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Abstract

In this paper we model the evolution of a system of corruption. We assume a
fixed population of players that play a series of supergames with randomly
chosen opponents. Each stage game in the supergames is a prisoner's
dilemma. We show the conditions under which an equilibrium of
corruption exists and is stable. We assume there are two types of players,
adaptive and nonadaptive ones. Among the nonadaptive players, there is a
small proportion that always chooses to be conditionally honest in every new
supergame. Furthermore, we assume that corruption generates small but
cumulative social costs. We show that the joint presence of a small group of
"honest" players and of cumulative social costs is sufficient to drive the
system to a critical (i.e., catastrophic) point in which the stable equilibrium of
corruption suddenly becomes unstable. When the system has reached such a
catastrophic point, a small perturbation is enough to drive it towards a
different equilibrium. We show that the new equilibrium is cooperative, in
that all players choose to be conditionally honest, and that a cooperative
equilibrium is always stable under our model's conditions.



1. Introduction
Social norms have traditionally been linked with the problem of

attaining social order or some form of social coordination. Social order can be
guaranteed by a centralized authority, as in the classic Hobbesian view of
Leviathan, or it can emerge spontaneously from the interaction of large
numbers of individuals who did not plan nor expect it to occur. An early
instance of such a spontaneous order, or "good anarchy", is Locke's state of
nature. Perhaps the archetypal model of spontaneous social order is Adam
Smithfs description of the workings of the market, where the private pursuit
of egoistic interests leads to an unintended, socially desirable outcome. In
general, when we witness coordinated behavior that takes place without the
monitoring and sanctioning intervention of a central authority, we tend to
attribute its occurrence and persistence to the existence of social norms. Such
norms prescribe socially adaptive behavior and/or proscribe behavior that is
perceived as dangerous, antisocial, or plainly inappropriate.

When we refer to the power of norms in warranting social order, the
regulation of conflict, or any other type of social coordination, we must
refrain from the temptation of ascribing some necessarily positive social
attribute to such an arrangement and to the norms that sustain it. An
organization like the Mafia displays a remarkable degree of coordinated
activity and its operations are regulated by norms (Gambetta 1993), but it
would be hard to claim that its workings benefit society at large. Analogously,
stable social systems in which discriminatory norms against women or
minorities persist may turn out to be very inefficient from an economic
standpoint (Elster 1989).

In this paper we study the norms that support a corrupt social system,
i.e. a social system in which the illegal exchange of bribes is the norm. Norms
may be defined in various ways, depending on the framework of analysis
(Gibbs 1965, Cancian 1975). Our framework is a dynamic one, in that we study
how certain norms evolve, stabilize or disappear. The goal of our
investigation is to see under which conditions corruption survives, and what
conditions favor its extinction and the emergence of a new system of norms.
For our purposes, a behavioral definition of norms in terms of stable
behavioral patterns is adequate.



It is important to note that corruption takes place in a framework
characterized by exchanges, rather than by extortion and violence; though the
exchange system is illegal, it is not enforced by threats nor is it regulated by
some kind of centralized authority. The kind of corruption we shall model is
the illegal exchange of bribes. Such exchange could be represented as a kind of
informal cooperation among corrupt politicians and contractors that
exchange bribes for contracts. We choose instead to model the
noncooperative side of such exchanges. That is, we model the fact that a
contractor/politician is always competing for scarce resources (contracts or
bribes) against a group of other contractors/politicians. A contractor, for
example, can be modeled as involved in a sequence of prisoner's dilemma
games with other contractors. Such games are prisoner's dilemmas because,
though it is individually better to be corrupt (i.e., to offer a bribe), the
collective outcome of generalized corruption is much worse than the
collective outcome of generalized honesty. Similar considerations apply to
politicians. When a system of corruption is stable, it is a good example of
ongoing spontaneous coordination. However, it is also a system that may
involve huge inefficiencies.

An immediate question raised by any kind of protracted illegal
exchange is how can this system of exchange — and the norms that support it
— be stable and last for a long time without any apparent challenge. Another
important question is what may cause the sudden and unexpected collapse of
a generalized system of corruption, as well as the emergence of a new,
different system. Such questions are common to all social norms. Indeed,
one of the most important features of norms is that they can change rather
quickly and, to some extent, unexpectedly. One would expect inefficient
norms to disappear more rapidly and with greater frequency than more
efficient ones. However, the fact that a norm may be inefficient, or that its
being followed may generate social costs, is only a necessary condition for its
demise. It is not a sufficient condition.

Though norms have been extensively studied in the social sciences
and in psychology, very little attention has been devoted to understanding
the dynamics of norms. Our analysis of the evolution of a system of
corruption is meant to be an example of a more general view of how social
norms evolve, spread or collapse. Since our starting point will be the analysis
of a state in which almost everybody is corrupt, we do not analyze by which



mechanisms norms of corruption might emerge, or the conditions under
which they are most likely to emerge.1 Our analysis will be exclusively
focused on the dynamics of certain behavioral patterns, and such dynamics
will be modeled as an evolutionary process.

An evolutionary approach is based on the principle that strategies that
make a person do better than others will be retained, while strategies that lead
to failure will be abandoned. The success of a strategy is measured by its
relative frequency in the population at any given time. To model individual
choices, we use a game-theoretic framework. A repeated (finite) interaction
with the same group of players is modeled as a supergame, and we assume
that players play a series of supergames with randomly selected opponents.
The payoff to an individual player depends on her choice as well as on the
choices of the other players in the game. In an evolutionary model, however,
players1 choices are not strategic or fully rational, in that we do not assume
that they want to maximize their expected utility over time (Nachbar 1990,
Binmore and Samuelson 1992). We just assume that behavior is adaptive, so
that a strategy that did work well in the past is retained, and one that fared
poorly will be changed. The evolution of strategies is thus the consequence of
adaptation. There are many different adaptive mechanisms we may attribute
to the players. A realistic adaptive mechanism is learning by trial and error;
another plausible mechanism is imitation: Those who do best are observed
by others who subsequently emulate their behavior (Hardin 1982). An
important advantage of the evolutionary approach is that it does not require
sophisticated strategic reasoning in circumstances, such as large-group
interactions, in which it would be unrealistic to assume it.

Strategies change over time as a function of their relative success in an
environment that is made up of other players that keep changing their own
strategies adaptively. There are several environments one may start with. A
population of individuals can be represented as entirely homogeneous, in the
sense that everybody is adopting the same type of behavior, or heterogeneous
to various degrees. In the former case, it is important to know whether the
commonly adopted behavior is stable against mutations. The relevant
concept here is that of an evolutionarily stable strategy (Maynard Smith and

1 For an analysis of how and under what circumstances norms might emerge, see J. Coleman
(1989), K. Opp (1979,1983), and E. Ullmann-Margalit (1977).



Price 1973; Taylor and Jonker 1978); when a population of individuals adopts
such a strategy, it cannot be successfully invaded by isolated mutants, since
the mutants will be at a disadvantage with respect to reproductive success. A
more interesting case, and one relevant to a study of the reproduction of
norms of corruption, is that of a population in which several competing
strategies are present at any given time. What we want to know is whether
the strategy frequencies that exist at a time are stable, or if there is a tendency
for one strategy to become dominant over time.

There is a major difference between the model presented here and
other evolutionary models of norms, such as Axelrod (1986) and Young
(1993). like Axelrod and Young, we want to show how certain patterns of
behavior may evolve, and give the conditions under which they become
stable. Unlike their models, however, our model focuses on the dynamics of
change. In particular, we want to show how — if the parameters of the model
depend on an external variable and vary slowly — a sudden change from
stability to instability might occur. What we want to explain is precisely how
norms that seem well established and almost permanent can suddenly
collapse, and new norms get established in a relatively short span of time.
The hypothesis we advance is that a progressive, slow accumulation of social
costs may eventually lead to a catastrophe, i.e. to the sudden collapse of the
entire system. The time evolution of norms that we describe is a typical
example of a discontinuity emerging from a small variation of a continuous
parameter (cumulative social costs, in our case), of the type studied by
catastrophe theory. The interesting feature of the catastrophe theory approach
is the fact that it relies on a qualitative analysis of the phenomenon, and that
the necessity of the point of discontinuity — the "catastrophic" event — can be
inferred from global properties of the system. Indeed, a property of the
transition that we shall describe is that it is very stable under small
modifications of the model.

It is important to note that in our model the progressive cumulation of
social costs is not sufficient to induce a change in the system. Rather, a crucial
role in the establishment of a new norm is played by a small percentage of
"irreducibly honest" individuals. Such individuals are not adaptive in the
sense that they never change their strategy. In particular, they always try to be
conditionally honest when they start to play a new supergame. To be
conditionally honest is equated with playing a tit-for-tat strategy. Remarkably



enough, in the presence of increasing social costs these infrequent attempts at
honesty are sufficient to drive society towards the adoption of a new norm of
honesty.

2. The Model
Corruption in this paper refers to the illegal exchange of bribes for

contracts between politicians and contractors. There are many other kinds of
corruption one may want to study, but for simplicity we limit our analysis to
this case. Our conclusions are nevertheless very general, as they do not
depend on the type of corruption that is being studied.

A generalized state of corruption can be represented in several ways. In
particular, any form of corruption has both a cooperative and a
noncooperative side. Even if in this paper we do not consider the cooperative
aspects of corruption, let us just briefly mention the characteristics of such
cooperative arrangements. Since bribes are illegal, transactions involving
them would seem to be extremely costly at least in two respects. First, there is
the risk of penal sanctions. Second, there is a constant risk that the other
party does not fulfill his part of the illicit bargain. Each party is thus faced
with a prisoner's dilemma in which he faces the choice of honoring the
agreement or breaking the promise. The stability and pervasiveness of
corruption can be explained by the fact that interactions are not a one-shot
affair. Rather, they are repeated over time, either with the same partners or
with different parties who know how one has behaved in the past. As is well
known in the game-theoretic literature, the presence of reputation effects and
the possibility of punishing defection by simply excluding the defector from
future interactions are sufficient incentives for cooperation (Kreps et al. 1982,
Kreps 1990). If the interaction between politicians and contractors is repeated
over time, game theory predicts that - if certain conditions are fulfilled - there
will be a cooperative equilibrium in which corruption is the rule. In such
equilibrium the parties have an incentive to fulfill the illicit pacts because of
their interest in the continuation of the relationship. A stable equilibrium of
corruption is a norm (Bicchieri 1990,1993). Everyone expects everyone else to
offer a bribe or accept to be bribed, depending on the role they play in the
exchange. And everyone prefers to conform to this pattern of behavior if
everyone else conforms, too.



Our analysis will be centered instead on the noncooperative aspect of
corruption. When a contractor has to decide whether to offer a bribe, what
matters to him is the presence of competing contractors that may or may not
behave honestly. If all his competitors are honest, it is to his advantage to
offer a bribe. And if at least one of his competitors is corrupt, again it is better
to bribe, in the hope of making an offer high enough to win the contract.
Corruption is thus a dominant strategy. From this viewpoint, honest
behavior is cooperative behavior, but the noncooperative option dominates.
Similarly for the politician. Her competitors are other politicians that share
the control of the same resources, and that may or may not ask or accept
bribes. Accepting bribes puts a politician at an advantage (in terms of power
and influence) over those competitors that did not accept bribes. Again,
accepting a bribe is the dominant option. However, even if being corrupt is
the best individual choice in a one-shot game, everyone would be better off in
the long run if everybody refrained from offering/taking bribes. That is,
collective honesty will fare better than collective corruption in any repeated
game.

In our model we assume a fixed heterogeneous population P of agents
that interact through small-group interactions in which they have to choose
between honest and corrupt behaviour. The model is rather simple in that
players only have two strategies to choose from, and we add the further
simplification that the number of players that play any given supergame is
constant. However, there would be nothing conceptual to gain in presenting
a more general model, since the results we obtain in this simple case are
easily generalizable to far more complex systems. The assumptions of the
model are stated below.

1. We assume the individuals to interact in groups of n individuals,
randomly chosen. We denote a protracted interaction between (the same) n
individuals as a supergame. A supergame consists of N repetitions of a stage
game between the n individuals. In our model of corruption, there will
typically be a small group of contractors making tenders for public works to a
small group of politicians that share the control of a given area. Each agent
will have repeated interactions with the same group of politicians/contractors
for some period of time. And each agent will also be involved in subsequent



new kinds of protracted interactions with different groups of
politicians/contractors.

2. Each stage game is a prisoner's dilemma in which a player has the option
of choosing to be honest (h) or corrupt (c). We assume each player to play
against the group of (n-1) similar players. Corruption is the dominant
strategy, in that playing c is better than playing h, whatever the opponents do.
The payoff of each player depends on his own choice and on whether or not
at least one other player is corrupt. In our example, in each stage game a
player must choose whether to pay a bribe or not (or accept a bribe or not),
where the opponents are agents that compete for the same resources. That is,
the single contractor will have to decide whether to bribe or not, and his
payoff will depend upon the honesty or corruption of the contractors that are
his opponents in the stage game. Similarly the politician will have to decide
whether to ask for a bribe or not, where her opponents in the stage game are
other politicians that share the control of the same resources. Corruption is a
dominant strategy, in that if all the other players are honest it pays to be
corrupt, and if at least one of the opponents is corrupt it is better to be corrupt,
too.

3. The players play a series of supergames (i.e., a series of N repetitions of the
same stage game). After each round of play the actual payoffs and strategies of
the players become public knowledge. Furthermore, the outcome of each
supergame is known by all individuals in the population. In each
supergame, a player can choose one among several strategies S. We consider
(for simplicity) only two strategies for the supergame:
— A "corrupt" strategy, which we denote as C, consisting in the choice of c in
every stage game (constant defection);
- A "tit-for-tat" strategy, which we denote as H, consisting in playing h in the
first stage game of the supergame, and then playing h if all the opponents did
play h in the previous stage game, and c if at least one opponent did play c in
the previous stage game. (Note that the "honest" strategy H represents a form
of conditional cooperation.)

4. A player can be one of two types. We assume that the large majority of
players, which we call strategic players, choose a fixed strategy for the entire



supergame, but may readjust their strategy at the end of each supergame (or,
equivalently, after an arbitrary number of supergames) according to its
relative success. Thus a strategic player may be conditionally honest in one
supergame and always corrupt in another. We interpret this slow change as
the "sluggishness" of behavioral patterns. The second type of player is the
"irreducible" one. Such player chooses a strategy once and for all,
irrespectively of its relative success. An irreducible player may thus play tit-
for-tat in all supergames, or instead he may always choose corruption. We
assume the number of irreducible players, both honest and corrupt, to be very
small and to remain the same through time. The larger part of the population
will thus be composed of strategic players in varying proportions of tit-for-
tatters and constant defectors.

5. The strategy of the strategic player is readjusted as follows. If pst is the
percentage of the strategic players that follow the strategy s in the supergame
that starts at time t, and ust is the expected payoff of playing the strategy s in
this supergame, then at the end of the supergame pst will change by getting
multiplied by an arbitrary monotonically increasing positive function f of the
expected payoff ust- Thus, the readjustment yields

p s t+i= Zf(ust)pst, (1)

where we have taken the time in which one supergame is played to be the
time unit, and Z is a normalization factor, independent of s, which
renormalizes the probabilities so that their sum at t+1 remains equal to one.
6. Finally, we assume that the payoffs of the stage game change slowly in
time. In particular, we assume that there is a slow decrease in time of all the
payoffs, which we denote as payoff erosion. However, the stage game
remains a prisoner's dilemma. The slow change in the payoff values is
meant to reflect the accruing social cost of corruption, in terms of
inefficiencies and wasted resources.

Our aim is to study the evolution of the strategies, namely the change
in the proportions of individuals choosing the different strategies, assuming
that the number of individuals and the number of supergames is large.
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3. Analysis of the model
Each player faces the following prisoner's dilemma matrix:

All h At least
one c

a

b

c

d

Figure 1: Stage-game payoffs

The letters appearing in the matrix of Figure 1 represent the payoffs obtained
by the row player for each combination of his and the opponents' strategies.
Because we assume the game to be symmetrical, each player faces the same
matrix, and since the stage game is a prisoner's dilemma (PD), we have that b
> a > d > c. We normalize the payoffs by taking c = 0. The best collective
outcome results from universal honesty (each player gets a), but the best
individual choice is to be corrupt (one gets b if all other players are honest, d if
at least one is corrupt).

We model the slow payoff erosion by a joint decrease of a, b and d by a
small amount e at every supergame. Since we have taken c = 0, we assume
that e is small enough to keep d always positive, so that the stage game
remains a prisoner's dilemma. Note that c stays equal to 0 since the honest
individual, when matched with a group in which at least one player is
corrupt, does not gain nor lose anything. We start our analysis by studying
the evolution of the system without payoff erosion; later we consider the
effect of payoff erosion.

We assume that a player's total payoff in a supergame is the
undiscounted sum of the payoffs she gets at each stage game. What follows is
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the total payoff matrix of the row player for N repetitions of the stage game of
Figure 1. Note that we have limited the number of possible strategies in the
supergame to tit-for-tat (H) and always corrupt (C). Recall that tit-for-tat is the
choice of being conditionally honest. Such player will play honest in the first
stage of the supergame, and subsequently will choose to be honest/corrupt
depending on the behavior of the other players in the previous stage game.
To be always corrupt instead means that a player will choose to be consistently
corrupt for the entire duration of the supergame.

A l l H At l e a s t
one C

H Na

(N-l)d+b

(N-l)d

Nd

Figure 2: Supergame payoffs

Let M be the (small) number of players that follow a fixed strategy in
all supergames, out of which HIR are "irreducibly honest" players who always
play the H strategy, whereas me are the "irreducibly dishonest" players, who
always play the C strategy. >

LetN »M be the number of "strategic" players that readjust their
strategy at each supergame. Let? =N+M be the total number of players in
the population. As before, we denote by n the number of players that play
together in a given supergame. For simplicity, we assume such number to
remain constant. At any given time, there will be a number of supergames
being played by the population P, each supergame being played by just n
players.
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Let nHt (respectively net), be the number of strategic players that play H
(respectively C) at time t, but are ready to readjust their strategy in the next
supergame. Let us define the percentages (or relative frequencies) of the
various strategies as:

irreducibly honest,
7Cc = mc/P irreducibly corrupt,

pm = HHt/P strategically honest,
pet = nct/P strategically corrupt

In a supergame played with randomly chosen opponents, the probability of
playing against n-1 tit-for-tatters (All H) is (pnt + ^H)11'1, and the probability of
being matched with at least one corrupt individual is 1 - (pnt + ^H)11"1- Then
in any supergame the expected payoffs of the strategies H and C are given by
the sum of the total payoffs a player obtains by playing against different
opponents1 strategies (see Figure 2), weighted by the probability of being
matched with any such strategies. That is, using Figure 2:

uHt = Na (pHt + nH)nA + (N-l)d [l-(pHt + nH)^]f (2)
u c t = [(N-l)d+b] (pHt + ^H)"-1 + Nd [l-(pHt

At the end of each supergame, we have a readjustment of strategies.
Following equation (1), the new normalised frequency pn then becomes

PHt+i= Zf(uHt)pHt (3)

Similarly, the new normalised frequency pc becomes

pct+i= Zf(uct)pct (31)

where Z is the normalization factor. Z is determined by the requirement that
the sum of the probabilities must be 1. Note that, because of the irreducibles
in the population, we must have that PH + pc = N/P. Therefore we must
have that
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f(UHt) PHt + f(Uct) PCt
(4)

Since the only two variables are pnt and pet, and their sum is always N/P, the
configuration of the system is completely determined by the percentage pnt-
Thus, what we are concerned with is the time evolution of pnt determined by
equations (3), (4) and (2). From now on, we use (for simplicity) p t for pHt, and
(N/P) -p t for pCf Thus, our main evolution equation is (from (3) and (4)):

, x X7/D f(UHt(Pt)) Pt ,-.
Pt+l(pt) - N/P f ( U H t ( p t ) ) p t + f(Uct(p t)) (N/P -pt) ( 5 }

where unt(pt) and uct(pt) are, from equation (2),

uHt (pt) = Na (pt + TCH)^1 + (N-l)d [1- (pt + TCR)11"1],

u c t (pt) = KN-1) d + b] (pt + TCR)11-1 + Nd [1- (pt + TCH)11'1! (6)

4. Equilibria

Let us now study the conditions at which the system is in equilibrium.
Clearly, the equilibrium is characterised by pt+i = pt- In this case, there is no
change in the relative frequencies of the different strategies from one period
to another. From equation (5), the equilibrium is characterised by

o _ N/p f(UHt(Pt)) Pt
Pt - NIF f ( U H t ( p t ) ) p t + f(Uct(p t)) (N/P -P t)

From this equation, we have *

N/P f(uHt(pt))pt- [f(uHt(pt))pt+f(uct(pt))(N/P-pt)]pt =0,
or

Pt [f(um(pt)) (Pt -N/P ) - f(uct(pt)) (Pt 'N/P ) ] = 0.

Namely

Pt [f(uHt(pt)H(uct(pt))l [pt 'N/P ] = 0. (7)
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This is the condition for the system to be in equilibrium. In other words, the
equilibria of the systems are given by the values of pt included between 0 and
N/P that satisfy equation (7). Again, an equilibrium is characterized as a
situation in which there is no change in the proportion of players who play
any strategy. Equation (7) is satisfied in the following three cases:

i. pt = 0
ii. p t = N/P
iii. f(uHt(pt)) = f(uct(pt)); since the function f is monotonically

increasing, this implies:
= uct(pt).

Accordingly, there can be three equilibrium configurations in the
system, which we denote as (i), (ii) and (iii). Let us start by considering case (i),
the case in which pt = 0. This means that the proportion of strategic players
that choose to play H in any supergame at time t is zero. This is an
equilibrium in which the population of strategic players remains corrupt in
every supergame.

Case (ii) is a situation in which all the strategic players choose to be
conditionally honest (i.e. play tit-for-tat) in any supergame starting at time t.
Note that the presence of a small number of irredudbly corrupt agents does
not change the result. Since their number is very small, the number of
supergames in which the strategic players will end up choosing corruption is
extremely small.

The third equilibrium is a state in which the expected payoff of
conditional honesty is equal to the expected payoff of corruption for all
supergames at time t. Explicitly, we have, using equation (6)

Na (pt + TCH)11'1 + (N-l)d (
- [(N-l) d+b] (pt + 7cH )n-a - Nd (1- (pt + TCR)11"1) = 0

or

(pt + nu)11'1 [ Na-(N-l)d - [(N-l) d+b]+Nd] = - (N-l)d + Nd = d,
or

(pt + ^H)11'1 = Na-Nd+d-Nd+d-b+Nd '
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which gives

"-1/ d ~
P* = \ N ( a - d ) + 2d-b " KH ( 8 )

It is important to notice that pt must be always greater or equal to zero.
(If pt is equal to zero, we have case (i) again.) If, on the other hand, the right-
hand side of equation (8) is less than zero, there is no equilibrium
corresponding to case (iii). Thus an (independent) equilibrium (iii) exists only
if pt is greater than zero, in which case it must be true that

*"n1 < N ( a - d ) f 2 d - b • ( 9 )

Thus, we have two distinct possibilities. If equation (9) is satisfied, then
there is an equilibrium point corresponding to case (iii), and thus we have the
three equilibria (i), (ii), and (iii). Intuitively, this happens if there are few
irreducibly honest players in the population. We denote this situation as the
first regime. On the contrary, if equation (9) is not satisfied, we only have the
two equilibria (i) and (ii). In this case, enough (or too many) irreducibly
honest players are present in the population. We call this situation the
second regime.
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Second regime

N(a-d) + 2d-b

Figure 3: The equilibrium states for different values of

5. Stability
Next, let us analyze the stability properties of the equilibrium points.

The condition for an equilibrium point to be stable is that a small increase in
pt leads to a decrease in pt+i, and vice versa, a small decrease in pt leads to an
increase in pt+i. Consider the function pt+i(pt), defined by equation (5). Since
the equilibrium points are given by the values of pt for which pt+i(pt) = Pt/ we
can represent graphically the equilibria as the intersections between the graph
of the function pt+i(pt) and the straight line pt+i ='pt. (See Figure 4) .
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t+i t

Figure 4. Equilibria and stability

There are two kinds of such intersections, the ones from left to right and the
ones from right to left. In the former we have

(10)

In the latter we have dpt+i/dpt > 1. By looking at Figure 4, it is easy to see
that the first kind of intersection, where equation (10) is satisfied, is one in
which a small increase in pt leads to a decrease in pt+i, and a small decrease in
pt leads to an increase in pt+i. Thus equation (10) represents the stability
condition for an equilibrium. Let us now compute the derivative (10) at the
equilibrium points. In order to simplify the expressions in the computation,
let us put

A = f(uHt(pt)),
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B = f(uct(pt)),

and let us denote with a prime (') the derivation with respect to pt. A simple
derivation yields

xr/D (A + A'pt)[Apt + B(N/P -Pt)]-Ap t[(A + A'pt)+B'(N/P -pt) -B]
dpt -N/P [Apt+B(N/P -pt)]2

Thus, the stability condition (10) becomes

N/P [(A +A'pt) B (N/P -pt) - Apt [BW/P -pt) -B]]< [Apt + B(N/P -pt)]2 (11)

Let us now consider the three equilibrium points (i), (ii) and (iii) separately.
The first one (pt = 0) is stable if equation (11) is satisfied when we put pt = 0.
This gives

N/P [A BN/P ]< [BN/P]2

Since N, P and B are positive numbers, we have that

A < B

namely f(unt(pt)) < f(uct(pt))- Since f is monotonically increasing, this
implies that unt(pt) < uct(pt)- An equilibrium in which all the strategic
players choose strategy C is stable as long as the expected payoff of corruption
is greater than the expected payoff of conditional honesty (H). Using equation
(6) (with pt = 0), the stability condition is

Na JCH1*-1 + (N-l)d [1- JCH"'1] < [(N-l)d+b] JCR^1 + Nd [1- itn^l

From this, we obtain

7CH
n-1[Na-2Nd

"1 <

or

dN ( a - d ) + 2 d - b •
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This is the condition for the stability of the equilibrium (i). This means that
all strategic players will keep playing C if the number of irreducibly honest
players is less than a certain value.

Now, notice that equation (12) is the same condition as equation (9)
(which is the condition for the existence of equilibrium (iii), or for being in
the first regime). Thus, we can conclude that the equilibrium (i) is stable in

the first regime, but becomes instable in the second regime.

The stability properties of the other two equilibria follow from the
stability of (i) by elementary analysis theorems: Since the equilibria are
determined by the intersections between the graph of the function p t+i =
Pt+i(pt) and the straight line pt+i = pt / and an equilibrium is stable if the first
function intersects the second from left to right, it follows immediately that
the equilibria are alternatively stable and unstable (see Figure 4). Thus we
have the following situation:

Equilibria I in n

first regime stable unstable stable
second regime unstable non existent stable

Notice that the equilibrium (ii) in which p t =N/P , i.e. all strategic players
chose to be conditionally honest, is always stable.

6. Payoff erosion
Up to now, we have neglected the effects of payoff erosion. Let us now

consider its effects on the evolution of the system. The only change from the
previous model is that the stage game payoffs a, b and d evolve in time (recall
that c = 0). Since the payoffs decrease by a very small amount e at every
supergame, i.e., at every unit of time t, at any time t they will be given by

at = a - et,
b t = b-et,
dt = d-et.
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We have assumed e to be small enough so that we are always in a prisoner's
dilemma situation, that is bt > at > dt > 0. Thus, we must have

e< d/T, (13)

where T is the maximum time we consider. T can be tought of as the
threshold after which dt becomes negative. Then, the analysis of the model
we have provided remains valid at all times between 0 and T. However,
equation (9), which separates the first regime from the second regime, is
affected by the evolution of the system. Specifically, we have that the system
is in the first regime at time t if

m ^ dt
N(at-dt)H

That is

. ^ d - et
N(a-d) + 2d-b-et

This condition is a function of time. Therefore there will be a time interval in
which the system is in the first regime and another time interval in which it
will be in the second regime. Specifically, solving with respect to t, the
condion for being in the first regime becomes

"" ^critical •
(1-7CH11-1)

For t < tcriticai the system is in the first regime, for t > tcritical the system is in
the second regime. If the number of repetitions N is large, the term (2d-b) in
the numerator is negligible compared to the term N(a-d); similarly, if the
proportion of irreducibly honest players TCH is small (but not vanishing), the
term TCR11"1 in the denominator is negligible compared to 1. In this case the
expression for tcriticai can be written in the simpler form
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tcritical ~

7. Revolution
Let us consider the evolution of a society of individuals that start off at

t = 0 in a state in which all the individuals follow the "Corrupt" strategy C
(except for the small number of irreducible individuals that, at every new
supergame, try once to play honest). At t = 0, we thus have pt = 0. Let us
assume that at t = 0 the system is in the first regime. Since in this regime the
equilibrium (i), in which pt = 0, is stable, the system will remain in such a
state. In other words, the strategic players will find no incentive to deviate
from the "corrupt" strategy. The system will remain in this state up to the
time tcritical- When W t o i i s reached, the corrupt strategy is still dominant in
the stage game, but the expected payoff of H in any supergame now exceeds
the expected payoff of C. At this time the system enters into the second
regime. The point pt = 0 remains an equilibrium state, but it becomes
unstable. Instability means that isolated clusters of cooperation can now
trigger a cascade of honest behavior. Even if there is only a small probability
that a group of irreducibly honest individuals cluster together in a
supergame, if this happens they will do extremely well. Their behavior and
payoffs can be observed by all other players, that will be driven to imitate the
successful behavior.

Suddenly, at time tCIitical the society is driven toward the (only) other
equilibrium, which is stable, namely pt = N/P , in which all the strategic
individuals chose the "honest" strategy H. The system has entered a phase in
which the expected payoff for the cooperative "honest" strategy has overtaken
the expected payoff of the corrupt strategy. This induces an increase in the
number of players that choose the "honest" strategy, which in turn reinforces
the advantages of cooperative behavior. The system stabilizes on a new
equilibrium point (ii), in which all the strategic players choose to be
conditionally honest. A new cooperative social norm thus gets established.
The society has moved from the first regime to the second regime. From now
on, to follow this new norm of honesty is to everybody's advantage. We
denote this catastrophic event the "honesty revolution".
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N/P

critic

Figure 5: Time evolution of the
percentage of "honest" stategic players pt

Figure 5 shows the typical evolution of a system that starts in a stable
equilibrium. Note that since equilibrium (iii) is not stable, we have omitted
it. The interesting change we have considered is the sudden, "catastrophic"
change from stability to instability of an equilibrium system. We know from
our model that equilibrium (ii), pt = N/P , is always stable. The crucial case is
thus the equilibrium pt = 0, i.e. the equilibrium in which every strategic player
chooses to be corrupt. This equilibrium remains stable up to a critical time.
After that time, the system moves to a new equilibrium, in this case a
cooperative one. When an equilibrium is stable, there are small random
fluctuations around the equilibrium, which we represent in Figure 5 with an
ondulated line. The intuitive interpretation of such fluctuations is that, in a
stable corrupt system, there can be supergames in which some strategic
players chose to play H. However, the evolutionary dynamics brings them
back to playing C. Similarly, when the system has moved to the new
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equilibrium in which the population of strategic players plays H, there can be
fluctuations around this equilibrium.

We can visualise the "catastrophic surface" that describes the sudden
change from stability to instability as follows (see Figure 6). Consider a
function F(pt, t) that describes a surface over the (pt, t) plane. For every fixed t,
we choose F(pt) as a function that has minima in the points that represent
stable equilibria. More precisely, we assume that for t < tcriticai the function F
has minima in pt = N/P, and pt = 0 (stable equilibria), and a maximum
(unstable equilibrium) in the point corresponding to the equilibrium (iii)
(which lies between 0 and N/P). As t approaches tcriticai/ the equilibrium (iii)
approaches 0 and, for t > tcriticai/ the function F has only one minimum in pt

= N/P. Since we are not interested in what happens around pt = N/P, but
only in what happens around pt = 0, we restrict our attention to a strip of the
(pt, t) plane that includes pt = 0, but not pt = N/P. The function we have
described defines a surface in the three-dimensional space (F, pt, t). Consider
the projection of this surface on the plane (F, t). For t > tcriticai this projection
is injective, but for t < tcriticai/ there is a region R in the (F, t) plane in which
the projection is not injective. Thus, we have a discontinuous projection of a
continuous surface, namely a catastrophe, in the language of catastrophe
theory. More precisely, the inverse image of a point in R includes three
points of the surface. The region R is bounded by two lines, which meet at a
point P, over tcriticai- This is the point where the catastrophe occurs. This
particular form of catastrophe is denoted as a cusp catastrophe.
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Catastrophy

Figure 6: The catastrophic surface

8. Conclusions
We have modeled the evolution of a system in which there are two

types of players that play a sequence of repeated prisoner's dilemma games
with randomly chosen opponents. Each player has two possible strategies,
and the large majority of players (the strategic ones) plays adaptively: When a
strategy does not perform too well in a supergame, the player will choose
another strategy in the next supergame. We gave the conditions under which
the system is in equilibrium, as well as the stability conditions for such



25

equilibria. The most surprising result of our model is that cooperative
behavior can suddenly emerge out of a system in which defection
(corruption) is the norm. In particular, we show that — provided that
corruption generates small but cumulative social costs and the population
contains a small number of irreducibly honest individuals — there will come
a critical time at which a stable equilibrium of corruption becomes suddenly
unstable. This catastrophic event should be rightly called the "honesty
revolution". An interesting feature of such a catastrophic change is that it is
not simply caused by the social costs generated by the established norm. Only
the combination of cumulative social costs and a small group of nonadaptive
honest players is sufficient to eventually produce a discontinuity.

Note the essential role played by the small percentage of irreducibly
honest individuals TCH- Since t never reaches the value d/e (because of
equation (12)) if TCH11"1 is zero, namely if there are no irreducibly honest
players, the system will never reach the critical time, and there will be no
revolution. Thus, the presence of a small percentage of irreducibly honest
individuals is essential in order to drive the honesty revolution. This
percentage, however, can be extremely small. Note also that since the strategy
that the irreducibly honest individuals play is tit-for-tat (conditional honesty),
these individuals will choose the honest option h only once at the beginning
of a supergame, unless they find out that all their opponents are behaving
honestly, too. In the long run, these minor attempts are sufficient to drive
society towards adopting a new norm of honesty, provided of course that the
cumulative social costs of corruption progressively lower the advantages of
corrupt behavior.
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