be sufficiently
small in order to allow the piecewise polynomials to approximate the solution profiles
accurately. Second, element lengths locate points of discontinuity for the control profiles.
In our NL P formulation, we enfor ce the continuity of the Sates at element boundaries, but
allow the control profilesto have discontinuities at these endpoints. These endpoints also
provide theinitial conditionsfor the next eement states.

Discretization of the optimal control problem leads to the NL P problem given below. This
formulation consists of the discretized DAE model, the continuity equations for state
variables, and any additional equality and inequality congraintsin the problem formulation.
Finally, approximation error congraints are added that ensure the accuracy of the solution
profiles. These can range from smple bounds on eement lengthsto constraints based on
detailed approximation error estimates.
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Variablesin (4) include ACi» *° finite element lengths for i =1,..., NE; z;, the value of
the state at thefina time; z,, and uy, the collocation coefficients for the state and control
profiles, respectively; and p, any additional design parameters (such asboilup rateand final
time). Finally, theorder of the collocation method is often determined by the satevariable
congtraints. Activity of these constraints over a nonzero time period often increases the
index of the DAE system,; the collocation method must ther efore have stability and accuracy
propertiesto handle these cases (L ogsdon and Biegler, 1989).

To solve (4), we note that for given values of control variables and element lengths one can
determine the state variable trajectories from the collocation equations and pass the
information from element to element. Once the trgectories have been computed, and
derivative information (sensitivity of states to control variables) is obtained, we chainrule
this information in order to obtain the reduced gradients of the objective and contraint
functions. We then update the optimal control profile through areduced space Successive
Quadratic Programming (SQP) algorithm: Here the collocation equations are converged for
each SQP iteration and the resulting method is a feasible path, reduced gradient approach.
Note however, that the constraints that govern the approximation error and the element




lengthsare still manipulated at the optimization level. Further details of this approach and
its infeasible path variations can be found in Logsdon and Biegler (1992). A brief
description of the algorithm is presented next.

Reduced Gradient Algorithm:

0. Choose the number of eements and the corresponding number of collocation points
based on the likely index of the DAE system (see Logsdon and Biegler, 1989, for
details). Initializethecontrol variables, satevariables, and eement lengths.

1 For values of the control variables and element lengths at iteration k, and initial
conditions for the state variables, perform the following for each element i (i =
I,...NE):

11 Usingtheinitial conditions of element i as garting guesses, solvethe
resdual equations (3) by a Newton algorithm to obtain theinterior Sates
zf. Here A representsthe Jacobian of (3) with respect tozEand b
represents theright hand sides of (3).

1.2 Cdcaulatethederivatives for thisdement'sdecison variables:

b A

wheret, representsthe control variables and the element length for each

.. r3b dAz# . .
finite element Notethat | T2* ] can bedetermined analytically

from thedifferential equations. A"* isavailablefrom the Newton step in
1.1

13  Apply the gate continuity equations, and solve for the next element'sinitial
conditions.
Z =20 = izij ¢;t=1)

J
14 Chainrulethederivatives from previouseementsand update

©)
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2. Continue until an intermediate element is reached that influences an inequality

(g(zc)) or until thelast lement isreached. Determinethereduced gradients for the
obj ective and congraint functions according to equation (7).

od 0% 9
‘ZTV@} = ﬁ— [ZTVgn}j: _;‘n’ n=1, ng cD
aE.uj oz agj 0z
3. Assemble the obj ective and constraint function values and reduced gradients from
the above steps.

4, Call-the SQP algorithm (Cuthrell and Biegler, 1985). If Kuhn-Tucker conditions
are satisfied, Stop. Otherwise the algorithm solves the following quadr atic program
atiterationk:

Minx* VO'Z AE +1AE (Z"BZ)Ag
o 2 (8
st. g+ Vg'ZA{, <0

to determinethe search direction, A£. Notethat this QP containsall of the gate
and control variableinequality congraints. In addition, SQP also updatesthe
reduced Hessan matrix, (Z"'BZ), based on the BFGS formula, and performsa
line sear ch to determine the seplength for the decision variables, u and A£ (see
Cuthrdl and Biegler, 1985).

5. Return to step 1, with anew set of decision variablesfrom SQP.

This feasible path algorithm can be viewed as a hybrid between the nested approach (as
used by Muijtaba and Macchietto, 1988) and the smultaneous approaches. Like the nested
approach, a small subproblem isconsidered at the NLP level and the equality constraints
from the DAE discretization are solved in-an inner loop (step 1.1). The algorithm also
inherits all of the conver gence properties of the QP method in the decision variable space.
On the other hand, this algorithm also controls the element lengths at the NLP level and
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allows for the graightforward application of state and control variable congtraints, as with
the smultaneous method.

4. Batch Distillation Examples

Chemical engineering processes described by staged models of differential and algebraic
equations frequently form lar ge optimization problems. To demongr ate the performance of
our algorithm, we investigate a simple toluene/cyclohexane system which has been
successfully smulated by Domenech and Enjalbert (1974) and by Cuille and Reklaitis
(1986). We consider the maximum distillate problem for a batch time of one hour. The
smulation model described by Domenech and Enjalbert (1980) for the column model,
which assumes equal heats of vaporization and heat capacities for the components, is used
for thisproblem. Morerigorous column models are also described by Cuille and Reklaitis
(1986) and Mujtaba and M acchietto (1988). Details of the example are asfollows:

V, boilup rate = 120 moleshr

N= 10 trays

H,, plate holdup = 1 mole

H,n* condenser holdup =1 mole

I nitial Concentrations.

X"Q=0.55, cyclohexane
B0~ 0-45 , toluene

Theoptimal control problem can bewritten as:

Maximize V=Dis=D(ty)

)
Rt(t)
s.t.
MassBalances:
as - _v ,S:overalflﬂméliss:So-D(t)

dt Rj+1
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dxl _ . , :

—t" = -\—S/- Uab P ARAEFH-*bE!»  *i = component] in pot

dx.’;: = V¥V [ AR 1Y .
i~ T~ AR '[RAMIITWI " 43> 4=componattj on platep
j [ 4

d—xfdﬂ- = —V— [y[|-Xij+1], | =component]j in condenser accumulator
dt Hoon

Vapor-Liquid Relations (Here K values are modeled by ideal vapor pressurerelations using
Antoine equations and datafrom Reid et al, 1977.)

NC
¥h=10
=t
vhKp%,
Kj =£(Tx)

Purity constraints for first component:

+1

. D
x3d30wer bOUNd A ) =——— 71,0 time average purity congraint
¥ g4,
1oRHT
or
xp, lonve boud £ X£ £ 10 constant purity constraint on plate p

Note that if the constant overhead problem is solved with the purity specification enforced

on thedistillate ( *EI, lower bourd A 44 )t an index 3DAE system can result Here the reflux
ratio, Rt, can be taken as the index variable. The problem becomes index 3 whenever the
overhead purity congtraint is active, and either a high order, (strongly A-) stable method
must be applied or the constraint is reformulated to one of lower index. To see that this
system isindeed index 3, we differentiate the purity constraint with time as follows:

x1 - xJ -
d; lower bound d Index 3
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dxd» lower bound dxd V j j

dt dT dt Hcon ’ I ndex!

dzxii!= dzx{ﬂl = _V dyil
di? ds? Heon at

Index 1

-V d"N \'i i .
= £ [yh-xq]]
- Ki! Heor YN f«l

i
Note that since thereflux ratio isexplicit in the expresson fordF’iE , Werequire one more

differentiation to obtain an index O expression.

dx

—Etfi HP [5*[1 qu R+l xN-I-I qu)]

dxf _ o dR dyl dYN dxf,, d __u_

) f[dt dt *dt’ dt 1 Index 0

To avoid numerical difficulty, we can reduce the constant overhead problem to index 2 by
enforcing a corresponding purity constraint on the top plate instead of on the distillate
composition, as seen below:

>(jN. lower bound ~ Xl{l Index 2
d x{ .

T-h [y*“ W+ R+ 1T R+l SR index|
dz"fﬂ dx’t.[

dt2 f[ dt' dt ' dt ' dt ¢ dt ] Index0

On the other hand, for the time average purity (endpoint) constraint, the system is only
index 1 and no reformulation isrequired.. For this example, we investigate both the path
(index 2) and the endpoint purity congtraint problems. We specify the top plate purity
condraint as:
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XI{], lower bound = 0995 < xl!l

which corresponds to a distillate path constraint purity of 0.998. For the endpoint
condraint, we specify the average digtillate purity as:

o Jo Rt+i
x'dlower bound=0.998 £ Xy =— £ 1.0

k«
Y &
0 Rl +1

In addition, we have 2 components and 12 stages (10 trays with reboiler and condenser)
leading to a system of 24 differential material balance equations plus an overall material
balance. Here we set up the total reflux system of equations to solve for the initial
conditions, which are constantsin our optimization problem. Thetotal reflux initialization
isused for this example asit istypical for a high purity separation. In other applications,
e.g., where equilibration time for total reflux is sgnificant, other initial conditions, such as
cold garts or partial equilibration, may be more appropriate. Our approach handlesthese
equally well.

Using three point collocation for the discretization, we define the following state and
control variablesat each of theinterior collocation points asfollows:

Rui Ri2 Rt.3

Y‘p.l yj ‘?

j ;}.2 *p.3

Kpa 2

Tpa Tp2 Tp3
X0 b, o s XN
So S 2 s3 Soon

Co Ci
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Figure 1. Finitedement 3 point collocation for batch digtillation

Yj, =vapour compositions

%, = liquid compositions

KJ, = equilibrium congant

T, =temperatureon plate

S = overall mass = So - D (t)
R; = refluxratio

We write explicit expressions for the derivative terms and the right hand sides of the
differential equations at each of the collocation points. This requires expressions for the
equilibrium constants, and additionally bubble point constraints must be enforced. To
complete the model, we add the continuity equations for xjp and for S. Theresulting NLP

has 429 constraintsand up to 457 variablesfor each element

4.1 Path Consrained Problems

Wefirg consgder the path congraint purity for the top plate. In order to obtain a sarting
profile for this problem, we solve the maximum distillate problem (for the constant
overhead congraint) sequentially for each element by specifying theinitial conditions and
theintegration length and mar ching forward (see Figure 2).

R. AF

i J
x{:o"'" —i-xl—h-

Continuity

Equation P Xpout

14 Element Interior States: Initial Conditions
’ Next Element

Figure2: Solution of collocation equations within one finite element

Thisis dmilar to the eement-to-element approach described in the above algorithm, but
now we are actually optimizing the control profile within each element. This initialization
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strategy allows the modeler to estimate the number of finite elements needed for accurate
integrations; regions that require small integration lengths can be identified for the
initialization of the larger NLP. Additionally, it easier to verify and debug this smaller NLP
before the finite elements are linked together .

Solving the maximum distillate problem for each of 18 elementsrequires a total of 7722
condraints and 8208 variables. Following thisintialization and sarting profile, we now set
up the column modd with the decomposition algorithm in section 3. Here, we obtain an
accurate optimal reflux policy with only 12 finite elements as shown in Figure 3. A
performance comparison of this approach isgiven in Table L

20 L]
—8—— Reflux 12 element
~—o— Reflux (MINOS)

2
<)
10
o]
3
0
0 - L T ' LJ L] l L] Ll ' L Ll '. L LJ
0.0 0.2 0.4 0.6 0.8 1.0
Time (hrs.)

Figure 3: Comparison of reflux policies: MINOS element-by-element
initialization and optimal policy determined by SQP (with 12
elements).

Table 1. Comparison of Element to Element Optimization (MINOS)
with Entire Batch Time Optimization (SQP) - TopPlate Purity Constraint Problem

Tota Didtillate Recovered Number Finite : Total CPU time
(moles) Elements . - (hrs: mins: sees)

(MINOS) 1
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38.591 (optimized 18 times) 0:20:19
(SQP) |
38.615 12 1:09:44

Notethat the amount of distillate recovered isdominated by the active path congtraint This
allowsthe contral profile from the dement-to-element optimization approach to becloseto
the optimal control profile. It is also interesting that the initial policy of total takeoff (or
zero reflux policy ) was also identified by Coward (1967)- In Coward's examples, this
policy was demongtrated numerically to be superior for easy separationswheretheinitial
digtillate has a higher purity than the purity specification. While Coward used a no holdup
model for hiswork and commented that the " zeroreflux" policy should not be needed for
most separ ations, his zero reflux observation coincides precisaly with the behavior shown
in Figure 3. Also, to initialize their constant overhead policies, Diwekar and Madhavan
(1991) suggest a zeroreflux policy aswell.

Moreover, because we have included holdup for the column model, this effect is more
pronounced because the amount of high purity material to draw upon is present longer in
the top section of the column because of the " fly whed" effect ( Luyben, 1971; Pigford et
al., 1951). This can be seen from Figure 4. Herethereflux policy maximizes the digtillate
takeoff aslong as thetop plate purity exceedsthe purity congraint (0.995). Then thereflux
policy quickly increases to meet the purity of the top section of the column. Once the path
congraint becomes active, it determines the reflux policy for the remainder of the batch
time.
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&8 0.003

Reflux 8 stlo

- 0.002
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11 - 0.001

o= T T 0.000
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Figure4: Optimal Path Congtrained Policy and Purity (1 - x) Profiles, Note
that a Top Plate Purity of 0.995 Correspondsto Distillate Purity of 0.998. The
open gguaresindicate thereflux policy (left axis), the closed diamondsindicate

the purity profile.

4.2 Endpoint Purity Constrained Control Problem

The previous case shows how our algorithm can be used to construct and efficiently
determineoptimal control profilesfor problemsthat have active path congtraintsand require
a large number of gate variables. We now consider the classic optimal control problem
which is gover ned by thetime average (endpoint) purity constraint

x)gJower bund =0.998 £ ] = ———— < 10

The problem definition and initial conditions are the same as for the constant overhead case
presented earlier. In order to determine a good initialization for the NLP, we solve the
optimal control problem using the shortcut model developed by Diwekar (1988). Here the
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relativevolatility (a= 2.48 ) wasfound from the geometric average of therebailer relative
volatility and thetop platereative volatility at total reflux as described by Diwekar (1988),
The shortcut model is a much smaller system of differential equations (3 differential
equations) than our stage-to-stage model (24 differential equations). The optimal policy is
shown in Figure 5 for four finite dements with fixed integration lengths of 0.25 hrs. This
reflux ratio policy produces 37.029 moles of ditillate. The requirements for MINOS to
solve thisNLP (223 condraints, 255 variables) are 132.8 sees, for 34 iterationson a Vax
3200.

The shortcut mode requiresonly four eementsto find an optimal control profile because it
considers only the differential equations for the overall material balance and the reboiler
composition differential equations (see Logsdon et al, 1990). However, if we wish to
consider tray dynamics accuratdy for the sage-to-stage column model, werequire smaller
integration steps and more finite elements. From Logsdon et al. (1990) we know that the
profile will be active at the beginning and end of the batch time because of the holdup
effect; smaller finiteelementsarerequired here because the control profilewill be steeper at
thesetimes. Additionally, we can estimate the size of thefinite e ements from the constant
overhead case, which required 12 elements. Here we set the number of elementsto 16 and
dart with aflat control profile of 3.0 for thereflux ratio. Sincewe are not directly enforcing
theresdual equationsfor each of the stages we allow the integration lengthsto vary dightly
in order to obtain accurate approximations.

Additionally, we enforce accuracy congtraints on the the control profile by enforcing its
lower and upper bounds at the breakpoint elements using smple extrapolations. Also, a
small tolerance on the Kth derivative of the control profile is enforced (see Logsdon and
Biegler, 1989) within each element. The QP for 16 finite elements includes an equality
congdraint (the sum of theintegration lengths equals 1 hour) and 81 inequality congraints
for the accuracy congraints and the endpoint purity congraint. The number of variablesis
64 (NE*4) variables, 455 within each element and a total of 7280 variables. Using our
algorithm we arrive at the control profile shown in Figure 5. Figure 6 shows the purity
condraint along with the contral profile. l
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Figure 5: Comparison of shortcut model control profile versus
stage-to-stage mode for the endpoint constrained problem.

Reflux 8 tlo
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Figure 6: Optimal Endpoint Constrained Policy and Purity (1 - x<j)
Profiles. The open squares indicate the reflux policy Qeft axis), the closed
diamonds indicate the purity profile..

In this figure we clearly see the effect of holdup on the optimal reflux policy. Again, the
policy is to run the column at maximun distillate takeoff rate at the beginning and end of
the batch time. Then in order to maintain the overall distillate purity, the distillate
composition must be concentrated near the periods of maximum takeoff, resulting in the
profile shown. Initially, this is similar to the policy for the path constraint problem.




20

However, with the accumulated distillate and the aim of " dumping" the holdup at the end,
thecolumn runsat zeroreflux at the end of the didtillation period.

It should be noted that we solved the maximum digtillate problem for afixed batch time of
one hour. Depending on the"problem, one may expect to find these zero reflux holdup
effects for easy separations. We have encountered smilar profiles when solving Profit
Maximization problems (Logsdon et al., 1990), where we consdered modified short-cut
models which allowed for holdup. As shown in Figure 5, the no holdup short-cut model
does not predict the zeroreflux policy.

We summarize the performance of our algorithm in Table 2 for the stage-to-stage column
model. To evaluate the solution accuracy, one can examine the error residuals for the
overall material balance and the first component Except for the steepest (and smallest)
elementsnear theends, theapproximation errorsin theprofilesareabout 10~ or less.

4.3 Comparison with Constant and Piecewise Constant Reflux
Policies

Finally, we compare our resultswith other conventional reflux policiesincluding, constant
optimal reflux, optimal piecewise constant and constant overhead policies, in order to
assess ther influence when condenser and tray holdup dynamics are modeled. From this
comparison we emphasize that recent work with tray to tray holdup models should also be
examined carefully, as the effect of holdup could be ignored by consdering too smple a
reflux policy. Hereweresolve the endpoint control problem with an optimal constant reflux
policy. This is accomplished by constraining the reflux variable to be the same at all
collocation points. The solution is shown in Figure 7. Note here that the constant reflux
policy causesthe column purity to steadily decline. Obvioudy, since thereflux policy is not
allowed to vary with time, the advantages of a zeror eflux policy cannot be consdered here.
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axis), the closed diamondsindicate the purity profile.

Next we consder areflux policy obtained through parameterization of the control profile.
This approach is smilar to the one taken by Mujtaba and M acchietto (1988). Again, this
problem formulation is accomplished by requiring ther eflux control variableto bethe same
at each of the collocation points within each of the variable lengthfinite elements. The
optimal policy for thiscaseis shown in Figure 8 along with the purity profile.
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Figure8: Optimal Parameterized Reflux Policy and Purity (1 - xd)
Profileswith an Endpoint Condraint. The open squaresindicate thereflux
policy (left axis), the closed diamondsindicate the purity profile.

Here we note that the zero reflux policy is also predicted for the parameterization, asin
Figures 5 and 6. In fact, one can view the parameterized policy as an approximation to the
previous ones. Nevertheless, care should be taken when using a differential equation solver
independent of the optimization of the reflux policy since a zero reflux policy may not
appear if the switching points are located too far apart Therefore, small switching times at
theinitial and final portion of the distillation period may not be detected in this problem
formulation. The amount of distillate collected for each of the policies, along with CPU
timesfor the optimizations, is summarized in Table 2.

Finally, we consder a constant overhead policy for this problem. However, since the
column isinitialized at total reflux with a purity higher than the overhead specification
(0.998), we require a short period for the purity to drop to this level (Diwekar and
Madhavan (1991) suggest a zero reflux policy for this period.). This is precisely the
optimal policy for the path constrained problem that we considered above and we usethis
asabassfor comparison. From Figures 9 and 10 we see that except for the final " holdup
dumping" portion in the endpoint constrained policy, the two cases produce similar
profiles. However, as seen in Table 2, thedigtillaterecovered is9% higher for the endpoint
congrained problem and this can be attributed directly to holdup dumping and the zero
reflux policy at the end. Thus for this particular case we see that zero reflux policies
produce subgtantial improvementsin distillate recoveries. Moreover, from Table 2 we see
that the shortcut policy and the congtant reflux policy do not allow for a zeroreflux and lead
todecreasesin recovery up to 12 per cent
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Table 2: Amount of Digtillate collected for Various Reflux Policy.
Maximum Distillate, Endpoint Congrained Control Problem.
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Control Policy ObjectiveFunction  Iterations CPU Time (VS 3200)
Optimal Control 42.338 (moles) 52 1:57:30

Short Cut 37.029 (moles) 34 0:02:12

Optimal Congtant

Reflux 38.899 (moles) 6 0:09:53
Parameterized Reflux 42.259 (moles) 51 1:51:20

Path Congrained 38.615 (moles) 51 1:09:44

4,4. Relationship to More General Formulations

The maximum distillate optimization can also be generalized to cover a number of more
complex batch optimization problems. For example, consider the boilup rate, V(t), asan
additional control profile. Logsdon et al. (1990) and Mujtaba and M acchietto (1991) note
that for maximum distillate problems the optimal boilup rate is always constrained at its
upper bound. Moreover, Logsdon et al (1990) show that this property is also true for the
maximum pr ofit problem aslong asthe optimal solution shows a positive pr ofit

I'n addition, note that the optimal reflux policies actually scalewith timeand inver sely with
the boilup rate. This can be seen by normalizing time by x = t/tf and rewriting the DAE
modéd in (9) in termsoft. Note that the algebraic expressonsremain unchanged and are
written for normalized profilesR(x), D(x), X(X), etc. When V(X) remainsat its upper bound
the equations can beredefined for anew variable G3 =V tf. For agiven G5 the normalized
profiles remain the same regardless of the final time or boilup rates. Thus for binary
separations, optimal profiles need only be generated for different values of purity, initial
conditionsand valuesfor G

Finally, we note that the maximum distillation problem is often a subset of more complex
batch optimization formulations. First;Coward (1967), Murty et al. (1980) and Mujtaba
and Macchietto (1991) reated the maximum distillate problem and the minimum time
problem for binary systems. On the other hand, for the maximum profit problem with an
obj ective given, for example, by:
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Max [Cd DCc=) - Cs Sx=0))/ (tf + T) - Op(V) - Cap(N,V)
R(X),N,V

(where T represents a setup time, N is the number of trays and Op and Cap refer to
operating and capital costsrespectively), Diwekar (1992) notes that this objective can be
Separ ated into:

Max [Cd {Max D(x=I)} - Cs S(x=0)]/ (tf + T) - Op(V) - Cap(N,V)

N,V R(X)
and the maximum digtillate policies can be solved in advance and recalled when needed In
this way the more difficult part of a batch process design can be solved for a normalized
problem " off-line" (for afixed N and initial conditions) and can be lar gely decoupled from
other agpects of the batch process design or operating schedule.

Of course, these observations only apply to smple batch distillation operating policies.
More work needs to be done in order to consider more general constraints on optimal
profiles, more complex operating policies such as the recycling of intermediates,
accommodating multiple cuts and offcuts, and the incor poration of dynamic behavior into
scheduling and planning activities. Mujtaba and Macchietto (1988,1992) and Farhat et al.
-(1990) describe problem formulations for these cases. Future work will incorporate the
more complex reflux policiesdescribed hereinto these problem formulations.

5. Conclusions

Batch digtillation remains an important task for a wide variety of chemical processes. While
many studies have consider ed various aspects of distillation optimization, the influence of
the column holdupson the optimal operating policy remains a challenging problem. In this
sudy we predict unusual and advantageous optimal reflux policies that exploit holdupsin
batch columns. To illustrate these policies, we consder two cases for the maximum
digtillate problem which differ in the specification of the purity constraint. The path
congrained case was solved with the purity congraint written for the top plate instead of
the digtillate in order to keep the problem.at index 2; the endpoint constrained problem
avoids this difficulty. Both cases were solved through application of orthogonal collocation
on finite eements and optimization of the resulting algebraic system with atailored version
of Successive Quadratic Programming (SQP). For these problems, we did not need to
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enforce theresdual congraints for the approximation error directly. Instead the elements
were simply allowed to vary between upper and lower bounds. Monitoring theresiduals at
the optimum showed that the resulting profiles had approximation errorslessthan 10-5.

The optimal profiles for both of these maximum distillate cases reveal some interesting
characterigics. For the path congtrained problem, the optimal reflux policy corresponds to
zeroreflux (maximum take-off) until the path constraint becomes active. At this point the
policy corresponds to constant overhead for the remainder of the operation. The endpoint
condraint, on the other hand, introduces another characterigic. Whileit is smilar to the
path congrained policy at the beginning, it also contains a zero reflux portion at theend At
this point the contents of the holdup are smply "dumped” in order to maximize the
digtillate. Dueto this effect, an increase of 9% isrealized in thefinal digtillate. In addition,
we compar e these two cases with more conventional operating policies. Firg, the path
condrained case serves as a reasonable approximation to the constant overhead policy. An
optimal piecewise constant reflux policy simply approximates our optimal endpoint
congrained policy and also contains zer o reflux portions (provided that piecewise constant
portions are small enough). Moreover, optimal policies based on shortcut models without
holdups or constant reflux do not contain zero reflux portions and consequently are
suboptimal. The results of these policies are up to 12% less than the optimal endpoint
congdrained case. Finally, we summarize the computational resources required for.these
optimizations and note that constrained nonlinear programs of up to 8000 variables are
solved in under two CPU hours (Vaxgation 3200) with our approach.

In addition, our method can be applied to multicomponent systems to exploit column
dynamics (e.g. initialization and holdup effects) for maximum recovery of distillate
product. Diwekar (1992) notes that the maximum distillate problem is an important
subproblem for maximum profit optimization. Moreover, Macchietto and Mujtaba (1992)
show that more complex batch optimizations, involving multiple product cuts and offcuts,
can be handled by solving maximum ditillate problemswithin an inner loop.
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