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1. Introduction

The introduction of statistical models represented by directed acyclic graphs (DAGs) has

proved fruitful in the construction of expert systems, in allowing efficient updating

algorithms that take advantage of conditional independence relations (Pearl 1988,

Spiegelhalter et. al. 1993), and in inferring causal structure from conditional

independence relations (Spirtes and Glymour 1991, Spirtes, Glymour and Scheines 1993,

Pearl and Verma 1991, Cooper 1992). As a framework for representing the combination

of causal and statistical hypotheses, DAG models have shed light on a number of issues

in statistics ranging from Simpsonfs Paradox to experimental design (Spirtes, Glymour

and Scheines 1993). The relations of DAGs to statistical constraints, and the equivalence

and distinguishability properties of DAG models, are now well understood, and their

characterization and computation involves three properties connecting graphical structure

and probability distributions: (i) a local directed Markov property, (ii) a global directed

Markov property, (iii) and factorizations of joint densities according to the structure of a

graph (Lauritizen, et al. 1990).

Recursive structural equation models are one kind of DAG model. However, non-

recursive structural equation models are not DAG models, and are instead naturally

represented by directed cyclic graphs in which a finite series of edges representing causal

influence leads from a vertex representing a variable back to that same vertex. Such

graphs have been used to model feedback systems in electrical engineering (Mason 1953,

1956), and to represent economic processes (Haavelmo 1943, Goldberger 1973). In

contrast to the acyclic case, almost nothing general is known about how directed cyclic

graphs (DCGs) represent conditional independence constraints, or about their

equivalence or identifiability properties, or about characterizing classes of DCGs from

conditional independence relations or other statistical constraints. This paper addresses

the first of these problems, which is a prerequisite for the others. The issues turn on how

the relations among properties (i), (ii) and (iii) essential to the acyclic case generalize~or

more typically fail to generalize-to directed cyclic graphs and associated families of

probability measures. It will be shown that when DCGs are interpreted by analogy with

DAGs as representing functional dependencies with independently distributed noises or

"error terms,1' the equivalence of the fundamental global and local Markov conditions

characterise of DAGs no longer holds, even in linear systems, and in non-linear systems

both Markov properties may fail. For linear systems associated with DCGs with

independent errors or noises, a characterisation of conditional independence constraints is

obtained, and it is shown that the result generalizes in a natural way to systems in which



the error variables or noises are statistically dependent. For non-linear systems with

independent errors a sufficient condition for conditional independence of variables in

associated probability measures is obtained.

A second natural use of cyclic graphs is to represent mixtures in which in some

subpopulations A causes 2J, and in other subpopulations B causes A. In section 5 it is

shown how to construct cyclic graphs which represent the conditional independence

relations in such mixtures.

The remainder of this paper is organized as follows: Section 2 defines relevant

mathematical ideas and gives some necessary technical results on DAGs and DCGs.

Section 3 obtains results for non-recursive linear structural equations models. Section 4

treats non-linear models of the same kind. Section 5 treats the use of cyclic graphs to

represent mixtures. Except where they are necessary to the discussion, proofs of new

results are given in the Appendix. Because the aim of this paper is to characterize

conditional independence properties of formal structures implicit in various applied

models, the discussions of motivation necessarily mix mathematical issues framed in

graphical and probabilistic terms with a different terminology used in applied statistics. I

have attempted to keep as closely as possible to the terminology in influential sources.

2. Directed Graphs

Sets of variables and defined terms are in boldface, and individual variables are in italics.

A directed graph is an ordered pair of a finite set of vertices V, and a set of directed

edges E. A directed edge from A to B is an ordered pair of distinct vertices <AJ}> in V in

which A is the tail of the edge and B is the head; the edge is out of A and intoB, and A is

parent of B and B is a child of A. A sequence of edges <£i,...,En> in G is an undirected

path if and only if there exists a sequence of vertices <V\,...yn> such that for 1 < i < n

either <Vr/,V/+i> = Ei or <Vi+uVi> = £/. A path U is acyclic if no vertex occurring on an

edge in the path occurs more than once. A sequence of edges <£i,...,£n> in G is a

directed path if and only if there exists a sequence of vertices <Vi,...,Vn> such that for 1

<i <n < V/, V|+i> = Ei. If there is an acyclic directed path from A to B or B = A then A is

an ancestor of B, and B is a descendant of A. A directed graph is acyclic if and only if it

contains no directed cyclic paths.2

2 An undirected path is often defined as a sequence of vertices rather than a sequence of edges. The two
definitions are essentially equivalent for acyclic directed graphs, because a pair of vertices can be identified



A directed acyclic graph (DAG) G with a set of vertices V can be given two distinct

interpretations. On the one hand, such graphs can be used to represent causal relations

between variables, where an edge from A to B in G means that A is a direct cause of B

relative to V. A causal graph is a DAG given such an interpretation. On the other hand,

a DAG with a set of vertices V can also represent a set of probability measures over V.

Following the terminology of Lauritzen et al. (1990) say that a probability measure over

a set of variables V satisfies the local directed Markov property for a DAG G with

vertices V if and only if for every W in V, W is independent of V\(Descendants(W,G) u

Parents(W,G)) given Parents(W,G), where Parents(WK,G) is the set of parents of Win G,

and Descendants(W,G) is the set of descendants of W in G. A DAG G represents the set

of probability measures which satisfy the local directed Markov property for G. The use

of DAGs to simultaneously represent a set of causal hypotheses and a family of

probability measures extends back to the path diagrams introduced by Sewell Wright

(1934). Variants of DAG models were introduced in the 1980's in Wermuth(1980),

Wermuth and Lauritzen(1983), Kiiveri, Speed, and Carlin (1984), Kiiveri and

Speed(1982), and Pearl(1988). 3

Lauritzen et. al. also define a global directed Markov property that is equivalent to the

local directed Markov property for DAGs. Several preliminary notions are required. An

undirected graph U is an ordered pair of a finite set of vertices V, and a set of

undirected edges E. A sequence of undirected edges <E\,...yEn> in U is an undirected

path if and only if there exists a sequence of vertices <Vi,...,Vn> such that for 1 < i < n,

V[ andV7+iare adjacent in U. For a directed acyclic graph G, let V be a member of

An(X,G) if and only if V is an ancestor of some member of X in G. Let G(X) be the

subgraph of G that contains only vertices in X, with an edge from A to B in X if and only

if there is an edge from A to B in G. If G is a directed graph, then GM(G) is an undirected

graph with the same vertices as G, and a pair of vertices X and Y are adjacent in GM{G) if

and only if either X and Y are adjacent in G, or they have a common child in G; GM(G)

moralizes G. In an undirected graph G, X is separated from Y given Z if and only if

with a unique edge in the graph. However, a cyclic graph may contain more than one edge between a pair
of vertices. In that case it is no longer possible to identify a pair of vertices with a unique edge.
3It is often the case that some further restrictions are placed on the set of distributions represented by a
DAG. For example, one could also require the Minimality Condition, i.e. that for any distribution P
represented by G, P does not satisfy the local directed Markov Condition for any proper subgraph of G.
This condition and others are discussed in Pearl(1988) and Spirtes, Glymour, and Scheines(1993). We will
not consider such further restrictions here.



every undirected path between a member of X and a member of Y contains a member of

Z. GM(G(An(X u Y u Z,G))) is the undirected graph that moralizes the subgraph of G

that contains the vertices that are ancestors of X u Y u Z in G. If X, Y and Z are disjoint

sets of variables, X and Y are d-separated given Z in a directed graph G just when X and

Y are separated given Z in GM(G(An(X u Y u Z,G))). Figure 1 illustrates how to form

G^(G(An(X u Y u Z,G))), where X = {XiyX2}> Y = {YhY2} and Z = {Zi,Z2}.

(The relation I have called "d-separation" was introduced in Lauritzen et al. (1990) but

was not called "d-separation" there. Since Lauritzen et al. (1990) proved that for directed

acyclic graphs the graphical relation they defined is equivalent to the relation Pearl called

"d-separation" in Pearl(1986), and the proof is readily extended to the cyclic case, "d-

separation" will also be used to refer to the graphical relation introduced in Lauritzen et.

al. 1990.)

^"\t
- • Z 2

GM(G(An(X u Y u

Figure 1

Now the definition: A probability measure over V satisfies the global directed Markov

property for DAG G if and only if for any three disjoint sets of variables X, Y, and Z



included in V, if X is d-separated from Y given Z, then X is independent of Y given Z.

Lauritzen et. al. (1990) shows that the global and local directed Markov properties are

equivalent in DAGs, even when the probability measures represented have no density

functions. In section 2, it is shown that the local and global directed Markov properties

are not equivalent for cyclic directed graphs.

The following lemmas relate the global directed Markov property to factorizations of a

density function. Denote a density function over V by/(V), where for any subset X of V,

f(X) denotes the marginal of/(V). If/(V) is the density function for a probability measure

over a set of variables V, say that/(V) factors according to directed graph G with

vertices V if and only if for every subset X of V, there exists non-negative functions gv

such that

/(An(X,G)) =
VeAn(X,G)

The following result was proved in Lauritzen et. al. (1990).

Lemma 1: If V is a set of random variables with a probability measure P that has a

density function/(V), then/(V) factors according to DAG G if and only if P satisfies the

global directed Markov property for G.

As in the case of acyclic graphs, the existence of a factorization according to a cyclic

directed graph G does entail that a measure satisfies the global directed Markov property

for G. The proof given in Lauritzen et. al. (1990) for the acyclic case carries over

essentially unchanged for the cyclic case.

Lemma 2: If V is a set of random variables with a probability measure P that has a

density function/(V) and/[V) factors according to directed (cyclic or acyclic) graph G,

then P satisfies the global directed Markov property for G.

However, unlike the case of acyclic graphs, if a probability measure over a set of variable

V satisfies the global directed Markov property for cyclic graph G and has a density

function /(V), it does not follow that /(V) factors according to G, as the following

example, adapted from exercise 3.3 in Pearl(1988) shows. The probability measure in the

following table (in which the final column contains the probability of the corresponding



row of values for the random variables) satisfies the global directed Markov condition for

the directed graph in figure 2, but does not factor according to that graph.

w
Figure 2

X

1

1

2

Y
1

2

2

Z
1

2

1

W
1

2

3

all other tuples

/>

1/3

1/3

1/3

0

The following weaker result relating factorization of densities and the global directed

Markov property does hold for both cyclic and acyclic directed graphs.

Lemma 3: If V is a set of random variables with a probability measure P that has a

positive density function /(V), and P satisfies the global directed Markov property for

directed (cyclic or acyclic) graph G, then/(V) factors according to G.

3. Non-recursive Linear Structural Equation Models

In a terminology that unavoidably mixes econometric and graphical ideas, the problem

considered in this section is to investigate the generalization of the Markov properties to

linear, non-recursive structural equation models, and, ultimately, to describe a fast

algorithm that will decide correlation and partial correlation constraints entailed by such

models. A secondary question concerns the equivalence of any linear structural equation

model with correlated errors to a model with extra, latent, variables and uncorrelated

errors. First I must relate the social scientific terminology to graphical representations,

and clarify the questions.

Linear structural equation models with jointly independent error terms (which, adapting

the terminology of Bollen (1989), will be referred to as linear SEMs) can be represented

as directed graph models. In a linear SEM the random variables are divided into two



disjoint sets, the error terms and the non-error terms. Corresponding to each non-error

random variable V is a unique error term By. A linear SEM contains a set of linear

equations in which each non-error random variable V is written as a linear function of

other non-error random variables and By. A linear SEM also specifies a joint probability

measure over the error terms. So, for example, the following is a linear SEM, where a

and b are real constants, Bx >By, and Bz are jointly independent "error terms11, and X, F, Z,

are random variables:

Bx> Byy and Bz are jointly independent with standard normal distributions

The directed graph of a linear SEM with uncorrelated errors is written with the

convention that an edge does not appear if and only if the corresponding entry in the

coefficient matrix is zero; the graph does not contain the error terms. Figure 3 is the DAG

that represents the SEM shown above. A linear SEM is recursive if and only if its

directed graph is acyclic.

- • 7 • X

Figure 3

Initially only linear SEMs in which the error terms are jointly independent will be

considered, but in the linear case in an important sense nothing is lost by this restriction:

a linear SEM with dependent errors generates the same restrictions on the covariance

matrix as does some linear SEM with extra variables and independent errors. Further,

such an SEM with extra variables can always be found with the same graphical structure

on the original variables as obtain in the original graph.

A directed graph containing disjoint sets of variables X, Y, and Z linearly entails that X

is independent of Y given Z if and only if X is independent of Y given Z for all values of

the linear coefficients not fixed at zero, and all probability measures over the error

variables in which they are jointly independent and have positive variances. Let pxjx be

the partial correlation of X and Y given Z. A directed graph containing X, Yy and Z, where

X * Y and X and Y are not in Z, linearly entails that pxjjz = 0 if and only pxj.z = 0 f° r

all values of the linear coefficients not fixed at zero, and all probability measures over the



error variables in which they are uncorrelated, have positive variances, and in which

PXJ.Z is defined. It follows from Kiiveri and Speed (1982) that any probability measure

over non-error terms derived from a linear, recursive SEM with jointly independent error

terms and directed graph G, satisfies the local directed Markov property for G. One can

therefore apply d-separation to the DAG in a linear, recursive SEM to compute the

conditional independencies and zero partial correlations it linearly entails. The d-

separation relation provides a polynomial (in the number of vertices) time algorithm for

deciding whether a given vanishing partial correlation is linearly entailed by a DAG.

Linear non-recursive structural equation models (linear SEMs) are commonly used in the

econometrics literature to represent feedback processes that have reached equilibrium.4

Corresponding to a set of non-recursive linear equations is a cyclic graph, as the

following example from Whittaker(1990) illustrates.5

Xi = eXi

X2=eX2

X3 = /%! xXi + #34 XX4 + eX3

X4 = # 4 2 XX2 + #43 X*3 + %4

£x{'
 £x2'

 e x 3 ' £x4»
 a r e jointly independent and normally distributed

xl

I
Figure 4

4Cox and Wermuth(1993), Wermuth and Lauritzen(1990) and (indirectly) Frydenberg(1990) consider a
class of non-recursive linear models they call block recursive. The block recursive models overlap the class
of SEMs, but they are neither properly included in that class, nor properly include it Frydenberg (1990)
presents necessary and sufficient conditions for the equivalence of two block recursive models.
^Note that this use of cyclic directed graphs to represent feedback processes represents an extension of the
causal interpretation of directed graphs. The causal structure corresponding to figure 4 is described by an
infinite acyclic directed graph containing each variable indexed by time. The cyclic graph can be viewed as
a compact representation of such a causal graph. I am indebted to C. Glymour for pointing out that the local
Markov condition fails in Whittaker's model. Indeed, there is no acyclic graph (even with additional
variables) that linearly entails all and only conditional independence relations linearly entailed by figure 4,
although Thomas Richardson has pointed out that the directed cyclic graph of figure 4 is equivalent to one
in which in the edges from X\ to X3 and X2 to X4 are replaced, respectively, by edges from X\ to X4 and
from X2 to X3.



Theorem 1: In a directed (cyclic or acyclic) graph G containing disjoint sets of variables

X, Y and Z, if X is d-separated from Y given Z then G linearly entails that X is

independent of Y given Z.

Theorem 2: In a directed (cyclic or acyclic) graph G containing disjoint sets of variables

X, Y and Z, if X is not d-separated from Y given Z then G does not linearly entail that X

is independent of Y given Z.

Applying Theorems 1 and 2 to the directed graph in figure 4, two conditional

independence relations are entailed: X\ is independent of X% and X\ is independent of Xi

given X3 and X4. In DAGs the global directed Markov property entails the local directed

Markov property, because a variable V is d-separated from its non-parental non-

descendants given its parents. This is not always the case in cyclic graphs. For example,

in figure 4, X4 is not d-separated from its non-parental non-descendant X\ given its

parents X2 and X3, so the local directed Markov property does not hold.

Theorem 3: In a (cyclic or acyclic) directed graph G containing Xy Y and Z, where X * Y

and Z does not contain X or 7, X is d-separated from Y given Z if and only if G linearly

entails that px,r.z = 0.

As in the acyclic case, d-separation provides a polynomial time procedure for deciding

whether cyclic graphs entail a conditional independence or vanishing partial correlation.

Theorem 3 can also be used to calculate the zero partial correlations entailed for all

values of the linear coefficient not fixed at zero, and all probability measures over the

error variables where the variances are positive and the partial correlations exist, even if

the error terms are correlated. If ex and ey are not independent in linear SEM L, there is a

linear SEM V with independent error terms such that the marginal probability measure of

L over the variables in L has the same covariance matrix as L. Form the graph G% of L

from the graph G of L in the following way. Add a latent variable T to G, and add edges

from T \oX and Y. In L\ modify the equation for X by making it a linear functions of the

parents of X (including T) in G\ and replace ex by e%x\ modify the equation for Y in an

analogous way. There always exist linear coefficients and probability measures over T

and the new error terms such that the marginal covariance matrix for V is equal to the

covariance matrix of L, and e'x and €y are independent. The process can be repeated for

each pair of variables with correlated errors in L. Hence the zero partial correlations
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entailed by L can be derived by applying Theorem 3 to the graph of L\ Figure 5

illustrates this process. The set of variables V in the graph on the left is {XI^2^?>XA}•

The graph on the left correlates the errors between X\ and X2 (indicated by the undirected

edge between them.) The graph on the right has no correlated errors, but does have a

latent variable T that is a parent of X\ and X2. The two graphs linearly entail the same

zero partial correlations involving only variables in V (in this case they both entail no

non-trivial zero partial correlations).

Graph with Correlated Error Graph without Correlated Error
and Same Partial Correlations Over V

= c xX\ +d

e\ and 82 correlated

= c xX\ +d

£'l and £*2 uncorrelated

Figure 5

3. Non-linear Structural Equation Models

In a SEM, the equations relating a given variable to other variables and a unique error

term need not be linear. In a SEM the random variables are divided into two disjoint sets,

the error terms and the non-error terms. Corresponding to each non-error random variable

V is a unique error term Sy. It will be assumed that the error terms are jointly

independent. A SEM contains a set of equations in which each non-error random variable

V is written as a measureable function of other non-error random variables and ey. The

convention is that in the directed graph of a SEM there is an edge from A to B if and only

if A is an argument in the function for B. It will be assumed that density functions exist

for both the probability measure over the error terms and the probability measure over the

non-error terms, that each non-error term V can also be written as a function of the error

terms of its ancestors in G, that each €y is a function of V and its parents in G (which will

be the case if the errors are additive or multiplicative), and that the Jacobean of the

transformation between the error terms and the non-error terms is well-defined. Call such
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a set of equations and its associated graph a pseudo-indeterministic SEM (because the

equations are actually deterministic if the unmeasured error terms are included, but

appear indeterministic when the error terms are not measured.) A directed graph G

pseudo-indeterministically entails that X is independent of Y given Z if and only if in

every pseudo-indeterministic SEM with graph G and jointly independent errors, X is

independent of Y given Z.

This section establishes that d-separation again provides a fast algorithm for deciding

whether a DAG pseudo-indeterministically entails a conditional independence relation,

but in a DCG d-separation may not pseudo-indeterministically entails a conditional

independence relation. Instead, a different condition, yielding a polynomial time

algorithm, is found to suffice for a cyclic directed graph to pseudo-indeterministically

entail a conditional independence relation.

By Theorem 2, d-separation is a necessary condition for a conditional independence

relation to be pseudo-indeterministically entailed by a directed graph. The following

remarks show d-separation is also a sufficient condition for pseudo-indeterministic

entailment in acyclic directed graphs, but not for cyclic directed graphs.

Theorem 4: If G is a DAG containing disjoint sets of variables X, Y and Z, X is d-

separated from Y given Z if and only if G pseudo-indeterministically entails that X is

independent of Y given Z.

It is instructive to see why the proof that a DAG G pseudo-indeterministically entails that

X is d-separated from Y given Z if and only L entails that X is independent of Y given Z

breaks down in the case of cyclic directed graphs. In both cyclic and acyclic directed

graphs it follows that

/(An(X,G)) =
XeAn(X,G)

where / is the Jacobian of the transformation from the non-error terms to the error terms,

and each gx is a non-negative function. However, in a DAG, the absolute value of the

Jacobian of the transformation is a single term consisting of the product of the terms

along the diagonal of the transformation matrix:
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\J\ = n
VeAn(X,G)

dev

~dV n
VeAn(X,G) dV

(This is because for an acyclic graph the transformation matrix can be arranged so that it
is lower triangular.) Each term \dsy I dV\\s some non-negative function my of V and its

parents, because ey is a function of V and its parents. Hence by lemma 1, if X and Y are

d-separated given Z, then X and Y are independent given Z.

However, if G is s cyclic directed graph, the Jacobian of the transformation is not in

general a single term, but is the sum of several terms. The absolute value of the Jacobian

can be expressed as

V€An(X,G)

There is no reason to expect, however, that in the probability measure with density

formed from the sum, X is independent of Y given Z. The global directed Markov

property thus fails.

The following example gives a concrete illustration that there is a cyclic graph G in

which X is d-separated from Y given {Z,W}> but G does not pseudo-indeterminstically

entail that X is independent of Y given {Z,W}.

r r

i
- • z

Figure 6: Graph G

= ex

= WxY

ex, £y £Z» eW with independent standard normal distributions



The transformation from ex. By, Bz, By/ to X, F, Z, iy is 1-1 except where ex x By =1

because

The Jacobean of the transformation from the e's is 1/(1 - x x y). Hence, transforming the

joint normal density of the e's yields

f(x,y,z,w) =

2 + y2—(x* + y* + (z-wxyr + (w-zxx) ) x
1

l - ( x x y )

X is not independent of Y given {ZyW} in a probability measure with this density because

it is not possible to factor the density into a product of terms where none of the terms

contains both X and Y.

However, it is possible to modify the graphical representation of the functional relations

in such a way that d-separation applied to the new graph does entail conditional

independence. In a directed graph G, a cycle is a cyclic directed path, in which each

vertex occurs on exactly two edges in the path. A set of cycles C is a cyclegroup if and

only if it is a smallest set of cycles such that for each cycle C\ in C, C contains the

transitive closure of all of the cycles intersecting Ci, i.e. it contains all of the cycles that

intersect Ci, all of the cycles that intersect cycles that intersect Ci, etc. For example, in

figure 7, there are two distinct cyclegroups: the first is {Ci,C2,C3}, and the second is

13
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Figure 7

Form the collapsed graph Gf from G by the following operations on each cyclegroup:

1. remove all of the edges between vertices in cycles in the cyclegroup;

2. arbitrarily number the vertices in the cyclegroup;

3. add an edge from each lower number vertex to each higher number vertex;

4. for each parent A of a member of the cyclegroup that is not itself in the cyclegroup,

add an edge from A to each member of the cyclegroup.

(The procedure does not define a unique collapsed graph due to the arbitrariness of the

numbering, but since all of the collapsed graphs share the same d-separation relations, it

does not matter.) Note that even if G is a cyclic graph, the collapsed graph is acyclic. The

collapsed graph can be generated in polynomial time.

Theorem 5: If G is a directed graph (cyclic or acyclic), collapsed graph G1 contains

disjoint sets of variables X, Y and Z, and X is d-separated from Y given Z in G1 then G

pseudo-indeterministically entails that X is independent of Y given Z.

A collapsed graph for the graph in figure 7 is shown in figure 8a, and a collapsed graph

for the graph in figure 4 is shown in figure 8b.

I do not know whether the follow conjecture holds:
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Conjecture: Let G (cyclic or acyclic) have collapsed graph G' containing disjoint sets of

variables X, Y and Z. If G pseudo-indeterministically entails that X is independent of Y

given Z, then in G\ X is d-separated from Y given Z.

(a)
Figure 8

- • X

(b)

4. Mixtures

Sometimes the most reasonable hypothesis about real populations is that distinct causal

processes are at work in distinct subpopulations. Suppose that for each subpopulation /,

the causal processes at work in that population are represented by a directed graph G;

satisfying the global directed Markov property for the probability measure corresponding

(perhaps ideally) to the subpopulation. Is it still possible to construct a graph GMUL that

represents both the combination of causal relations in the entire population and for which

the mixed probability measure satisfies the global Markov property? In this section an

affirmative answer is found.

Suppose that each G; contains the same set of variables V and represents a probability

measure that factors according to G/, i.e.

XeAn(X,G;)

where each g;,x is a non-negative function. By lemmas 1 through 3, any probability

measure with a density function represented by an acyclic graph has this property, and
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any probability measure with a positive density function represented by a cyclic graph

has this property. For a given factorization of this form and directed graph G/, each

vertex V in G/ is associated with the parameter giy that represents a term in the

factorization of the density function for the zth population. Form a directed graph

that represents the mixture probability measure in the following way:

1. Let VMIX = V U {T}, where T is a variable not in V, which takes on value i in the i*

subpopulation.

2. For each pair of variables A and B in V, there is an edge from A to B in GM\X if and

only if there is an edge from A to B in G/ for some /.

3. If there exists a V in V, and i andy such that gty ± gjyy then add an edge from T to V.

Theorem 6: If PMix(S) is a mixture of probability measures, each of which factors

according to directed graph G/ over V, PMIX(V) satisfies the global directed Markov

property for

Figure 9 shows GMX for a population consisting of two subpopulations with graphs G\

and Gi respectively, where the joint distribution of X\ and^2 are the same in each

subpopulation, and the conditional distribution of X$ on X4 is the same in each

subpopulation.

- • X 3

ID

Figure 9

Note that the independence relations entailed by GMIX are not the same as the intersection

of the conditional independence relations in the two subpopulations, nor is there any
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directed acyclic graph which entails the same conditional independence relations as

In this case, X\ and X2 are independent in the mixture because they are independent in

both subpopulations, and the joint distribution of X\ and X2 is the same in both

subpopulations. X\ and X2 are independent conditional on X3 and X4 in both

subpopulations, but not in the mixture. (However, X\ and X2 are independent conditional

on X3, X4 and T in the mixture.) In contast, X\ is independent of X5 given X4 in both

subpopulations and in the mixture, eyenthough the joint distribution of X\> X$ and X4 is

not the same in both subpopulations. There are also conditional independence relations in

some subpopulations, but not in the mixture, which are not entailed by the graph. For

example X\ is independent of X2 given X3 in the first subpopulation, but not in the

mixture, or in the second subpopulation.

5. Conclusion

These results raise a number of interesting questions whose answers may be of practical

importance. Under what conditions, for example, are there results about conditional

independence comparable to the equivalence of vanishing partial correlations in models

with dependent errors and latent variable models with independent errors? There are

polynomial algorithms (Verma and Pearl 1990, Frydenberg 1990) for determining when

two arbitrary directed acyclic graphs entail the same set of conditional independence

relations. Is there a polynomial algorithm for determining when two arbitrary directed

graphs (cyclic or acyclic) linearly entail the same set of conditional independence

relations? There are polynomial algorithms (Spirtes and Verma 1992) for determining

when two arbitrary directed acyclic graphs entail the same set of conditional

independence relations over a common subset of variable O. Is there a polynomial

algorithm for determining when two arbitrary directed graphs (cyclic or acyclic) linearly

entail the same set of conditional independence relations over a common subset of

variables O? Assuming Markov properties hold and completely characterize the

conditional independence facts in the probability measures considered, there are correct

polynomial algorithms for inferring features of (sparse) directed acyclic graphs from a

probability measure when there are no latent common causes (see Spirtes and Glymour

1991, Cooper and Herskovitz 1992). Are there comparable correct, polynomial

algorithms for inferring features of directed graphs (cyclic or acyclic) from a probability

measure when there are no latent common causes? There are similarly correct, but not

polynomial, algorithms for inferring features of directed acyclic graphs from a

probability measure even when there may be latent common causes (see Spirtes, 1992

and Spirtes, Glymour and Scheines 1993). Are there comparable algorithms for inferring
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features of directed graphs (cyclic or acyclic) from a probability measure even when

there may be latent common causes?

Appendix

Lemma 3: If V is a set of random variables with a probability-measure P that has a

positive density function /(V), and P satisfies the global directed Markov property for

directed (cyclic or acyclic) graph G, then/(V) factors according to G.

Proof. Assume that probability measure over V satisfies the global directed Markov

property for directed (cyclic or acyclic) graph G. I will now show that for any disjoint

sets of variables R, S, and T included in An(X u Y u Z,G), if R and S are separated

given T in GM(G(An(X u Y u Z,G))), then R and S are independent given T. If R, S,

and T are included in An(X u Y u Z,G), then An(R u S u T,G) is included in An(X u

Y u Z,G). Any pair of vertices A and B adjacent in GM(G(An(R u S u T,G))) is also

adjacent in GM(G(An(X u Y u Z,G))) because G(An(R u S u T,G)) is a subgraph of

G(An(X u Y u Z,G)). Hence G^(G(An(R u S u T,G))) is a subgraph of G^(G(An(X

u Y u Z,G))). It follows that if R and S are separated given T in GAf(G(An(X u Y

uZ,G))) they are also separated in GAf(G(An(R u S uT ,G)) ) . But by the global

directed Markov property, if R and S are separated given T in GAf(G(An(R u S u T,G)))

then R and S are independent given T. It follows from the Hammersly-Clifford Theorem

(see Lauritzen et. al. 1990) that the density function/(An (X u Y u Z,G)) can be written

as a product of non-negative functions of cliques6 in GM(G(An(X u Y u Z,G))). Since

each set of parents of a vertex in An(X u Y u Z,G) is a clique in GM(G(An(X u Y

uZ,G))),

/(An(Xu YuZ,G)) = Ylgv(V,Par ents(V,G))
VeAn(XuYuZ,G)

where each gy is a positive function, i.e., the density function factors according to G. .\

Theorem 1: In a directed (cyclic or acyclic) graph G containing disjoint sets of variables

X, Y and Z , if X is d-separated from Y given Z then G linearly entails that X is

independent of Y given Z.

6Here "clique" refers to any compeletely connected subgraph. Some authors use "clique" to refer only to
maximal completely connected sugraphs.
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Proof. Let Err(X) be the set of error terms corresponding to a set of non-error variables

X. In order to distinguish the density function for the set V of non-error variables from

the density function for the error variables I will use/v to represent the density function

(including marginal densities) for the former and/Err to represent the density function of

the latter. If V is the set of variables in G, then by hypothesis,

/Err(Err(V)) =
£eErr(V)

It is possible to integrate out the error terms not in Err(An(X,G)) and obtain

/Err(Err(An(X,G))) =
£EErr(An(X,G))

Because for each variable X in V, X is a linear function of its parents in G plus a unique

error term ex, it follows that ex is a linear function gx of X and the parents of X in G.

Hence Err(An(X,G)) is a function of An(X,G). Following Haavelmo(1943) it is possible

to derive the density function for the set of variables An(X,G) by replacing each ex in

/Err(^) by gx(XyParents(X)) and multiplying by the absolute value of the Jacobean:

/v(An(X,G)) =
XeAn(X,G)

where / is the Jacobian of the transformation. Because the transformation is linear, the

Jacobian is a constant. All of the terms in the multiplication are non-negative because

they are either a density function or a positive constant. It follows from lemma 1 that if X

and Y are d-separated given Z then X and Y are independent given Z. .-.

Lemma 4: In a directed graph G with vertices V, if X, Y, and Z are disjoint subsets of V,

and X is d-connected to Y given Z in G, then X is d-connected to Y given Z in an

directed acyclic subgraph of G.

Proof. I will use the sense of d-connection defined in Pearl(1988) which Lauritzen et. al.

(1990) proved equivalent to their sense of d-connection for acyclic graphs. The proof of

the equivalence given by Lauritzen et. al can easily be extended to cyclic graphs. Vertex

X is a collider on an acyclic undirected path U in directed graph G if and only if there are

two edges on U that are directed into X. According to Pearl's definition, for three disjoint

sets X, Y, and Z, X and Y are d-separated given Z in G if and only if there is no acyclic
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undirected path U from a member of X to a member of Y such that every non-collider on

U is not in Z, and every collider on U has a descendant in Z. For three disjoint sets X, Y,

and Z, X and Y are d-connected given Z in G if and only if X and Y are not d-separated

given Z.

Suppose that U is an undirected path that d-connects X and Y given Z, and C is a collider

on U. Let length(C9Z) be 0 if C is a member of Z, or the length of a shortest directed path

from C to a member of Z if C is not in Z. Let size(U) equal the number of colliders on U

plus the sum over all colliders C on U of length(C,Z). U is a minimal path that d-

connects X and Y given Z, if there is no other path Ul that d-connects X and 7 given Z

such that size(U%) < size(U). If there is a path that d-connects X and Y given Z there is at

least one minimal path that d-connects X and Y given Z.

Suppose X is d-connected to Y given Z, Then for some X in X and Y in Y, X is d-

connected to 7 given Z by some minimal path U in G. First I will show that no shortest

acyclic directed path £>/ from a collider C/ on t/ to a member of Z intersects £/ except at

C/. Suppose this is false. I will show that it follows that there is a path U% that d-connects

X and Y given Z such that size(JJ*) < size(U), contrary to the assumption that U is

minimal. See figure 10.

X ^ ^^^^

U'

D:

Figure 10

Form the path If in the following way. If D, intersects U at a vertex other than C/ then let

Wx be the vertex on D,- and U that is closest to X on £/, and Wy be the vertex on £>/ and £/

that is closest to Y on [/. Suppose without loss of generality that Wx is after Wy on £>/. Let

£/' be the concatenation of U(X,WX), D&WyWx), and U(Wy,Y) (where f/(X",Wx) denotes

the subpath of U between X and Wx-) It is now easy to show that IT d-connects X and Y

given Z, and size(U') < size(U) because U' contains no more colliders than U and a
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shortest directed path from Wx to a member of Z is shorter than £>/. Hence U is not

minimal, contrary to the assumption. If D[ intersects U at only one vertex other than C;

the proof is similar.

Next, I will show that if U is minimal, then it does not contain a pair of colliders C and D

such that a shortest directed path from C to a member of Z intersects a shortest path from

D to a member of Z. Suppose, this is false. See figure 11.

R R

U u

Figure 11

Let D\ be a shortest directed acyclic path from C to a member of Z that intersects Z>2> a

shortest directed acyclic path from D to a member of Z. Let the vertex on D\ closest to C

that is also on Di be R. Let t/1 be the concatenation of U(X,C), D\{CJi), £>2(C>#), and

U{YJ)). It is now easy to show thatf/1 d-connects X and 7 given Z and size{U%) < size(U)

because U% contains fewer colliders than U. Hence U is not minimal, contrary to the

assumption. If R = C or R = D, the proof is similar.

For each collider C on a minimal path U that d-connects X and Y given Z, a shortest

directed path from C to a member of Z does not intersect £/ except at C, and does not

intersect a shortest directed path from any other collider D to a member of Z. It follows

that the subgraph consisting of U and a shortest directed acyclic path from each collider

on U to a member of Z is acyclic. .\
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Theorem 2: In a directed (cyclic or acyclic) graph G containing disjoint sets of variables

X, Y and Z, if X is not d-separated from Y given Z then G does not linearly entail that X

is independent of Y given Z.

Proof. Suppose then that X is not d-separated from Y given Z. By lemma 4, if X is not d-

separated from Y given Z in a cyclic graph G, then there is some acyclic subgraph Gf of

G in which X is not d-separated from Y given Z. Geiger and Pearl (1988) have shown

that if X is not d-separated from Y given Z in a DAG, then there is some probability

measure represented by the DAG in which X is not independent of Y given Z, and it has

been shown (Spirtes, Glymour and Schemes 1993) that there is in particular a linear

normal distribution P in which X is not independent of Y given Z. If /^satisfies the global

directed Markov property for G1 it also satisfies it for G because every d-connecting path

in G1 is a d-connecting path in G. Hence there is some linear normal distribution

represented by G in which X is not independent of Y given Z. /.

Theorem 3: In a (cyclic or acyclic) directed graph G containing X> Y and Z, where X * Y

and Z does not contain X or Yy X is d-separated from Y given Z if and only if G linearly

entails that px,y.z = 0.

Proof. (This proof for cyclic or acyclic graphs is based on the proof for acyclic graphs in

Verma and Pearl 1990.) Suppose that X and Y are d-separated given Z in G. Let L be a

linear RSEM with the same linear coefficients and covariance marix among the error

variables as L, but with normally distributed error variables. In L\ the error terms are

jointly independent, and hence X is independent of Y given Z. It follows that pxjx = 0 in

L\ But the correlation matrix depends only upon the covariance matrix among the error

variables and the linear coefficients. Hence L and L have the same correlation matrix

over the non-error variables, and the same partial correlations. It follows that pxjz = 0

inL.

Suppose that X and Y are d-connected given Z in G. Then by lemma 4, X and Y are d-

connected given Z in some acyclic subgraph G1 of G. In Spirtes, Glymour and Scheines

(1993) it is shown that if X and Y are d-connected given Z in some DAG G\ then there is

a linear RSEM with uncorrelated errors and a probability measure represented by G1 in

which pxj.Z * 0. Since G1 is a subgraph of G, the probability measure is also represented

by G. /.

Note that for an SEM with graph G, if V *Xy then dev I <?Xis non-zero only if there is an

edge from X to V in G (because By is a function only of V and Vs parents in G.) Associate
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with each non-zero partial derivative dsy/dX the edge from X to V in G. A product of

partial derivatives form a loop in G if and only if the corresponding edges form a cycle in

G. Two loops intersect if and only if their corresponding cycles intersect.

Let /EIT(V)->V be the Jacobean of the transformation from Err(V) to V, and /v->Err(V)

be the Jacobean of the transformation from V to Err(V). We will say that a variable W

occurs in a partial derivative in the Jacobean /v->Err(V) if W occurs in the denominator,

or e\y occurs in the numerator. For example, we say that W and X occur in dew / dX A

product of partial derivatives S occurring in a term T in /EIT(V)->V is minimally

sufficient in T if for each variable occurring in 5, all of its occurrences in T are in 5, and

no subset of S has this property. For example, in

dEW x d*x x
 deY x

 deU x fey
x x x x

dX dY dW dU dV

the three minimally sufficient products are

^ ! L X ^ I X ^ I ^ % a n d
 dev

dX dY dW' dU' dV

|^Err(V)->v| i s equal to |l / /v->Err(V)| > b u t li t u m s o u t t 0 simplify the proofs if at

intermediate stages j/v->Err(V)| is u s e ^ instead of j/Err(V)->v|- ^V->Err(V) is the
determinant of a matrix in which the element in the /th row and 7th column is dsy. / dVj.

X is an ancestral set for a directed graph G with vertices V if and only if X = An(Y,G)

for some Y included in V.

Theorem 4: If G is a DAG containing disjoint sets of variables X, Y and Z, X is d-

separated from Y given Z if and only if G pseudo-indeterministically entails that X is

independent of Y given Z.

Proof. The first part of the proof is essentially the same as that of Theorems 1 and 2, and

shows that

/(An(X,G)) =
XeAn(X,G)
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In an acyclic graph, the Jacobian of the transformation is a single term consisting of the

product of the terms along the diagonal of the transformation matrix:

n
KeAn(X,G) dV VeAn(X,G)

E[ "If = T[mv(V,Farents(y,G))
KeAn(X,G)

(This is because for an acyclic graph the transformation matrix can be arranged so that it
is lower triangular.) Each term \dey I dV|is some non-negative function my of V and its

parents, because ey is a function of V and its parents. Hence by lemma 1, if X and Y are

d-separated given Z, then X and Y are independent given Z.

Suppose that X and Y are not d-separated given Z. Then by Theorem 2, there is a linear

SEM in which X and Y are not independent given Z. Since a linear SEM is a special case

of an SEM, there is an SEM in which X and Y are not independent given Z. .-.

Lemma 5: In an SEM with directed graph G with vertices V, if X is an ancestral set for

G, then each minimally sufficient product of terms occurring in /x->Err(X) that is non-

zero is either a loop in G(X), or dev/dV for V in X.

Proof. Each term in /x->Err(X) is a product of partial derivatives in the partial derivative

matrix, one from each row, and one from each column, times a variable that is either

equal to 1 or -1 . Hence each variable in X appears exactly once in the numerator of some

partial derivative in the term, and exactly once in the denominator of some partial

derivative in the term. If dev/dV occurs in term T, it is minimally sufficient.

Suppose then that some minimally sufficient product of partial derivatives 5 occurring in
term T is not equal to dev/dV for any V in X. Then S does not contain dev/dV for V in

X, because otherwise it would not be minimally sufficient. Hence each partial derivative
in S is of the form dey/dY where V^Y. Such a term is non-zero only if there is an edge

from Y to V in G. Because V and Y are both in ancestral set X, if there is an edge from Y

to V in G, then there is an edge from Y to V in G(X). Since all of the occurrences of the

variables in S are in 5, each variable occurs once in the numerator and once in the

denominator of a partial derivative in 5; so in G(X) there is a path in which all of the

variables in S occur once at the head of an edge and once at the tail. It follows that there

is a cycle in G(X) that corresponds to the product of partial derivatives in 5. .-.
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Let the entry in the Ith row and t h e / h column of matrix A be denoted Ay. Let

i+1 if (abc.n) is an even permutation of (1,2,3...TV)

-1 if (abc.n) is an odd permutation of (l,2,3...A0

0 otherwise

Then if A is an N x N matrix,

det(A) = £abc...nA\aA2b-ANn

where each of the variables in the subscript of e range from 1 to N, and are summed over.

If (abc.n) is some permutation of (1, 2, 3, ..., N), then it follows that Sabc.jn = (-1)^

whre P is the number of transpositions of subscripts neeed to produce the order (1, 2, 3,

..., TV). See Byron and Fuller (1969).

Corresponding to each edge in G is an entry in the matrix of partial derivatives relating

the error terms to the non-error terms. A cycleset in a directed graph G is a set of non-

intersecting cycles. Hence, corresponding to a cycleset C in a graph G is a set of entries

in the matrix of partial derivatives, one for each edge in the cycleset. For example, if a

cycleset C contains a cycle C\ = «Xi,X4>,<X4>Xi», and C2 = «X2Xs>,<XsXl»

then the corresponding matrix entries are A14, A41, A25, and A52. Order these matrix

entries by row number. In this example, rearranging the matrix entries in order of rows

yields <Ai4, A25, A41, A52X If the corresponding sequence of column numbers for

cycleset C is {abc.}, let P(C) be the number of transpositions of subscipts needed to

rearrange the column numbers in increasing order. In this example, the corresponding

sequence of column numbers is <4, 5, 1, 2>. To rearrange these numbers into the order

<1, 2, 4, 5> requires two transpositions. Hence P(C) = 2.

For convenience, if an edge <W,Y> occurs in a cycle C, write <WJ> e C, even though

strictly speaking, edges are not members of cycles. Let Cydeset(G) be the set of all

cyclesets in G. Let Vertices(C) be the set of vertices occurring in a set of cycles C.

Lemma 6: In an SEM with directed graph G with vertices V, if X is an ancestral set in G
then
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( | | n
CeCycleset(G(X)) \<WJ> eCOYY )\y eX\ Vertices(C)

Proof. For each C that is a set of cycles in G(X) that do not intersect, let

If rr dein ^ i n
V eX\ Vertices(C)

I will show that for each cycleset C in G(X) that g(C) is a term in /x->Err(X)> every non-

zero term in /v->Err(V) is equal to g(C) for some cycleset C in G(X), and if Ci and C2

are distinct cyclesets then g(C\)

For each C, a variable occurs once in the denominator of a partial derivative in g(C), and

once in the numerator of partial derivative in g(C). Hence one partial derivative from

each row and each column of the transformation matrix occurs in g(C). But every product

of partial derivatives which consists of one partial derivative from each column and each

row of the transformation matrix is a term in /x->Err(X) (because /x->Err(X) is the

determinant of the transformation matrix). Hence g(C) is a term in /x->Err(X)-

Let Ci be a set of cycles such that no pair of cycles in Ci intersect, and similarly for C2.

Suppose that C i * C2; then g(Ci) * g(C2) unless there is some way to rearrange the

edges in Ci into the cycles in C2. But because no pair of cycles in C i intersect, each

vertex that appears in Ci occurs in exactly two edges, once as the head, and once as the

tail. Hence the edges in Ci cannot be rearranged into the cycles in C2, and g(Ci)

By lemma 5, each minimally sufficient product of terms occurring in T of /x->Err(X) is
either a loop or dev/dV for V in X. By definition, the variables in distinct minimally

sufficient product of terms do not overlap. Hence T consists of a product of non-

intersecting minimally sufficient products of terms. Hence, for every non-zero term T in

•̂ X->Err(X) there is a cycleset C such that T = g(C).

For a given term in the sum, P is equal to the number of transpositions needed to arrange

the column numbers in increasing order. The column numbers corresponding to vertices

not in Vertices(C) do not need any rearrangement. Hence P for a given term is equal to

P(C). .-.
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Let Cyclegroup(G) be the set of all cyclegroups in directed graph G. If C is a cyclegroup

in G, let Cycleset(C) be the set of all cyclesets included in C. Let Cycles(G) be the set of

all vertices that occur on cycles in G.

Lemma 7: In an SEM with directed graph G, if X is an ancestral set for G, then

n ^ i *
\V € Cycles(G(X)) dV

n
CeCyclegroup(G(X)) D e Cycleset(C)

X n
\V € Vertices(C\D)

deyj
dV

\ \ \

n
\<W,Y> eD dW

Proof. By lemma 6,

•/x->En-(X)=
CeCycIeset(G(X))

n n
G X \ Vertices(C)~dV~

If V is not in a cycle in G(X) then it is not in any cycleset. Hence, by lemma 5, every

occurrence of V in each non-zero term in /x->Err(X) is of the form dev/dV. Hence it is

possible to factor

n
\V t Cycles(G(X))

dev

from each non-zero term in the previous equation. This leads to

n
«Cycles(G(X))

~dV

1 -
^CGCydeset(G(X))

X n
<W,Y>eC

n
^V GCycles(G(X))\ Vertices(C)

dev

dV
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The set of cyclegroups in G partitions the set of cycles in G. Hence each cycleset in G

can be partitioned into a set of cyclesets, where each cycleset contains only cycles from

the same cyclegroup. In addition, suppose that C is a set of cyclesets, where each cycleset

in C contains cycles from only one cyclegroup, and each pair of cyclesets in C contains

cycles from different cyclegroups. Then the union of any two cyclesets in C is also a

cycleset. Hence,

X •
CeCycIeset(G(X))

n
CeCycIegroup(G(X))

n
<WJ>eC

DeCydeset(C)

y || i-r o*y_

V GCycIes(G(X))\ Vertices(C)

X n
[V eVertices(C\D)

de

,Y> e D

\\

J)

The following example illustrates an application of lemma 7. Consider the directed graph

shown in figure 7. There are two cyclegroups consisting of {Ci, C2, C3} and {C4, C5}.

The set of all cyclesets included in the first cyclegroup is {0 , {Ci}, {C2L {C3}, {Ci,

C3}}, and the set of all cyclesets included in the second cyclegroup is {0 , {C4}, {C5}}.

The matrix of the partial derivatives is shown below.
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dxx

0

0

0

0

0

0

0

0

de\

dX2

0

dex6
9X2

0

0

0

0

de.

dX3

0

0

0

0

0

0

0

dX4

0

dX4

dX4

0

0

0

0

0

0

0

dxs

0

0

0

0 0

0 0

0

0

0

0

dX6 dX7
deX,0 —^. o

0

0

0 0 0 0

0

0

0

dex dex
A 6 A 6

dXj

0

0

0

0

0

0

0

0

0

dXa

Applying lemma 7, the Jacobean can be factored in the following way:

n dev <?£v dev
I X S\ S\ ^ \

^ ^ A

-I1 x

-l2x-—-x -
x3 x2

x-

1 I
1̂  A

. dev
1 y 2

x dex dex dex dex+ - r x - x Lx -̂x - +

deXn de dex de
16.X_±LX_±L]
5 X6 %1

Lemma 8: For an SEM with directed graph G with vertices V, if X is an ancestral set in

G then
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/v(X) =

^CeCyclegroup(G(X))

where each gy and gQ is a non-negative function.

Proof. The transformed density function of Err(X) is equal to

(1)

where ex = hx(X,Parents(X,G(X)). By lemma 7,

) E r r ( X ) _ > x

(2)

n
[V € CycIes(G(X))

d£y

1v

n
CeCyclegroup(G(X)) D 6 Cycleset(C) V e Vertices(C\D)

1 1
<W,Y> GD

^^^^

J>J)

Each term in

n dev

dV

is a function of V and ParentsO^GCX)). Each term in

n
CGCydegroup(G(X))

X
DeCydeset(C)

n
€Vertices(C\D)

dev

~dV n deY_)

tdw)

^\\

yy

contains only error terms associated with variables in C, and hence is a function of C and

Parents(C,G(X)). Hence, there exist non-negative functions my such that



31

(3) ->Err(X)| =

J
JJ/nc(C,Parents(C,G(X)))

yc e Cydegroup(G(X))

Because /EIT(X)->X = l//x->Err(X)> ^Err(X)->X can also be factored as in 3. Combining

this with (1), there exist functions non-negative functions gy and gc such

/V(X) = |x
,KeCycles(G(X)) ^CeCycIegroup(G(X))

Theorem 5: If G is a directed graph (cyclic or acyclic), collapsed graph G1 contains

disjoint sets of variables X, Y and Z, and X is d-separated from Y given Z in G1 then G

pseudo-indeterministically entails that X is independent of Y given Z.

Proof. By lemma 8 there exist non-negative functions gy and gc such that

/v(An(XuYuZ,G)) =

uYu Z,G))
V £ Cydes(G(An(XuYuZ,G)))

X

Yl gc (C, Parents(C, G( An(X uYuZ, G))))
{C G Cyclegroup(G(An(XuYuZ,G)))

This is a factorization according to the collapsed graph G\ and hence by lemma 1, for

three disjoint sets of variables X, Y and Z, if X and Y are d-separated given Z in G\ then

X and Y are independent given Z. .-.

Theorem 6: If PMix(S) is a mixture of probability measures, each of which factors

according to directed graph G/ over V, PMixli^) satisfies the global directed Markov

property for GMIX-

Proof. The density of the mixed probability measure can be represented in the following

form. Introduce a variable T which takes on the value / in the i th subpopulation. Denote

the density function of the mixed probability measure b y / M ^ Set gMixjiT) =fMix(T), the
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density of the individual subpopulations in the mixture. If T is not a parent of V in GMU

set gMix,v(V,Parents(V,GMix)) = gi,vO^Parents(V,G/)) (which in this case is the same for

all i). If T is in Pzrents(VyGMix) set gMix,v(y,Parents(V,GMix)) = £/y(K,Parents(^G;))

for the value T = /. (Note that in the latter case the set of variables that are arguments to

the function gMix,V m&y be a superset of the set of variables that are arguments to the

function giyy but the value of gMixy for T = / is determined by the subset of its arguments

that are also arguments to giy.)

Suppose first that An(XyGMix) does not contain T. Then each G/ is the same, each/; is the

same, and

fMix(An(X\GMix) = /KAnCX, <%)) =

XeAn(X &)) XeAn(X ,

Suppose next that T is in AII(X,GMU:)- Consider)3i«x(An(X,GAfix)) for the value T = /.

Note that for T = iyfi(An(X,GMixMT}) is equal to/M/x(An(X,GAfLcA{T}\T=i). Assuming

fMix(An(X,GMix)) = fMix(An(X,GMix)\ {T}\T = i) x fMix(T = i) =

/ /(An(X, GMix) \ {T}) x fMix{T = i)

If there exists a set R such that An(R,G/) = An(XyGMix)\{T) then by hypothesis

fi(An(XyGMix)\{T}) can be factored into a product of non-negative functions of members

of An(R,G/) and their parents. I will show that such a set R exists. Let R =

An(XyGMix)\{T}. Then An(X,GMa)M^} £ An(R,G/) by definition of the ancestor

relation. G/ is a subgraph of GMIX that does not contain 7\ so every ancestor of a member

of R in G[ is an ancestor of a member of X in GMIX- Hence An(R,G;) e An(X,GMix)\{T}.

It follows that An(R,G/) = An(X,GMu:)M7'}, and//(An(X,GMa)M^}) can be factored in

the following way, where each gMixJC is a non-negative function:
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fi(An(X,GMix)\lT))xfMix(T = i) =

Y[gitX(X,Pirents(X,Gi))xgMiXtT(T = i) =
XeAn(X,GMix))\{T)

XeAn(X,GMix))

Hence by lemma 1,/Mix(V>GMix) is represented by GMI
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