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Abstract 

This paper reports on a simulation study of social networks that investigated how network 
topology relates to the robustness of measures of system-level node centrality. This association is 
important to understand as data collected for social network analysis is often somewhat 
erroneous and may—to an unknown degree—misrepresent the actual true network. 
Consequently the values for measures of centrality calculated from the collected network data 
may also vary somewhat from those of the true network, possibly leading to incorrect 
suppositions. To explore the robustness, i.e., sensitivity, of network centrality measures in this 
circumstance, we conduct Monte Carlo experiments whereby we generate an initial network, 
perturb its copy with a specific type of error, then compare the centrality measures from two 
instances. We consider the initial network to represent a true network, while the perturbed 
represents the observed network. We apply a six-factor full-factorial block design for the overall 
methodology. We vary several control variables (network topology, size and density, as well as 
error type, form and level) to generate 10,000 samples each from both the set of all possible 
networks and possible errors within the parameter space. Results show that the topology of the 
true network can dramatically affect the robustness profile of the centrality measures. We found 
that across all permutations that cellular networks had a nearly identical profile to that of 
uniform-random networks, while the core-periphery networks had a considerably different 
profile. The centrality measures for the core-periphery networks are highly sensitive to small 
levels of error, relative to uniform and cellular topologies. Except in the case of adding edges, as 
the error increases, the robustness level for the 3 topologies deteriorate and ultimately converges. 
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1. Motivation 
By its nature, social network analysis is burdened by the underlying complexity of both the 

underlying subject matter and its data collection procedures. While analysts have made 
substantial progress in developing techniques to analyze the data that they have collected, 
measurement error in social network data remains an omnipresent problem (Marsden, 1990). In 
addition to other intrinsic complications, social network measurement error arises from the 
inherent ambiguity of human-informant reliability—unintentional (Freeman, Rommey, Kimball, 
& Freeman, 1987; Killworth & Bernard, 1976) and intentional (Carley, 2003)—, and the 
intricacy of collection-instrument design. 

In spite of this widely recognized problem, analysts continue to infer a great deal from the 
error-prone network data. Of course, analysts derive important quantitative measures of the 
network using the data that they have. Unfortunately, the accuracy of their analysis may in fact 
be bounded, or at least restricted, by the accuracy of the underlying data they prudently rely 
upon. Subsequently, analysts and particularly consumers of information may in fact be making 
misguided judgments based on mistaken analysis derived from flawed source data. Given the 
subsequent presumed-error in the network measures, one can only contemplate how misguided 
past analyses may in fact be and what the impact on subsequent actions may have been. 

The research herein is broadly motivated by the wide recognition that measurement error is 
truly ubiquitous in social network data; yet we have little understanding of the actual impact on 
the critical quantitative measures we rely upon for our analysis. Irrespective of the past calls for 
the study of the impact of this problem (Marsden, 1990), even vague attempts to address this 
quandary are rare. While an unsuccessful literature search may brand the matter as terra 
incognita, there have indeed been a mere handful of pertinent articles published on the subject. 
Certainly, further exploration is warranted. 

Our research aims to increase the knowledge of the impact of erroneous source-data on 
network measures. Specifically, we seek to understand the robustness of network measures of 
centrality relative to the network's topology. We project that, given the known characteristics of 
a social network—including a priori estimate of error characteristics—, analysts may ultimately 
be able to quantify the impact of these errors on centrality measures and adjust their analyses 
accordingly. Ultimately analysts may some day harvest more accurate information obtained from 
the likely true network rather than from the erroneous observed network 

2. Introduction 
The term robustness as it pertains to social networks has two related, albeit different 

connotations. The robustness of a network, is concerned with the reliability (Kim & Medard, 
2004) and continued functioning of a network following an intervention. Post-9/11, this is 
particularly in the context of a destructive attack—purposeful (Tsvetovat & Carley, 2005) or 
accidental—on the nodes or connections in a network. The robustness of a network is 
particularly relevant in communication-type and flow-oriented networks. The purpose for 
understanding robustness of a network has more of a management of the network connotation. 

Another connotation of the term robustness—the one in which we are primarily concerned 
herein—is the robustness of the measures of a network. When associating the term to a measure, 
the meaning has more of a statistical connotation. Studying the robustness of a measure of a 
network can also be referred to as conducting a sensitivity analysis on the measure. In keeping 
with the terminology of the most-recently published research in this area, in lieu of using the 
term sensitivity, we too will use the robustness term, although the terms can be used 
interchangeably. 
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A measure is robust if a slight perturbation in its input produces a slight change in its output. 
Robustness is clearly desirable in a measure, as input data is seldom without error, and 
robustness implies that the measure's output for the true data (the input data without error) is 
nearly equal to that of the data with error. 

Further to investigating the robustness of a measure, our attention is drawn to the robustness 
of measures of centrality of a network because the notion of centrality is one of the first 
(Moreno, 1934) and foremost measures social analysts concern themselves with. A network-
actor's centrality is often associated with the level of their prestige and power relative to other 
actors, which is a key question of even the most basic actor-level social network analysis. At the 
overall network level of analysis, or sub-group level, identifying the group of actors with the 
highest values in the various measures of centrality is also a common activity. 

There are numerous perspectives on centrality in a network as evidenced by the multitude of 
measures formulated and substantiated in literature. Freeman's (1979) seminal essay in the first 
volume of Social Networks seemingly introduced the core concept to the social network 
community. Particular to this study, we scrutinize four specific measures of centrality chosen 
because of their prominence in network analysis. We focus on: degree, closeness, betweenness, 
and eigenvector centralities. (These four specific measures are also core to a prior robustness 
study whose methodology we follow closely—see our Methodology Section for more 
information.). 

Consistent with the foundational importance of centrality to social network research; to date, 
past studies of robustness—again, as we regard the term—have focused exclusively on measures 
of centrality as opposed to any other group of or individual measures. Although the total number 
of robustness-specific studies is somewhat limited, there are both empirically-based and 
simulation-based studies to consider. 

One approach an analyst may take to address inherent measurement error is to use 
comprehensive statistics (Frank, 1971) or one of several sampling techniques (Erickson & 
Nosanchuk, 1983; Frank, 1978; Frank, 1981; Galaskiewicz, 1991; Granovetter, 1976) on the 
observed network to make "reasonable, if not excellent" (Galaskiewicz, 1991, p. 347) estimates 
of the actual centrality measures for the true network. 

In a recent, combined meta-analysis and simulation study utilizing empirical social network 
data obtained from 8 independently conducted studies, Costenbader and Valente (2003) analyzed 
11 measures of centrality for their robustness to simulated network data error2. They concluded 
that under "some circumstances" (p. 305) analysts may still use measures calculated from data 
that has missing information. They continued however, "The results of this study should be 
interpreted with caution..." (P. 305) and warned of limitation to the generalization of their 
findings. 

Another combined case study—specifically, a 16,726 node collaboration network—and 
simulation by Kossinets (2005) also investigated data error by applying random error to 
empirical data. Kossinets found that errors such as those resulting from boundary specification 
(including only a subset of relevant nodes) can significantly alter network-level statistics such as 
average degree centrality, clustering, and other measures. 

2 Actually, Costenbader and Valente (2003) drew repeated random samples (subsets) from the existing network data 
in order to investigate sampling techniques (Rothenberg, 1995). We posit that their approach is congruent with 
investigating data set error. 
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In this study we seek to develop more generalized findings that specific case-based studies 
allow. To accomplish this, we can take advantage of unlimited computing power to randomly 
sample both the true network and the observed network as opposed to prior studies using an 
empirical data set as the true network and sampling only the observed from that. 

The Borgatti, Carley, and Krackhardt (in press)—which is a template for the methodology of 
this study—explored robustness of four centrality measures (degree, betweenness, closeness and 
eigenvector) in random graphs and had several findings including: (a) Measure accuracy declines 
predictably with increasing error, (b) the measures have a similar robustness pattern and level, 
(c) the type of error (node / edge) has little affect on the robustness level, and (d) increasing 
density reduces accuracy of the measures, except for edge-addition where accuracy increased. 

As is often the case, initial studies on networks are conducted on the uniform random 
network model attributed to Erdos and Renyi (1959). Following tradition, Borgatti, Carley and 
Krackhardt conducted their research using ER graphs. We extend on their work by exploring the 
relevance of a network topology is on the findings of Borgatti, Carley and Krackhardt. Since 
social networks are rarely of the uniform random network variety, we investigate the robustness 
of measures of centrality under different network topologies. The three topologies we study are: 
uniform, cellular, and core-periphery (Borgatti & Everett, 1999). 

Cellular networks are characterized by consiting of a collection of distributed, but sparsely 
connected, tightly-coupled cells, a.k.a. groups, that are often small and (if functional) operate 
independent of one another and can be somewhat self-similar in their form. Core-periphery 
networks are those that have a single primary cohesive core group that is sparsely tied to a 
periphery of others that often are not ties to others beyond those in the core. 

3. Method 
This study borrows its methodology directly from the experiments recently conducted by 

Borgatti, Carley and Krackhardt (in press). To evaluate the robustness of four measures of 
centrality, they conducted a multitude of experimental trials using simulated relational data in the 
form of uniformly-random networks, i.e., Erdos and Renyi (1959) uniform graphs. For each 
replication, they generated a true network that was effectively randomly drawn from the 
complete ensemble of possible networks based on several control parameters. This/rwe network 
was then systematically perturbed (effectively drawing randomly from the realm of all 
possibilities), resulting in a corresponding observed network, i.e., the true network with 
simulated measurement errors. The value differences between the corresponding centrality 
measures for the network-pair where then evaluated. The experiment was controlled under a 
factorial design in which they varied several parameters that characterized the generation of the 
true and observed network-pairs. 

Herein, we duplicate the prior design and expand on the analysis by introducing network 
topology as an additional control parameter, i.e., independent variable. In essence, we simply 
add an additional dimension to the factorial design which allows us to investigate the relationship 
between network topology the robustness of the centrality measures. We control for network 
topology by systematically varying the generation of the true network across these three network 
forms: uniform, cellular, and core-periphery. 

Note: Readers familiar with the design of the Borgatti, Carley and Krackhardt (in press) 
experiment may choose to pass over, or merely skim, the remainder of this section as we provide 
similar methodological information; although herein, somewhat different terminology is 
employed and different aspects of the design are accentuated. 
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3.1 Six-Factor Full-Factorial Block Design 

The overall approach incorporates a six-factor ( 8 x 5 x 4 x 3 x 2 x 2 ) foil-factorial block 
design totaling 1,920 independent trials. The factors we control for, i.e., control variables, and 
the respective number of values (in parentheses) for each are: network topology (3), network size 
(4), network density (8), error type (2), error form (2), and error level (5). Given a factorial 
design, a particular trial is characterized by a combination of the six control variables, each 
systematically assigned one of their respective possible values. For example, one specific trial is 
described as "topology=cellular, size=100, density=30%, error type=node, error form=remove, 
and error level = 10%." 

Emanating from this factorial design, at the end, a six dimension results matrix is ultimately 
assembled. Each dimension corresponds to one of the six control variables. Each element of the 
results matrix contains a group of summary statistics, e.g., mean-average, that is calculated using 
data values from the set of replications underlying that trial. It is this completed results matrix 
that is the principal focus of the results analysis we present later in the report. 

Each trial is replicated 10,000 times under identical conditions, i.e., using the same assigned 
values for the six control variables. Each replication is an experimental unit conducted entirely 
independent of any other. The outcome of each replication is a set of values for basic centrality 
measures which ultimately contributes to the trial's robustness summary statistics for which it is 
apart. 

3.2 Control Variables 

For the purpose of our discussion, we segregate each of the 6 independent control variables 
into one of two classes; either the: (a) Network Class, or (b) Error Class. Each variable is 
classified according to its connection to either the construction of the initial true network, or to 
creating the perturbations leading to the formation of the observed network. 

Table 1. Independent variables and assigned values differentiating trials 

Number 
Independent of 

Variable Values 
Network Class 

Topology 3 
Size a 4 
Density b 8_ 

Assigned Values 

Error Class 
Type 
Form 
Level 0 

uniform, cellular, core-periphery 
10, 25, 50, 100 
1%, 2%, 5%, 10%, 30%, 50%, 70%, 90% 

2 node, edge 
2 add, remove 
5 1%, 5%, 10%, 25%, 50% 

a specifies the number of nodes in the true network 
c

b specifies the number of edges in the true network relative to its number of nodes 
specifies the number of edges or nodes—added or removed—relative to the original 
true network 
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The control variables in the Network Class are: topology, size, and density. Variables in this 
class represent a defining characteristic of the true, a.k.a., orignal, network. Possible values for 
the network-topology—referring to the network-level structure—are: uniform, cellular, and core-
periphery. Possible values for network-size—referring to the number of nodes making up the 
network—are: 10, 25, 50, and 100. Possible values for the network-density—referring to the 
edge density of the overall network—are: 1%, 2%, 5%, 10%, 30%, 50%, 70%, and 90%. 

The control variables of the Error Class are: type, form and level. Each variable in this class 
refers to the manner in which the true network is systematically perturbed. Recall, the original 
true network is randomly changed (within systematically specified parameters), thus creating the 
new observed network. Possible values for the error type are: node, and edge. Possible values for 
the error form—referring to the addition or removal of the error-types, i.e., nodes or edges—are: 
add, and remove. Possible values for error size—referring to the percentage of nodes or edges, 
being added or removed—are: 1%, 5%, 10%, 25%, and 50%. 

3.3 Network-Pairs 

Each replication within experimental trials involves a single, unique network-pair. Each 
network-pair consists of one true network and one observed network. The true network pertains 
to the "truth" of the network under study, while the observed network pertains to data in reality 
collected for that same true network. Using this network-pair paradigm provides an opportunity 
to identify and inspect the precise differences between the true and the observed at the detail 
level (we can identify specific nodes and edges that are changed, or in error) and according to 
any measures from either case. 

We give rise to the true network by randomly drawing a single unique network from the set 
of all possible realizations that can be constructed from the specific characteristics designated by 
the control parameters (topology, number of nodes, density, etc) for the trial. This network is 
labeled the true network for this network-pair. An exact copy of this true network is then 
perturbed according to other control variables for the experiment (error type, form and level). 
This true-but-now-changed network is labeled the observed network. More detail to the creation 
of these networks appears later in this section. 

3.4 Measures of Centrality 

We evaluate network centrality as a generalized concept by assessing four specific node-level 
centrality measures which are instrumental to most social network analysis. For each node in a 
given network (true or observed), we gauge: degree, betweenness, closeness, and eigenvector 
centralities. 

To calculate the four values for each node, we make use of ORA (Carley & Reminga, 2004), 
which is network-statistics software that is established in the network analysis field. After the 
various values have been calculated for each of the nodes; for each of the four measures, ORA 
provides a ranked list of nodes, ordered from the node with the highest value to the lowest. 

This process results in four separate ordered lists of nodes for each network in the network-
pair. We refer to the ordered-lists formed from the true network as the true centrality list and 
those from the observed network we identify as the observed centrality list. Using the 
respectively paired true and observed centrality lists, we can calculate the congruence of the four 
centrality measures across the network-pairs, i.e., the corresponding true and the observed 
networks. 
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3.5 Calculating Congruence 
From respective true and observed centrality lists for each network-pair, we calculate the 

congruence in five ways: (a) Topi, (b) Top3, (c) ToplO%, (d) Overlap, and (e) R-Squared. 
These each provide an indication of the congruence between the true and the observed networks 
in terms of their four centrality measures. If both of the centrality lists making up a centrality-
pair are identical in all aspects, they would be perfectly congruent. Three of the congruence 
measures are binary values while two are real values from 0 to 1, inclusive. 

• Topi is a binomial value that reflects whether (=1) or not (=0) the top-rank node in the 
true network is also the top-ranked node in the observed. 

• Topi is a binomial value that reflects whether (=1) or not (=0) the top-rank node in the 
true network is one of the top-3 nodes in the observed network. 

• Top 10% is a binomial value that reflects whether (=1) or not (=0) the top-rank node in 
the true network is also ranked in the top 10% (of nodes) in the observed network. 

• Overlap is a real value between 0 and 1 (inclusive) that reflects the extent to which the 
top 10 nodes in the true network match the top 10 nodes in the.observed network. The 
formula for this ratio is: N(Tt D T 0 ) / N(Tt U T 0). 

• R-Squared is the squared value of the Pearson correlation between the true and the 
observed centrally measures. For the R-Squared value, nodes not found in both the true 
and the observed networks are excluded from this statistic. 

For each trial (each consisting of 10,000 replications) basic summarization statistics of the 
congruence measures are recorded, including: minimum value, maximum value, average value 
(the arithmetic mean), and standard deviation. These summary statistics are determined for each 
of the measures of robustness and represent a quantitative perspective on the congruence of the 
centrality measures for a given experimental trial. 

3.6 Determining Robustness 

A measure is robust if a small change in its input value(s) produces only a slight change 
in its output value. In this study we ponder the robustness of the measures of network centrality; 
that is, given different levels of error in the input data, how much difference is there in the values 
for the centrality measures. 

To determine and quantify robustness, we investigate the summarized congruence values vis
a-vis the combinations of values for the control variables, Network class or Error class. We form 
tables and corresponding line graphs to facilitate analysis, from which we draw our findings and 
conclusions. 

3.7 Generating the True Network 

We apply the Network Class control variables to specify the true network for each 
replication, which is statistically independent of one another. This involves assigning one value 
—based on the specific trial for which the replication is affiliated with—to each of the three 
characteristics: network topology, network size, and network density; to characteristic the 
specific population of networks from which the true network is essentially randomly drawn. 

In practice, we actually generate the drawn network by using software written specifically for 
this study that follows the algorithm(s) described in Frantz, Airoldi, and Reminga (2005). Using 
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the topology-specific generation procedure, we ultimately embody the true network in a 
DyNetML (Tsvetovat, Reminga, & Carley, 2004) formatted data file (optionally held in CPU 
memory, or persisted via a disk file). 

The network size control variable is assigned a single value from this list: 10, 25, 50, and 
100. This refers to the exact number of nodes making up the true network. We limit ourselves 
to these smaller-sized networks as they correspond in order of size with many social network 
studies whose data is collected through survey or some subject response vehicle, as opposed to a 
study that can collect data in an automated form. 

The network density control variable is assigned a single value from this list: 1%, 2%, 5%, 
10%, 30%, 50%, 70%, and 90%. This value is used in a formula to determine the number of 
edges in the network. 

Following the network topology control variable, we characterize the topology for each true 
network as one of three forms: uniform, cellular, or core-periphery, "uniform" is an Erdos and 
Renyi (1959) graph (also called a "Bernoulli" graph, among other names) that begins with a 
fixed number of nodes (herein based on the network size control variable) and systematically 
evaluates each possible node pair to determine if that specific potential tie between the two nodes 
will actually exist or not—based on a fixed probability. In our experiments, this probability is 
fixed to a value according to a formula based on the network density control variable. 

The "cellular" network is further characterized by a parameter provided to the software, 
called "mean cell size" that we fixed with a value of 6. This is the average number of cells 
making up a single cell in the network, which is tied together as a complete clique. 

The "core periphery" network is further characterized by a parameter provided to the 
software called "alpha" that we set with a value of 6. The number of edges a node has is 
proportional to its attribute vector value. In a network with N total nodes, node £'s attribute 
vector value = (10*N/ (k+l)Aalpha). 

3.8 Generating the Observed Network 

To generate data for the observed network of the network-pair, the true network is purposely 
perturbed. Depending on the Error Class parameters designated, we add (or remove) nodes and 
edges from the true network dataset to create a new, observed, dataset. Within the parameters, 
these perturbations are random following a well defined heuristic, described below. 

In the case of adding nodes, new nodes are added according to the number specified by the 
error-level parameter (values: 1%, 5%, 10%, 25%, and 50%). To determine the number of new 
nodes the error-level parameter is multiplied by the value of the network-size parameter (values: 
10, 25, 50, and 100). For example, in the case of a true network with 100 nodes, to be perturbed 
by adding nodes to the level of 5%, we would add 5 nodes to the true network to generate the 
observed network. Further, edges are also added accordingly to the new nodes to prevent adding 
simply a set of isolate nodes. To add these edges, for each new node, another node is randomly 
selected from the existing nodes and a corresponding number of edges are added to the new node 
to match the number of the sampled node. The alter edges are ties to randomly selected other 
nodes that do not already have an edge to the new node. 

In the case of adding edges, new edges are added according to the number specified by the 
error-level parameter (values: 1%, 5%, 10%, 25%, and 50%). To determine the number of new 
edges, the error-level parameter is multiplied by the number of edges in the true network (this 
determined by the network size multiplied by the density). As in the case of the edge addition 
step when adding nodes, already existing edges are not strengthened. 
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As with the true network, the observed network is represented in DyNetML (Tsvetovat, 
Reminga, & Carley, 2004) and stored in computer memory and persisted on computer disk. 

3.9 Procedure 
While the true networks are considered to be drawn uniformly at random from all 

possibilities given the Network Class variables, in practice the true networks are actually 
generated according parameters consisting of the Network Class variables and computer code 
applying algorithms according to the desired network topology. The result is the same regardless 
of the actual heuristic used, i.e., a network with the expected values of the Network Class 
variables is presented randomly from all the possibilities constrained by values of the Network 
Class variables. 

• Repeat for each value (n=3) of network topology 
o Repeat for each value («=4) of network size 

• Repeat for each value (n=5) of network density 
• Repeat for each value (n=2) of error type 

o Repeat for each value (n=2) of error form 
• Repeat for each value («=6) of error level 

• Replicate 10,000 times for each trial 
o Generate true network based on 

Network Class control variables 
o Perturb the true network to create an 

instance of an observed network 
based on Error Class control 
variables, creating a network-pair 

o Compute centrality rankings lists for 
both the true and the observed 
networks 

o Calculate pair-wise congruence 
values for each of the four centrality 
ranking lists 

• Calculate summary statistics for the 
congruence values for each of the four 
centrality measures (n= 10,000): minimum, 
maximum, mean, standard deviation. 

• 

o 

o 
Report summary statistics across all experiment blocks (n= 1,440) 

Fig. 1. Pseudo code summarizing the factorial block procedures of the methodology 
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4. Results 
We report five specific observations stemming from our review of the entire set of results 

data, although we present only from the perspective of the case of the 100 nodes with 50% 
density (100/50%) true networks. While in this section we present only selected charts 
chosen specifically to augment the five observations, the entire set of result-data tables for 
the 100/50% true network experiments are provided in the Appendix and the data for all 
experiments are available from the authors. 

We present the detail of our observations in the case of a single true network to keep the 
text undemanding. We consider this approach suitable since the 100/50% case provides a 
neutral configuration for comparing the sensitivity of the centrality measures; Borgatti, 
Carley and Krackhardt (in press) establish that when evaluating robustness 50% density is an 
impartial point relative to the type of errors (node/edge add/remove). 

Our first observation is the prominent similarity of the accuracy scores across the four 
centrality measures, regardless of the experiment parameters (true network and errors control 
variables). Throughout the experiment under the same true/observed network parameters, 
degree centrality, betweenness, closeness, and eigenvector centrality, all showed remarkably 
similar values for measure accuracy (with one exception to be pointed out later). In every 
instance of the combination of topology, size, density, error-type and error-form, robustness 
profile across the measures is comparable. As expected, the actual accuracy values for a 
congruence measure (topi, top3, toplOpct, etc.) differed, but, as we observed, their 
corresponding values were consistent across each of the four centrality measures. 
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DATA 100 50%:(edge remove XAXIS) clsCent top 
1.2 

1 
0.8 
0.6 \-
0.4 -
0.2 \» 

0 I -10 

T" T -T 1 1 corePeriphery —1— uniform - -X~ cellular -

20 30 
error Leve 1 

DATA 100 501:<edge remove XAXIS) eigCent top 
1.2 

1 
0.8 

0.4 
0.2 

T cor ePer ipher y uniform --X-cellular ^ 

20 30 
errorLevel 

(c) Closeness Centrality (d) Eigenvector Centrality 

Fig. 2. Cross-cut of four centrality measures showing comparable accuracy profiles. 
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As an example, Fig. 2 shows this phenomenon for the 100/50% network with edge-
remove errors for the top congruency measure. Each line on the chart represents the accuracy 
between the true and the observed network for a given topology at different error levels. The 
similarity of the four charts can be readily seen, which provides a simple visual to this 
phenomenon. It is easy to also recognize in Fig. 2 that the uniform and cellular lines lie atop 
one another; this will be discussed separately later. 

To further keep the text undemanding, we will also limit our presentation of results from 
this point forward to those of the degree centrality only. Degree centrality is certainly the 
least complicated of the measures to think about; as provided by the first observation, all 
observations about degree centrality can be equally ascribed to betweenness, closeness, and 
eigenvector centrality measures (again, with one exception to be pointers out later). Readers 
should consider degree centrality as a proxy for the other centrality measures. 

A second observation, as noted briefly above, is that the uniform and cellular topologies 
have nearly identical accuracy results from every view of the data. When looking at any plot 
of the results, the graphic representations of the two most often lie atop one another. In many 
cases the average accuracy values are identical, with numerous exceptions, but the 
differences are usually limited to only a tenth of a percentage point. Figure 2, used to support 
the first observation, also provides an example of the duplicity of the results for the uniform 
and cellular topologies. In some instances the two do display as separated lines, albeit very 
slightly. For this reason, we will continue to show the three topologies on graphs, but will 
generally discuss uniform and cellular as a united pair. 

DATA 100 501:(node remove XAXE5) degCent topi 
1.2 

1 
0.8 

? 0.6 
0.4 
0.2 

T -I —| 1 cor ePer iphery h-uniform --X-llular 

1 I I 20 JO 
errorLevel 

DATA 100 50%:(node add XAXIS) degCent topJ 
1.2 

1 
0.8 

? 0.6 
0.4 
0.2 

T 1 1 cor ePer iphery 1— uniform -~X-cellular -

1 I 

(a) Node Remove 

' 20 SO 4 
errorLevel 

(b) Node Add 

1.2 
1 

0.8 
0.6 
0.4 
0.2 h 

DATA 100 501:(edge remove XAXIS) degCent top3 
1 1 1 1 1 1 

-10 

cor ePer iphery t uniform --X-ceLLuLar • 

20 JO 
error Level 

1.2 
1 

0.8 
0.6 h 
0.4 -
0.2 -

0 I 

DATA 100 501:(edge add XAXIS) degCent topi 1 1 1 1 1 1 cor ePer iphery 1 
+ .... uniform j -X- -cellular 

-10 20 30 
error Level 

(c) Edge Remove (d) Edge Add 

Fig. 3. Degree centrality showing average accuracy of top3 congruency measure 
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Our third observation is that, in two of the four error type/forms, the core periphery topology 
consistently shows significantly more accuracy than that of the uniform and cellular topologies. 
In the specific cases of node-remove and edge-add errors, core periphery has much more 
accuracy that the other topologies when any error is introduced. In these cases core periphery 
seems to have highly robust measures of centrality, seemingly immune to network data errors. 
Conversely, in the contrary cases of node-remove and edge-add, core periphery has markedly 
less accuracy as soon as any error is introduced. 

Figure 3 shows an example of the distinctive accuracy profiles of core periphery and 
uniform/cellular topologies for the degree centrality / top3 congruence measure. Removing nodes 
has little impact on a core periphery network and is hardly noticeable until levels of 50% error. 
Similarly, adding edges has little effect, if any, on the core periphery networks. However, 
removing edges has dramatic affect on the degree / top 3 measure immediately upon any 
introduction of error as does the adding of nodes. The profile for the uniform/cellular networks 
is noticeably opposite of the core periphery network although the slope of the accuracy line is 
somewhat consistent for all four error type/forms. Notice, again, that uniform and cellular lines 
lie almost exactly atop one another in this set of graphs. 

100 501: (edge add XAXIS ) degCent DATA<top|top3 |topiOpct | ry 100 50%: (edge add XAXIS) degCent DATA<top|top3 |topiOpct 
1-2 | , 1 1 ( , , 1 1.2 | | , , 1 , , 1 

0 I 1 1 « 1 I 1 1 o I i i • t • i I 
-10 0 10 20 30 40 50 6 -10 0 10 20 30 40 50 60 

errorLevel errorLevel 
(a) Uniform Topology (b) Core Periphery 

Fig. 4. Plots of degree centrality showing average accuracy for edge-add errors. 

Our next observation, the fourth, is that core periphery networks show extremely high levels of 
accuracy for edge-add errors. The accuracy is to the extreme that the errors appear practically 
inconsequential. Figure 4(a) shows the accuracy for the uniform and cellular networks 
deteriorating monotonically as error level increases. To the contrary, as Fig. 4(b) shows, the 
average accuracy levels, as error level increases, are consistently well above 0.95 for each of the 
congruence measures. In Fig. 4, each line is a different congruence measure: top, top3, topi Opct, 
overlap (labeled soc_cir) and R-Squared (labeled Icorrel), pertaining to the degree centrality 
measure. 

Further to the fourth observation, one particular case is relevant to point out. While the 
accuracy levels across the four centrality measures deviate from one another, Fig. 5 shows the 
accuracy of the eigenvector measure for core periphery networks as being uncharacteristically 
different from the other centrality measures. This is in stark contrast to consistency of the 
measures in other scenarios. 

The fifth observation is that the core periphery network with node-add or edge-remove 
errors, is highly sensitive to small errors relative to uniform/cellular networks sensitivity at the 
same error levels. As shown in Fig. 6, the accuracy of top and top3 congruency measures drops 
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sharply with errors of 1-5%. At the 10% error level, the accuracy has already approached an 
apparent asymptote level, while other topologies have more of a linear trajectory under the same 
conditions. Core periphery (plot b) shows significantly less robustness than the uniform topology 
at particularly small levels of error. Each line is a different centrality value: top, top3, toplOpct, 
overlap (labeled soc_cir) and R-Squared (labeled Icorrel). 

phery 100 501: (edge add XAXIS) DATA(degCentIbetCent|clsCent 
1 1 i clsCent 1 1 m 

betCent ~ * \ eigCent 0 8 > • • ' * • -CI 
0 6 
0 4 -
0 2 

0 1 -1 L i 1 

Fig. 5. Average accuracy values for core periphery (100/50%) network with edge-add errors 

10 501: (edge remove XAXIS) degCent DATA(top|top3 |toplOpct |st' 100 501: (edge 
j.2 | 1 1 I 1 1 1 1 1-2 XAXIS> degCent DATA(top |top3 |topiOpc 

1 
0.8 
0.6 
0.4 
0.2 

0 ' -10 

1 1 top J -

top3 -~X~ soc c ir - • ' toplOpct • Icorrel 

20 3D 40 50 
errorLevel 

(a) Uniform Topology 

i 
0.8 
0.6 
0.4 
0.2 

0 

1 1 1 1 1 1 
top !— 

topl0pc't'u O Icorrel - fj-

errorLevel 
(b) Core Periphery 

Fig. 6. Accuracy profile for degree centrality by congruence measures for uniform and core 
periphery 

5. Discussion 
The observations arising from our experiments provide a window and give insight into 

identifying *a connection between a network topology and the robustness of centrality measures. 
Our observations are both consistent with prior published research and further, they present early 
evidence of a relevant relationship between topology and the measures' robustness. In short, we 
believe that there may indeed be an important relationship—albeit as yet, an ambiguous one— 
between network topology and the robustness profile of common centrality measures. Through 
our experiments, it appears that while uniform and the cellular topologies have nearly identical 
robustness profiles, we found that the core periphery topology has a very different robustness 
profile that is clearly distinct from that of the other two topologies considered. 

In the remainder of this section, we discuss the new-found evidence to substantiate our claim. 
As we will provide only our speculation in an attempt to explain our observations, each 
observation warrants its own targeted and separate study to confirm and to fully understand 
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reasons for and the dynamics of the particular observed phenomenon. Our observations—first 
introduced in the Results Section—pertaining to the robustness of centrality measures as are 
listed here: 

1. Robustness among the four centrality measures is similar (with a partial exception) 
2. Robustness of uniform and cellular is nearly identical 
3. Robustness of core periphery differs greatly from uniform/cellular: 

• Higher robustness for core periphery with node-remove or edge-add errors 
• Lower robustness for core periphery with node-add or edge-remove errors 

4. Extreme robustness (high) is found in core periphery with edge-add error 
5. Extreme robustness (low) is found in topi and top3 congruence measures of core 

periphery with node-add or edge-remove error 

Our opening observation—that the accuracy for each of the four centrality measures is 
similar over different levels of error—is consistent with a finding of the Borgatti, Carley and 
Krackhardt (in press) study. Our observations augment and strengthen their finding by showing 
the same phenomenon they discovered, albeit across the differing topologies. In general, this 
phenomenon seems to hold regardless of the particular topology being studied. 

However, we observed a notable exception to this; a difference exists in the case of 
eigenvector centrality for a core periphery network. In this particular case, unlike the other 
centrality measures, the eigenvector measure found to be extremely sensitive. For very small 
error levels it was much less robust than the other measures given the same true network and 
error parameters, which is in conflict with other circumstances. 

By its design, a characteristic of the eigenvector measure is that it minimizes the influence of 
the near-isolates of a node; the measure gives more weight to the global centrality. By adding 
equally distributed random edges to the network, statistically the global centrality of nodes may 
be more quickly impacted than the local because there are likely more distant nodes than local to 
any given node. In the case of core periphery, with its clique-like core and sparely tied periphery, 
it follows that other centrality measures (degree, betweenness and closeness) would be impacted 
less in this scenario because of their mathematical characteristics. 

We surmise, therefore, that the topology of a network affects the comparability (the 
consistency or inconsistency) of robustness profiles across different centrality measures. 

The consistent and near-exact similarity of robustness profiles for the uniform and the 
cellular topologies was a surprise to discover and at first is rather difficult to explain; deeper 
investigation into this finding is certainly warranted to aid in adequately explaining it. We 
suspect this phenomenon may arise from our method of generating the cellular network which 
may be producing a network very similar (patterns of the edges between the nodes) to the 
random networks, formed using different generation algorithms. 

If true, this suggests that networks generated using all-together different algorithms, under 
certain parameters, may in fact results in identical networks, and thus are indistinguishable from 
their source algorithm, leading to similar robustness profiles. Further, the highly differentiated 
robustness profiles for the core periphery network provides clear evidence that topology can 
impact the robustness of centrality measures and its generating algorithm is different from the 
uniform and cellular algorithms. 

The extreme levels (high and low) of robustness in particular cases and measures for the core 
periphery network provide evidence that the topology combined with the type of error has a 
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significant affect on the robustness profile. The profiles for the centrality measures in the case of 
uniform and cellular networks has a smooth shape, while the core periphery, depending on the 
particular measure, has a smooth and an abrupt shape. 

We surmise that a network's topology itself is not a sole and decisive factor in the 
determination of robustness of centrality measures; the similarity or dissimilarity between the 
generative characteristics of the network topology and the manner in which a measure is 
formulated influences the comparability of robustness profiles across different centrality 
measures. 

6. Future Research 
As provided earlier, the motivation for this study is the recognition of a major problem 

inherent with social network data, that is, the omnipresent measurement-error that is embedded 
in the data we so carefully collect, and subsequently analyze; in short, the data we depend upon 
is known to be erroneous. We have been warned of the possible implications and understand 
some causes (Killworth & Bernard, 1976), but only now we are beginning to systematically 
identify and quantify the implications. There remains an abundant need for additional research 
into the robustness of network measures since the problem of mistaken data may be a factor for a 
long time. In this section, we put forward three suggestions for future research. 

First, while we have shown that topology has an affect on the robustness of centrality 
measures, there is the next question about the precise extend to which each of the many different 
topologies and their variants distinctively affect the robustness profiles. In the guise of network 
topology labels, subtle differences in the methodology for generating a given network may 
possibly result in diverse robustness levels. Perhaps it is a characteristic of a topology (thus a 
family of topologies) that matter, not a specific topology itself. For example, there are many 
ways to generate a core periphery network; each variant needs to be explored and individually 
related to a specific robustness profile. 

Second, as we and others have openly acknowledged, errors in observed social network data 
most likely are not truly random in nature. Early research, such as this, specifically toward 
investigating robustness have been limited to research based on random error as opposed to more 
realistic, systemic or non-randomly influenced errors in the data. One notable exception to this 
is the Marsden (1990) study which examined both random and non-random errors. Certainly, 
this makes the research much more complicated, but the community will be rewarded with 
theories based on richer scenarios. 

Third, it should prove invaluable to analysts when they have statistically valid confidence 
levels and error bounds applicable to their specific observed network. Such quantities may 
possibly be based on the known parameters and characteristics of the observed network 
combined with the a priori true network information and error characteristics. To date, analysts 
are constrained by using measures determined only from the observed network, thus are being 
limited to working with descriptive statistic only. The analysis of networks will take a huge leap 
forward when confidence levels can be assigned to collected data that will ultimately lead to 
including p-vales with the statistics we calculate from observed data. 

7. Conclusion 
Our experiments and analysis of the data leads us to the conclusion that a network's topology 

is, in fact, related to the robustness of the centrality measures. We have shown that, in at least 
one specific case (core periphery versus uniform and cellular), different topologies can have 
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distinctive, or conversely in another case (uniform versus cellular) nearly identical, profiles of 
robustness for common measures of centrality. We have reported evidence that there is a 
profound difference in centrality measures' accuracy for core periphery networks vis-a-vis 
accuracy for uniform and cellular networks, leading to the conclusion that when considering the 
robustness of centrality measures of a network, topology matters. Since our findings are entirely 
new to the research community, we call for more research into this phenomenon. Understanding 
the impact of mistaken observed data in social network analysis is critical to accurately 
projecting results of quantitative analysis to the qualitative assessment of a social network. 
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8. Appendix 
The four tables herein provide complete results for an entire experiment involving a true 

network of 100 nodes with a density of 50%. Similarly-detailed tables for networks of the other 
size (10, 25, and 50 nodes) and densities (1, 2, 5, 10, 30, 50, 70, and 90%) are available from the 
authors. £ *| o o 
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Average Accuracy Values for 100 Node, 50% Density Network— Edge Remove 
Degree Centrality Betweenness Centrality Closeness Eigenvector 

% Core Core Core Core 
Error Uniform Cellular Periphery Uniform Cellular Periphery Uniform Cellular Periphery Uniform Cellular Periphery 
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