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The pattern for directed acyclic graph G is the graph which has the identical
adjacencies as G and which has an oriented edge A —* B if and only if there is a
vertex C & ADJ(A) such that A -> B and C -• B in G. Let pattern(G) denote
the pattern for G. We assume that II = pattern(G) is a pattern for some graph
directed acyclic graph G. Let £ be a set of oriented edges consistent with the
unshielded collider orientations in II; this set can be thought of as background
knowledge.

A graph G extends graph J5Tif and only if (i)Gand J5Thave the same adjacen-
cies and (ii) if A —• B is in JJthen A —• B is in H. The maximally oriented graph
for II with respect to K is the (possibly partially oriented) graph max(II, K) such
that for each unoriented edge A— B in max(II, /C) it is the case that there ex-
ist directed acyclic graphs Gi and Gi which extend max(II,/C) such that (i)
A —• B in Gi and B —• A in G2, (ii) G\ and G2 have the same colliders as G
and adjacencies; pattern(Gi) = pattern(G2) = II, and (iii) every edge in K, is
oriented correctly in max(UyIC).

A brief explanation of the schematic rules in Figure 1. Each orientation rule
consists of a pair of schematic patterns. A schematic pattern matches a pattern
IF if there exists a set of vertices D in II' and a bijective mapping ( / ) from the
vertices in the schematic pattern to D such that (i) pairs of vertices are adjacent
in the schematic if and only if the corresponding pair of vertices are adjacent in
II' and (ii) if A —• B in the schematic then the corresponding edge is oriented
f(A) —» f(B) in IF (iii) if A— B in the schematic then the corresponding edge
is unoriented and (iv) if A and B are connected by a dashed line then either
A— Bj A —• B, or B —* A can appear in II'. If the schematic to the left of
the ==> matches pattern II' then we can orient the edges in II' according to the
schematic to the right of the =>•. An orientation rule is sound if and only if any
orientation other than the orientation indicated by the rule would lead to a new
unshielded collider.

Rl I => I R3

R2 \ => \ R4

Figure 1: Orientation rules for patterns

T h e o r e m 1 (Orientation Soundness) The four orientation rules given in
Figure 1 are sound.



Proof — Rule Rl; If the edge were oriented in the opposite direction there
would be a new unshielded collider. Rule R2; If the edge were oriented in the
opposite direction there would be a cycle. Rule R3; if the edge were oriented
in the opposite direction then by two application of the rule R2 there would be
a new unshielded collider. Rule R4; If the edge were oriented in the opposite
direction then by two applications of rule R2 there would be a new unshielded
collider. D

Lemma 2 Let IIo be the result of applying the orientation rules Rl, R2, and
R3 to the pattern II. In n 0 , if A -+ B and B— C then A-+C.

Proof — We say that vertex X is an ancestor of vertex Y with respect to Ho
if there is a path such that every edge is directed from X to 7 in Ho. The
orientations in Ho induce a partial ordering on the vertices by the following
rule; X < Y if X is an ancestor of Y. With respect to this partial ordering,
choose vertex B to be a minimal vertex such that there are edges A —• B and
B— C in n 0 . Note that A E ADJ(C) otherwise B— C would be oriented by
rule Rl. Furthermore, A— C must be unoriented; if A— C is oriented A —• C
then we are done and if the edge is oriented C —• A then B— C oriented by
rule R2.

Case 1 — Edge A —• B orient by rule Rl. Thus there is an edge D —• A such
that D £ ADJ(B). By construction B is a minimal vertex such that there
are edges A —• B and B— C in IIo but A meets this requirement and A < B.
Contradiction.

Case 2 — Edge A —• B oriented because it is part of an unshielded collider. In
this case, there is an edge D -> B such that D £ ADJ(A). If D £ ADJ(C) then
B— C would be oriented by rule Rl. If D G ADJ(C) and D— C is unoriented
then B— C oriented by R3. Suppose that D— C is oriented. If C —* D then
B— C oriented by rule R2 else if D —* C then A— C oriented C —• A by rule
Rl and B— C oriented by rule R2. Contradiction.

Case 3 — Edge A —* B oriented by R3. Observe that there is an unshielded
collider colliding at B. This case is sufficiently similar to case 2 that I will not
give the proof.

Case 4 — Edge A —> B oriented by R2. In this case there exists a vertex D such
that A —• D and D —• B are in n 0 . D e ADJ(C) otherwise B— C oriented by
Rl. Edge D— C is oriented by construction (D < B). If C —• D the B— C
oriented by R2 else if D -» C then A -> C by R2.D

An undirected graph H is chordal if and only if every undirected cycle of
length four or more has an edge between two nonconsecutive vertices on the cycle
(i.e. has a chord). A total order (<) induces an orientation in an undirected
graph H by the rule that if A— B is in H then orient the edge A —• B if and



only if A < B. If or is the total order of vertices and H is the undirected graph
then Ha is the induced directed graph obtained by the rule given above. Clearly
Ha is acyclic. We say that a total order a is a consistent ordering with respect
to H if and only if Ha has no unshielded colliders.

Lemma 3 Only chordal graphs have consistent orderings.

Proof— Suppose that a is a consistent ordering with respect to non-chordal
graph H. Let (Ai, A2, A3,.. . ,-An) be a non-chordal cycle with n > 4 in undi-
rected graph H. Let Ai be the largest vertex (with respect to the ordering
a) in the cycle. If i = n then J4,-+I = A\ and if i = 1 then A,_i = An.
In Ha, Ai-i —• Ai and J4»+I —* -A* and since the cycle is non-chordal we have

£ ADJ(Ai-i). Contradiction.O

A clique in graph His a set of vertices such that there is an edge in iT between
each pair of vertices in the set. A maximal clique is a set of vertices which are
a clique and such that no superset of the set is a clique. Let CH = {Ci,..., Cn}
denote the set of maximal cliques of graph H. Note that maximal cliques in CH
can overlap and that the union of all of the maximal cliques is the set of vertices
in H. A join tree for H is a tree whose vertices are in CH and such that (i) Each
edge d— Cj is labeled by the set dnCj, and (ii) for every pair d and Cj (i ^ j)
and for every A G Ci D Cj each edge along the unique path between Ci and Cj
includes label A. Now I state a useful result from Beeri et al. 1983.

Lemma 4 (Beeri et al.) Graph H is chordal if and only if H has a join tree.

A partial order TT is a tree order for tree T if and only if for all A and B
which are adjacent in T either -K(A,B) or w(B,A). Conceptually a tree order
is obtained by choosing one node as the root of the tree and ordering vertices
based on their distance from the root; all tree orderings for a tree T can be
obtained in this fashion by selecting each vertex as the root.

Let TTT be a tree ordering of the join tree T for graph H. TTT induces a partial
ordering -<TT on the vertices of H by the following rules; (i) if 7TT(C,,C;) and
Ci is not the minimum element of TTT then for all A G d\Cj and C G Cj\Ci
and B G Cj (Id order A -<TT B and B -<TT C, (ii) if TT(Ci,Cj) and d is the
minimum element of TTT then for all C G Cj\d and B G Cj C\ Ci order B -<TT C,
(iii) if A ^T T D and D -<WT B then A -<XT B (i.e. transitive closure of XTT)-

Let 7T be a tree ordering for join tree T of H. Note that the partial order
-<T on the vertices in H induced by the partial order IT only orients edges which
are involved in an unshielded triple; i.e. A -<T B only if there is a C such
that (A, B, C) or {C,A, B) is an unshielded triple. In fact all edges involved in
unshielded colliders except those edges A — B where both A and B are in the
minimum vertex (the "root clique") of the join tree.

A partial order iz\ is an extension of a partial order ^2 if and only if for all
A and B such that TT2(A, B) it is the case that Ki(A, B).



Lemma 5 Let w be a tree ordering of a join tree T for H. Any extension of -<K

to a total ordering is a consistent ordering for H.

Proof— Let a be a total ordering which extends <x. No unshielded collider can
occur inside a clique since all triples are shielded. Let (A, B, C) be an unshielded
triple (i.e. A is adjacent to B, B is adjacent to C, and A is not adjacent to C).
There exists an i and j such that A G Ct A A £ Cj AC & & AC G Cj A B G & C\Cj;
if not A and C would be adjacent. By the join tree property we know that there
is a unique path p between Cj and d in T.
Case 1 l(*(Ci,Cj) V TT(CJ, Ci)). There must be a k such that Ck is on p such
that ir(Ck,Ci) A ir(CkiCj)- We know that A £ Ck V C £ Ck otherwise (A,B,C)
is not unshielded since Ck is a clique. Without loss of generality suppose that
C £ Ck. We know that B G Ck by the join tree property and since v(CkiCj) it
is the case that B -<x C and thus {A, B, C) is not an unshielded collider in Ha.
Case 2— fl"(C»,Cy) (other case is symmetric). In this case the {A,B,C) un-
shielded triple is oriented as a non-collider by any extension of -<T to a total
order since B -<T C.O

Lemma 6 (Orienting chordal graphs) Let H be an undirected chordal graph.
For all pairs of adjacent vertices A and B in H there exist total orderings a and
7 which are consistent with respect to H and such that A—+B is in Ha and
B —> A is in E1.

Proof — For the case where H is disconnected apply the argument to each of
the disconnected components.
Case 1 — For all i either A G Ci A B G C,- or A £ d A B £ C,-. Let TT be a tree
ordering of a join tree for H. A and B are not comparable with respect to -<*.
Thus by Lemma 5 we simply choose two extensions of -<T; one with A -<r B
and another with B -<r A.
Case 2 — There exists an i such that A £ d; V B £ d and A e C{V B e C{.
Without loss of generality assume that A £ C{ A B G C{. Given that there is
an edge between A and B there is a j such that j ^ i and A G Cj A B G Cj.
Let TTI be a tree ordering of a join tree for H with d is the root and let 7T2
be a tree ordering of a join tree for H with Cj as the root. Then consider any
extension of -<Tl and -<T2 to total orderings and apply Lemma 5. We are done
since B <Tl A and A -<r2 B.O

Theorem 7 (Orientation completeness) The result of applying rules Rl,
R2 and R3 to a pattern is a maximally oriented graph.

Proof— Let Eo be the result of applying the orientation rules Rl, R2, and R3
to the pattern II. Given Lemma 2 no orientation of edges not oriented in Ho will



I

create a cycle which includes an edge or edges oriented in IIo and no orientation
of an edge not oriented in n0 can create an unshielded collider with an edge
oriented in n0 . Consider the undirected graph H, a subgraph of Ho, obtained
by removing all of the oriented edges in Ho. We show that H is the union
of disjoint chordal graphs. Suppose this is not the case. Then, by Lemma 3
all total ordering of the vertices leads to a new unshielded collider {A, B, C)
in H. By Lemma 2, the triple {A, B, C) also forms an unshielded triple in Ho,
that is A £ ADJ(C) in Ho. This is a contradiction since we assume that the
graph II and thus Ho have all unshielded colliders oriented and that there is an
acyclic orientation of the graph II with no new unshielded colliders. Finally, by
applying Lemma 6 we have completed the theorem.•

Let H be a partially oriented chordal graph and let T be a join tree for H.
Let Aij = d fl Cj. We define a relation 7T on the nodes of T, the maximal
cliques of H, from the orientations in H as follows; Tr(Ct,Cj) if and only if (i)
A^ ^ 0, (ii) for all A G Aij and B G C,-\A,j it is the case that A —• B is in
H and (iii) it is not the case that for all A G AtJ- and B G C,-\A,*y A —> B is in
H. We define the partial order ex on the nodes of T as follows; (i) CT(Ci,Cj) if
yr(Ct,Cj) and (ii) eT(C,-,Ck) if eT(CiyCj) AeT(Cj,Cfc). That eT is a partial order
follows from the fact that T is a tree and condition (iii) of the definition of 7.

Lemma 8 Let T be a join tree for a partially oriented chordal graph H without
any unshielded colliders and with orientations closed under rules Rl, R27 R3,
and R4- If there exists an unshielded triple (A} B, C) such that A —• B in H then
for all i and j such that AeCiABeCiACg Ci and A £ Cj AB E Cj AC G Cj
it is the case that 7T(C,- ,C,) .

Proof— The proof is in two parts; Figure 2 helps to clarify the proof somewhat.
Part (i) — Show that for all C G Cj\Aij it is the case that B —> C is in H. Simply
apply Rl to each of the required edges.

Part (ii) — Show that for all D G A{j and for all C G Cj\Aij it is that
case that D —• C is in H. This follows by application of R4 to A, B, C, and D
if A— D. If D -> A then D -> B by R2 and D -> C by R2. If A -> D then
D -> C by Rl.D

Lemma 9 Let T be a join tree for a partially oriented chordal graph H without
I any unshielded colliders and with orientations closed under rules Rl, R2, R3,

and R4- (i) IfeT{Ci,Cj) then for all k such that the (unique) path p between d
and Ck in T is through j then eT(C,-,Cjb) and (ii) if Ci and Cm are adjacent on
the path p then 7(C/,Cm).

8 Proof — Part (i) is proved by induction on length of path between Cj and

Ck in the join tree for T. The base case (j = k) is trivial and apply Lemma 8



Figure 2: Schematic for Lemma 8

for induction step. Part (ii) follows in a similar fashion. Consider the minimal
element C\ of ex such that ex(C[,Ct) or Cj = C,-. Let Cm be an arbitrary clique
such that eT(C/,Cm) and A/m ^ 0. It must be the case that 7(C/,Cm) otherwise
it would not be the case that ex(C/,Cm)- Then we simply apply Lemma 8 to
extend the chain of 7 between adjacent cliques.D

A partial order IT over vertices is compatible with the orientations in graph
H if and only if for no pair of vertices A and B such that A —• B in H is it the
case that K{B,A).

Lemma 10 Let T be a join tree for a partially oriented chordal graph H with-
out any unshielded colliders and with orientations closed under rules Rl, R2,
R3, and RJ. (i) there exists a tree ordering which extends ex, (ii) for all tree
orderings IT which extend 6x it is the case that -<x is compatible with E.

Proof —
(i) Since ex is a partial order there is a minimal element. Choose any minimal

element as the root of the tree order. By Lemma 9, a tree order constructed in
such a manner extends ex-

(ii) Let 7T be a tree order which extends ex- Suppose that -<r is not compat-
ible with H. Then there exists a pair of vertices A and B such that A.—*Bin
H and B <x A. Let Cj be a clique which contains both A and B. For B <T A
to hold it must be the case that there is a 1 such that Tt(CiyCj). By Lemma 8
B —• A. Contradiction.D

Theorem 11 (Orientation completeness with Background Knowledge)
The result of applying rules Rl, R27 R3 and R4 (and orienting edges according
to K) to a pattern is a maximally oriented graph with respect to K.

Proof— Let TL0 be the result of applying the orientation rules Rl, R2, and R3
to the partially directed graph II. Given Lemma 2 no orientation of edges not
oriented in IIo will create a cycle which includes an edge or edges oriented in IIo
and no orientation of an edge not oriented in Ho can create an unshielded collider



with an edge oriented in IIo- Consider the undirected graph H, a subgraph of
n 0 , obtained by removing all of the oriented edges in IIo- We show that H is
a union of disconnected chordal graph(s). Suppose this is not the case. Then,
by Lemma 3 all total ordering of the vertices leads to a new unshielded collider
(A, B, C) in H. By Lemma 2, the triple (A, B, C) also forms an unshielded triple
in IIo, that is A £ ADJ(C) in IIo. This is a contradiction since we assume that
the graph II and thus Ho have all unshielded colliders oriented and that there
is an acyclic orientation of the graph II with no new unshielded colliders. Let
Hi be the result of orienting all of the edges in IIo that can be oriented with
background knowledge and let II2 be the result of applying orientation rule
Rl, R2, R3, and R4 exhaustively to Hi. Let A— B be unoriented in II2 and
show that there exists consistent orderings a and 7 such that A —• B in Ha and
B -+ A in E1.

Case 1 — For all t either A G d, A B G d or A £ d A B 0 £ . Let T be a
join tree for H and let TT be a tree ordering of T which extends ex; that one
exists follows from Lemma 10. A and B are not comparable with respect to -<„•
thus by Lemma 5 we simply choose two extensions (consistent with the ordering
existing in II2) of -<r; one with A -<r B and another with B -<T A. By Lemma 5
we are done.

Case 2 — There exists an i such that A £ d V B g d and A G C, V B G d.
Without loss of generality assume that A £ d A B G d • Given that there is
an edge between A and B there is a ,;" such that j ^ i and A G Cj A B G Cj.
Since the edge between A and B is unoriented we know that it is not the case
that y(d,Cj) and thus it is not the case that 6T(C,-,CJ). Thus the tree order
obtained from by letting Cj to be the root of the tree is compatible with H by
Lemma 10 Let TT be the tree ordering obtained by letting Cj to be the root of
the tree. Note that for all pairs of vertices in the root clique of the tree ordering
are not ordered in the partial order induced by the tree ordering. Let the total
order -<i be an extension of -<T consistent with the orientations in II2 such that
A -<\ B and let the total order -<2 be an extension of -<* consistent with the
orientations in II2 such that B -<\ A. Apply Lemma 5 and we are done.D


