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An approach for the accurate solution of optimal control problems that arise in batch
distillation is developed and demonstrated Since the optimal control problem has a natural
partitioning of control variables and state variables, we develop a nonlinear programming
decomposition strategy to (1) exploit the block matrix form of the discretized differential
equations that results from using collocation on finite elements, and (2) perform the

rtimization in the reduced space of the control variables. State variables for each finite
: are determined by linearized differential equations and information is passed from

element to element by chainruling the state information. In addition, the nonlinear
programming strategy has a great deal of flexibility to determine control variable
discontinuities and enforce a wide variety of state and control variable constraints.

In this study, we also consider characteristics of the maximum batch distillate problem and
show that our approach is especially useful for the optimization of detailed tray-by-tray
models with tray and condenser holdups. Here we discuss two formulations: an inequality
path constrained problem and the classical endpoint constrained problem. In both cases
interesting and unusual optimal policies are determined and compared to current practice.
Moreover, parallels are observed between optimal reflux policies for these two problems,
and these are also related to findings from previous studies. To handle these problems,
nonlinear programs of up to 8000 variables are solved reasonably quickly on a small
workstation. Finally, it is observed that more complex batch distillation problems can be
handled in a straightforward manner through this approach.
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1. Introduction

The determination of optimal control profiles for large chemical processes described by

differential and algebraic equations (DAEs) remains a challenging problem. In particular,

DAE optimization methods must handle state and control variable (equality and inequality)

constraints. In the simultaneous approach described here, the DAE system is converted to a

set of algebraic equations using orthogonal collocation on finite elements, and one can deal

with state path constraints and control path constraints simply by including them in the

nonlinear programming formulation. This approach has been used by Cuthrell and Biegler

(1987,1989), Renfro et al. (1987), Eaton et al. (1988), and Logsdon and Biegler (1989) to

address the optimal control problem.

While the simultaneous approach offers a number of advantages for dynamic optimization

problems, the resulting nonlinear programming formulations for these problems can

become large. Consequently, problem structure must be exploited in order to solve the

resulting NLP problem efficiently. Vasantharajan and Biegler (1988) and Vasantharajan et

al. (1990) develop a general purpose decomposition algorithm for Successive Quadratic

Programming (SQP) and demonstrate its efficiency and reliability with respect to other

general purpose NLP solvers. Logsdon et al. (1990) also applied this approach to the

optimal operation of batch distillation systems. More recently, Logsdon and Biegler (1992)

develop several algorithms tailored to the block lower-triangular structure of the collocation

equations.

In this study, we apply this structured decomposition algorithm to the maximum distillate

problem for batch columns and also relate this problem to more general optimization

problems for batch processing. Here we consider tray-by-tray distillation models with tray

and condenser holdups. With an accurate optimal reflux policy for more realistic models,

we also compare these results to current operating policies and methods of analysis. In the

next section we provide a brief review of previous work. Then, in section 3 we outline the

general NLP formulation for optimal control problems and briefly sketch a structured,

reduced gradient optimization approach tailored to this problem class. This approach is

based on concepts of finite element collocation and Successive Quadratic Programming

(SQP). Section 4 discusses the maximum distillate problem and presents some interesting

optimal reflux policies for path constrained and endpoint constrained maximum distillate

problems. The solutions of these two process examples are also compared to constant



optimal reflux policies and piecewise constant reflux policies; significant differences and

advantages are observed with our approach. Also, we briefly discuss extensions of the

maximum distillate problem to more complex problem classes. Finally, in Section 5 we

draw conclusions and discuss directions for future work.

2. Batch Distillation Literature Review

The determination of distillation policies for batch columns has received considerable

attention since the 1940's. Early work concentrated on the development of approximate

methods for dynamic simulation of these columns (see the review by Luyben (1971)).

Batch distillation models are composed of differential and algebraic equations which are the

mass and energy balances, the thermodynamic relationships, and the dynamic plate

relationships. Short cut methods have also been used to reduce the size of the systems of

the DAE's; otherwise the number of equations increases with the number of components

and number of plates under consideration.

Optimization studies have been reported for binary systems by Luyben (1971), Coward

(1967), Robinson (1971), Mayur and Jackson (1971), and Keikhoff and Vissers (1978),

and for ternary systems by Luyben (1988). The optimal control variable is usually the

reflux ratio, since it can be shown that the optimal boilup rate frequently remains at its

upper bound (see discussion in section 5). Control profiles have been reported for various

optimization studies classified according to the objective functions being considered.

Normally problems found in the literature are defined as follows:

1. Maximum Distillate Problem - Maximize the amount of distillate of a specified

concentration for a specified batch time.

2. Minimum Time Problem - Minimize the batch time needed to produce a

prescribed amount of distillate of a specified concentration.

3. Maximum Profit Problem - Maximize a profit function for a specified

concentration of distillate.

Converse and Gross (1963) first solved the maximum distillate problem using dynamic

programming and Pontryagin's maximum principle. The minimum time problem has been

studied by Coward (1967), Robinson (1970) and Mayur and Jackson (1971) and the



maximum profit problem has been studied by Kerkhof and Vissers (1978). Murty et al

(1980) compare several optimal control methods for batch distillation optimization while

Hansen and Jorgensen (1986) apply orthogonal collocation to solve the (unconstrained)

optimality conditions. Most of the work found in the literature is restricted to binary

mixtures with the assumptions of no holdup on the trays, and fixing column design

variables such as the number of trays and vapor boilup.

More recently, Diwekar et al. (1987), Mujtaba and Macchietto (1988), Farhat et al. (1990)

and Logsdon et al. (1990) have investigated batch distillation as optimization problems for

multicomponent systems. Diwekar et al (1987) used shortcut models along with

Pontryagin's maximum principle to obtain control policies for the maximum profit

problem. Mujtaba and Macchietto (1988) considered tray to tray dynamics and included

material and energy balances, plate holdup, and rigorous phase equilibrium to solve the

maximum distillate problem. They also considered more general problems that involve the

recycling of intermediate distillation cuts, as did Faihat et al. (1990). Logsdon et al (1990)

used the shortcut model to simultaneously optimize the design of the column and to obtain

the optimal reflux policy to maximize a profit function, which includes capital costs along

with operating costs.

For the design of batch distillation systems, Al-Tuwaim and Luyben (1991) developed a

shortcut design method to determine the number of trays and reflux ratio. Implicit in this

approach is a constant reflux policy (see also Luyben (1971, 1988). Diwekar and

Madhavan (1991), on the other hand, develop the BATCH-DIST package which

incorporates various levels of complexity for batch distillation models, from Fenske-

Underwood-Gilliland correlations to tray-to tray batch columns models. In many cases, the

shortcut models compare quite well with more rigorous simulations and lead to savings of

up to two orders of magnitude in compational effort. This approach also allows for

different optimization problem formulations as well. Finally, Mujtaba and Macchietto

(1991) studied the effects of tray and condenser holdups on batch distillation optimization.

Assuming constant reflux ratios they obtained optimal holdups and determined conditions

under which holdups can improve column performance.

In this work we consider a tray-by tray holdup model for batch distillation and study the

influence of the optimal reflux policy. As mentioned above, our approach determines

accurate optimal reflux policies under a variety of constraints and these are exploited to

uncover some unusual behavior. These are then compared to optimal policies determined



by other approaches in order to demonstrate the effectiveness of our procedure. Also, we

investigate the characteristics of the optimal solution of higher "index" systems which are

often bypassed with simpler tray dynamics and reflux policies.

3. NLP Formulation

In this section we briefly review the NLP formulation with collocation on finite elements.

Consider the following general optimization problem fort e [a,b]:

(1)
Min

u(t),z(t),

s.t

*<»

P

z(t)

g (u(t),:

(b),p) + / G(

= F(z(t),u(t),p

^(0) £ 0
g f ( z (b ) ) < 0

z(a) =

z(t)L :
u(t)L

zo
S z(t) £ z(t)U

< u(t) ^ u(t)U

z( t ) ,u( t ) ,p) dt

)

where:
*P(z(b)) = objective function terms evaluated at final conditions

G(z(t), u(t), p) = time dependent objective function term

z(t) = state profile vector

u(t) = control profiles

p = design parameters, not time dependent

g = inequality design constraint vector
gj = inequality constraints at final conditions
z0 = initial condition for state vector

z(t) , z(t) = state profile bounds

u(t) , u(t) = control profile bounds

Here, we discretize the DAE system by-using a piecewise polynomial approximation on

finite elements and by applying orthogonal collocation to construct the algebraic residual

equations. These residuals are evaluated at the shifted roots of an orthogonal Legendre

polynomial. Consider now the initial value problem over a finite element, i, with time



1 8 [ Ci > Ci+i ] with state and control profiles approximated by Lagrange-type polynomials

over this element. Recall that the Lagrange polynomial has the desirable property that, for
z K+i (0, for example,

This polynomial also allows for the direct imposition of path constraints within the problem

formulation. Applying K point, orthogonal collocation on finite elements and defining the

basis functions so that time is normalized over each element, one obtains the following

residual equation for the ODE:

i F (zik,Uik) = 0 (3)

i = 1,...,NE

Ic = 1 ,...,&

where the basis function <|>j(Tk) = -r* is calculated offline and to = & + A&Tk This form is

convenient to work with when the element lengths are included as decision variables,

because it is still defined even if A£ goes to zero during the solution of the optimization

problem. Note also that element lengths play two roles. First, they need to be sufficiently

small in order to allow the piecewise polynomials to approximate the solution profiles

accurately. Second, element lengths locate points of discontinuity for the control profiles.

In our NLP formulation, we enforce the continuity of the states at element boundaries, but

allow the control profiles to have discontinuities at these endpoints. These endpoints also

provide the initial conditions for the next element states.

Discretization of the optimal control problem leads to the NLP problem given below. This

formulation consists of the discretized DAE model, the continuity equations for state

variables, and any additional equality and inequality constraints in the problem formulation.

Finally, approximation error constraints are added that ensure the accuracy of the solution

profiles. These can range from simple bounds on element lengths to constraints based on

detailed approximation error estimates.
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Variables in (4) include ACi» *c finite element lengths for i =1,..., NE; z f , the value of

the state at the final time; zV} and uy , the collocation coefficients for the state and control

profiles, respectively; and p, any additional design parameters (such as boilup rate and final

time). Finally, the order of the collocation method is often determined by the state variable

constraints. Activity of these constraints over a nonzero time period often increases the

index of the DAE system; the collocation method must therefore have stability and accuracy

properties to handle these cases (Logsdon and Biegler, 1989).

To solve (4), we note that for given values of control variables and element lengths one can

determine the state variable trajectories from the collocation equations and pass the

information from element to element. Once the trajectories have been computed, and

derivative information (sensitivity of states to control variables) is obtained, we chainrule

this information in order to obtain the reduced gradients of the objective and contraint

functions. We then update the optimal control profile through a reduced space Successive

Quadratic Programming (SQP) algorithm: Here the collocation equations are converged for

each SQP iteration and the resulting method is a feasible path, reduced gradient approach.

Note however, that the constraints that govern the approximation error and the element
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lengths are still manipulated at the optimization level. Further details of this approach and

its infeasible path variations can be found in Logsdon and Biegler (1992). A brief

description of the algorithm is presented next.

Reduced Gradient Algorithm:

0. Choose the number of elements and the corresponding number of collocation points

based on the likely index of the DAE system (see Logsdon and Biegler, 1989, for

details). Initialize the control variables, state variables, and element lengths.

1. For values of the control variables and element lengths at iteration k, and initial

conditions for the state variables, perform the following for each element i (i =

1.1 Using the initial conditions of element i as starting guesses, solve the

residual equations (3) by a Newton algorithm to obtain the interior states

zjf. Here A represents the Jacobian of (3) with respect to z£ and b

represents the right hand sides of (3).

1.2 Calculate the derivatives for this element's decision variables:
3z|F - db dA k—l- = A l[ zf ]

where t, represents the control variables and the element length for each

r 3 b dA .
finite element Note that I T2* can be determined analytically

from the differential equations. A"* is available from the Newton step in

1.1.

1.3 Apply the state continuity equations, and solve for the next element's initial

conditions:

j=° • (5)
1.4 Chainrule the derivatives from previous elements and update:



2. Continue until an intermediate element is reached that influences an inequality

(g(zc)) or until the last element is reached. Determine the reduced gradients for the

objective and constraint functions according to equation (7).

CD

3. Assemble the objective and constraint function values and reduced gradients from

the above steps.

4. Call the SQP algorithm (Cuthrell and Biegler, 1985). If Kuhn-Tucker conditions

are satisfied, Stop. Otherwise the algorithm solves the following quadratic program

at iteration k:

Minx* VO Z AE + 1 A E ( Z T B Z ) A £
**» 2 (8)

s.t. g + VgTZA{; <0

to determine the search direction, A£. Note that this QP contains all of the state

and control variable inequality constraints. In addition, SQP also updates the

reduced Hessian matrix, (Z^BZ), based on the BFGS formula, and performs a

line search to determine the steplength for the decision variables, u and A£ (see

Cuthrell and Biegler, 1985).

5. Return to step 1, with a new set of decision variables from SQP.

This feasible path algorithm can be viewed as a hybrid between the nested approach (as

used by Mujtaba and Macchietto, 1988) and the simultaneous approaches. Like the nested

approach, a small subproblem is considered at the NLP level and the equality constraints

from the DAE discretization are solved in an inner loop (step 1.1). The algorithm also

inherits all of the convergence properties of the SQP method in the decision variable space.

On the other hand, this algorithm also controls the element lengths at the NLP level and
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allows for the straightforward application of state and control variable constraints, as with
the simultaneous method.

4. Batch Distillation Examples

Chemical engineering processes described by staged models of differential and algebraic

equations frequently form large optimization problems. To demonstrate the performance of

our algorithm, we investigate a simple toluene/cyclohexane system which has been

successfully simulated by Domenech and Enjalbert (1974) and by Cuille and Reklaitis

(1986). We consider the maximum distillate problem for a batch time of one hour. The

simulation model described by Domenech and Enjalbert (1980) for the column model,

which assumes equal heats of vaporization and heat capacities for the components, is used

for this problem. More rigorous column models are also described by Cuille and Reklaitis

(1986) and Mujtaba and Macchietto (1988). Details of the example are as follows:

V, boilup rate = 120 moles/hr

N= 10 trays
Hp, plate holdup = 1 mole

n* condenser holdup = 1 mole

Initial Concentrations:

X^Q = 0.55, cyclohexane
xb,o = 0-45 , toluene

The optimal control problem can be written as:

Maximize V = D i s = D ( t f )

Rt(t)

s.t.

Mass Balances:

- v , S = overall mass = So - D ( t )
dt Rj + 1
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-= V r J . J j Et[R t +l ] ( x J i - x b> ] » *i = component] in pot

i~ = Tl~ [ P̂-i ' y i ' [ R ^ I J ^ W I " 4 >]• 4 = component j on plate p

—fcttl- = V [y| |-xij+ 1], j = component j in condenser accumulator
dt Hcon

Vapor-Liquid Relations (Here K values are modeled by ideal vapor pressure relations using

Antoine equations and data from Reid et al, 1977.)

NC

Purity constraints for first component:

I'ii.
bound ^ XJ = ^ 1 . 0 time average purity constraint

IORHT l

or

p, lower bound £ x£ £ 1.0 constant purity constraint on plate p

Note that if the constant overhead problem is solved with the purity specification enforced

on the distillate ( *d, lower bound ^ xd )t an index 3 DAE system can result Here the reflux
ratio, Rt, can be taken as the index variable. The problem becomes index 3 whenever the
overhead purity constraint is active, and either a high order, (strongly A-) stable method
must be applied or the constraint is reformulated to one of lower index. To see that this
system is indeed index 3, we differentiate the purity constraint with time as follows:

Xdt lower bound = Xd Index 3
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d» lower bound _

dT dt
, j j , Index!

at

con

Note that since the reflux ratio is explicit in the expression for —£ , we require one more

differentiation to obtain an index 0 expression.

To avoid numerical difficulty, we can reduce the constant overhead problem to index 2 by

enforcing a corresponding purity constraint on the top plate instead of on the distillate

composition, as seen below:

XN. lower bound = XN Index 2

T " indexl

d t 2 dt' dt ' dt ' dt ' dt I n d e x 0

On the other hand, for the time average purity (endpoint) constraint, the system is only

index 1 and no reformulation is required. For this example, we investigate both the path

(index 2) and the endpoint purity constraint problems. We specify the top plate purity

constraint as:



13

XN, lower bound =

which corresponds to a distillate path constraint purity of 0.998. For the endpoint

constraint, we specify the average distillate purity as:

„ Jo R t + i
x'd.lower bound = 0.998 £ Xd = £ 1.0

In addition, we have 2 components and 12 stages (10 trays with reboiler and condenser)

leading to a system of 24 differential material balance equations plus an overall material

balance. Here we set up the total reflux system of equations to solve for the initial

conditions, which are constants in our optimization problem. The total reflux initialization

is used for this example as it is typical for a high purity separation. In other applications,

e.g., where equilibration time for total reflux is significant, other initial conditions, such as

cold starts or partial equilibration, may be more appropriate. Our approach handles these

equally well.

Using three point collocation for the discretization, we define the following state and

control variables at each of the interior collocation points as follows:

Rt.3
j J
p.2 •'p.3

'P.I AP.2 . xp.3xJ_ , xJ
p 0 ,n

So Si S2 S3 So»n
I * * _ ^ * 1

Co C 1
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Figure 1: Finite element 3 point collocation for batch distillation

yj, = vapour compositions

xJ
p = liquid compositions

KJ, = equilibrium constant

Tp = temperature on plate

S = overall mass = So - D ( t )

Rt = reflux ratio

We write explicit expressions for the derivative terms and the right hand sides of the
differential equations at each of the collocation points. This requires expressions for the
equilibrium constants, and additionally bubble point constraints must be enforced. To
complete the model, we add the continuity equations for xJp and for S. The resulting NLP

has 429 constraints and up to 457 variables for each element

4.1 Path Constrained Problems

We first consider the path constraint purity for the top plate. In order to obtain a starting

profile for this problem, we solve the maximum distillate problem (for the constant

overhead constraint) sequentially for each element by specifying the initial conditions and

the integration length and marching forward (see Figure 2).

II
Continuity
Equation

1st Element Interior States Initial Conditions
Next Element

Figure 2: Solution of collocation equations within one finite element

This is similar to the element-to-element approach described in the above algorithm, but

now we are actually optimizing the control profile within each element. This initialization
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strategy allows the modeler to estimate the number of finite elements needed for accurate

integrations; regions that require small integration lengths can be identified for the

initialization of the larger NLP. Additionally, it easier to verify and debug this smaller NLP

before the finite elements are linked together.

Solving the maximum distillate problem for each of 18 elements requires a total of 7722

constraints and 8208 variables. Following this intialization and starting profile, we now set

up the column model with the decomposition algorithm in section 3. Here, we obtain an

accurate optimal reflux policy with only 12 finite elements as shown in Figure 3. A

performance comparison of this approach is given in Table L

C9

o

Reflux 12 element
Reflux (MINOS)

0.0 0.2 0.4 0.6 0.8 1.0
Time (hrs.)

Figure 3: Comparison of reflux policies: MINOS element-by-element

initialization and optimal policy determined by SQP (with 12

elements).

Table 1: Comparison of Element to Element Optimization (MINOS)

with Entire Batch Time Optimization (SQP) - TopPlate Purity Constraint Problem

Total Distillate Recovered

(moles)

Number Finite

Elements

Total CPU time

(hrs: mins: sees)

(MINOS)
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38.591 (optimized 18 times) 0:20:19

(SQP)
38.615 12 1:09:44

Note that the amount of distillate recovered is dominated by the active path constraint This

allows the control profile from the element-to-element optimization approach to be close to

the optimal control profile. It is also interesting that the initial policy of total takeoff (or

zero reflux policy ) was also identified by Coward (1967)- In Coward's examples, this

policy was demonstrated numerically to be superior for easy separations where the initial

distillate has a higher purity than the purity specification. While Coward used a no holdup

model for his work and commented that the "zero reflux" policy should not be needed for

most separations, his zero reflux observation coincides precisely with the behavior shown

in Figure 3. Also, to initialize their constant overhead policies, Diwekar and Madhavan

(1991) suggest a zero reflux policy as well.

Moreover, because we have included holdup for the column model, this effect is more

pronounced because the amount of high purity material to draw upon is present longer in

the top section of the column because of the "fly wheel" effect ( Luyben, 1971; Pigford et

al., 1951). This can be seen from Figure 4. Here the reflux policy maximizes the distillate

takeoff as long as the top plate purity exceeds the purity constraint (0.995). Then the reflux

policy quickly increases to meet the purity of the top section of the column. Once the path

constraint becomes active, it determines the reflux policy for the remainder of the batch

time.
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Figure 4: Optimal Path Constrained Policy and Purity (1 - x<j) Profiles, Note

that a Top Plate Purity of 0.995 Corresponds to Distillate Purity of 0.998. The

open squares indicate the reflux policy (left axis), the closed diamonds indicate

the purity profile.

4.2 Endpoint Purity Constrained Control Problem

The previous case shows how our algorithm can be used to construct and efficiently

determine optimal control profiles for problems that have active path constraints and require

a large number of state variables. We now consider the classic optimal control problem

which is governed by the time average (endpoint) purity constraint

bound = 0.998 < xj =

i:
< 1.0

-dt

The problem definition and initial conditions are the same as for the constant overhead case

presented earlier. In order to determine a good initialization for the NLP, we solve the

optimal control problem using the shortcut model developed by Diwekar (1988). Here the
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relative volatility ( a = 2.48 ) was found from the geometric average of the reboiler relative

volatility and the top plate relative volatility at total reflux as described by Diwekar (1988),

The shortcut model is a much smaller system of differential equations (3 differential

equations) than our stage-to-stage model (24 differential equations). The optimal policy is

shown in Figure 5 for four finite elements with fixed integration lengths of 0.25 hrs. This

reflux ratio policy produces 37.029 moles of distillate. The requirements for MINOS to

solve this NLP (223 constraints, 255 variables) are 132.8 sees, for 34 iterations on a Vax

3200.

The shortcut model requires only four elements to find an optimal control profile because it

considers only the differential equations for the overall material balance and the reboiler

composition differential equations (see Logsdon et al, 1990). However, if we wish to

consider tray dynamics accurately for the stage-to-stage column model, we require smaller

integration steps and more finite elements. From Logsdon et al. (1990) we know that the

profile will be active at the beginning and end of the batch time because of the holdup

effect; smaller finite elements are required here because the control profile will be steeper at

these times. Additionally, we can estimate the size of the finite elements from the constant

overhead case, which required 12 elements. Here we set the number of elements to 16 and

start with a flat control profile of 3.0 for the reflux ratio. Since we are not directly enforcing

the residual equations for each of the stages we allow the integration lengths to vary slightly

in order to obtain accurate approximations.

Additionally, we enforce accuracy constraints on the the control profile by enforcing its

lower and upper bounds at the breakpoint elements using simple extrapolations. Also, a

small tolerance on the Kth derivative of the control profile is enforced (see Logsdon and

Biegler, 1989) within each element. The QP for 16 finite elements includes an equality

constraint (the sum of the integration lengths equals 1 hour) and 81 inequality constraints

for the accuracy constraints and the endpoint purity constraint. The number of variables is

64 (NE*4) variables, 455 within each element and a total of 7280 variables. Using our

algorithm we arrive at the control profile shown in Figure 5. Figure 6 shows the purity

constraint along with the control profile.
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Figure 5: Comparison of shortcut model control profile versus

stage-to-stage model for the endpoint constrained problem.
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Normalized Time

Figure 6: Optimal Endpoint Constrained Policy and Purity (1 - x<j)

Profiles. The open squares indicate the reflux policy Qeft axis), the closed

diamonds indicate the purity profile..

In this figure we clearly see the effect of holdup on the optimal reflux policy. Again, the

policy is to run the column at maximum distillate takeoff rate at the beginning and end of

the batch time. Then in order to maintain the overall distillate purity, the distillate

composition must be concentrated near the periods of maximum takeoff, resulting in the

profile shown. Initially, this is similar to the policy for the path constraint problem.
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However, with the accumulated distillate and the aim of "dumping" the holdup at the end,

the column runs at zero reflux at the end of the distillation period.

It should be noted that we solved the maximum distillate problem for a fixed batch time of

one hour. Depending on the problem, one may expect to find these zero reflux holdup

effects for easy separations. We have encountered similar profiles when solving Profit

Maximization problems (Logsdon et al., 1990), where we considered modified short-cut

models which allowed for holdup. As shown in Figure 5, the no holdup short-cut model

does not predict the zero reflux policy.

We summarize the performance of our algorithm in Table 2 for the stage-to-stage column

model. To evaluate the solution accuracy, one can examine the error residuals for the

overall material balance and the first component Except for the steepest (and smallest)

elements near the ends, the approximation errors in the profiles are about 10"^ or less.

4.3 Comparison with Constant and Piecewise Constant Reflux
Policies

Finally, we compare our results with other conventional reflux policies including, constant

optimal reflux, optimal piecewise constant and constant overhead policies, in order to

assess their influence when condenser and tray holdup dynamics are modeled. From this

comparison we emphasize that recent work with tray to tray holdup models should also be

examined carefully, as the effect of holdup could be ignored by considering too simple a

reflux policy. Here we resolve the endpoint control problem with an optimal constant reflux

policy. This is accomplished by constraining the reflux variable to be the same at all

collocation points. The solution is shown in Figure 7. Note here that the constant reflux

policy causes the column purity to steadily decline. Obviously, since the reflux policy is not

allowed to vary with time, the advantages of a zero reflux policy cannot be considered here.
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Figure 7: Optimal Constant Reflux Policy and Purity (1 - xd) Profiles with

an Endpoint Constraint The open squares indicate the reflux policy (lef t

axis), the closed diamonds indicate the purity profile.

Next we consider a reflux policy obtained through parameterization of the control profile.

This approach is similar to the one taken by Mujtaba and Macchietto (1988). Again, this

problem formulation is accomplished by requiring the reflux control variable to be the same

at each of the collocation points within each of the variable length finite elements. The

optimal policy for this case is shown in Figure 8 along with the purity profile.
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Figure 8: Optimal Parameterized Reflux Policy and Purity (1 -

Profiles with an Endpoint Constraint. The open squares indicate the reflux

policy (left axis), the closed diamonds indicate the purity profile.

Here we note that the zero reflux policy is also predicted for the parameterization, as in

Figures 5 and 6. In fact, one can view the parameterized policy as an approximation to the

previous ones. Nevertheless, care should be taken when using a differential equation solver

independent of the optimization of the reflux policy since a zero reflux policy may not

appear if the switching points are located too far apart Therefore, small switching times at

the initial and final portion of the distillation period may not be detected in this problem

formulation. The amount of distillate collected for each of the policies, along with CPU

times for the optimizations, is summarized in Table 2.

Finally, we consider a constant overhead policy for this problem. However, since the

column is initialized at total reflux with a purity higher than the overhead specification

(0.998), we require a short period for the purity to drop to this level (Diwekar and

Madhavan (1991) suggest a zero reflux policy for this period.). This is precisely the

optimal policy for the path constrained problem that we considered above and we use this

as a basis for comparison. From Figures 9 and 10 we see that except for the final "holdup

dumping" portion in the endpoint constrained policy, the two cases produce similar

profiles. However, as seen in Table 2, the distillate recovered is 9% higher for the endpoint

constrained problem and this can be attributed directly to holdup dumping and the zero

reflux policy at the end. Thus for this particular case we see that zero reflux policies

produce substantial improvements in distillate recoveries. Moreover, from Table 2 we see

that the shortcut policy and the constant reflux policy do not allow for a zero reflux and lead

to decreases in recovery up to 12 percent
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Figure 9: Comparison of Optimal Reflux Policies: Path and Endpoint

Constraints(x).
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Figure 10: Comparison of Distillate Purities: Path and Endpoint

Constraints (open squares). Note that the equivalent distillate purity is 0.998

for a top plate purity of 0.995.

Table 2: Amount of Distillate collected for Various Reflux Policy.

Maximum Distillate, Endpoint Constrained Control Problem.
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Control Policy

Optimal Control

Short Cut

Optimal Constant
Reflux
Parameterized Reflux

Path Constrained

Objective Function

42.338 (moles)

37.029 (moles)

38.899 (moles)
42.259 (moles)

38.615 (moles)

Iterations

52

34

6
51

51

CPU Time (VS 3200)

1:57:30

0:02:12

0:09:53
1:51:20

1:09:44

4,4. Relationship to More General Formulations

The maximum distillate optimization can also be generalized to cover a number of more

complex batch optimization problems. For example, consider the boilup rate, V(t), as an

additional control profile. Logsdon et al. (1990) and Mujtaba and Macchietto (1991) note

that for maximum distillate problems the optimal boilup rate is always constrained at its

upper bound. Moreover, Logsdon et al (1990) show that this property is also true for the

maximum profit problem as long as the optimal solution shows a positive profit

In addition, note that the optimal reflux policies actually scale with time and inversely with

the boilup rate. This can be seen by normalizing time by x = t/tf and rewriting the DAE

model in (9) in terms oft. Note that the algebraic expressions remain unchanged and are

written for normalized profiles R(x), D(x), x(x), etc. When V(x) remains at its upper bound

the equations can be redefined for a new variable G3 = V tf. For a given G5 the normalized

profiles remain the same regardless of the final time or boilup rates. Thus for binary

separations, optimal profiles need only be generated for different values of purity, initial

conditions and values for G5.

Finally, we note that the maximum distillation problem is often a subset of more complex

batch optimization formulations. First, Coward (1967), Murty et al. (1980) and Mujtaba

and Macchietto (1991) related the maximum distillate problem and the minimum time

problem for binary systems. On the other hand, for the maximum profit problem with an

objective given, for example, by:
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Max [Cd DCc=l) - Cs S(x=O)]/ (tf + T) - Op(V) - Cap(N,V)
R(x),N,V

(where T represents a setup time, N is the number of trays and Op and Cap refer to

operating and capital costs respectively), Diwekar (1992) notes that this objective can be

separated into:

Max [Cd {Max D(x=l)} - Cs S(x=O)]/ (tf + T) - Op(V) - Cap(N,V)

N,V R(x)

and the maximum distillate policies can be solved in advance and recalled when needed In

this way the more difficult part of a batch process design can be solved for a normalized

problem "off-line" (for a fixed N and initial conditions) and can be largely decoupled from

other aspects of the batch process design or operating schedule.

Of course, these observations only apply to simple batch distillation operating policies.

More work needs to be done in order to consider more general constraints on optimal

profiles, more complex operating policies such as the recycling of intermediates,

accommodating multiple cuts and offcuts, and the incorporation of dynamic behavior into

scheduling and planning activities. Mujtaba and Macchietto (1988,1992) and Farhat et al.

(1990) describe problem formulations for these cases. Future work will incorporate the

more complex reflux policies described here into these problem formulations.

5. Conclusions

Batch distillation remains an important task for a wide variety of chemical processes. While

many studies have considered various aspects of distillation optimization, the influence of

the column holdups on the optimal operating policy remains a challenging problem. In this

study we predict unusual and advantageous optimal reflux policies that exploit holdups in

batch columns. To illustrate these policies, we consider two cases for the maximum

distillate problem which differ in the specification of the purity constraint. The path

constrained case was solved with the purity constraint written for the top plate instead of

the distillate in order to keep the problem at index 2; the endpoint constrained problem

avoids this difficulty. Both cases were solved through application of orthogonal collocation

on finite elements and optimization of the resulting algebraic system with a tailored version

of Successive Quadratic Programming (SQP). For these problems, we did not need to
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enforce the residual constraints for the approximation error directly. Instead the elements

were simply allowed to vary between upper and lower bounds. Monitoring the residuals at

the optimum showed that the resulting profiles had approximation errors less than 10~5.

The optimal profiles for both of these maximum distillate cases reveal some interesting

characteristics. For the path constrained problem, the optimal reflux policy corresponds to

zero reflux (maximum take-off) until the path constraint becomes active. At this point the

policy corresponds to constant overhead for the remainder of the operation. The endpoint

constraint, on the other hand, introduces another characteristic. While it is similar to the

path constrained policy at the beginning, it also contains a zero reflux portion at the end At

this point the contents of the holdup are simply "dumped" in order to maximize the

distillate. Due to this effect, an increase of 9% is realized in the final distillate. In addition,

we compare these two cases with more conventional operating policies. First, the path

constrained case serves as a reasonable approximation to the constant overhead policy. An

optimal piecewise constant reflux policy simply approximates our optimal endpoint

constrained policy and also contains zero reflux portions (provided that piecewise constant

portions are small enough). Moreover, optimal policies based on shortcut models without

holdups or constant reflux do not contain zero reflux portions and consequently are

suboptimal. The results of these policies are up to 12% less than the optimal endpoint

constrained case. Finally, we summarize the computational resources required for these

optimizations and note that constrained nonlinear programs of up to 8000 variables are

solved in under two CPU hours (Vaxstation 3200) with our approach.

In addition, our method can be applied to multicomponent systems to exploit column

dynamics (e.g. initialization and holdup effects) for maximum recovery of distillate

product. Diwekar (1992) notes that the maximum distillate problem is an important

subproblem for maximum profit optimization. Moreover, Macchietto and Mujtaba (1992)

show that more complex batch optimizations, involving multiple product cuts and offcuts,

can be handled by solving maximum distillate problems within an inner loop.
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