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Abstract 

We introduce a fixedpoint algorithm for verifying safety properties of hybrid systems with differ­
ential equations that have right-hand sides that are polynomials in the state variables. In order 
to verify non-trivial systems without solving their differential equations and without numerical 
errors, we use a continuous generalization of induction, for which our algorithm computes the re­
quired differential invariants. As a means for combining local differential invariants into global 
system invariants in a sound way, our fixedpoint algorithm works with a compositional verification 
logic for hybrid systems. To improve the verification power, we further introduce a saturation 
procedure that refines the system dynamics successively with differential invariants until safety 
becomes provable. By complementing our symbolic verification algorithm with a robust version 
of numerical falsification, we obtain a fast and sound verification procedure. We verify roundabout 
maneuvers in air traffic management and collision avoidance in train control. 



1 Introduction 
Reachability questions for systems with complex continuous dynamics are among the most chal­
lenging problems in verifying embedded systems. Hybrid systems [16, 13, 8, 1] are models 
for these systems with interacting discrete and continuous transitions, with the latter being gov­
erned by differential equations. For simple systems whose differential equations have solutions 
that are polynomials in the state variables, quantifier elimination [6] can be used for verifica­
tion [13, 24, 2, 26]. Unfortunately, this symbolic approach does not scale to systems with compli­
cated differential equations whose solutions do not support quantifier elimination (e.g., when they 
are transcendental functions) or cannot be given in closed form. 

Numerical or approximation approaches [3, 18, 28] can deal with more general dynamics. 
However, numerical or approximation errors need to be handled carefully as they easily cause 
unsoundness. More specifically, we have shown previously that even single image computations 
of fairly restricted classes of hybrid systems are undecidable by numerical computation [28]. Thus, 
numerical approaches can be used for falsification [18, 9] but not (ultimately) for verification. 

In this paper, we present an approach that combines the soundness of symbolic approaches [13, 
2, 26, 27] with support for nontrivial dynamics, which is otherwise dominant in numerical ap­
proaches [3, 18, 28, 9]. During continuous transitions, the system follows a solution of its differ­
ential equation. But for nontrivial dynamics, these solutions are much more complicated than the 
original equations. Solutions quickly become transcendental even if the differential equations are 
linear. To overcome this, we handle continuous transitions based on their local dynamics, which is 
described by their differential equations. We use differential induction [25], a continuous general­
ization of induction that works with the differential equations themselves instead of their solutions. 
For the induction step, we give a condition that can be checked easily. It uses differential invari­
ants, i.e., properties whose derivative holds true in the direction of the vector field of the differential 
equation. The derivative is a directional derivative in the direction of the (vector field generated by 
the) differential equation, and we generalize derivatives from functions to formulas appropriately. 
For this to work in practice, the most crucial steps are to find sufficiently strong local differential 
invariants for differential equations and compatible global invariants for the hybrid system. 

To this end, we introduce a sound verification algorithm for hybrid systems that computes 
the differential invariants and system invariants in a fixedpoint loop. We follow the invariants as 
fixedpoints paradigm [5] using a verification logic that is generalized to hybrid systems accord­
ingly [26, 27]. For combining multiple local differential invariants into a global invariant in a 
sound way, we exploit the closure properties of the underlying verification logic [26, 27] by form­
ing appropriate logical combinations of multiple safety statements. In addition, we introduce a 
differential saturation process that refines the hybrid dynamics successively with auxiliary differ­
ential invariants until the safety statement becomes an invariant of the refined system. Finally, 
each fixedpoint iteration of our algorithm can be combined with numerical falsification to accel­
erate the overall symbolic verification in a sound way. We validate our algorithm by verifying 
aircraft roundabout maneuvers [34, 28] and train control applications [29]. 

In other approaches [33, 32] invariants only work for systems without inequalities [33, 32] or 
can only be generated for linear systems [32]. The approach of Prajna et al. [30] requires global 
optimization over the set of all proof attempts for the whole system at once, which is infeasi-
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q :=on; /* initial location is on */ 
( (?q = on; x* = 1 A x < 9) 
U(?q = onAx>5] x:=x + l] q:=off) 
u = *' = - i ) 

U (?? = o # A a: < 2; g:=<?n; ?x < 9))* 

Figure 1: Natural hybrid program rendition of hybrid automaton (simple water tank) 

ble. Unfortunately, even for low-degree invariants, this requires solving optimization problems in 
several thousand dimensions for aircraft maneuvers [34, 28] and train control case studies [29]. 

2 Hybrid Programs and Differential Dynamic Logic 
As operational models for hybrid systems, we use hybrid programs (HP), a program notation for 
hybrid automata (HA) [16]. HP can be decomposed syntactically into fragments: subprograms 
which correspond to partial executions of only a part of the full HP (programs, are easier to split 
structurally into parts than graphs, because handling dangling edges between graph fragments is 
complicated). This is important as our verification algorithm recursively decomposes an HP into 
fragments a i , . . . , a n (e.g., to find local invariants for each a^) and recombines corresponding 
correctness statements about these fragments OL{ later. 

Hybrid Programs. In order to represent HA [16] textually as an HP, we represent each discrete 
and continuous transition as a sequence of statements, with a nondeterministic choice (U) between 
these transitions. For instance, the second line in Fig. 1 represents a continuous transition. It 
tests (denoted by Iq = on) if the current location q is on, and then follows a differential equation 
restricted to invariant region x < 9 (i.e., the conjunction x' = 1 A x < 9). The third line tests the 
guard x > 5 when in state on, resets x by a discrete assignment, and then changes location q to off. 
The * at the end indicates that the transitions of a HA repeat indefinitely. Alternatively, the resulting 
HP in Fig. 1 can be considered as the essential part of a program exported from Stateflow/Simulink 
enriched with differential equations for the continuous dynamics. Every safety property that this 
HP satisfies is fulfilled for all deterministic implementation refinements. 

Formally, let V be a set of state variables of the system including auxiliary variables. As 
terms we allow polynomials over variables in V with rational constants. To make a structural 
decomposition of HP into fragments possible, each operation of a HP only has a single effect. 
There are separate classes of program statements with purely discrete effect, purely continuous 
effect, and statements purely for regulating their interaction. Hybrid programs (HP) are built 
with the statements depicted in Tab. 1. The effect of x := 9 is an instantaneous discrete jump 
assigning 9 to x. Instead, x := random randomly assigns any real value to x by a nondeterministic 
choice. During a continuous evolution x[ = 9X A • • • A x(

n = 9n A H, all conjuncts need to hold. 
Its effect is a continuous transition controlled by the differential equation x[ = # i , . . . , x'n = 9n 

that always satisfies the arithmetic constraint H (thus remains in the region described by H). This 
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directly corresponds to a continuous evolution mode of a HA. The effect of a state check or assert 
statement IH is a skip (i.e., no change) if H is true in the current state and that of abort, otherwise. 
The non-deterministic choice aU (3 expresses alternatives in the behavior of the hybrid system. 
The sequential composition a; f3 expresses a behavior in which 0 starts after a finishes (as usual, (5 
never starts if a continues indefinitely). In a non-deterministic repetition a*, the HP a repeats an 
arbitrary number of times, possibly zero. All other discrete control structures are definable from 
the primitives in Tab. 1 [15]. 

Formulas of dC. Our verification algorithm repeatedly decomposes and recombines HP. As a 
logical framework where these operations are sound, we use a logic in which simultaneous correct­
ness properties about multiple subsystems are expressible. The differential dynamic logic dC [26, 
27] is an extension of first-order logic over the reals with modal formulas like [a](f>, which is true 
iff all states reachable by following the transitions of HP a satisfy property cj) (safety). 

Definition 1 (d£ formulas) The formulas of 6C are defined by the following grammar (where 9\ 
and 62 are terms, ~ G { = , < , < , > , > } , 0, V> a r e formulas, x G V, and a is an HP built from the 
statements in Tab. 1): 

Formulas ::= 9X ~ 92 \ ^4> \ <t> A r/> \ <f> V V | <f> -> $ | Vx 4> \ 3x <j> \ [a](f) . 

A Hoare-triple {^}a{0} can be expressed as ip —• [a](f>, which is true iff all states reachable by 
HP a satisfy (j> when starting from an initial state that satisfies ty. Unlike Hoare-logics, dynamic 
logics are closed under logical connectives [31]. Hence, we can express simultaneous correctness 
statements about multiple fragments a* using conjuncts [ai]0i A [a2]02- With this, a proof for [a](f> 
can be decomposed soundly into [aij^i A [a2]02, when [a]0 and [a x]0i A [a2](/>2 are equivalent for 
appropriate fragments oci of a and subproperties fa of (j). In turn, if ^ is the result of recursively 
applying the verification algorithm to [ot^fa, then these can be recombined soundly to the verifica­
tion result fa A $2 for [oi\<f>. By the semantics of dC, this process gives a sound way of combining 
local invariants required in the respective subgoals [a^fa to a global system invariant. Finally, d£ 
and its proof techniques are closed under quantification, which we use to quantify over parameter 
choices of local invariants. For instance, 3p A [a2]</>2) c a n ^ e u s e ( ^ t 0 determine if there is 

notation 
Table 1: Statements and (informal) effects of hybrid programs (HP) 

x :=e 
x := random 
x[=91A..Ax'n = 6nAH 

IH 

a* 

statement 
discrete assignment 
nondet. assignment 
continuous evolution 

state check 
seq. composition 
nondet. choice 
nondet. repetition 

effect 
assigns term 9 to variable x G V 
assigns any real value to x G V 
diff. equations for X{ G V and terms 0$, 
with arithmetic constraint H (domain) 
test formula H at current state 
HP (3 starts after HP a finishes 
choice between alternatives HP a or (3 
repeating HP a n-times for any n G N 
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a common choice for parameter p that makes both subgoals [a^fa true. Liveness properties are 
expressible using (a)(j) = - i [a] ->0, which is true iff there is a reachable state satisfying cf>. 

The semantics of d£ and HP is a Kripke semantics and given in appendix A. 

3 Inductive Verification by Combining Local Fixedpoints 
For verifying safety properties of hybrid systems without having to solve their differential equa­
tions, we use a continuous form of induction. In the induction step, we use a condition on direc­
tional derivatives in the direction of the vector field generated by the differential equation. The 
resulting properties are invariants of the differential equation (whence called differential invari­
ants [25]). The crucial step for verifying discrete systems by induction is to find sufficiently strong 
invariants (e.g., for loops a*). Similarly, the crucial step for verifying dynamical systems (which 
correspond to a single continuous mode of a hybrid system) by induction is to find sufficiently 
strong invariant properties of the differential equation. Consequently, for verifying hybrid systems 
inductively, local invariants need to be found for each differential equation and a global system 
invariant needs to be found that is compatible with all local invariants. 

To compute the required invariants and differential invariants, we combine the invariants as 
fixedpoints approach from [5] with the lifting of verification logics to hybrid systems from [26,27]. 
We introduce a verification algorithm that computes invariants of a system as fixedpoints of safety 
constraints on subsystems. We exploit the fact that HP can be decomposed into subsystems and 
that d£ can combine safety statements about multiple subsystems simultaneously. 

A safety statement corresponds to a dC formula rp —» [a]</> with an HP a , a safety property <\> 
about its reachable states, and an arithmetic formula if) that symbolically characterizes the set of 
initial states. Validity of formula —> [a]<f> (i.e., truth in all states) corresponds to <\> being true in 
all states reachable by HP a from initial states that satisfy ij). Our verification algorithm defines 
the function prove(ip —> [a]0) for verifying this safety statement recursively. 

3.1 Verification by Symbolic Decomposition 
The cases of prove where d£ immediately enables us to verify a property of an HP by decomposing 
it into a property of its parts are shown in Fig. 2. In the interest of a concise presentation, the case 
in line 1 introduces an auxiliary variable x to handle discrete assignments by substituting x for x. 
For instance, x > 2 —> [x := x — l]x > 0 is shown by proving x >2 Ax = x — 1—»x > 0. The 
actual implementation of our algorithm uses optimizations to avoid these auxiliary variables [27]. 
State checks IH are shown by assuming the test succeeds, i.e., H holds true (line 3), nondetermin­
istic choices split into their alternatives (line 5), sequential compositions are proven using nested 
modalities (line 7), and random assignments are handled by universal quantification (line 9). 

The base case in line 11, where 0 is a formula of first-order real arithmetic, can be proven 
by real quantifier elimination [6] or semidefinite programming [23]. Despite the complexity of 
real arithmetic, this is feasible, because the formulas resulting from our algorithm do not depend 
on the solutions of differential equations but only their right-hand sides. Using a temporary form 
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of Skolemization together with Deskolemization, quantifier elimination can be lifted to eliminate 
quantifiers from d£ formulas. We refer to previous work [27, 26] for details. 

The algorithm in Fig. 2 recursively reduces safety of HP to properties of continuous evolutions 
or of repetitions, which we verify in the next sections. 

rove (ip —> [x :=9]<f>): 
rove (if; A x = 0 —> <f%) where x is a new a u x i l i a r y v a r i a b l e 
rove(i/>-> [ ? # ] 0 ) : 
rove (if; A H —> 0 ) 
rove —* [a U /?]</>): 
rove (?/> —> [a]<f>) and prove (?/> —> [/?]</>) /*thus if; A [/?]#*/ 
rove —» [a;/?]</>): 
rove —> [a][/?]</>) 
rove (if; —> [x := random](j)): 
rove (V> —• V x 0 ) 
r o v e ^ — > 0 ) where i s F i r s t O r d e r ( 0 ) : 
! u a n t i f i e r E l i m i n a t i o n ( 0 - > 0 ) 

Figure 2: dC-based verification by symbolic decomposition 

1 func t ion 
2 return 
3 func t ion 
4 return 
5 func t ion 
6 return 
7 funct ion 
8 return 
9 funct ion 

10 return 
11 func t ion 
12 return 

3.2 Discrete and Differential Induction, Differential Invariants 
In the sequel, we present algorithms for verifying loops by discrete induction and continuous evo­
lutions by differential induction, which is a continuous form of induction. In either case, we prove 
that an invariant F holds initially (in the states characterized symbolically by ip9 thus if; —> F is 
valid) and finally entails the postcondition <f> (i.e., F —> (f>). The cases differ in their induction step. 

Definition 2 (Discrete induction) Formula F is a (discrete) invariant of if; —» [a*]<j> iff the follow­
ing formulas are valid: 

1. ip —> F (induction start), and 

2. F —• [a]F (induction step). 

An invariant is sufficiently strong ifF—>(f> is valid. 

Definition 3 (Continuous invariants) Let V be a differential equation. Formula F is a continu­
ous invariant of if; —* \D /\ H\<f> iff the following formulas are valid: 

1. if) A H —» F (induction start), and 

2. F [V A H)F (induction step). 
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Again, a continuous invariant is sufficiently strong ifF—+(t> is valid. 

To prove that F is a continuous invariant, it is sufficient to check a condition on the directional 
derivatives of all terms of the formula, which expresses that no atomic subformula of F changes 
its truth-value along the dynamics of the differential equation. This condition is much easier to 
check than a reachability property (F —> [V A H]F) of a differential equation. Applications like 
aircraft maneuvers need invariants with mixed equations and inequalities. Thus, we generalize 
directional derivatives from functions to logical formulas. 

Definition 4 (Differential induction) Let V be the differential equation system 

%i = #i A • • • A x'n = 0n . 

Formula F is a differential invariant oftp —> [D A H)(j) iff the following formulas are valid: 

1. tj) AH -> Fand 

2. H-> VVF, 

where V p F is defined as the conjunction of all directional derivatives of atomic formulas in F in 
the direction of the vector field ofV (the partial derivative ofb by x{ is ^): 

Proposition 1 (Principle of differential induction) All differential invariants are continuous in­
variants (the proof is in appendix B.l). 

Figure 3: Differential invariant F 

The region corresponding to a differential invariant F is illustrated in Fig. 3. Formula Vx>F is a 
directional derivative of F in the direction of the dynamics of V. Intuitively, formula V p F is true 
if the gradient arrows are pointing inside the (possibly unbounded) region consisting of the points 
where F is true. In Sections 3.4-3.6, we present algorithms for finding differential invariants for 
differential equations, and for finding global invariants for repetitions. 
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Figure 4: Roundabout maneuvers for aircraft collision avoidance. 

3.3 Example: Flight Dynamics in Air Traffic Collision Avoidance 
Aircraft collision avoidance maneuvers resolve conflicting flight paths, e.g., by roundabout ma­
neuvers [34], see Fig. 4a-b. Their non-trivial dynamics makes safe separation of aircraft difficult 
to verify [34, 21, 10, 7, 28, 14, 17]. The parameters of two aircraft at the respective planar posi­
tions x = (xi,x2) G E 2 and y = (2/1,3/2) with angular orientation 1? and <̂  are illustrated in Fig. 4c 
(with 1? = 0). Their dynamics is determined by their linear speeds V eR and U G R and by their 
angular speeds w £ R and g G E, see, e.g., [34] for details: 

x\ = v cos $ X o = v sin 1? $ = 00 

yx — U cos <; y2 = U sin <; S = Q 

In safe flight configurations, aircraft are separated by distance >p: 

(xi - yif + (*2 - V2)2 > P2 . (2) 

To handle the transcendental functions in (1), we axiomatize sin and cos by differential equations 
and reparametrize the system using a linear velocity vector d = (d\, d2) := (v cos t9, v sin t?) G M 2 , 
which describes both the linear velocity \\d\\ := y/d2 + d\ = t; and orientation of the aircraft in 
space, see Fig. 4c: 

x[ = d\ xf

2 = d2 d[ = —ud2 d2 = udi t' = 1 _ 
y'i = e>i V2 = e2 e[ = -ge2 e2 = gex sf = 1 J 

Equations (J7) and (1) are equivalent up to reparameterization. Variables t and s are additional 
clocks to coordinate collision avoidance maneuvers. 

We can show, e.g., that d\ + d2 > a2 is a differential invariant of (J7): 

V^(d 2 + d\ > a2) = V(d[=^M2=Ujdl)(d2 + d\ > a2) 
D(d2 + d2)f D(d2 + d2) J d a 2 , ^ DA2

 J 

adi ad2 ddi dd2 

= 2di(-ud2) + 2d2cjdx > 0 . 

3.4 Local Fixedpoint Computation for Differential Invariants 
Fig. 5 depicts the fixedpoint algorithm for constructing differential invariants for each continuous 
evolution VAH with a differential equation system D. The algorithm in Fig. 5 (called Differential 
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1 funct ion prove (tf> —• [V A H]cf>) : 
2 if prove (V d (#-+<£)) then 
3 return true /* safety property proven */ 
4 for each F G C a n d i d a t e s —> [DA H)(f>, # ) do 
5 if p r o v e d A and prove(M c l(H -> VVF)) then 
6 H := HAF /* refine by differential invariant */ 
7 goto 2; /* repeat fixedpoint loop */ 
8 end for 
9 return "no t p r o v a b l e us ing c a n d i d a t e s " 

Figure 5: Fixedpoint algorithm for differential invariants (differential saturation) 

Saturation) successively refines the domain H by differential invariants until saturation, i.e., H ac­
cumulates enough information to become a strong invariant that implies postcondition cf> (line 2). 
If domain H already entails cf>9 then rfj —• [D A H](f> is proven (line 2). Otherwise, the algorithm 
considers candidates F for augmenting H (line 4). If F is a differential invariant (line 5), then H 
can soundly be refined to H A F (line 6) without affecting the states reachable by V A H (Proposi­
tion 2 below). Then, the fixedpoint loop repeats (line 7). At each iteration of this fixedpoint loop, 
the previous invariant H can be used to prove the next level of refinement HAF (line 5). The re­
finement of the dynamics at line 6 is correct by the following proposition, using that the conditions 
in line 5 imply that F is a differential invariant and, thus, a continuous invariant by Proposition 1. 
(A proof is in appendix B.2.) 

Proposition 2 (Differential saturation) If F is a continuous invariant of ip —> [D A H]<f>, then 
ip —> [D A H]<f> and %f) —> [D A H A F](f) are equivalent. 

This progressive differential saturation turns out to be crucial in practice. For instance, the aircraft 
separation property (2) cannot be proven until (J7) has been refined by invariants for d and e, 
because these determine x' and y'. 

The function Candidates determines candidates for induction (line 4) depending on transitive 
differential dependencies, as will be explained in Section 3.5. When these are insufficient for 
proving t/; —• [D A H](f>, the algorithm fails (line 9, with improvements in subsequent sections). 
Finally, Vc/0 denotes the universal closure of <\>. It is required in lines 2 and 5, because the respective 
formulas need to hold in all states (that satisfy H), which we will improve on in Section 4. 

3.5 Dependency-directed Induction Candidates 
In this section, we construct likely candidates for differential induction (function Candidates). 
Later, we use the same procedure for finding global loop invariants. We construct two kinds of can­
didates in an order induced by differential dependencies. Our algorithm successively enriches rp 
with more precise information about the symbolic prestate as obtained by the symbolic decompo­
sitions and proof steps in Fig. 2 and 5. We look for invariant symbolic state information in if; and (f> 
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by selecting subformulas that are not yet contained in H. In practice, this gives particularly good 
candidates for highly parametric hybrid systems. 

We generate additional parametric invariants. Let V = {x\,..., xn} be a set of variables. We 
choose fresh names a®]

 i n for formal parameters of the invariant candidates and build polynomi­
als p i , . . . , Pk of degree d with variables V using the formal parameters as symbolic coefficients: 

Pi ••= £ a S ! L i n ^ - - - 4 n ( f o r l < Z < f c ) . 

ii+—+in<d 
We define the set of parametric candidates (operator V is accordingly): 

{ % k 

f\pi > 0 A [\ pi = 0 | 0<i<k 
1=1 i=i+i 

For instance, the parametric candidate a0,o + o>i,odi + a 0 , ix 2 = 0 yields a differential invariant 
of (J7) for the choice a0,o = 0, ai > 0 = 1, ao,i = By simple combinatorics, ParaForm con­
tains fc + 1 candidates with k(^*d) ^ormdl parameters a®|_jin, which are existentially quanti­
fied. Existence of a common satisfying instantiation for these parameters can be expressed by 
adding 3a® i n to the resulting 6C formulas. For this to be feasible, the number of parameters is 
crucial, which we minimize by respecting (differential) dependencies. 

To accelerate the differential saturation process in Section 3.4, it is crucial to explore candidates 
in a promising order from simple to complex, because the algorithm in Fig. 5 uses successful differ­
ential invariants to refine the dynamics, thereby simplifying subsequent proofs. For instance, (2) 
is only provable after the dynamics has been refined with invariants for d and e. We construct 
candidates in a natural order based on variable occurrence that is consistent with the differential 
dependencies of the differential equations. For a differential equation P , variable x depends on 
variable y according to the differential equation system V if y occurs on the right-hand side for x' 
(or transitively so). The resulting set of dependencies is the transitive closure of: 

depend(V) := {(x, y) \ (x' = 6) G V and y occurs in 9} . 
For the differential equation system (J7), we determine the differential dependencies indicated as 
arrows (pointing to the dependent variables x) in Fig. 6. 

From these dependencies we determine an order on candidates. The idea is that, as the value 
of x\ depends on that of d\% it makes sense to look for invariant expressions of di first, because re­
finements with these help differential saturation in proving invariant expressions involving also x\. 
We order variables by differential dependencies, which resembles the back substitution order in 
Gaussian elimination (if, in triangular form, x\ depends on d\ then equations for d\ must be solved 
first). Now we call a set V of variables a cluster of the differential equation V iff V is closed with 
respect to depend(V), i.e., variables of V only depend on variables in V. The resulting variable 
clusters for system (J7) are marked as triangular shapes in Fig. 6. Finally, we choose candidates 
from ip and ParaForm(k, d, V) starting with candidates F whose variables lie in small clusters V. 
Thus, the differential invariant d\ + d| > a2 of Section 3.3 within cluster {d2, duu} will be dis­
covered before invariants like di = —ux2 that involve x2, because x2 depends on d2. Consequently, 
line 6 of Fig. 5 makes dj + dl> a2 available for subsequent checks of invariants involving x2. 
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3.6 Global Fixedpoint Computation for Loop Invariants 
With the uniform setup of dC, we can adapt the algorithm in Fig. 5 easily to obtain a fixedpoint 
algorithm for loops (ip —• [a*](f>) in place of continuous evolutions (ip —> [V A H]<j>). In line 5 of 
Fig. 5, the induction step from Def. 4 just needs to be replaced by the step for loops (Def. 2). As 
an optimization, invariants H of previous iterations can be exploited as refinements of the hybrid 
system dynamics: 

Proposition 3 (Loop saturation) If H is a discrete invariant ofip—> [a*]<f>, then H A F is a dis­
crete invariant ifftp^F and HAF—* [a](H —» F) are valid. 

The proof is in appendix B.3. The induction step from Proposition 3 can generally be proven 
faster, because it is a weaker property than that of Def. 2. For sake of completeness, the resulting 
algorithm is given in appendix D. 

To adapt our approach from Section 3.5 to loops, we use discrete data-flow and control-flow 
dependencies of a. Dependencies can be determined immediately from the syntax of HP. There is 
a direct data-flow dependency with the value of x depending on y, if x := 0 or x' = 0 occurs in a 
with a term 0 that contains y. Accordingly, there is a direct control-flow dependency, if, for any 
term 0, x := 0 or x' = 0 occurs in a after a IH containing y. 

3.7 Interplay of Local and Global Fixedpoint Loops 
The local and global fixedpoint algorithms jointly verify correctness properties of HP. Their in­
terplay needs to be coordinated with fairness. If the local fixedpoint algorithm in Fig. 5 does not 
converge, stronger invariants may need to be found by the global fixedpoint algorithm which result 
in stronger preconditions rf> for the local algorithm. Thus, the local fixedpoint algorithm should 
stop when it cannot prove its postcondition, either because of a counterexample or because it runs 
out of candidates for differential invariants. As in the work of Prajna [30], the degrees of paramet­
ric invariants, therefore, need to be bounded and increased iteratively. As in [30], there is no natural 
measure for how these degrees should be increased. Instead, we exploit the fact that the candidates 
of Candidates are independent and we explore them in parallel with fair time interleaving. 

Figure 6: Differential dependencies (arrows) and (triangular) variable clusters of (J7) 
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3.8 Soundness 
Theorem 1 (Soundness) The verification algorithm in Section 3 is sound, i.e., whenever the algo­
rithm prove( / 0 —• [ot](j>) returns " t r u e " , the d£ formula ip —• [a]<f> is true in all states, i.e., all 
states reachable by a from states satisfying ip satisfy (j). 

A proof is in appendix B.4. Since reachability of hybrid systems is undecidable, our algorithm 
must be incomplete. It can fail to converge when the required invariants are not expressible in 
first-order logic. The existence of a fixedpoint in 6C can be shown, but fixedpoints are not always 
expressible in real arithmetic [27]. 

4 Optimizations 

4.1 Sound Interleaving of Numerical Simulation of Hybrid Systems 
During fixedpoint computations, wrong choices of candidates are time consuming. Thus, in prac­
tice, it is important to discover futile attempts quickly. For this, we use non-exhaustive numerical 
simulation to look for a counterexample for each candidate. To prevent rejecting good candi­
dates due to numerical errors, we discard fragile counterexamples. We consider counterexamples 
with distance <e to safe states as fragile, because small numerical perturbations could make it safe 
(right x marks in Fig. 7). The left mark in 7, instead, is robust. Robust counterexamples can be en­
sured by replacing, e.g., a > b by a > b + e in the formulas given to numerical reachability simula­
tion for some estimate e > 0 of the numerical error. Unlike in other approaches [3,18, 24, 30,28], 
numerical errors are not critical for soundness, because safety is exclusively established by sound 
symbolic verification. 

Figure 7: Robustness 

We can further exploit the symbolic decomposition performed by our algorithm in Section 3 
and prefix recursive calls to prove(tp —> [a]<f>) with a partial simulation of a. Using cylindric 
algebraic decomposition [6], we find good samples of states satisfying xp to start the simulation 
of a. 

4.2 Optimizations for the Verification Algorithm 
Formulas with variables that do not change in a fragment of a HP are trivial invariants, as their 
truth-value is unaffected. For instance, u = Q is a trivial invariant of system (J7). Hence, it can be 
used as an invariant without proof. A formula like u2(d\ + d|) > r2 in tp, instead, is not trivially 
invariant, because di changes during (J7). Still, it has invariant consequences like u ^ 0. To 
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make use of these direct and indirect trivial invariants from rj>, we (soundly) weaken all universal 
closures of the form Vc/0 in lines 2 and 5 of Fig. 5 by V> —• Vc/</>. 

5 Experimental Results: Aircraft Roundabout Maneuver 
As an example with non-trivial dynamics, we analyze aircraft roundabout maneuvers [34]. Curved 
flight as in roundabouts is challenging for verification, because of its transcendental solutions. The 
maneuver in Fig. 4a from [34] and the maneuver in Fig. 4b from [28, 25] are not flyable, because 
they still involve a few instant turns. A flyable roundabout maneuver without instant turns is 
depicted in Fig. 8. We verify safety properties for most (but not yet all) phases of Fig. 8 and provide 
verification results in Tab. 2. We present details in appendix C. Note that the required invariants 
for the roundabout maneuver cannot even be found from characteristic sets of Differential Grobner 
Bases [20]. 

Verification results for roundabout aircraft maneuvers [34, 7, 28, 25] and the European Train 
Control System (ETCS) [29] are in Tab. 2. Results are from a 2.6GHz AMD Opteron with 4GB 
memory. Memory consumption of quantifier elimination is shown in Tab. 2, excluding the graph­
ical front-end. The results are only slightly worse on a 2 year old laptop with 1.7GHz and 1GB. 
We handle all variables symbolically. The dimension of the continuous state space is indicated. 

Other authors [33, 32, 30] have already argued that invariant techniques scale to more general 
dynamics than explicit reach-set computations or techniques that require solutions for differential 
equations [13, 24, 26]. However, they [33, 32] cannot handle hybrid systems with inequalities in 
initial sets or switching surfaces, which occur in most real applications like aircraft maneuvers. 
Barrier certificates [30] only work for inequalities, but invariants of roundabout maneuvers require 
mixed equations and inequalities. Prajna et al. construct barrier certificates of a fixed degree 
by global optimization over all certificates and modes [30]. This global approach, however, is 
infeasible for larger examples. Even with degree bound 2, it already requires solving a 5848-
dimensional optimization problem for train control [29] and a 10005-dimensional problem for 
roundabouts with 5 aircraft. 

Figure 8: Flyable aircraft roundabout 

6 Related Work 
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Table 2: Experimental results 
Case study Time(s) Memory (MB) Proof steps Dimension 

tangential roundabout (2 aircraft) 14 8 117 13 
tangential roundabout (3 aircraft) 387 42 182 18 
tangential roundabout (4 aircraft) 730 39 234 23 
tangential roundabout (5 aircraft) 1964 88 317 28 
bounded speed entry 20 34 28 12 
flyable roundabout entry (simplified) 6 10 98 8 
ETCS-kernel safety 41 28 53 9 
ETCS safety (simplified) 56 27 147 15 
ETCS safety 183 87 169 15 
ETCS train controllability 1 6 17 5 
RBC controllability 1 7 45 16 

Tomlin et al. [34] derive saddle solutions for competitive aircraft maneuvers game-theoretically 
using Hamilton-Jacobi-Isaacs partial differential equations and propose roundabout maneuvers. 
Their exponential state space discretizations for PDEs, however, do not scale to larger dimensions 
(they consider dimension 3). Differential invariants, instead, work for 28-dimensional systems. 

Straight-line aircraft maneuvers have been analyzed by geometrical meta-level reasoning [10, 
14, 17]. They did not consider curved flight paths nor prove that their maneuvers are safe with re­
spect to actual hybrid flight dynamics. In contrast, our approach works directly for the hybrid flight 
dynamics, and we verify curved roundabout maneuvers instead of straight-line maneuvers with 
non-flyable instant turns. A few approaches [21,7] have been undertaken to Model Check if there 
are orthogonal collisions in discretizations of roundabout maneuvers. However, the counterexam­
ples found by our model checker in previous work [28] show that non-orthogonal collisions can 
happen in these maneuvers. 

7 Conclusions and Future Work 
We have presented a sound algorithm for verifying hybrid systems with non-trivial dynamics. 
It handles differential equations using differential invariants instead of requiring solutions of the 
differential equations, because the latter quickly yield undecidable arithmetic. We compute differ­
ential invariants as fixedpoints using a verification logic for hybrid systems. In the logic we can 
soundly decompose the system for computing local invariants and we obtain sound recombinations 
into global invariants. Moreover, we introduce a differential saturation procedure that verifies more 
complicated properties by refining the system dynamics in a sound way. We validate our algorithm 
on roundabout collision avoidance maneuvers for aircraft and on collision avoidance protocols for 
trains. 

Our algorithm works particularly good for fully parametric hybrid systems, because their pa­
rameter constraints can be combined faster to find invariants than systems with a single initial 
state, where simulation is more appropriate. We want to validate this in further experiments. Dif-
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ferential induction and the logic d£ generalize to liveness properties and to systems with distur­
bances [27, 25]. In future work, we want to generalize the synthesis of corresponding differential 
(in)variants. Other invariant constructions for differential equations, e.g., [32] can be added and 
lifted to hybrid systems using our uniform algorithm. 

Acknowledgments. We thank Silke Wagner and Alex Donze for their helpful proofreading re­
marks. 
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A Semantics of Hybrid Programs and Differential Dynamic 
Logic 

The semantics of d£ is a Kripke semantics in which states of the Kripke model are states of 
the hybrid system. A state is a map v : V —• E; the set of all states is denoted by State. We 
write v |= <j> if formula (f> is true at state v (Def. 6). Likewise, \0\u denotes the real value of 
term 9 at state v. The semantics of HP a is captured by the state transitions that are possible by 
running a. For continuous evolutions, the transition relation holds for pairs of states that can be 
interconnected by a continuous flow respecting the differential equation and invariant region. That 
is, there is a continuous transition along x' = 9 A H from state v to state LJ9 if there is a solution of 
the differential equation x' = 9 that starts in state v and ends in u and that always remains within 
the region H during its evolution. As in [16, 8], we assume non-zeno behavior, for simplicity. 

Definition 5 (Transition system of hybrid programs) The transition relation, p(a), of a hybrid 
program a, specifies which state UJ is reachable from a state v by operations of a and is defined as 
follows 

1. {y, UJ) G p(x := 9) iff the state u is identical to v except that u(x) = \9\u. 

2. {y, u) G p(x:= random) iff the state u agrees with v except for the value ofx, which is an 
arbitrary real value. 

3. (v,u>) G p(x[ = 9i A • • • A x'n = 9n A H) iff for some r > 0, there is a (flow) function 
(/?:[0, r] —• State with (p(0) = v, (p(r) = u, such that, 

The differential equation holds, i.e., for each Xi and each time £ e [0, r], 

d [ x J v ( t ) r n - w i 

• For other variables y £ {x\,..., xn} and £ e [0, r], the value remains constant, i.e., 
[ i / l ^ o = l » W 

• The invariant is always respected, i.e., </?(C) (= H for each C 6 [0, r]. 

4. p(aUp)=p(a)Up(p) 

5. p{a\(3) = {{y,u) : (v,z) 6 p(a),(z,u) G p ((3) for a state z) 

6. (v, u) G p(a*) iff there are ann 6 N and v = v$,... ,vn = u such that (yi, G p(a) 
forallO <i < n. 

Definition 6 (Interpretation of dLC formulas) The interpretation |= of a dC formula with respect 
to state v uses the standard meaning of first-order logic: 

1- v h 0i ~ h iff[$i]v ~ m j o r ~ € {=, <, <, >, >} 
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2. v f= (f> A if) iffv |= (f) and v \= ip, accordingly for -i, V, —<-+ 

3. [= Vx 0 #f u; |= all UJ that agree with v except for the value ofx 

4. v |= 3x (f> ijfuj (= (f)for some UJ that agrees with v except for the value ofx 

It extends to correctness statements about a HP a as follows 

5. v f= [a](f) iffuj f= (f) for all UJ with {y, UJ) G p{a) 

B Proofs 

B.l Proof of Differential Induction 
For the proof of Proposition 1, we prove a result showing that the directional derivative Vx>F of 
formula F as defined in Def. 4 is a generalization of standard function derivatives. We show that 
the directional derivatives of terms in Vx>F in the direction of the vector field of V agree with 
the standard differentiation. That is, they agree with the differentiation in the Euclidean real space 
of the value of these terms along a flow solving the corresponding differential equation D. As a 
notation for the proof, we introduce an abbreviation for the terms occurring in Def. 4. Let V be the 
differential equation system x[ = 9X A • • • A x'n = 9n and c a term. We define 

i=l 

For a term c, V^(c) is a term. For a formula F9 the directional derivatives in Def. 4 can be written 
with this notation as 

VVF = / \ (V^(fe) - Vd(c)) for - e {=, >, >, <, <} . 
(b~c)€F 

Lemma 1 Let V A H be a continuous evolution and let <p : [0, r] —> State be a corresponding 
flow of duration r > 0 (Def 5). Then we have for all terms c and all C G [0, r] that 

^ | % ) = [ V , ( c ) ] v ( 0 . 

In particular, [c]^ is continuously differentiable and its derivative exists on [0, r]. 

Proof: The proof is by induction on term c. Let V be x[ = Qi A • • • A x'n = 9n. 

• If c is variable Xj for some j (for other variables, the proof is simple because c is constant): 

The last equation holds as = 1 and §^ = 0 for i ^ j . The derivatives exist because <p is 
(continuously) differentiable. 
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• If c is of the form a + b, the desired result can be obtained by using the properties of deriva­
tives and interpretations: 

( 0 6t 

6t 
(C) [•] v homomorphism for + 

= — ( C ) + ^ (C) ^ is a linear operator 

= [Vj>(a)] v ( 0 + [V©(6)] v ( c ) by induction hypothesis 

= [Vp(a) + V©(6)] v ( c ) [•]„ homomorphism for + 

= [Vp(a + &)]̂ (() V is linear, because ^— is linear 

• The case if c is of the form a • 6 is accordingly, using Leibniz's product rule. 
• 

Proof (of Proposition 1): We have to show that v (= F -+ [£> A H]F for all states Let i/ 
satisfy z/ |= F as, otherwise, there is nothing to show. We can assume F to be in disjunctive normal 
form and consider any disjunct G of F that is true at v. In order to show that F remains true during 
the continuous evolution, it is sufficient to show that each conjunct of G is. We can assume these 
conjuncts to be of the form c > 0 (or c > 0 where the proof is accordingly). Finally, using vectorial 
notation, we write x' = 9 for the differential equation system. Now let <p : [0, r] —• State be any 
flow of x' = 9 A H beginning in <p(0) = v according to Def. 5. If the duration of <p is r = 0, we 
have <p(Q) \= c > 0, because v f= c > 0. For duration r > 0, we show that c > 0 holds all along 
the flow tp, i.e., tp(Q \= c > 0 for all C G [0, r]. 

Suppose there was a ( G [0, r] with <p(£) f= c < 0, which will lead to a contradiction. The 
function /i : [0, r] —• R defined as h(t) = [c]^ ( t ) satisfies the relation h(0) > 0 > h((), because 
h(0) = [c] (0) = [c]^ and i/ |= c > 0 by assumption (induction start of Def. 4). By Lemma 1, h is 
continuous on [0, r] and differentiable at every £ G (0, r) . The mean value theorem implies that 
there is a £ G (0, C) such that • (C - 0) = h(Q - h(0) < 0. In particular, since C > 0, 
we can conclude that < 0. Now Lemma 1 impUes that = [Vp ( c ) l^ ( 0 < 0. This, 
however, is a contradiction, because the induction step of Def. 4 implies that H —> V d ( c > 0) is 
true in all states (due to the universal closure Vc/), including \p(£) |= H —> Vp(c > 0). In partic­
ular, as (p is a flow for £> A 77, we know that <£>(£) f= i7 holds, and we have (p(£) \= Vx>(c > 0), 
which contradicts [Vx>(c)]^j < 0. • 

B.2 Proof of Differential Saturation 
Proof (of Proposition 2): Let F be a continuous invariant, which implies that ip —> [£> A H]F 
is valid. Let *v be a state satisfying ^ (otherwise there is nothing to show). Then, v |= [V A H]F. 
Since this means that F is true all along all flows (p of V A if that start in */ (Def. 5), the lat­
ter differential equation and V A H A F have the same dynamics and the same reachable states 
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from v, i.e., (i/, cj) e p(£> A if) holds if and only if (i/, G p(2? A H A F) (Def. 5). Thus, we 
can conclude that I/J ^ [V A H](j> and ^ —• [V AH A F]</> are equivalent, because their semantics 
uses the same transition relation. • 

B.3 Proof of Loop Saturation 
Proof (of Proposition 3): Let H be a discrete invariant of $ —> [a*]0. Let, further, F be a 
discrete invariant of ip -* [a*]0. Then ^ —> F and F —• [a]F are valid by Def. 2. Hence, triv­
ially, F —> [a](if —> F) is valid, because all states that satisfy F also satisfy the weaker prop­
erty H -> F . Especially, H A F -> [a] (if -> F) is valid. Finally, the validity of ip -> if A F 
clearly entails ^ —> F. 

Conversely, let, if be a discrete invariant. Let, further, H A F —> [a](H —> F) and ^ —• F be 
valid. For if A F to be a discrete invariant, we have to show that F satisfies the induction step 
of Def. 2 (the induction start ip —» H A F is an immediate combination of the validity ofip-±H 

and tp —• F). Since if is a discrete invariant, H - » [a]if is valid, which entails if A F —• [a] if 
as a special case. Since if A F —• [a] (if —> F) is valid and H A F —> [a]if is valid, we conclude 
that if A F —> [a] (if A F) is valid for the following reason. Let i/ be a state satisyfing the initial 
constraints H A F . Then u \= [a] if and z/ f= [a](H -» F) . Hence, all states u reachable from v 
by a satisfy a; f= H and a; |= if -» F . Thus, they satisfy u \= H A F , essentially by modus po-
nens. Consequently, we have shown that if A F —> [a] (if A F) is valid, and, hence, if A F is a 
discrete invariant of ij) —» • 

B.4 Proof of Soundness of the Verification Algorithm 
Proof (of Theorem 1): The proof is by induction on the structure of the algorithm. 

• In the base case (line 11 of Fig. 2), prove returns the result of quantifier elimination, which 
is a sound decision procedure [6]. 

• If a is of the form x:=0, the algorithm in line 1 of Fig. 2 is responsible. If it returns 
"true", then prove(i(j A x = 6 —> 40 has returned "true". Hence, by induction hypothesis, 
if) A x = 9 —» 4% is valid. Now, because x was a fresh variable, the substitution lemma can 
be used to show that ip —»(j)e

x and ip —> [rr := 9](j) are valid. Hence, the result of prave is 
sound. 

• If a is of the form x := random, the algorithm in line 9 of Fig. 2 is responsible. Soundness 
can be proven directly using the fact that § being true after all random assignments to x is 
equivalent to <fi being true for all real values of x. Hence, ^ —> [x := random](f> is valid if and 
only if i\> —> Vx </5 is. 

• The other cases of Fig. 2 are accordingly. 

• If a is of the form V A if for a differential equation system £>, the algorithm in Fig. 5 is re­
sponsible. If it returns "true" in line 3 in the first place, then the calls prove in line 2 must have 
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resulted in "true", hence, by induction hypothesis, H entails <f>. Thus postcondition (f> is true 
in a subregion of the evolution domain H. Thus ip —> [V A H]<f> is valid, trivially, because 
all evolutions along V AH always satisfy H and, hence, <j>. If, however, H was changed in 
line 6 during the fixedpoint computation, then the calls to prove for the properties in line 5 
must have returned "true". Thus, by induction hypothesis, the dC formulas X/J A H —> F and 
Vci(H -» Vv(F)) are valid, hence F is a differential invariant of rj) -> [2? A # ] 0 by Def. 4. 
Consequently, by Proposition 1, F also is a continuous invariant (Def. 3). Thus, by Proposi­
tion 2, the d£ formulas ip -» [1? A and i/> —• [V AH A F](f> are equivalent, and we can 
(soundly) verify the former by proving the latter. Consequently, the modification of the evo­
lution domain H to H A F in line 6 is sound, because the algorithm will continue proving a 
refined but equivalent formula for a refined but equivalent system. 

• If a is a loop of the form /?*, the proof is similar to the case for differential equations, except 
that it uses Proposition 3 instead of Proposition 1. 

• 

C Case Studies 
In this section, we present details on the case studies that we have verified with our verification 
algorithm. The verification tool1 in which we have implemented our algorithm and the problem 
specification files for the case studies2 are available online. As case studies, we verify collision 
avoidance properties for flight control maneuvers [34, 19, 21, 7, 10, 28, 14, 17] and train control 
protocols [29]. 

C.l Flyable Tangential Roundabout Maneuver 
As a case study, we show how safety properties of collision avoidance maneuvers in air traffic 
management can be verified with our verification algorithm. Aircraft maneuvers are challenging 
for verification [34, 19, 21, 7, 10, 28, 14, 17], because of the complicated spatial/geometrical 
movement of aircraft. Technically, this complexity manifests in difficulties with analyzing hybrid 
systems for flight equation (1) or the equivalently reparameterized differential equation system (J7). 

On straight lines, i.e., where the angular velocity is u = 0, the value of sin # and cos d remain 
constant during continuous evolutions such that the solutions of (1) are (possibly piecewise) linear 
functions. For hybrid systems with linear evolution functions, there are well-known analysis tech­
niques [16]. Pure straight line maneuvers [34,21,10,14,17] are aircraft maneuvers with piecewise 
linear evolutions, see, e.g., Fig. 9. They assume instant turns for heading changes of the aircraft be­
tween multiple straight line segments. Instant turns, however, are impossible in midflight, because 
they are not flyable: Aircraft cannot suddenly change their flight direction from 0 to 45 degrees 
discontinuously but need to follow a smooth curve instead, in which they slowly gear towards the 
desired direction. 

Verification tool KeYmaera available at h t tp : / /www. symbic. net / inf o/KeYmaera. html 
2A11 case studies are available at h t tp : //www. symbic. net/pub/fpdi-examples . zip 
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y non-flyable instant turn 

Figure 10: Protocol cycle and construction of fly able roundabout maneuver 

A fully flyable roundabout maneuver is depicted in Fig. 8. It does not contain instant turns, but 
all of its curves are sufficiently smooth. The flyable roundabout maneuver consists of the phases 
in Fig. 10 which correspond to the flight phases marked in Fig. 8. 

During free flight, the aircraft move without restrictions by repeatedly choosing arbitrary new 
angular velocities u and g (in phase free). When they come closer, the aircraft agree on a round­
about maneuver by negotiating a common roundabout center c (in the coordination phase tang). 
Next, the aircraft approach the roundabout circle by a right curve with u < 0 (entry mode). During 
the circ mode, the aircraft follow the circular roundabout maneuver around the agreed center c with 
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i 
Figure 9: Non-Fly able straight line maneuver with instant turns 

During curves, the angular velocity UJ is non-zero, which causes the trigonometric expres­
sions in (1) to have a permanent non-constant effect on the dynamics of the system. Accordingly, 
for UJ 7̂  0, the equivalent differential equation system (J7) has transcendental solutions, such that 
reachability problems along these solutions fall into undecidable classes of arithmetics. Conse­
quently, maneuvers with curves like in Fig. 8 are much more challenging for verification than 
straight line maneuvers like Fig. 9, because the flight equations (1) and (J7) become highly non-
trivial. To verify roundabout maneuvers with curves like in Fig. 4, our algorithm works with 
differential invariants (Def. 4) instead of solutions of differential equations. 

u) := random 
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a left curve of common angular velocity UJ. Finally, the aircraft leave the circular roundabout in 
cruise mode (UJ = 0) into their original direction (exit) and enter free flight again when they have 
sufficient distance. The maneuver is symmetric when exchanging left and right curves. 

C.1.1 Verification Overview. 

We pursue the following overall verification plan by verifying, subsequently: 

1. Tangential roundabout maneuver: Prove that the protected zones of aircraft are safely sepa­
rated at all times during the whole maneuver when using a simplified entry operation. 

2. Bounded entry speed: Prove that linear speeds are bounded for the overall maneuver. 

3. Flyable entry procedure: Prove that the simplified entry procedure can be replaced by a 
flyable curve. 

4. Entry separation: Prove that the protected zone is respected during flyable entry procedure. 

We present details on these verification tasks in the sequel. Informally, the property in case 4 is 
a consequence of the bounded speed and bounded duration of the flyable entry procedure when 
initiating the negotiation phase tang with sufficient distance. For the time being, we did not yet 
verify case 4 formally. 

C.1.2 Tangential Roundabout Maneuver. 

First, we prove that the tangential roundabout maneuver safely avoids collisions, i.e., the aircraft 
always maintain a safe distance >p during the curved flight in the roundabout circle. In addition, 
we verify that arbitrary repetitions of the protocol cycle are safe at all times for a simplified choice 
of the entry maneuver. 

The flight equations for aircraft x are denoted by ^(u;) , i.e., the upper equations of (J7). We 
abbreviate the differential equations for aircraft y by Q(g) for the lower equations of (J7). 

The model and specification for this tangential roundabout are given in Fig. 11. There, safety 
property ip for collision avoidance maneuvers expresses that protected zones are respected dur­
ing the flight (specified by separation property (f>). The flight controller (trm*) performs collision 
avoidance maneuvers by tangential roundabouts and repeats these maneuvers any number of times 
as needed. During each trm phase, the aircraft first perform free flight (free) by (repeatedly) in­
dependently adjusting their angular velocities UJ and g while they are safely separated, which is 
expressed by conjunct 0 of the differential equation. Due to invariant region cj> of free, the tan­
gential roundabout maneuver must be initiated (by a tangential initiation controller tang) before 
the flight paths become unsafe. Then, the tangential roundabout maneuver itself is carried out by 
the differential equation F(UJ) A Q(UJ) according to some common angular velocity UJ determined 
by tang. Finally, the collision avoidance roundabouts can be left again by repeating the loop trm* 
and entering arbitrary free flight at any time. When further conflicts occur during free flight, the 
controller in Fig. 11 again enters roundabout conflict resolution maneuvers. 
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I/J = (j) —> [trm*](j) 
ct> = \\x - y\\2 > p2 = (m - yi)2 + (x2 - y2)2 > p2 

trm = free; tang; J7^) A Q(u) 
free = (u:= random] Q := random] T{UJ) AQ(Q) A(f))* 
tang = UJ .= random] c := random] 

di := —u(x2 — c 2 ) ; d 2 : = ^ ( z i — Ci); 
ei := - ci); e 2 :=^(</2 - c 2 ) 

Figure 11: Flight control with tangential roundabout collision avoidance maneuvers 

In summary, property ip of Fig. 11 expresses that the aircraft remain safe during the flight, 
especially during evasive roundabout maneuvers. Our verification results for this property are 
indicated in row 1 of Tab. 2. The next rows in Tab. 2 prove a corresponding property for up 
to 5 aircraft, which jointly participate in the roundabout maneuver. There, the safety property 
is mutual collision avoidance, i.e., each of the aircraft has a safe distance >p to all the other 
aircraft. For instance, Fig. 12 contains the system and separation property specification for the 
roundabout maneuver with 4 aircraft. There, property ip expresses that the 4 aircraft at x, y, z 
and u, respectively, keep mutual distance >p, which gives a quadratic number of constraints. This 
quadratic increase in the property that actually needs to proven for a safe roundabout of n aircraft 
causes the increased verification times for more aircraft in Tab. 2. 

C.1.3 Bounded Speed. 

The tangential roundabout maneuver in Fig. 11 maintains collision avoidance for all its chocies of 
center c and angular velocity CJ in tang. Next, we show that there always is a choice respecting 
external requirements on linear speed (aircraft can neither fly too slow nor too fast). Hence, for all 
external choices of the linear speed v, there is a choice for the options in tang such that the velocity 
is v: 

\Jv {(j) -> (tang)((f) Ad2 + d2 = v2)) . 

The verification results for this property are indicated in line 5 of Tab. 2. 

C.1.4 Flyable Entry Procedure. 

In order to generalize the verification results about the tangential roundabout maneuver with sim­
plified entry procedures to the fully flyable tangential roundabout maneuver, we analyze a flyable 
entry procedure, which replaces our simple choice of entry in Fig. 11 and Fig. 12. 

A flyable entry maneuver that follows the smooth entry curve from Fig. 8 is depicted in Fig. 13. 
Its construction uses the anchor point h indicated in Fig. 10. Anchor h is positioned relative to 
the roundabout center c and the x position at the start of the entry curve (i.e., with x at the right 
angle indicated in Fig. 10). The property in Fig. 13 specifies that the tangential configuration of the 
simple choice for tang in Fig. 11 can be reached by a flyable curve when waiting until x and center c 
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ip = cf) —> [trm*](f) 

<j> = (xi - yi)2 + ( x 2 - y 2 ) 2 >p2A (»i - z x ) 2 + (y2 - z 2 ) 2 > p2 

A (xi - z i ) 2 + (x2 - z2)2 > p2 A (xi - u i ) 2 + ( x 2 - u 2 ) 2 > P2 

A (yi - u i ) 2 + (y2 - u2)2 >p2A (zx - ux)2 + (z2 - u2)2 > p2 

trm = free; tang; 
x[ = di A x 2 = d 2 A d ;

x = — cj x ( i 2 A rf2 = ujxd\ 
A yi = ei A J/2 = e 2 A = — u; 3 /e 2 A e 2 = u; yei 

A 4 = / i A 4 = / 2 A / ( = -uzf2 A / 2 = u; 2 / i 

A = #1 A v!2 = g2 A #i = - u ; u £ 2 A # 2 = u ;^ ! 

free = (a; x := random; u>y := random; CJZ := random; u u := random; 
x[ = di A x'2 = d2 A d\ = - u ; x d 2 A d 2 = a;xrfi 

A yi = ei A y 2 = e 2 A e[ = —ujye2 A e2 = ojye\ 

A z[ = / i A z2 = f2 A f[ = - u ; z / 2 A f2 = c j 2 / i 

A ui = gi A v!2 = g2 A g[ = - u u g 2 A g2 = A 0)* 

fang = u : = random; c : = random; 
dx := —u>(x2 — c 2 ) ; rf2 :=u;(xi — Ci); 

ei := -u)(y\ - Ci); e 2 :=a ; (y 2 - c 2 ) ; 

/ i := -u;(zi - c i ) ; / 2 : = c j ( z 2 - c 2 ) ; 

gi := - c j ( u i - c i ) ; flf2 :=u;(t6 2 - c 2 ) 

Figure 12: Tangential roundabout collision avoidance maneuver (4 aircraft) 

have distance r. The existence of a choice for the anchor point h satisfying the requirements in 
Fig. 13 can be shown by proving the following d£ diamond formula: 

(h := random; 
l(di = LJ(X2 - h2) A d2 = - u ; ( x i - hi)); 
U(hi ~ erf + (h2 - c2)2 = (2r)2);. 
?(r 2 = ( x 1 - / i 1 ) 2 + ( x 2 - / i 2 ) 2 ) ; 

) true 

This property can be verified together with that in Fig. 13 in a simplified version. To overcome 
the complexity of real quantifier elimination [6], which is doubly exponential in the number of 
quantifier alternations, we use symmetry reduction to simplify the property in Fig. 13. 

Without loss of generality, we can recenter the coordinate system to have c at position 0. Fur­
ther, we can assume aircraft x to come from the left by changing the orientation of the coordinate 
system. Finally, we can assume, without loss of generality, the linear speed to be 1 (by rescaling 
units appropriately). Observe that we cannot fix a value for both the linear speed and the angular 
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[h := random; 
l(di = UJ(X2 - h2) A d 2 = — - hi))] 

? ( ( / i i - c 1 ) 2 + ( / i 2 - c 2 ) 2 = (2r) 2); 
? ( r 2 = ( x 1 - / i l ) 2 + ( x 2 - / i 2 ) 2 ) ; 

rri = di A x 2 = d2 A di = u;d2 A d 2 = -o ;d i A ((xi - c x ) 2 + (x 2 - c 2 ) 2 > r 2 ) 

]( 
(xi - cxf + (x2 - c 2 ) 2 > r 2 

V (d-i = —w(x2 - c 2 ) A d2 = w(a;i - Ci)) 

) 

Figure 13: Flyable entry procedure 

velocity, because their units are interdependent. In other words, if we fix the linear speed, we need 
to consider all angular velocities to verify all possible curve radii r for the roundabout maneuver. 
The x position resulting from these symmetry reductions can be determined as follows, see Fig. 10: 

x = (0, 2r cos ~) = (0, y/{2r)2 - r 2 ) = (0, y/Sr) . 

To express the square root functoin, we can easily use a random assignment for x2 with a test 
condition x\ = (y/Sr)2 = 3r 2 . Consequently, we simplify Fig. 13 by specializing to the following 
situation: 

di := 1; d2 := 0; cx := 0; c2 := 0; 
x2 := 0; 
r := random] IT > 0; u := 1/r; 
x\ := random] lx\ = 3r 2 A x\ < 0; 

Verification results for the resulting entry procedure, including the proof of existence of a corre­
sponding anchor point h are shown in Tab. 2. 

C.2 European Train Control System (ETCS) 
The European Train Control System (ETCS) is a standard to assure safe operation of trains and high 
throughput of high speed trains. ETCS level 3 follows the moving block principle, i.e., movement 
authorities are not known beforehand but determined based on the current track situation by a 
Radio Block Controller (RBC). Trains are only allowed to move within their current movement 
authority block (denoted by m), which can be updated by the RBC using wireless communication. 
Hence the train controller needs to regulate the movement of a train locally such that it always 
remains within m, see Fig. 14. 
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The properties in Tab. 2 prove safety and controllability properties of the parametric ETCS 
protocol. The ETCS system model is given in Fig. 15. We refer to [29] for details on this case study. 
The properties in Tab. 2 correspond to the respective propositions in previous work [29]. Note that 
the algorithm that we introduced in this paper computes the invariants for ETCS automatically, 
which had to be provided manually in [29]. 

D Additional Algorithms 
The algorithm in Fig. 16 verifies loops. It is a direct adaption of that in Fig. 5, except that it uses 
Proposition 3 as an induction step for loops. The algorithm in Fig. 16 performs a fixedpoint compu­
tation for loops and recursively combines the local differential invariants obtained by differential 
saturation to form a global invariant. It recursively uses prove for verifying its subtasks, which 
handle the discrete switching behavior according to Fig. 2 and infer local differential invariants 
according to differential saturation by the fixedpoint algorithm in Fig. 5. 

In this section, we briefly summarize the sequent calculus for d£ [26]. 
A sequent is of the form V h A, where the antecedent T and succedent A are finite sets of 

formulas. Its semantics is that of the formula A</><=r <l> - * V^ga ^- Sequents will be treated as an 
abbreviation. 

The cLC calculus uses substitutions. The result of applying to <f> the substitution that replaces Xi 
by 9 is defined as usual; it is denoted by <f>e

x. In the dC calculus, only admissible substitutions are 
applicable, which is crucial for soundness. We assume a-conversion for renaming as needed. 

Definition 7 (Admissible substitution) An application of a substitution a is admissible if no re­
placed term t occurs in the scope of a quantifier or modality binding a variable of at or t A 
modality binds x if it contains an assignment x:=9ora differential equation containing x'. 

As usual in sequent calculus—although the direction of entailment is from premisses (above rule 
bar) to conclusion (below)—the order of reasoning and reading is goal-directed in practice: Rules 
are applied in tableau-style, that is, starting from the desired conclusion at the bottom (goal) to 

Figure 14: ETCS train coordination protocol 

E Proof Rules of the dC Sequent Calculus 
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spec : r.v2 — m.d 2 < 2b(m.e - r.p) A r.v > 0 A m.d > 0 A b > 0 
[ETCS] (r.p > m.e -> r.v < m.d) 

ETCS : (train Urbc)* 
train : spd; atp; move 
spd : (?r.v < m.r; r.a := *; ? — b < r.a < A) 

U(?r.v > m.r; r.a := * ; ?0 > r.a > —6) 

A T P : S B : = I £ £ U E . + tf + 1 ) ( A E 2 + E T M V ) . 

(?(m.e — r.p < SB V rbc.message = emergency)] r.a := —b) 

U(?m.e — r.p > SB A rbc.message ^ emergency) 

move : t :— 0; (r.p' = r.v, r.v' = r.a, = 1 A r . v > 0 A £ < e) 
rbc : (rbc.message := emergency) 

U (m0 := m;m := *; 
?m.r > 0 A m.d > 0 A m 0 .d 2 - m.d 2 < 2b(m.e - m 0 .e)) 

Figure 15: Formal model of parametric ETCS cooperation protocol 

1 funct ion prove (V> —• [&*](/>): 
2 Hi- true /* currently known invariant of ip —* */ 
3 if prove (V d(#-></>)) then 
4 return true /* correctness property proven */ 
5 for each F G l n d C a n d i d a t e s (ip -> , i f ) do 
6 i f prove(V>A# -> F ) and prove (V c / (# A F [a](# -> F))) then 
7 H := HAF /* refine by discrete invariant */ 
8 goto 3 ; /* repeat fixedpoint loop */ 
9 end for 

10 return "no t p r o v a b l e us ing c a n d i d a t e s " 

Figure 16: Fixedpoint algorithm for discrete loop invariants (loop saturation) 
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the resulting premisses (sub-goals). The proof rules of the d£ calculus are depicted in Fig. 17. 
The calculus consists of propositional rules (P-rules), first-order quantifier rules (F-rules), rules for 
dynamic modalities (D-rules), and global rules (G-rules). 

For propositional logic, standard P-rules are listed in Fig. 17. Unlike in uninterpreted first-
order logic [11, 12], quantifiers are dealt with using quantifier elimination (QE) over the reals [6]. 
Compatibility with dynamic modalities is established using side deductions for the F-rules. 

The D-rules handle HP by successively transforming them into logical formulas. State checks 
like 1H are shown by assuming the test suceeds, i.e., H holds true (D4), nondeterministic choices 
split into their alternatives (DI), a; 0 is proven using nested modalities (D2), and random assign­
ments are handled by universal quantification (D5). D3 uses substitutions for handling discrete 
change. Rules D6-D7 are weakening and strengthening rules for DAF, respectively. 

The G-rules are global rules. They depend on the truth of their premisses in all states, which 
is ensured by the universal closure with respect to all free variables. If x i , . . . , xn are the free 
variables of $, then Vxi . . . Vxn $ is its universal closure. The G-rules are given in a form that 
best displays their underlying logical principles. The general pattern for applying G-rules to prove 
that the succedent of their conclusion holds is to prove that both the antecedent of their conclusion 
and their premiss holds. Formally such derived rules can be obtained using a cut (RIO). Cuts are 
not needed in practice. 

Gl is a generalisation rule. G2 is a discrete induction schema for repetitions with inductive 
invariant F. G2 says that F holds after any number of repetitions of a, if it holds initially and is 
sustained after each execution of a. 

G3 is a rule for differential induction, which is a continuous form of induction along differential 
constraints. The induction rules G2 and G3 differ in the way the invariant remains true once it is 
true initially. G2 uses the inductive nature of repetition. G3, instead, uses continuity of evolution 
and the differential equation for a continuous induction step with the differential invariant F: 
If F holds initially (antecedent of conclusion) and its gradient V F • V (see Def. 4 on page 6) 
satisfies the same relations when taking into account the differential constraints (premiss), then F 
itself is sustained differentially (succedent of conclusion). Finally, G-rules can be combined with 
generalisation (Gl) to strengthen postconditions as needed. 

Definition 8 (Provability) A formula ip is provable from a set $ of formulas, denoted by <& hd£ 
iff there is a finite set 3>0 C <$> for which the sequent $ 0 H is derivable. In turn, a sequent $ h \I> 
is derivable iff there is an inference rule of the 6C calculus (Fig. 17) with conclusion $ h \I> such 
that all premisses of the rule are derivable. 

29 



r h v 7 r h ^ A V ' r i - ^ v v ' r h ^ - » v 
( P 2 ) ^ ^ ( P 4 ) ^ r r ^ T - (P6) £ , (P8) 

ri- ^ r ,^h 
( R 9 ) r ^ R ( R 1 Q ) rh 

QE(Vx AiCrj h Aj)) QE(3a; A,(r« h A,)) 
1 ' rhA,Va;0 1 ' rhA ,3x0 

QE(3x A«(r« h A,)) QE'Va; Ai ( r i ^ Aj)) 
1 ' r,Va;0l-A ^ ' r, 3 x 0 h A 

( D 1 ) L L W W ( D 2 ) £ ^ 1 W ^ 3 , ^ ^ ( 0 4 , ^ ^ 

(D5) 

rh [a U/?]</> v 'rh[a;/?]0 F h [x :=6)<j> V h [?#]</> 

r h [x := random]<fi 
rh [?x]</> „ rh[p] x r n p A x ] ^ 

( D 6 ) r h [ P A X ] 0 ( } r T W 
r I -V c / (0 -> VQ r h V d (F - [a]F) 

( G 1 ) r - . ^ L - r-i.i. ( G 2 > 

(G3) 

r , [ a ]^h [a ]V I \ F l - [ a * ] F 
r h V C/(X —» V F • ( i , = 1̂ A • • • A < = flw)) 
r, (x *0 H K = 61 A • • • A x'n = 0 n A x]F 

In all rule schemata, all substitutions need to be admissible. In D6-D7, V is a differential equation 
and x an arithmetic formula. In G3, F is first-order without negative equalities. For F-rules, 
the Ti h Aj are obtained from the resulting sub-goals of a side deduction, see (*) in Fig. 18. 
The side deduction is started from the goal T h A, 0 at the bottom (or r , <j> h A for F2 and F4), 
where x is assumed not to occur in T, A using renaming. In the resulting sub-goals I\ h Aj, 
variable x is assumed to occur in first-order formulas only, as quantifier elimination (QE) is then 
applicable. 

Figure 17: Rule schemata of the d£ calculus. 

_QE 

QE(3x Ai(A h ^i)) . . . h . . . . . . i - . . . (*) 
r 1 - 4 , 3 x 0 I r\-A,<t> 

start side 

Figure 18: Side deduction for quantifier elimination rules. 
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