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1. Introduction

The introduction of statistical models represented by directed acyclic graphs (DAGs) has
proved fruitful in the construction of expert systems, in allowing efficient updating
algorithms that take advantage of conditional independence relations (Pearl 1988,
Spiegelhalter et. al. 1993), and in inferring causal structure from conditional
independence relations (Spirtes and Glymour 1991, Spirtes, Glymour and Scheines 1993,
Pearl and Verma 1991, Cooper 1992). As a framework for representing the combination
of causal and statistical hypotheses, DAG models have shed light on a number of issues
in statistics ranging from Simpson's Paradox to experimental design (Spirtes, Glymour
and Scheines 1993). The relations of DAGs to statistical constraints, and the equivalence
and distinguishability properties of DAG models, are now well understood, and their
characterization and computation involves three properties connecting graphical structure
and probability distributions: (i) alocal directed Markov property, (ii) a global directed
Markov property, (iii) and factorizations of joint densities according to the structure of a
graph (Lauritizen, et al. 1990).

Recursive structural equation models are one kind of DAG model. However, non-
recursive structural equation models are not DAG models, and are instead naturally
represented by directed cyclic graphs in which afinite series of edges representing causal
influence leads from a vertex representing a variable back to that same vertex. Such
graphs have been used to model feedback systemsin electrical engineering (Mason 1953,
1956), and to represent economic processes (Haavelmo 1943, Goldberger 1973). In
contrast to the acyclic case, almost nothing general is known about how directed cyclic
graphs (DCGs) represent conditional independence constraints, or about their
equivalence or identifiability properties, or about characterizing classes of DCGs from
conditional independence relations or other statistical constraints. This paper addresses
the first of these problems, which is a prerequisite for the others. The issues turn on how
the relations among properties (i), (ii) and (iii) essentia to the acyclic case generalize~or
more typically fail to generalize-to directed cyclic graphs and associated families of
probability measures. It will be shown that when DCGs are interpreted by analogy with
DAGs as representing functional dependencies with independently distributed noises or
"error terms,” the equivalence of the fundamental global and local Markov conditions
characterise of DAGs no longer holds, even in linear systems, and in non-linear systems
both Markov properties may fail. For linear systems associated with DCGs with
independent errors or noises, a characterisation of conditional independence constraints is
obtained, and it is shown that the result generalizes in a natural way to systemsin which




the error variables or noises are statistically dependent. For non-linear systems with
independent errors a sufficient condition for conditional independence of variables in
associated probability measures is obtained.

A second natural use of cyclic graphs is to represent mixtures in which in some
subpopulations A causes B, and in other subpopulations B causes A. In section 5 it is
shown how to construct cyclic graphs which represent the conditional independence
relations in such mixtures.

The remainder of this paper is organized as follows: Section 2 defines relevant
mathematical ideas and gives some necessary technical results on DAGs and DCGs.
Section 3 obtains results for non-recursive linear structural equations models. Section 4
treats non-linear models of the same kind. Section 5 treats the use of cyclic graphs to
represent mixtures. Except where they are necessary to the discussion, proofs of new
results are given in the Appendix. Because the aim of this paper is to characterize
conditional independence properties of formal structures implicit in various applied
models, the discussions of motivation necessarily mix mathematical issues framed in
graphical and probabilistic terms with a different terminolo gy used in applied statistics. I
have attempted to keep as closely as possible to the terminology in influential sources.

2. Directed Graphs

Sets of variables and defined terms are in boldface, and individual variables are in italics.
A directed graph is an ordered pair of a finite set of vertices V, and a set of directed
edges E. A directed edge from A to B is an ordered pair of distinct vertices <A,B>in V in
which A is the tail of the edge and B is the head; the edge is out of A and into B, and A is
parent of B and B is a child of A. A sequence of edges <Ej,...,E,> in G is an undirected
path if and only if there exists a sequence of vertices <V,...,V,>such thatfor 1 <i<n
either <V;,Viy1> = E;j or <Vi41,V> = E;. A path U is acyclic if no vertex occurring on an
edge in the path occurs more than once. A sequence of edges <Eji,....E,> in G is a
directed path if and only if there exists a sequence of vertices <V7,...,V,> such that for 1
<i<n <V,Vi1> = E; If there is an acyclic directed path from A to B or B = A then A is
an ancestor of B, and B is a descendant of A. A directed graph is acyclic if and only if it
contains no directed cyclic paths.2

2An undirected path is often defined as a sequence of vertices rather than a sequence of edges. The two
definitions are essentially equivalent for acyclic directed graphs, because a pair of vertices can be identified




A directed acyclic graph (DAG) G with a set of vertices V can be given two distinct
interpretations. On the one hand, such graphs can be used to represent causal relations
between variables, where an edge from A toB in G mcanls that A is a direct cause of B
relative to V. A causal graph is a DAG given such an interpretation. On the other hand,
a DAG with a set of vertices V can also represent a set of probability measures over V.
Following the terminology of Lauritzen et. al. (1990) say that a probability measure over
a set of variables V satisfies the local directed Markov property for a DAG G with
vertices V if and only if for every W in V, W is independent of V\(Descendants(W,G) U
Parents(W,G)) given Parents(W,G), where Parents(W,G) is the set of parents of Win G,
and Descendants(W,G) is the set of descendants of Win G. A DAG G represents the set
of probability measures which satisfy the local directed Markov property for G. The use
of DAGs to simultaneously represent a set of causal hypotheses and a family of
probability measures extends back to the path diagrams introduced by Sewell Wright
(1934). Variants of DAG models were introduced in the 1980's in Wermuth(1980),
Wermuth and Lauritzen(1983), Kiiveri, Speed, and Carlin (1984), Kiiveri and
Speed(1982), and Pearl(1988). 3

Lauritzen et. al. also define a global directed Markov property that is equivalent to the
local directed Markov property for DAGs. Several preliminary notions are required. An
undirected graph U is an ordered pair of a finite set of vertices V, and a set of
undirected edges E. A sequence of undirected edges <Ej,....E,> in U is an undirected
path if and only if there exists a sequence of vertices <V1,...,V,> such that for 1 <i < n,
Vi andVj,jare adjacent in U. For a directed acyclic graph G, let V be a member of
An(X,G) if and only if V is an ancestor of some member of X in G. Let G(X) be the
subgraph of G that contains only vertices in X, with an edge from A to B in X if and only
if there is an edge from A to B in G. If G is a directed graph, then GM(G) is an undirected
graph with the same vertices as G, and a pair of vertices X and Y are adjacent in GM(G) if
and only if either X and Y are adjacent in G, or they have a common child in G; GM(G)
moralizes G. In an undirected graph G, X is separated from Y given Z if and only if

with a unique edge in the graph. However, a cyclic graph may contain more than one edge between a pair
of vertices. In that case it is no longer possible to identify a pair of vertices with a unique edge.

31t is often the case that some further restrictions are placed on the set of distributions represented by a
DAG. For example, one could also require the Minimality Condition, i.e. that for any distribution P
represented by G, P does not satisfy the local directed Markov Condition for any proper subgraph of G.
This condition and others are discussed in Pearl(1988) and Spirtes, Glymour, and Scheines(1993). We will
not consider such further restrictions here.




every undirected path between a member of X and a member of Y contains a member of
Z. GM(G(ANn(X u Y u Z,G))) is the undirected graph that moralizes the subgraph of G
that contains the vertices that are ancestorsof X uY uZ in G. If X, Y and Z are digjoint
sets of variables, X and Y are d-separated given Z in adirected graph Gjust when X and
Y are separated given Z in GM(G(An(X u Y u Z,G))). Figure 1 illustrates how to form
GMG(AN(X uY u Z,G))), where X = {X,Xo}> Y= {"Y2} and Z = {Zi,Z,}.

(Therelation | have called "d-separation” was introduced in Lauritzen et al. (1990) but
was not called "d-separation” there. Since Lauritzen et al. (1990) proved that for directed
acyclic graphs the graphical relation they defined is equivalent to therelation Pearl called
"d-separation” in Pearl(1986), and the proof is readily extended to the cyclic case, "d-
separation” will also be used to refer to the graphical relation introduced in Lauritzen et.

al. 1990)
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GM(G(An(X uY uzZ,Gy)
Figure 1

Now the definition: A probability measure over V satisfies the global directed Markov
property for DAG G if and only if for any three digoint sets of variables X, Y, and Z




included in V, if X is d-separated from Y given Z, then X is independent of Y given Z.
Lauritzen et. al. (1990) shows that the global and local directed Markov properties are
equivalent in DAGs, even when the probability measures represented have no density
functions. In section 2, it is shown that the local and global directed Markov properties
are not equivalent for cyclic directed graphs.

The following lemmas relate the global directed Markov property to factorizations of a
density function. Denote a density function over V by/(V), where for any subset X of V,
f(X) denotes the marginal of/(V). 1f/(V) is the density function for a probability measure
over a set of variables V, say that/(V) factors accbrding to directed graph G with
vertices V if and only if for every subset X of V, there exists non-negative functions gv
such that

I(An(X,G)) =  []&v(V.Parents(V,G))
VeAn(X,G)

The following result was proved in Lauritzen et. a. (1990).

Lemma 1: If V is a set of random variables with a probability measure P that has a
density function/(V), then/(V) factors according to DAG G if and only if P satisfies the
global directed Markov property for G.

As in the case of acyclic graphs, the existence of a factorization according to a cyclic
directed graph G does entail that a measure satisfies the global directed Markov property
for G. The proof given in Lauritzen et. al. (1990) for the acyclic case carries over
essentially unchanged for the cyclic case.

Lemma 2: If V is a set of random variables with a probability measure P that has a
density function/(V) and/[V) factors according to directed (cyclic or acyclic) graph G,
then P satisfies the global directed Markov property for G.

However, unlike the case of acyclic graphs, if a probability measure over a set of variable
V satisfies the global directed Markov property for cyclic graph G and has a density
function /(V), it does not follow that/(V) factors according to G, as the following
example, adapted from exercise 3.3 in Pearl(1988) shows. The probability measure in the
following table (in which the final column contains the probability of the corresponding




row of values for the random variables) satisfies the global directed Markov condition for
the directed graph in figure 2, but does not factor according to that graph.

Y/X\Z

Figure 2
X Y Z W P
1 1 1 1 1/3
1 2 2 2 1/3
2 2 1 3 1/3
all other tuples 0

The following weaker result relating factorization of densities and the global directed
Markov property does hold for both cyclic and acyclic directed graphs.

Lemma 3: If V is a set of random variables with a probability measure P that has a
positive density function f{V), and P satisfies the global directed Markov property for
directed (cyclic or acyclic) graph G, then f{V) factors according to G.

3. Non-recursive Linear Structural Equation Models

In a terminology that unavoidably mixes econometric and graphical ideas, the problem
considered in this section is to investigate the generalization of the Markov properties to
linear, non-recursive structural equation models, and, ultimately, to describe a fast
algorithm that will decide correlation and partial correlation constraints entailed by such
models. A secondary question concerns the equivalence of any linear structural equation
model with correlated errors to a model with extra, latent, variables and uncorrelated
errors. First I must relate the social scientific terminology to graphical representations,
and clarify the questions.

Linear structural equation models with jointly independent error terms (which, adapting
the terminology of Bollen (1989), will be referred to as linear SEMs) can be represented
as directed graph models. In a linear SEM the random variables are divided into two




digoint sets, the error terms and the non-error terms. Corresponding to each non-error
random variable V is a unique error term By. A linear SEM contains a set of linear
eguations in which each non-error random variable V is written as a linear function of
other non-error random variables and By. A linear SEM also specifies ajoint probability
measure over the error terms. So, for example, the following is a linear SEM, where a
and b arereal constants, Bx >By, and Bz arejointly independent "error terms™, and X, F, Z,
are random variables: ' '

X=axY+ey
Y=bXZ+égy
Z=¢gz
Bx> By, and Bz arejointly independent with standard normal distributions

The directed graph of a linear SEM with uncorrelated errors is written with the
convention that an edge does not appear if and only if the corresponding entry in the
coefficient matrix is zero; the graph does not contain the error terms. Figure 3 isthe DAG
that represents the SEM shown above. A linear SEM is recursive if and only if its
directed graph is acyclic.

Z — 7 . X

Figure 3

Initially only linear SEMs in which the error terms are jointly independent will be
considered, but in the linear case in an important sense nothing is lost by this restriction:
a linear SEM with dependent errors generates the same restrictions on the covariance
matrix as does some linear SEM with extra variables and independent errors. Further,
such an SEM with extra variables can aways be found with the same graphical structure
on the origi nal variables as obtain in the original graph.

A directed graph containing digoint sets of variables X, Y, and Z linearly entails that X
is independent of Y given Z if and only if X isindependent of Y given Z for all values of
the linear coefficients not fixed at zero, and all probability measures over the error
variables in which they arejointly independent and have positive variances. Let pxjx be
the partial correlation of X and Y given Z. A directed graph containing X, Y, and Z, where
X * Yand X and Y are not in Z, linearly entails that pxjjz = 0 if and only pxj.z = 0 f°'
all values of the linear coefficients not fixed at zero, and all probability measures over the




error variables in which they are uncorrelated, have positive variances, and in which
px,y.z is defined. It follows from Kiiveri and Speed (1982) that any probability measure
over non-error terms derived from a linear, recursive SEM with jointly independent error
terms and directed graph G, satisfies the local directed Markov property for G. One can
therefore apply d-separation to the DAG in a linear, recursive SEM to compute the
conditional independencies and zero partial correlations it linearly entails. The d-
separation relation provides a polynomial (in the number of vertices) time algorithm for
deciding whether a given vanishing partial correlation is linearly entailed by a DAG.

Linear non-recursive structural equation models (linear SEMs) are commonly used in the
econometrics literature to represent feedback processes that have reached equilibrium.4
Corresponding to a set of non-recursive linear equations is a cyclic graph, as the
following example from Whittaker(1990) illustrates.3

X1 = gy,
X2 = gy,
X3 =31 XX1 + g xXgq+ &y,
X4 =Par XXz + Pa3 X X3 + gy,
€x,, €X,> €x,» €x,> are jointly independent and normally distributed

X,——»X;,

Xy——® X4

Figure 4

4Cox and Wermuth(1993), Wermuth and Lauritzen(1990) and (indirectly) Frydenberg(1990) consider a
class of non-recursive linear models they call block recursive. The block recursive models overlap the class
of SEMs, but they are neither properly included in that class, nor properly include it. Frydenberg (1990) -
gresents necessary and sufficient conditions for the equivalence of two block recursive models.

Note that this use of cyclic directed graphs to represent feedback processes represents an extension of the
causal interpretation of directed graphs. The causal structure corresponding to figure 4 is described by an
infinite acyclic directed graph containing each variable indexed by time. The cyclic graph can be viewed as
a compact representation of such a causal graph. I am indebted to C. Glymour for pointing out that the local
Markov condition fails in Whittaker's model. Indeed, there is no acyclic graph (even with additional
variables) that linearly entails all and only conditional independence relations linearly entailed by figure 4,
although Thomas Richardson has pointed out that the directed cyclic graph of figure 4 is equivalent to one
in which in the edges from X to X3 and X2 to X4 are replaced, respectively, by edges from X1 to X4 and
from X7 to X3.




Theorem 1. In adirected (cyclic or acyclic) graph G containing disjoint sets of variables
X, Y and Z, if X is d-separated from Y given Z then G linearly entails that X is
independent of Y given Z.

Theorem 2: In adirected (cyclic or acyclic) graph G containing disjoint sets of variables
X,Y and Z, if X isnot d-separated from Y given Z then G does not linearly entail that X
is independent of Y given Z.

Applying Theorems 1 and 2 to the directed graph in figure 4, two conditional
independence relations are entailed: X\ is independent of X% and X\ is independent of Xi
given X3 and X4. In DAGs the global directed Markov property entails the local directed
Markov property, because a variable V is d-separated from its non-parental non-
descendants given its parents. Thisis not always the case in cyclic graphs. For example,
in figure 4, X4 is not d-separated from its non-parental non-descendant X\ given its
parents X2 and X3, so the local directed Markov property does not hold.

Theorem 3: In a(cyclic or acyclic) directed graph G containing X, Y and Z, where X* Y
and Z does not contain X or 7, X is d-separated from Y given Z if and only if G linearly
entails that px,r.z=0.

As in the acyclic case, d-separation provides a polynomial time procedure for deciding
whether cyclic graphs entail a conditional independence or vanishing partial correlation.

Theorem 3 can also be used to calculate the zero partial correlations entailed for all
values of the linear coefficient not fixed at zero, and al probability measures over the
error variables where the variances are positive and the partial correlations exist, even if
the error terms are correlated. If ex and ey are not independent in linear SEM L, thereis a
linear SEM V with independent error terms such that the marginal probability measure of
L over the variablesin L has the same covariance matrix as L. Form the graph G” of L
from the graph G of L in the following way. Add alatent variable T to G, and add edges
from T\oX and Y. InL\ modify the equation for X by making it a linear functions of the
parents of X (including T) in G\ and replace ex by e”x\ modify the equation for Yin an
analogous way. There always exist linear coefficients and probability measures over T
and the new error terms such that the marginal covariance matrix for V is equal to the
covariance matrix of L, and €x and €y are independent. The process can be repeated for
each pair of variables with correlated errors in L. Hence the zero partial correlations




entailed by L can be derived by applying Theorem 3 to the graph of L'. Figure 5
illustrates this process. The set of variables V in the graph on the left is {X1,X2,X3,X4}.
The graph on the left correlates the errors between X; and X7 (indicated by the undirected
edge between them.) The graph on the right has no correlated errors, but does have a
latent variable T that is a parent of X1 and X. The two graphs linearly entail the same
zero partial correlations involving only variables in V (in this case they both entail no
non-trivial zero partial correlations).

X, X 4 X 5 X4
Graph with Correlated Error Graph without Correlated Error

and Same Partial Correlations Over V

X3=a XxX9+b XX4+ & X3=a xXo+b XXg+ &3

Xga=c XX1+d xXX3+¢& X4=c xX1+d xX3+¢&

X1=¢€ Xi=e X T+¢€y

Xo=86 Xo=fXT+¢€9

&1 and & correlated €'1 and €2 uncorrelated
Figure §

3. Non-linear Structural Equation Models

In a SEM, the equations relating a given variable to other variables and a unique error
term need not be linear. In a SEM the random variables are divided into two disjoint sets,
the error terms and the non-error terms. Corresponding to each non-error random variable
V is a unique error term €y. It will be assumed that the error terms are jointly
independent. A SEM contains a set of equations in which each non-error random variable
V is written as a measureable function of other non-error random variables and €y. The
convention is that in the directed graph of a SEM there is an edge from A to B if and only
if A is an argument in the function for B. It will be assumed that density functions exist
for both the probability measure over the error terms and the probability measure over the
non-error terms, that each non-error term V can also be written as a function of the error
terms of its ancestors in G, that each &y is a function of V and its parents in G (which will
be the case if the errors are additive or multiplicative), and that the Jacobean of the
transformation between the error terms and the non-error terms is well-defined. Call such

10




a set of equations and its associated graph a pseudo-indeterministic SEM (because the
equations are actually deterministic if the unmeasured error terms are included, but
appear indeterministic when the error terms are not measured.) A directed graph G
pseudo-indeterministically entails that X is independent of Y given Z if and only if in
every pseudo-indeterministic SEM with graph G and jointly independent errors, X is
independent of Y given Z.

This section establishes that d-separation again provides a fast algorithm for deciding
whether a DAG pseudo-indeterministically entails a conditional independence relation,
but in a DCG d-separation may not pseudo-indeterministically entails a conditional
independence relation. Instead, a different condition, yielding a polynomial time
algorithm, is found to suffice for a cyclic directed graph to pseudo-indeterministically
entail a conditional independence relation.

By Theorem 2, d-separation is a necessary condition for a conditional independence
relation to be pseudo-indeterministically entailed by a directed graph. The following
remarks show d-separation is also a sufficient condition for pseudo-indeterministic
entailment in acyclic directed graphs, but not for cyclic directed graphs.

Theorem 4: If G is a DAG containing disjoint sets of variables X, Y and Z, X is d-
separated from Y given Z if and only if G pseudo-indeterministically entails that X is
independent of Y given Z.

It is instructive to see why the proof that a DAG G pseudo-indeterministically entails that
X is d-separated from Y given Z if and only L entails that X is independent of Y given Z

- breaks down in the case of cyclic directed graphs. In both cyclic and acyclic directed
graphs it follows that

f(An(X,G) =  []f(gx(X,Parents(X,G))x|J|
XeAn(X,G)

where J is the Jacobian of the transformation from the non-error terms to the error terms,
and each gy is a non-negative function. However, in a DAG, the absolute value of the
Jacobian of the transformation is a single term consisting of the product of the terms
along the diagonal of the transformation matrix:

11




C?SV _

" [Imv (V. Parents(V,G))

VeAn(X.G)

\J\ =

| ol
n = n
VeAn(X,G) VeAn(X,G)

(This is because for an acyclic graph the transformation matrix can be arranged so that it
is lower triangular.) Each term \dsy | dWis some non-negative function my of V and its
parents, because ey is afunction of V and its parents. Hence by lemma 1, if X and Y are
d-separated given Z, then X and Y are independent given Z.

However, if G is s cyclic directed graph, the Jacobian of the transformation is not in
general a single term, but is the sum of several terms. The absolute value of the Jacobian
can be expressed as

W= [Imy(V.Parents(v,6)
i VEAN(X,G)

There is no reason to expect, however, that in the probability measure with density
formed from the sum, X is independent of Y given Z. The global directed Markov
property thus fails.

The following example gives a concrete illustration that there is a cyclic graph G in
which X is d-separated from Y given {ZW}> but G does not pseudo-indeterminstically
entail that X is independent of Y given {Z,W}.

X —pzﬂ[
Y -—_.Z
Figure6: Graph G

X=¢g
Y=gr
Z= \WXY+gz
W=ZXX+ey
ex, £y“Z» W with independent standard normal distributions

12




The trandformation from ex. By, Bz, By/ to X, F, Z, iy is 1-1 except where ex x By =1
because

X=gx

Y=¢
- 7= EE XEy +Ez
1—(€X)<8y)
_EzXExtEy
T 1-(ey X&)

The Jacobean of the transformation from the €sis 1/(1 - x X y). Hence, transgforming the
joint normal dendty of the € syields

f(x,y,zw) =
'#(exp(_;(x*z Y+ (Z'nyr‘?-" (w-2xx) )2 DX

1
l-(xxy)

X is not independent of Y given {Z,W} in a probability measure with this density because
it is not possible to factor the density into a product of terms where none of the terms
contains both X and Y.

However, it is possible to modify the graphical representation of the functional relations
in such a way that d-separation applied to the new graph does entail conditional
independence. In a directed graph G, acycle is a cyclic directed path, in which each
vertex occurs on exactly two edges in the path. A set of cycles C is a cyclegroup if and
only if it is a smallest set of cycles such that for each cycle C\ in C, C contains the
trangtive closure of all of the cycles intersecting Ci, i.e. it contains all of the cycles that
intersect Ci, all of the cycles that intersect cycles that intersect Ci, etc. For example, in
figure 7, there are two distinct cyclegroups: the first is {Ci,C2,C3}, and the second is
{C4, Cs).

13




Figure?7
Form the collapsed graph G' from G by the following operations on each cyclegroup:

1. remove all of the edges between vertices in cycles in the cyclegroup;

2. arbitrarily number the vertices in the cyclegroup;

3. add an edge from each lower number vertex to each higher number vertex;

4. for each parent A of a member of the cyclegroup that is not itself in the cyclegroup,
add an edge from A to each member of the cyclegroup.

(The procedure does not define a unique collapsed graph due to the arbitrariness of the
numbering, but since all of the collapsed graphs share the same d-separation relations, it
does not matter.) Note that even if G is acyclic graph, the collapsed graph is acyclic. The
collapsed graph can be generated in polynomial time.

” Theorem 5: If G is a directed graph (cyclic or acyclic), collapsed graph G' contains
disioint sets of variables X, Y and Z, and X is d-separated from Y given Z in G' then G

pseudo-indeterministically entails that X is independent of Y given Z.

A collapsed graph for the graph in figure 7 is shown in figure 8a, and a collapsed graph
for the graph in figure 4 is shown in figure 8b.

| do not know whether the follow conjecture holds:

14




Conjecture: Let G (cyclic or acyclic) have collapsed graph G' containing disjoint sets of
variables X, Y and Z. If G pseudo-indeterministically entails that X is independent of Y
given Z, then in G', X is d-separated from Y given Z.

(@ (b)
Figure 8

4. Mixtures

Sometimes the most reasonable hypothesis about real populations is that distinct causal
processes are at work in distinct subpopulations. Suppose that for each subpopulation i,
the causal processes at work in that population are represented by a directed graph Gj
satisfying the global directed Markov property for the probability measure corresponding
(perhaps ideally) to the subpopulation. Is it still possible to construct a graph Gy, that
represents both the combination of causal relations in the entire population and for which

the mixed probability measure satisfies the global Markov property? In this section an
affirmative answer is found.

Suppose that each G; contains the same set of variables V and represents a probability
measure that factors according to G, i.e.

fi(An(X,G)) = []sg x(X,Parents(X,G)))
XeAn(X,G;)

where each g;,x is a non-negative function. By lemmas 1 through 3, any probability
measure with a density function represented by an acyclic graph has this property, and

15




any probability measure with a positive density function represented by a cyclic graph
has this property. For a given factorization of this form and directed graph Gj, each
vertex V in G is associated with the parameter g;y that represents a term in the
factorization of the density function for the ith population. Form a directed graph Gagix
that represents the mixture probability measure in the following way:

1. Let Vmix = V U (T}, where T is.a variable not in V, which takes on value i in the ith
subpopulation.

2. For each pair of variables A and B in V, there is an edge from A to B in G, if and
only if there is an edge from A to B in G; for some i.

3. If there exists a Vin V, and i and j such that g; v # gj,v then add an edge from T to V.

Theorem 6: If Ppix(V) is a mixture of probability measures, each of which factors
according to directed graph G; over V, Py;(V) satisfies the global directed Markov
property for Gix.

Figure 9 shows Gy for a population consisting of two subpopulations with graphs G1
and G, respectively, where the joint distribution of X; and X7 are the same in each
subpopulation, and the conditional distribution of X5 on X4 is the same in each
subpopulation.

l T A
l T
Xp—» X4 Xg—» X4 X2—>X4/
Xs Xs Xs
G1 G2 GMix
Figure 9

Note that the independence relations entailed by Gy are not the same as the intersection
of the conditional independence relations in the two subpopulations, nor is there any
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directed acyclic graph which entails the same conditional independencerelations as Gafix-
In this case, X\ and X2 are independent in the mixture because they are independent in
both subpopulations, and the joint distribution of X\ and X2 is the same in both
subpopulations. X\ and X2 are independent conditional on X3 and X4 in both
subpopulations, but not in the mixture. (However, X\ and X2 are independent conditional
on X3, X4 and T in the mixture.) In contast, X\ is independent of X5 given X4 in both
subpopulations and in the mixture, eyenthough thejoint distribution of X\> X$ and X4 is
not the same in both subpopulations. There are also conditional independencereationsin
some subpopulations, but not in the mixture, which are not entailed by the graph. For
example X\ is independent of X2 given X3 in the first subpopulation, but not in the
mixture, or in the second subpopulation.

5. Conclusion

Theseresultsraise a number of interesting questions whose answers may be of practical
importance. Under what conditions, for example, are there results about conditional
independence compar able to the equivalence of vanishing partial correlations in models
with dependent errors and latent variable models with independent errors? There are
polynomial algorithms (Verma and Pearl 1990, Frydenberg 1990) for determining when
two arbitrary directed acyclic graphs entail the same set of conditional independence
relations. Is there a polynomial algorithm for determining when two arbitrary directed
graphs (cyclic or acyclic) linearly entail the same set of conditional independence
relations? There are polynomial algorithms (Spirtes and Verma 1992) for determining
when two arbitrary directed acyclic graphs entail the same set of conditional
independence relations over a common subset of variable O.. Is there a polynomial
algorithm for determining when two arbitrary directed graphs (cyclic or acyclic) linearly
entail the same set of conditional independence relations over a common subset of
variables O? Assuming Markov properties hold and completely characterize the
conditional independence facts in the probability measures considered, there are correct
polynomial algorithms for inferring features of (sparse) directed acyclic graphs from a
probability measure when there are no latent common causes (see Spirtes and Glymour
1991, Cooper and Herskovitz 1992). Are there comparable correct, polynomial
algorithms for inferring features of directed graphs (cyclic or acyclic) from a probability
measure when there are no latent common causes? There are similarly correct, but not
polynomial, algorithms for inferring features of directed acyclic graphs from a
probability measure even when there may be latent common causes (see Spirtes, 1992
and Spirtes, Glymour and Scheines 1993). Are there comparable algorithmsfor inferring
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features of directed graphs (cyclic or acyclic) from a probability measure even when
there may be latent common causes?

Appendix

Lemma 3: If V is a set of random variables with a probability ‘measure P that has a
positive density function f{V), and P satisfies the global directed Markov property for
directed (cyclic or acyclic) graph G, then f{V) factors according to G.

Proof. Assume that probability measure over V satisfies the global directed Markov
property for directed (cyclic or acyclic) graph G. I will now show that for any disjoint
sets of variables R, S, and T included in An(X U Y UZ,G), if R and S are separated
given T in GMG(AnX U Y U Z,G))), then R and S are independent given T. If R, S,
and T are included in An(X U Y U Z,G), then An(R U S U T,G) is included in An(X U
Y U Z,G). Any pair of vertices A and B adjacent in GM(G(An(R U S U T,(5))) is also
adjacent in GM(G(An(X U Y U Z,G))) because G(An(R U S U T,G)) is a subgraph of
G(AnX U Y U Z,G)). Hence GM(G(An(R U S U T,G))) is a subgraph of GM(G(An(X
U Y U Z,G))). It follows that if R and S are separated given T in GM(G(An(X U'Y
U Z,G))) they are also separated in GM(G(An(R U S U T,G))). But by the global
directed Markov property, if R and S are separated given T in GM(G(An(R U S U T,G)))
then R and S are independent given T. It follows from the Hammersly-Clifford Theorem
(see Lauritzen et. al. 1990) that the density function fAn(X U Y U Z,G)) can be written
as a product of non-negative functions of cliques® in GM(G(An(X U Y U Z,G))). Since
each set of parents of a vertex in An(X U Y UZ,G) is a clique in GMG(AnX UY
U Z,6))),

FANXUYUZG)) = [ Igv(V.Parents(V,G))
VeAn(XUYUZ,G)

where each gy is a positive function, i.e., the density function factors according to G. .-
Theorem 1: In a directed (cyclic or acyclic) graph G containing disjoint sets of variables

X,Y and Z, if X is d-separated from Y given Z then G linearly entails that X is
independent of Y given Z.

SHere "clique” refers to any compeletely connected subgraph. Some authors use "clique” to refer only to
maximal completely connected sugraphs.
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Proof. Let Err(X) be the set of error terms corresponding to a set of non-error variables
X. In order to distinguish the density function for the set V of non-error variables from
the density function for the error variables I will use fy to represent the density function
(including marginal densities) for the former and fgrr to represent the density function of
the latter. If V is the set of variables in G, then by hypothesis,

fErErr(V) = []fEee(®
e€Err(V)

It is possible to integrate out the error terms not in Err(An(X,G)) and obtain

fErErr(AnX,G)) = [[fex(®
e€Err(An(X,G))

Because for each variable X in V, X is a linear function of its parents in G plus a unique
error term &£y, it follows that €y is a linear function gx of X and the parents of X in G.
Hence Err(An(X,G)) is a function of An(X,G). Following Haavelmo(1943) it is possible
to derive the density function for the set of variables An(X,G) by replacing each &x in
JErr(&x) by gx(X,Parents(X)) and multiplying by the absolute value of the Jacobean:

fv(AnX,G)) = []fEr(gx (X, Parents(X,G))) x|J|
XeAn(X,G)

where J is the Jacobian of the transformation. Because the transformation is linear, the
Jacobian is a constant. All of the terms in the multiplication are non-negative because
they are either a density function or a positive constant. It follows from lemma 1 that if X
and Y are d-separated given Z then X and Y are independent given Z. ..

Lemma 4: In a directed graph G with vertices V, if X; Y, and Z are disjoint subsets of V,
and X is d-connected to Y given Z in G, then X is d-connected to Y given Z in an
directed acyclic subgraph of G.

Proof. I will use the sense of d-connection defined in Pearl(1988) which Lauritzen et. al.
(1990) proved equivalent to their sense of d-connection for acyclic graphs. The proof of
the equivalence given by Lauritzen et. al can easily be extended to cyclic graphs. Vertex
X is a collider on an acyclic undirected path U in directed graph G if and only if there are
two edges on U that are directed into X. According to Pearl's definition, for three disjoint
sets X, Y, and Z, X and Y are d-separated given Z in G if and only if there is no acyclic
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undirected path U from a member of X to a member of Y such that every non-collider on
Uisnotin Z, and every collider on U has adescendant in Z. For three digoint sets X, Y,
and Z, X and Y are d-connected given Z in Gif and only if X and Y are not d-separ ated
given Z.

Suppose that U is an undirected path that d-connects X and Y given Z, and C is a collider
on U. Let length(Cy2) be 0 if Cisamember-of Z, or the length of a shortest directed path
from C to amember of Z if Cisnotin Z. Let size(U) equal the number of colliders on U
plus the sum over all colliders C on U of length(C,2). U is aminimal path that d-
connects X and Y given Z, if there is no other path U' that d-connects X and 7 given Z
such that size(U*) < size(U). If there is apath that d-connects X and Y given Z thereis at
least one minimal path that d-connects X and Y given Z.

Suppose X is d-connected to Y given Z, Then for some X in X and YinY, X is d-
connected to 7 given Z by some minimal path U in G. First | will show that no shortest
acyclic directed path £5/ from a collider C/ on t/ to a member of Z intersects £/ except at
Cl/. Supposethisis false. | will show that it follows that thereis a path U* that d-connects
X and Y given Z such that size(JJ*) < size(U), contrary to the assumption that U is
minimal. Seefigure 10.

¢ ¥\

XpWy —ppC; =% MY XWWy —pC; a—W 7

' '

Z VA

Figure 10

Form the path If in the following way. If D,"intersects U at avertex other than C/ then let
Wx be the vertex on D, and U that is closest to X on £/, and Wy be the vertex on £5/ and £/
that is closest to Y on [/. Suppose without |oss of generality that Wx is after Wy on £5/. Let
£/' be the concatenation of U(X,W), D& WWWKX), and U(Wy,Y) (where /(X" Wx) denotes
the subpath of U between X and Wx-) It is now easy to show that IT d-connectsX and Y
given Z, and size(U') < size(U) because U' contains no more colliders than U and a
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shortest directed path from Wx to a member of Z is shorter than £5/. Hence U is not
minimal, contrary to the assumption. If D[ intersects U at only one vertex other than C;
the proof is similar.

Next, | will show that if U is minimal, then it does not contain a pair of colliders C and D
such that a shortest directed path from C to a member of Z intersects a shortest path from
D to amember of Z. Suppose, thisisfalse. See figure 11.

X —PpC 4—M —§ppD 44—y X —PC «—M ——»D —Y

NN
l l

Figure 11

Let D\ be a shortest directed acyclic path from C to a member of Z that intersects 22> a
shortest directed acyclic path from D to a member of Z. Let the vertex on D\ closest to C
that is also on Di be R Let t/* be the concatenation of U(X,C), D\{CJi), £52(C>#), and
U{YJ)). It is now easy to show thatf/* d-connects X and 7 given Z and size{U%) < size(V)
because U* contains fewer colliders than U. Hence U is not minimal, contrary to the
assumption. If R=C or R =D, the proof is similar.

For each collider C on a minimal path U that d-connects X and Y given Z, a shortest
directed path from C to a member of Z does not intersect £/ except at C, and does not
intersect a shortest directed path from any other collider D to a member of Z. It follows
that the subgraph consisting of U and a shortest directed acyclic path from each collider
on U to amember of Z is acyclic. .\
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Theorem 2: In adirected (cyclic or acyclic) graph G containing disjoint sets of variables
X, Y and Z, if X isnot d-separated from Y given Z then G does not linearly entail that X
isindependent of Y given Z.

Proof. Suppose then that X is not d-separated from Y given Z. By lemmad, if X is not d-
separated from Y given Z in acyclic graph G, then there is some acyclic subgraph G' of
G in which X is not d-separated from Y given Z. Geiger and Pearl (1988) have shown
that if X is not d-separated from Y given Z in a DAG, then there is some probability
measure represented by the DAG in which X is not independent of Y given Z, and it has
been shown (Spirtes, Glymour and Schemes 1993) that there is in particular a linear
normal distribution P in which X is not independent of Y given Z. If /*satisfies the global
directed Markov property for G it also satisfies it for G because every d-connecting path
in G' is a d-connecting path in G. Hence there is some linear normal distribution
represented by G in which X isnot independent of Y given Z. /.

Theorem 3: In a(cyclic or acyclic) directed graph G containing X> Yand Z, whereX* Y
and Z does not contain X or Yy X is d-separated from Y given Z if and only if G linearly
entails that px,y.z = 0.

Proof. (This proof for cyclic or acyclic graphs is based on the proof for acyclic graphsin
Verma and Pearl 1990.) Suppose that X and Y are d-separated given Z inG. LetL be a
linear RSEM with the same linear coefficients and covariance marix among the error
variables as L, but with normally distributed error variables. In L\ the error terms are
jointly independent, and hence X is independent of Y given Z. It follows that pxjx = 0 in
L\ But the correlation matrix depends only upon the covariance matrix among the error
variables and the linear coefficients. Hence L and L have the same correlation matrix
over the non-error variables, and the same partial correlations. It follows that pxjz = 0
inL.

Suppose that X and Y are d-connected given Z in G. Then by lemma 4, X and Y are d-
connected given Z in some acyclic subgraph G* of G. In Spirtes, Glymour and Scheines
(1993) it is shown that if X and Y are d-connected given Z in some DAG G\ then thereis
alinear RSEM with uncorrelated errors and a probability measure represented by G in
which pxj.Z * 0. Since G' is a subgraph of G, the probability measure is also represented
by G. /.

Note that for an SEM with graph G, if V*X, then de, | <?Xis non-zero only if thereis an
edge from Xto Vin G (because By is afunction only of Vand Vs parentsin G.) Associate
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with each non-zero partial derivative dey /dX the edge from X to V in G. A product of

partial derivatives form a loop in G if and only if the corresponding edges form a cycle in
G. Two loops intersect if and only if their corresponding cycles intersect.

Let JErr(v)->Vv be the Jacobean of the transformation from Err(V) to V, and Jy_>Err(v)
be the Jacobean of the transformation from V to Err(V). We will say that a variable W
occurs in a partial derivative in the Jacobean Jy_>grr(v) if W occurs in the denominator,
or &y occurs in the numerator. For example, we say that W and X occur in dey / dX A
product of partial derivatives S occurring in a term T in J grr(v)->V is minimally
sufficient in T if for each variable occurring in S, all of its occurrences in T are in S, and
no subset of S has this property. For example, in

3£W % aSX % 8£Y % aEU a€V
X JdY W JdU oV

the three minimally sufficient products are

dey _ dex Xaey’ 8£U’ and dey
X JdY W JU v

JErr(V)—>V| is equal to |1/ JV—>Err(V)|v but it turns out to simplify the proofs if at

intermediate stages lJV—>Err(V)| is used instead of |Jgrr(v)->v|- J V->Emr(V) is the
determinant of a matrix in which the element in the ih row and jt column is dey, / IV;.

X is an ancestral set for a directed graph G with vertices V if and only if X = An(Y,G)
for some Y included in V.

Theorem 4: If G is a DAG containing disjoint sets of variables X,Y and Z, X is d-

separated from Y given Z if and only if G pseudo-indeterministically entails that X is
independent of Y given Z.

Proof. The first part of the proof is essentially the same as that of Theorems 1 and 2, and
shows that

f(AnX,G)) = []f(gx(X,Parents(X,G))x|J]
XeAn(X,G)
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In an acyclic graph, the Jacobian of the transformation is a single term consisting of the
product of the terms along the diagonal of the transformation matrix:

ey

Jl=
|71 >

1 24- 1]

VeAn(X,G) VeAn(X,G)

= []my(V.Parents(V,G))
VeAn(X,G)

(This is because for an acyclic graph the transformation matrix can be arranged so that it
is lower triangular.) Each term Ic?ev / aVlis some non-negative function my of V and its
parents, because €y is a function of V and its parents. Hence by lemma 1, if X and Y are
d-separated given Z, then X and Y are independent given Z.

Suppose that X and Y are not d-separated given Z. Then by Theorem 2, there is a linear
SEM in which X and Y are not independent given Z. Since a linear SEM is a special case
of an SEM, there is an SEM in which X and Y are not independent given Z. ..

Lemma 5: In an SEM with directed graph G with vertices V, if X is an ancestral set for
G, then each minimally sufficient product of terms occurring in JX_>Err(x) that is non-
zero is either a loop in G(X), or de, /dV for Vin X.

Proof. Each term in Jx_>Err(X) is a product of partial derivatives in the partial derivative
matrix, one from each row, and one from each column, times a variable that is either
equal to 1 or -1. Hence each variable in X appears exactly once in the numerator of some

partial derivative in the term, and exactly once in the denominator of some partial
derivative in the term. If de,, /dV occurs in term 7, it is minimally sufficient.

Suppose then that some minimally sufficient product of partial derivatives S occurring in
term T is not equal to de,/dV for any V in X. Then S does not contain de, /dV for V in

X, because otherwise it would not be minimally sufficient. Hence each partial derivative
in S is of the form Jdey /dY where V #Y. Such a term is non-zero only if there is an edge
from Y to V in G. Because V and Y are both in ancestral set X, if there is an edge from Y
to V in G, then there is an edge from Y to V in G(X). Since all of the occurrences of the
variables in § are in S, each variable occurs once in the numerator and once in the
denominator of a partial derivative in S; so in G(X) there is a path in which all of the
variables in S occur once at the head of an edge and once at the tail. It follows that there
is a cycle in G(X) that corresponds to the product of partial derivatives in S. ..
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Let the entry in the 1" row and the/" column of matrix A be denoted Ay. Let

Y41 if (abc.n) is an even permutation of (1,23..TV)
€ac.n =|-1 if (abc.n) is an odd permutation of (1,2,3...A0
0 otherwise

Then if A is an N X N matrix,
det(A) = £abc..n"\a*2b-"Nn

where each of the variables in the subscript of e range from 1 to N, and are summed over.
If (abc.n) is some permutation of (1, 2, 3, ..., N), then it follows that Sabc.jn = (-1)»
whre P is the number of transpositions of subscripts neeed to produce the order (1, 2, 3,
..., TV). See Byron and Fuller (1969).

Corresponding to each edge in G is an entry in the matrix of partial derivatives relating
the error terms to the non-error terms. A cycleset in adirected graph G is a set of non-
intersecting cycles. Hence, corresponding to a cycleset C in agraph G is a set of entries
in the matrix of partial derivatives, one for each edge in the cycleset. For example, if a
cycleset C contains a cycle C\ = «Xi,X4>,<X4,Xi», and C2 = «X2Xs>,<XsXI»
then the corresponding matrix entries are A14, A41, A25, and A52. Order these matrix
entries by row number. In this example, rearranging the matrix entries in order of rows
yields <Ai4, A25, A4l, A52X If the corresponding sequence of column numbers for
cycleset C is {abc}, let P(C) be the number of transpositions of subscipts needed to
rearrange the column numbers in increasing order. In this example, the corresponding
sequence of column numbers is <4, 5, 1, 2>. To rearrange these numbers into the order
<1, 2, 4, 5> requires two transpositions. Hence P(C) = 2.

For convenience, if an edge <W,Y> occursin acycle C, write <WJ> e C, even though
“strictly speaking, edges are not members of cycles. Let Cydeset(G) be the set of all
cyclesetsin G. Let Vertices(C) be the set of vertices occurring in a set of cycles C.

Lemma 6: In an SEM with directed graph G with vertices V, if X is an ancestral setin G
then




17)
Ix->Err(X) = )Y _IP(C)X{ I1 —3%][ 11 S?;VV]
V eX\

CeCycleset(G(X)) <W)Y>eC Vertices(C)

Proof. For each C that is a set of cycles in G(X) that do not intersect, let

g(C) = —1P©) H éfl’. H ég_V.

<W)Y>eC ow V eX\ Vertices(C) v

I will show that for each cycleset C in G(X) that g(C) is a term in J: X->Err(X), €very non-

zero term in Jy>Erm (V) is equal to g(C) for some cycleset C in G(X), and if Cy and C;,
are distinct cyclesets then g(Cy) # g(Ca2).

For each C, a variable occurs once in the denominator of a partial derivative in g(C), and
once in the numerator of partial derivative in g(C). Hence one partial derivative from
each row and each column of the transformation matrix occurs in g(C). But every product
of partial derivatives which consists of one partial derivative from each column and each
row of the transformation matrix is a term in JX->Err(x) (because JX.>Err(X) is the
determinant of the transformation matrix). Hence g(C) is a term in JX_>Err(X)-

Let Cp be a set of cycles such that no pair of cycles in Cj intersect, and similarly for C,.
Suppose that Cq # Cj; then g(Cyp) # g(C2) unless there is some way to rearrange the
edges in Cj into the cycles in C,. But because no pair of cycles in Cp intersect, each
vertex that appears in Cj occurs in exactly two edges, once as the head, and once as the
tail. Hence the edges in Cj cannot be rearranged into the cycles in Cz, and g(Cy) # g(C2).

By lemma 5, each minimally sufficient product of terms occurring in T of JX>Err(X) 1S
either a loop or de, /dV for V in X. By definition, the variables in distinct minimally
sufficient product of terms do not overlap. Hence T consists of a product of non-
intersecting minimally sufficient products of terms. Hence, for every non-zero term T in
JX->Err(X) there is a cycleset C such that T = g(C).

For a given term in the sum, P is equal to the number of transpositions needed to arrange
the column numbers in increasing order. The column numbers corresponding to vertices
not in Vertices(C) do not need any rearrangement. Hence P for a given term is equal to
PC). .. o
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Let Cyclegroup(G) be the set of all cyclegroups in directed graph G. If C is a cyclegroup
in G, let Cycleset(C) be the set of all cyclesets included in C. Let Cycles(G) be the set of
all vertices that occur on cycles in G.

Lemma 7: In an SEM with directed graph G, if X is an ancestral set for G, then

JX—>Ermr(X) =

aEV
II S/
V ¢ Cycles(G(X))

I s —1”<”>x[ n = n ‘;—W]

C e Cyclegroup(G(X))\ D € Cycleset(C) V € Vertices(C\D) <W.,Y>eD

Proof. By lemma 6,

: de oe
IX->Err(X) = 2 ‘IP(C)X{ 11 a_WY)( I1 8_‘;’]

CeCycleset(G(X)) <W.,Y>eC V eX\ Vertices(C)

If V is not in a cycle in G(X) then it is not in any cycleset. Hence, by lemma 5, every
occurrence of V in each non-zero term in Jx_>grr(X) is of the form de, /dV . Hence it is

possible to factor
H aEV
V ¢ Cycles(G(X)) oV
from each non-zero term in the previous equation. This leads to

JX—>Err(X) =

aSV
I1 — Ix
V ¢Cycles(G(X)) v

Y O T % I oty
CeCycleset(G(X)) <W,Y>eC oW V eCycles(G(X))\ Vertices(C) v
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The set of cyclegroups in G partitions the set of cycles in G. Hence each cycleset in G
can be partitioned into a set of cyclesets, where each cycleset contains only cycles from
the same cyclegroup. In addition, suppose that C is a set of cyclesets, where each cycleset
in C contains cycles from only one cyclegroup, and each pair of cyclesets in C contains

cycles from different cyclegroups. Then the union of any two cyclesets in C is also a
cycleset. Hence,

sl n oz

CeCycl eset(G(X)) wisec Y AV GCycle(GH)) Verticesc) ¥

n [ 3 -1P<D>x[ n <l q asy‘i

v W
CeCyd egroup(G(X))

DeCydeset(C) [V eVertices(C\D) <Wy>eD " 3

The following example illustrates an application of lemma 7. Consider the directed graph
shown in figure 7. There are two cyclegroups consisting of { Ci, C2, C3} and {C4, C5}.
The set of al cyclesets included in the first cyclegroup is {0, {Ci}, {C2L {C3}, {Ci,
C3}}, and the set of all cyclesets included in the second cyclegroup is { 0, {C4}, {C5}}.
The matrix of the partial derivativesis shown below.
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J
5 0 o o 0 0 o0 0
aX;
dJE X, de X, Je X, de X, 0 0 0 0 0
o, 0K,
X, L% 0O 0 o0 0
0 X, dXs 0 0
de\(‘1 38x4
. 0 0 0 0 0
0 dX, dXs ;
e e
0o 0 L X O 0 0
o dXs  dxg
l_ 0 0 asxs de,?‘.u. de?fu. 0
0 99X, 0 dXg dXj+ dXg
O€ g
, 0 0 %*x %N 4
0 0 O d_eA(il o) asxs
0 0 9Xg 0Xg
38 X, 3&:X
0 2 0 0 2
0 0 0 0 3)(6 dXa

Applying lemma 7, the Jacobean can be factored in the following way:

dex, Oy,
—_— X —X
X X
dev <?v  dev dey dey Jdey, Jdey, Jeyx
n v .
L x s - " X s'f;"'Ally. X 2 x 4 % S 4

Ry N3 Ay X X3 X, X4 X

o€ de o¢ Je de de, de de
NI DX T Ka (TH TKs P XX +

X, X, X5 Xs Xs X, X, X
de Jde Je Je
- ZX--_)_(ZX )_fg-x_.._-{‘l_x _Xs_]x
— X7y, T x,
X3 X2 dey.  de.  de dey e O
e €xn e- - £ v £ o £
10— x— "l Ko Tl T Y HLy AL
Xﬁ X‘? Xs 'X'l Xﬁ XS

5 "6 %

Lemma 8: For an SEM with directed graph G with vertices V, if X is an ancestral set in
G then
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N(X) =

[ Hgy(V,Parents(V,G(X))Jx[ HgC(C,Parents(C,G(X))]
V ¢ Cycles(G(X)) "CeCydlegroup(G(X))

where each gy and gQ is a non-negative function.
Proof. The transformed density function of Err(X) is equal to

Err(X)_—_>x

1) ( [ I fem (A (X, Parents(X ,G(X))))

XeX
where ex = hx(X,Parents(X,G(X)). By lemma 7,

(2) JX SEer(x) =

LN

[V € Cycles(G(X))

n 1P(D) 11 dey dey
: Vv ¢9W
CeCyclegroup(G(X)){ D 6 Cyclesst(C) V e Vertices(C\D) <W, Y> GD

Each termin

n dey
V e Cydes(G(x)) 9V

is afunction of V and ParentsO*"GCX)). Each termin

NPTy

CGCydegroup(G(x))\ PeCydeset(C) 14 €Vertic&s(C\D)~d

contains only error terms associated with variables in C, and hence is a function of C and
Parents(C,G(X)). Hence, there exist non-negative functions my such that

NNNN

7>J
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G) % ->Err )| =

[Imv (V. Parents(v, G(X))) X [ [ [ mc(C,Parents(C, G(X)))J
V ¢ Cycles(G(X)) C € Cyclegroup(G(X))

Because JErr(X)->X = 1/7X->Err(X), JErr(X)->X Can also be factored as in 3. Combining
this with (1), there exist functions non-negative functions gy and gc such that

fvX) = ( [1svv. Parents(V,G(X))] x [ [ 1 2c(C.Parents(C, G(X)))]
V ¢ Cycles(G(X)) C € Cyclegroup(G(X))

Theorem S: If G is a directed graph (cyclic or acyclic), collapsed graph G' contains
disjoint sets of variables X, Y and Z, and X is d-separated from Y given Z in G' then G
pseudo-indeterministically entails that X is independent of Y given Z.

Proof. By lemma 8 there exist non-negative functions gy and gc such that

fv(AnXuYUZ,G)) =

| [ 1gv(V.Parents(V,G(An(X UY U Z,G)) | x
V ¢ Cycles(G(An(XUYUZ,G)))

[ I 8c(C.Parents(C,G(An(X U Y U Z,G))))
C € Cyclegroup(G(An(XUYUZ,G)))

This is a factorization according to the collapsed graph G', and hence by lemma 1, for
three disjoint sets of variables X, Y and Z, if X and Y are d-separated given Z in G', then
X and Y are independent given Z. ...

Theorem 6: If Pp;(V) is a mixture of probability measures, each of which factors
according to directed graph G; over V, Ppix(V) satisfies the global directed Markov
property for Gpyix.

Proof. The density of the mixed probability measure can be represented in the following
form. Introduce a variable T which takes on the value i in the ith subpopulation. Denote
the density function of the mixed probability measure by fafix. Set gaix XT) = fumix(T), the
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density of the individual subpopulations in the mixture. If T is not a parent of V in GMU
set gMix,v(V,Parents(V,GMix)) = gt,vO*Parents(V,G/)) (which in this case is the same for
al i). If Tisin Pzents(V,Guix) set guix,v(y,Parents(V,Gyix)) = £/y(K,Parents(*G;))
for the value T = /. (Note that in the latter case the set of variables that are arguments to
the function gMix,V "&y be a superset of the set of variables that are arguments to the
function giy, but the value of gMixy for T =/ is determined by the subset of its arguments
that are also arguments to giy.)

Suppose first that An(X,GMix) does not contain T. Then each G/ is the same, each/; is the
same, and

fuix(An(X\Gyi) = /KANCX, <%)

I ] 2: x (X, Parents(X,G;)) = 11 8amix x (X, Parents(X, Gy, ))
XeAn(X &)) XeAn(X Gmi))

Suppose next that T is in All(X,GMU:)- Consder)3i«x(An(X,GAfix)) for the value T = /.
Note that for T = i/fi(An(X,GMixMT}) is equal to/M/X(AN(X,GAfLLcA{ TI\T=i). Assuming
T =i

fuix(AN(X,Guwi)) = fuiANX,Guix)\ {TRT = i) X fu(T = )" =

Ii(AN(X, Guix) \ {T}) X fuid T = 1)

If there exists a set R such that An(R,G/) = An(X,GMix)\{T) then by hypothesis
fi(An(X,GMix)\{T}) can be factored into a product of non-negative functions of members
of An(R,G/) and their parents. | will show that such a set R exists. Let R =
An(X,GMix)\{T}. Then An(X,GMa)M*} £ An(R,G/) by definition of the ancestor
relation. G/is a subgraph of GMIX that does not contain 7\ o every ancestor of a member
of R in G[ is an ancestor of a member of X in GMix- Hence An(R,G;)Le An(X,GMix)\{T}.
It follows that An(R,G/) = An(X,GMu:)M7}, and//(An(X,GMa)M~}) can be factored in
the following way, where each gMixJC is a non-negative function:
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[i(ANX, G ) \MTHD X fygix T = 1) =

Hgi,X(X,Parents(X,G,-)) X gpix (T = 1) =
XeAn(X ,.Gpix )MT}

HgMix,X (X, Parents(X, GMLx ))
XeAn(X ,Gpix))

Hence by lemma 1, fpix(V,GpMix) is represented by Gaix. --
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