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Abstract 

MEMS-based storage devices promise significant performance, reliability, and power improvements relative to disk 
drives. This paper explores how the physical characteristics of these devices change four aspects of operating system 
management: request scheduling, data placement, failure management, and power management. Adaptations of disk 
request scheduling algorithms are found to be appropriate for these devices; however, new data placement schemes are 
shown to better match their differing mechanical positioning characteristics. With aggressive internal redundancy, 
MEMS-based storage devices can tolerate failure modes that cause data loss for disks. In addition, MEMS-based 
storage devices enable a finer granularity of OS-level power management because the devices can be stopped and 
started rapidly and their mechanical components can be individually enabled or disabled to reduce power consumption. 
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1 Introduction 
Decades of research and experience have provided operating system builders with a healthy understanding 
of how to manage disk drives and their role in systems. This management includes such issues as achieving 
acceptable performance despite the relatively time-consuming mechanical positioning delays, dealing with 
transient and permanent hardware problems so as to achieve high degrees of data survivability and availabil
ity, and minimizing power dissipation in battery-powered mobile environments. To address these issues, a 
wide array of OS techniques are used, including request scheduling, data layout, prefetching, caching, block 
remapping, data replication, and device spin-down. Given the prevalence and difficult nature of disks, most 
of these techniques have been specifically tuned to the physical characteristics of disks. 

When other devices (e.g., magnetic tape, Flash RAM) are used in place of disks, the characteristics of 
the problems change. Putting new devices behind a disk-like interface is generally sufficient to achieve a 
working system; however, the OS techniques must be tuned to a particular device's characteristics to achieve 
the best performance, reliability, power consumption, etc. For example, request scheduling techniques are 
much less important for RAM-based storage devices than for disks, since location-dependent mechanical 
delays are not involved. Likewise, locality-enhancing block layouts, such as cylinder groups [MJLF84], 
extents [MK91], and log-structuring [R092], are not as beneficial. However, for storage devices based on 
Flash RAM, log-structured file systems with idle-time cleaning can increase both performance and device 
lifetimes [DCK+94, KL99]. 

Microelectromechanical systems (MEMS)-based storage is an exciting new technology that will soon be 
available in computer systems. MEMS are very small scale mechanical structures—on the order of 10s 
to 1000s of micrometers—fabricated on the surface of silicon wafers [Wis98]. These microstructures are 
created using the same photolithographic processes used to manufacture other semiconductor devices (e.g., 
CPUs and memory) [FSR+96]. MEMS structures can be made to slide, bend, and deflect in response to 
electrostatic or electromagnetic forces from nearby actuators or from external forces in the environment. 
Using minute MEMS probe tips, data bits can be stored in and retrieved from magnetic media coated on a 
movable silicon substrate ("media sled") [CBF+00, GSGN00]. Practical MEMS-based storage devices are the 
goal of major efforts at many research centers, including IBM, Carnegie Mellon University, Hewlett-Packard, 
and UC Berkeley. 

Like disks, MEMS-based storage devices have mechanical and magnetic characteristics that merit specific 
OS techniques to manage performance, fault tolerance, and power conservation. For example, the mechanical 
positioning delays (e.g., seek and settle time) for MEMS-based storage devices depend on the current and 
destination position and velocity of the media sled, just as disks are dependent on the arm position and 
platter rotational offset. However, the mechanical expressions that characterize sled motion differ from 
those describing platter and arm motion. Knowledge of these differences impacts both scheduling and 
layout decisions at the OS level. Similar examples exist for OS fault management and power conservation 
mechanisms. To assist designers of both MEMS-based storage devices and the systems that use them, an 
understanding of the options and trade-offs for OS management of these devices must be developed. 

Our work takes a first step towards developing this understanding of OS management techniques for 
MEMS-based storage devices. In this report, we describe the movable media sled design that is being 
developed independently by several groups. With higher storage densities and lower random access times 
(<1 ms) than disks, these devices could play a significant role in future systems. After describing a disk
like view of these devices, we compare and contrast their characteristics with those of disks. Building on 
these comparisons, we explore options and implications for three major OS management issues: performance 
(specifically, request scheduling and block layout), failure management (media defects, device failures, and 
host crashes), and power management. 

While these explorations are unlikely to represent the final word for OS management of these newly-
emerging devices, we believe that several of our high-level results will remain valid: (1) Disk scheduling 
algorithms can also be adapted to MEMS-based storage devices, resulting in relative values that roughly 
match their rankings for disks. (2) We find that disk layout techniques can be adapted usefully, but that 
the Cartesian movement of the sled (instead of rotational motion) allows further refinement of layouts to 
provide benefit. (3) Striping of data across tips can greatly increase a system's tolerance to media, tip, 
and electronics faults; in fact, many faults that would cause data loss in disks can be made recoverable 
in MEMS-based storage devices. (4) Miniaturization and lack of rotation make these devices much more 
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Figure 1: The "moving media" model. The media sled is suspended above the array of fixed tips. The 
sled moves small distances along the X and Y axes, allowing the fixed tips to address 30-50% of the total 
media area. This yields capacities of gigabytes per square centimeter. 

power-friendly than disks; to first order, power dissipation is a linear function of the number of bits read or 
written. This makes power optimization equivalent to data access minimization (e.g., adapting the rate at 
which applications consume data [NSN+97, FS99]). Also, not having the large mechanical delay involved in 
spinning up or down disks improves the availability of power-optimized MEMS devices by reducing restart 
times after power-down. 

The remainder of this paper is organized as follows. § 2 describes MEMS-based storage devices, focusing 
on how they are similar to and different from magnetic disks. § 3 describes our experimental setup, including 
the simulator and the workloads used. § 4 evaluates request scheduling algorithms for MEMS-based storage 
devices. § 5 explores data layout optimizations. § 6 describes approaches to fault management within and 
among MEMS-based storage devices. § 7 discusses their power usage characteristics and their impact on 
power management. § 8 summarizes this work's contributions. 

2 MEMS-based Storage Devices 
This section describes a MEMS-based storage device and compares and contrasts its characteristics with 
those of conventional disk drives. The description, which follows that of [GSGNOO], maps the devices' access 
and layout characteristics onto a disk-like metaphor to further clarify similarities and differences. 

2.1 B a s i c D e v i c e D e s c r i p t i o n 
MEMS-based storage devices use the same basic magnetic recording technologies as disks, relying on MEMS 
microstructures to position miniature probe tips over specific magnetic media locations. Because long-lasting 
rotating structures are difficult to achieve in silicon, MEMS-based storage devices are unlikely to include the 
rotating platters coated with magnetic media that characterize disks. Instead, most current designs contain 
a movable sled coated with magnetic media. This sled is spring-mounted above a two-dimensional array of 
probe tips and can be pulled in the X and Y dimensions by electrostatic forces applied by comb actuators 
at each edge. Unlike disk arms, the probe tips remain stationary under the media (except for minute tip 
movement to adjust for skewed tracks and sled surface variations). Therefore, the sled is responsible for 
positioning/seek movements, as opposed to disk platters that share this role with seek arms. Figures 1 and 2 
illustrate this MEMS-based storage design. 
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Figure 2: The suspended media sled in the moving media model. The actuators, spring suspension, 
and the media sled itself are shown. Anchored regions are black and the movable structure is shaded grey. 

Concretely, an example MEMS-based storage device [CBF+00] might have a media area on the sled of 
about 1 cm 2 , under which perhaps 10,000 probe tips could be placed. For designs with a bit cell of 0.0025 /mi 2 

(50 nm per side) and encoding/ECC overheads of roughly 2 bits per byte, these devices have a capacity of 
about 4 gigabytes per square centimeter. Note the square nature of the bit cells; because the probe tips are 
so much smaller than disk heads, the bits stored on these devices can have a 1-to-l aspect ratio, resulting in 
densities 15-30X greater than those of disk drives. The per-device media areas are smaller than the usable 
area on disk platters; however, several MEMS-based storage devices could easily be packaged in a disk form 
factor to increase capacity. The mechanically-positioned components also have much smaller masses than 
their corresponding disk parts, allowing random access times in only 100s of microseconds. For the default 
parameters used in this paper, the average random 4 KB access time is 500 /xs. 

2 .2 Low- leve l D a t a Layout 

The magnetic media on the sled is organized into rectangular regions as shown in Fig. 3. Each rectangular 
area stores N x M bits (e.g., 2500x 2500 bits) and is accessible by exactly one probe tip. The smallest 
accessible unit of data is a "tip sector" consisting of servo information (10 bits) and encoded da ta /ECC (80 
bits = 8 encoded data bytes). Multiple tip sectors are grouped into logical sectors, similar to logical blocks 
in SCSI disks. Unlike most conventional disks, multiple probe tips can access the media in parallel—thus 
many tip sectors can be read or written simultaneously. Due to power and heat considerations, it is unlikely 
that all probe tips can be active simultaneously; rather, we expect groups of 200-2000 tips to be the norm. 

In organizing the low-level media structure, we identify each bit by the triple (x,y,tip), where (x,y) 
represents bit coordinates within the region addressable by (tip). Each active probe tip reads or writes data 
within a column of bits (called a tip track; see Fig. 3) as the media sled moves along the Y axis. A tip 
track contains M bits, each with identical values for (x,tip). Drawing on analogies from disk terminology, 
we refer to the set of all bits with identical values for (x) as a cylinder (shown in Fig. 4). In other words, 
a cylinder consists of all bits that are accessible by any tip without moving the sled along the X axis; there 
are N cylinders per device. Because only a subset of probe tips can be active at once (recall the power and 
heat considerations above), cylinders are divided into tracks. A track consists of all bits within a cylinder 
that can be read or written by concurrently active tips. In Fig. 4, tips A l , A2, A3 and A4 are active and the 
corresponding track is indicated. As with conventional disks, reading or writing a complete cylinder requires 
multiple passes with track switches (i.e., switching which tips are active) in between. 
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Figure 3: Data organization of MEMS-based storage. The illustration depicts a small portion of the 
magnetic media sled. Each rectangle outlines the area accessible by a single probe tip, with a total of 16 tip 
regions shown. (A full device contains thousands of tips and tip regions.) Each region stores NxM bits, 
organized into vertical Hip sectors" containing encoded data and ECC bits. These tip sectors are demarcated 
by uservo information" strings that identify the sector and track information encoded on a disk. To read or 
write data, the media passes over the active tip(s) in the ± Y direction while the tips access the media. 
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tip sectors. For example, Sectori consists of the first tip sectors of the two upper tip regions, Al and A2. 
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2 .3 M e d i a A c c e s s Charac ter i s t i c s 

Because multiple tips are active simultaneously, logical sectors can be striped across tip sectors (i.e., under 
multiple tips) to reduce access time. Fig. 4 illustrates a layout where each logical sector is striped across two 
tip sectors. In order to read logical sectors 1 and 2, tips A l through A4 are activated while the sled seeks to 
the top of cylinder 2 and moves down (in the - Y direction) across the first t ip sector. Tip A l reads half of 
logical sector 1, tip A2 reads the other half, and tips A3 and A4 read logical sector 2. In this paper, logical 
sectors of 512 bytes are striped across 64 tip sectors of 8 bytes each. 

Media access requires constant sled velocity in the Y direction (and zero velocity in the X direction). This 
access velocity is a design parameter and is determined by the maximum per-tip read and write rates, the 
bit width, and the sled actuator force. Large transfers may require that data from multiple tracks and/or 
cylinders be accessed. To switch tracks during large transfers the sled performs a turnaround (reversing 
direction such that (x,y) final = (x, y)initial and Vfinai = - V i m t i a i ) and switches the set of active tips. The 
turnaround time is expected to dominate any additional activity (such as the time to switch the set of active 
tips) during both track and cylinder switches. 

Positioning the sled for read or write involves several mechanical and electrical actions. To seek to a 
desired sector, the appropriate probe tips must be activated, the sled must be positioned so the tips are 
under the first bit of the pre-sector servo information, and the sled must be moving in the correct direction 
and velocity. Accomplishing this can be tricky: whenever the sled moves in X (i.e., the destination cylinder 
differs from the starting cylinder) extra settling time must be taken into account—the rapid acceleration 
and deceleration of the sled causes the spring-sled system to momentarily oscillate in X before damping to 
vx = 0. In addition, the spring restoring force 1 makes the sled acceleration a function of instantaneous sled 
position. One or two turnarounds are also necessary whenever the sled is moving in the wrong direction 
before or after the seek; the turnaround time is also affected by the spring restoring force and is therefore a 
function of both instantaneous sled position and direction of motion. 

2 .4 C o m p a r i s o n t o C o n v e n t i o n a l D i s k s 

The remainder of this section enumerates a number of relevant similarities and differences between MEMS-
based storage devices and conventional disk drives. With each item, we also discuss consequences for device 
management issues and techniques. 

2.4.1 Mechanical posi t ioning 

Both disks and MEMS-based storage devices have two main components of each access* positioning time 
(seek and rotation for disks; X and Y seeks for MEMS-based storage devices). The major difference is that 
the two proceed independently for disks, because rotation is independent, whereas the two are explicitly done 
in parallel for MEMS-based storage devices. Thus, the total positioning time is the greater of the X and Y 
seek times, making the shorter of the two times irrelevant. The effect of this overlap on request scheduling 
is explored in § 4.2. 

2.4.2 Sett l ing t i m e s 

For both disks and MEMS-based storage devices, it is necessary for read/write heads to settle over the 
desired track after a seek. However, the settling time for disks is a relatively small component of most seek 
times (e.g., 0.5 ms of 1-15 ms seeks). For MEMS-based storage devices, settling time is expected to be a 
relatively substantial component of seek time (e.g., 0.2 ms of 0.2-0.7 ms seeks). Because the settling time is 
relatively constant, this has the effect of making seek times more constant, which in turn could reduce (not 
eliminate) the benefit of both request scheduling and data placement. § 4.4 analyzes this issue in greater 
detail. 

1As the sled is displaced during seeks, the springs apply a mechanical restoring force (recall F3pring = kAx for spring-mass 
systems) up to ±75% of the sled actuating force. The spring effects are studied in detail in [GSGN00]. 
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2.4.3 Logical-to-physical mappings 

As with disks, we expect the lowest-level mapping of logical block numbers (LBNs) to physical locations to 
be straightforward and optimized for sequential access; this will be best for legacy systems that use these 
new devices as disk replacements. Such a sequentially optimized mapping scheme fits disk terminology and 
has some similar characteristics. Nonetheless, the physical differences will make data placement decisions 
(i.e., mapping of file or database blocks to LBNs) an interesting topic. § 5 explores this area. 

2.4.4 Seek t i m e vs. seek distance 

For disks, seek times are relatively constant functions of the seek distance, independent of the start cylinder 
and direction of seek. Because of the spring restoring forces, this is not true of MEMS-based storage devices. 
Short seeks near the edges take longer than they do near the center (as discussed in § 5). Also, turnarounds 
near the edges take either less time or more, depending on the direction of sled motion. As a result, seek-
reducing request scheduling algorithms may not achieve their best performance if they look only at distances 
between LBNs as they can with disks [WGP94]. 

2.4.5 Recording density 

MEMS-based storage devices use the same basic magnetic recording technologies as disks. Thus, the same 
types of fabrication and grown media defects can be expected. However, because of the much higher bit 
densities of MEMS-based storage devices, each such media defect will to affect a much larger number of bits. 
This is one of the fault management issues addressed in § 6.1. 

2.4.6 Numbers of mechanical component s 

MEMS-based storage devices have many more distinct mechanical parts than disks. Although their very 
small movements make them more robust than the large disk mechanics, their numbers make it much more 
likely that some number of them will break. In fact, manufacturing yields may dictate that the devices 
operate with some number of broken mechanical components. § 6.1.1 discusses this issue. 

2.4.7 Concurrent read /wr i te heads 

Because it is difficult and expensive for drive manufacturers to enable parallel activity, most modern disk 
drives use only one read/write head at a time for data access. Even drives that do support parallel activity 
are limited to only 2-20 read/write heads. On the other hand, MEMS-based storage devices (with their per-
tip actuation and control components) could theoretically use all of their probe tips concurrently. Even after 
power and heat considerations, 100s to 1000s of simultaneously active probe tips is a realistic expectation. 
This parallelism increases media bandwidth and (as discussed in § 6.1.2) can improve reliability. 

2.4.8 Control over mechanical movements 

Unlike disks, which rotate at constant velocity independent of ongoing accesses, the mechanical movements of 
MEMS-based storage devices can be explicitly controlled. As a result, access patterns that suffer significantly 
from independent rotation can be better served. The best example of this is repeated access to the same 
block, as often occurs for synchronous metadata updates or read-modify-write sequences. This difference is 
explored further in § 6.2 and Table 2. 

2.4.9 Startup activities 

Like disks, MEMS-based storage devices will require some time to ready themselves for media accesses when 
powered up. Because of the size of their mechanical structures and the lack of rotation, however, the time 
and power required for startup will be much smaller than disks. The consequences of this fact for both 
availability (§ 6.3) and power management (§ 7) are explored in this paper. 
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sled mobility in X and Y 
bit cell width (area) 
number of tips 
simultaneously active tips 

100 /im 
40 nm (0.0016 / im 2 ) 

6400 
1280 

t ip sector length 
servo overhead 
device capacity (per sled) 
per-tip data rate 

80 bits (8 data bytes) 
10 bits per tip sector 

3.2 GB 
700 Kbit /s 

sled acceleration 
settling time constants 
sled resonant frequency 
spring factor 

803.6 m/s* 
1 

739 Hz 
75% 

Table 1: Device parameters used in our experiments. Although MEMS-based storage devices have 
yet to be completely fabricated and tested, we believe these are reasonable values for initial analyses of these 
devices. 

2.4.10 Drive-s ide management 

As with disks, management functionality will be split between host OSes and device OSes (firmware). Over 
the years, increasing amounts of functionality have shifted into disk OSes, enabling a variety of portability, 
reliability, mobility, performance, and scalability enhancements. We expect a similar trend with MEMS-
based storage devices, whose silicon implementation allow direct integration of storage with computational 
logic. 

2.4.11 Speed-matching buffers 

As with disks, MEMS-based storage devices access the media as the sled moves past the probe tips at a fixed 
rate. Since this rate rarely matches that of the external interface, speed-matching buffers are important. 
Further, since sequential request streams are important aspects of many real systems, these speed-matching 
buffers will play an important role in prefetching of sequential LBNs. Also, as with disks, most block reuse 
will be captured by larger host memory caches instead of in the device cache. 

2.4.12 Sectors per track 

Disk media is organized as a series of concentric circles, with outer circles having longer circumferences 
than inner circles. This fact led disk manufacturers to use banded (zoned) recording in place of a constant 
bit-per-track scheme in order to increase density and bandwidth. This results in as much as a 46% difference 
between the maximum bandwidth at the innermost and outermost tracks [Qua99]. Because MEMS-based 
storage devices instead organize their media as parallel lines, there is no length difference in "bits-per-track" 
and banded recording is not relevant. Therefore, block layout techniques that try to exploit banded recording 
will not provide benefit for these devices. On the other hand, for block layouts that t ry to consider track 
boundaries and block offsets within tracks, this uniformity (which was common in disks 10 or more years 
ago) will simplify or enable correct implementations. 

3 Experimental Setup 

For our experiments, we use the performance model for MEMS-based storage described in [GSGN00], which 
includes all of the characteristics described earlier. Although it is not yet possible to validate the model 
against real devices, both the equations and the default parameters are the result of extensive discussions 
with groups tha t are designing and building MEMS-based storage devices. Thus, we hope that the model is 
sufficiently representative for the insights gained from experiments to be useful. 

This performance model has been integrated into the DiskSim simulation environment [GWP98] as a disk
like storage device accessed via a SCSI-like protocol. Table 1 shows default parameters for our MEMS-based 
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storage device simulator. DiskSim provides an infrastructure for exercising the device model with various 
synthetic and trace-based workloads. DiskSim also includes a detailed, validated disk module that can be 
parameterized to accurately model a variety of real disks. For reference, some experiments use DiskSim's disk 
module configured to model the Quantum Atlas 10K [Qua99], one of the disks for which publicly available 
configuration parameters [DisOO] have been calibrated against real-world drives. 

Most of the experiments use a synthetically-generated workload that we refer to as the random workload. 
For this workload, request interarrival times are drawn from an exponential distribution; the mean is generally 
varied to provide a range of workloads. All other aspects of requests are independent: 67% are reads, 33% 
are writes, the request size distribution is exponential with a mean of 4 KB, and request starting locations 
are uniformly distributed across the device's capacity. To include more realistic workloads, traces of real 
storage activity are utilized in some experiments; they are described in the appropriate sections. 

4 Request Scheduling 
An important mechanism for improving disk efficiency is deliberate scheduling of pending requests. This is 
important to efficiency because positioning delays are dependent on the relative positions of the read/write 
head and the destination sector. The same is true of MEMS-based storage devices, whose seek times are 
dependent on the distance to be travel-led. This section explores the impact of different scheduling algorithms 
on the performance of MEMS-based storage devices. 

4.1 D i s k Schedu l ing A l g o r i t h m s 

Many disk scheduling algorithms have been devised and studied over the years. Our comparisons focus 
on four. The simple First Come First Served (FCFS) algorithm often results in suboptimal performance, 
but we include it for reference. The Shortest Seek Time First (SSTF) algorithm was designed to select the 
request that will incur the smallest seek delay [Den67], but this is rarely the way it functions in practice. 
Instead, since few host OSes have the information needed to compute actual seek distances or predict seek 
times, most SSTF implementations use the difference between the last accessed LBN and the desired LBN 
as an approximation of seek time. This simplification works well for disk drives [WGP94], and we label this 
algorithm as "SSTFXBN". The Cyclical LOOK (C-LOOK) algorithm [SLW66] services requests in ascending 
LBN order, starting over with the lowest LBN when all requests are "behind" the most recent request. The 
Shortest Positioning Time First (SPTF) policy selects the request that will incur the smallest positioning 
delay [SCO90, JW91]. For disks, this algorithm differs from others in that it explicitly considers both seek 
time and rotational latency. 

For reference, Fig. 5 compares these four disk scheduling algorithms for the Atlas 10k disk drive and 
the random workload (§3) with a range of request arrival rates. Two common metrics for evaluating disk 
scheduling algorithms are shown. First, the average response time (queue time plus service time) shows 
the effect on average case performance. As expected, FCFS saturates well before the other algorithms 
as the workload increases. SSTF.LBN outperforms C-LOOK, and SPTF outperforms all other schemes. 
Second, the squared coefficient of variation ( < T 2 / / X 2 ) is the metric of "fairness" (or starvation resistance) used 
in [TP72, WGP94]; lower values indicate better starvation resistance. As expected, C-LOOK avoids the 
starvation effects that characterize the SSTFXBN and SPTF algorithms. 

4 .2 M E M S - b a s e d S t o r a g e D e v i c e Schedu l ing 

Existing disk scheduling algorithms can be adapted to MEMS-based storage devices, once these devices are 
mapped into a disk-like interface. Most, including FCFS, SSTF-LBN, and C-LOOK, only use knowledge of 
LBNs and assume that differences between LBNs are reasonable approximations of positioning times. SPTF, 
which addresses disk seeks and rotations, is a more interesting case. While MEMS-based storage devices do 
not have a rotational latency component, they do have two positioning time components: the X dimension 
seek and the Y dimension seek. As with disks, only one of these (seek time for disks; the X dimension seek for 
MEMS-based storage devices) is approximated well by a linear LBN space. Unlike disks, the two positioning 
components proceed in parallel, with the greater hiding the lesser. The settling time delay makes most X 
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dimension seek times larger than most Y dimension seek times. SPTF will only outperform SSTF (which 
minimizes X movements, but ignores Y) when the Y component is the larger. 

Fig. 6 shows how well these algorithms work for the default MEMS-based storage device on the random 
workload with a range of request arrival rates. In terms of both performance and starvation resistance, the 
algorithms finish in the same order as for disks - SPTF provides the best performance and C-LOOK provides 
the best starvation resistance. However, their performance relative to each other merits discussion. For 
example, the difference between FCFS and the LBN-based algorithms (C-LOOK and SSTFXBN) is larger 
for MEMS-based storage devices, because the seek time is a much larger component of the total service time. 
In particular, there is no subsequent rotational delay. Also, the average response time difference between 
C-LOOK and SSTFXBN is smaller for MEMS-based storage devices, because both algorithms reduce the 
X seek times into the range where X and Y seek times are comparable. Since neither addresses Y seeks, the 
greediness of SSTF-LBN is less effective. SPTF, which does address Y seeks, obtains additional performance. 

4 .3 Traces o f D i s k A c t i v i t y 
To evaluate performance and scheduling of MEMS-based storage devices under more realistic workloads, we 
use two traces of real disk activity. The TPC-C trace comes from a TPC-C testbed, consisting of Microsoft 
SQL Server atop Windows N T 2 . The hardware was a 300 MHz Pentium II system with 128 MB of memory 
and a 1 GB test database striped across two Quantum Viking disk drives. The trace captures one hour of 
disk activity for TPC-C, and its characteristics are described in more detail in [RFGN00]. The Cello trace 
comes from a Hewlett-Packard system running the HP-UX™ operating system. It captures disk activity 
from a server at HP Labs used for program development, simulation, mail, and news. While the total trace 
is actually two months in length, we report data for a single week-long snapshot (5/30/92 to 6/6/92). This 
trace and its characteristics are described in detail in [RW93]. 

Figs. 7(a) and 7(b) show how the scheduling algorithms perform for the Cello and TPC-C workloads, 
respectively. The relative performance of the algorithms on the Cello trace is very similar to the random work
load. One noteworthy difference between TPC-C and Cello is that SPTF outperforms the other algorithms 
by a much larger margin for TPC-C. This occurs because the scaled-up version of the workload includes 
many concurrently-pending requests with very small inter-LBN distances. LBN-based schemes do not have 
enough information to choose between such requests, often causing small (but expensive) X-dimension seeks. 
SPTF addresses this problems and thus performs much better. 

4.4 I n t e r a c t i o n of S P T F & S e t t l i n g T i m e s 
Originally, we had expected SPTF to outperform the other algorithms by a greater margin for MEMS-based 
storage devices. Our investigations suggest that the value of SPTF scheduling is highly dependent upon the 
settling time component of X dimension seeks. With large settling times, X dimension seek times dominate Y 
dimension seek times, making SSTFJLBN closely approximate SPTF. With small settling times, Y dimension 
seek times are a more significant component. To illustrate this, Fig. 8 compares the scheduling algorithms 
with the number of settling time constants set to 0 and 2 (recall that the default is 1). As expected, with 2 
settling time constants, SSTFXBN is very close to SPTF. With zero settling time constants, which may be 
achievable with active damping control systems, SPTF outperforms the other algorithms by a large margin. 

2 Re-using traces collected from other systems presents two main difficulties. First, the capacity of the disks in the traced 
systems is smaller than that of the storage devices simulated herein. As a result, not all of our simulated devices' capacities are 
utilized by these traces, which tends to reduce the maximum mechanical positioning delays. The second and more difficult issue 
is that our simulated devices are newer and significantly faster than the disks used in the traced systems. Ideally, the appropriate 
feedback effects between request completions and subsequent arrivals would be included in the simulation. Unfortunately, the 
necessary information is not present in the traces. Instead, we replicate an approach used in previous disk scheduling work for 
dealing with this problem [WGP94]: we scale the traced inter-arrival times to produce a range of average inter-arrival times. 
When the scale factor is one, the simulated inter-arrival times match those traced. When the scale factor is two, the traced 
inter-arrival t imes are halved, doubling the average arrival rate. While imperfect, we believe that this approach to dealing with 
this common problem of trace-driven storage simulations yields valid qualitative results and insights. 
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Figure 6: Comparison of scheduling algorithms for the random workload on the MEMS-based 
storage device (§ 4 .2 ) . We are not yet able to explain the odd behavior of SPTF between 1500 and 2000 
requests/sec. 

11 



1 

3 

100 

80 

60 

40 

20 

FCFS 
C-LOOK 

SSTF_LBN 
SPTF 

10 15 20 
Trace Scaling Factor 

(a) Cello average response time 

30 

J 

SP 
2 

100 

80 

60 

40 

20 

FCFS 
C-LOOK 

SSTF.LBN 
SPTF 

10 30 40 
Trace Scaling Factor 

50 60 70 

(b) TPC-C average response time 
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Figure 9: Difference in request service time for subregion accesses (§ 5 .1) . This figure divides the 
area accessible by an individual probe tip into 25 subregions, each 400x400 square bits centered at the tuple 
(x,y)j where (x,y) represents the sled offset at the center of each subregion. Each box shows the average 
request service time (in milliseconds) for 10,000 requests starting and ending inside that subregion. The 
upper numbers represent the service time when X settle time is included in calculations; numbers in italics 
represent the service time for zero X settle time. Note the average service time differs by 10-20% between 
the centermost and outermost subregions. 

5 On-Device Data Layout 
Space allocation and data placement for disks continues to be a ripe topic of research. We expect the same to 
be true of MEMS-based storage devices. In this section, we discuss how the characteristics of MEMS-based 
storage positioning costs affect placement decisions for small local and large sequential transfers. A bipartite 
layout is proposed and shown to have potential for improving performance. 

5.1 Smal l , s k e w e d acces ses 
As with disks, short distance seeks are faster than long distance seeks. Unlike disks, MEMS-based storage 
devices' spring forces change the effective actuator force and therefore affect the sled positioning time. Fig. 9 
shows the impact of springs forces for seeks inside different "subregions" of a single tip's media region. The 
spring forces increase with increasing sled displacement from the origin (e.g., the outermost boxes in Fig. 9.) 
As a result, distance is not the only component to be considered when finding good placements for small, 
popular data items—offset relative to the center should also be considered. 

5.2 Large, s equent ia l transfers 
Streaming media transfer rates for MEMS-based storage devices and disks are similar: 28.5-19.5 MB/s 
for the Atlas 10K [Qua99]; 79.6 MB/s for MEMS-based storage. Positioning times, however, are very 
different—MEMS devices enjoy an order of magnitude shorter positioning times. This makes positioning 
time relatively insignificant for large transfers (e.g., hundreds of sectors). Fig. 10 shows the request service 
times for a 256 KB read with respect to the X distance between the initial and final sled positions. Requests 
traveling 1000 cylinders (e.g., from the sled origin to maximum sled displacement) only incur a 10% penalty. 
This lessens the importance of ensuring locality for data that will be accessed in large, sequential chunks. In 
contrast, seek distance is a significant issue with disks, where long seeks more than double the total service 
time for 256 KB requests. 
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Figure 10: Request service time vs . X seek distance for large (256 KB) requests (§ 5 .2) . Note 
that large X seeks only increase the service time by 12%. 

5.3 A d a t a p l a c e m e n t s c h e m e for M E M S - b a s e d s t o r a g e d e v i c e s 

To take advantage of the above characteristics, we implemented a 25-subregion bipartite layout scheme. Small 
data are placed in the centermost subregion; long, sequential streaming data are placed in the outermost 
subregion. Two layouts are tested: a five-by-five grid of subregions (shown in Fig. 9) and a simple "columnar" 
division of the LBN space into 25 columns (e.g., each subregion contains 100 contiguous cylinders). 

We compare these layout schemes against the "organ pipe" layout [VC90, RW91], an optimal disk-layout 
scheme. In the organ pipe layout, the most frequently accessed blocks are placed in the center of the disk. 
Blocks of decreasing popularity are distributed to either side of center, with the least frequently accessed 
blocks located the farthest from the center on both sides. Although this scheme is optimal for disks, blocks 
must be periodically shuffled to maintain the frequency distribution. Further, the layout requires some state 
to be kept indicating each block's popularity and interdependence. 

To evaluate these layouts we created a workload of 10,000 read requests, 89% "small" (4 KB) requests and 
the remainder "large" (400 KB) requests. For the subregioned layouts, the large requests were directed to 
the ten leftmost and ten rightmost subregions, while the small requests mapped to the centermost subregion. 
In the organ pipe layout, we created a distribution of one large request for every eight small requests. 

Our results (Fig. 11) show that all three layout schemes achieve a 13-20% improvement in average access 
time over a simple linear layout. (In comparison, the Atlas 10K disk achieves a 13% performance gain 
between the organ pipe and simple layouts.) Subregioned and columnar layouts both provide a 10-15% 
improvement over organ pipe. Further, the two layouts do not incur organ pipe's overhead of keeping 
popularity and interdependency data or periodically reshuffling blocks on the media. For the "no settle" 
case, the subregioned layout provides the best performance as it optimizes both X and Y. 
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Figure 11: A comparison of various layout schemes for MEMS-based storage devices (§ 5 .3) . 
The "MEMS-nosettle" graph shows the same experiment run with zero X settling time. For the default 
device, the organ pipe, subregioned and columnar layouts achieve a 13-20% performance improvement over 
the simple layout. It is interesting to note that an optimal disk layout technique does not provide the best 
performance for MEMS-based storage. Further, for the "no settle" case, the subregioned layout outperforms 
the others by an additional 20%. 

6 Failure Management 
Fault tolerance and recoverability are significant considerations for storage systems. In many ways, fault 
management for MEMS-based storage devices will be similar to fault management for conventional disks 3 . 
Although there will likely be more defective or failed parts in MEMS-based storage (because of the large 
number of distinct parts compared to disks and the fact that bad parts cannot be replaced before assembly), 
individual component failures can be made less likely to render a device inoperable than in disks. This 
section discusses three aspects of failure management: internal faults, device failures, and recoverability 
from system crashes. 

6.1 Internal faults 
The common failure modes for disk drives include recoverable failures (e.g., seek errors, media defects, bit 
errors, lost sectors) and non-recoverable failures .(e.^., head crashes, motor or arm actuator failure, drive 
electronics or channel failure). MEMS-based storage devices have similar failure modes with analogous 
mechanical causes; however, the ability to incorporate multiple tips into failure avoidance schemes allows 
MEMS-based storage devices to employ more internal redundancy and improved fault tolerance. 

6.1.1 T ip and media failure 

For disk drives, unrecoverable media defects are handled by re-mapping logical block numbers to non-defective 
locations, with data often being lost when defects "grow" during operation. In MEMS-based storage, each 
sector is striped across many tips, so localized media or single tip defects (the common occurrences) can be 
completely recovered with error correction codes (see § 6.1.2). In addition, striping could significantly reduce 

3 Although MEMS-based storage devices don't exist yet, MEMS components have been built and tested for many years. 
Results show that isomorphically scaling an object alters the relative influence of various physical effects, significantly improving 
the relative strength of smaller objects. This effect has been shown to make MEMS-based storage components less fragile than 
their disk counterparts [Mad97]. 
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layout scrambling from defect management. For example, instead of "slipping" LBNs over defective sectors 
or re-mapping them to spare sectors elsewhere in a cylinder or zone, as is done in some disks, defective sectors 
in MEMS-based storage could be re-mapped to the same tip sector on one of several dedicated "spare tips." 
Re-mapping to the same tip sector guarantees that a re-mapped sector can be accessed at the same time as 
the original (now damaged) sector. This eliminates the performance penalty incurred when re-mappied disk 
sectors break the physical sequentially of access; it also improves the predictability of storage accesse times. 

Failure of a conventional disk's read/write head or control logic generally renders the entire device in
operable. MEMS-based storage replicates these functions across thousands of components. With so many 
components, failure of one or more is not only possible, but probable. Individual probe tips can break off 
or "crash" into the media; fabrication variances will produce faulty tips or tip-specific logic. Fortunately, 
many problems can be handled using the same mechanisms that handle media failures. Striping and ECC 
can overcome the loss of an entire tip region without any loss of data or capacity. This yields an interesting 
trade-off between capacity and fault tolerance—on tip failure, the operating system can choose to sacrifice 
device capacity (by converting regular tips into spare tips) or sacrifice fault tolerance in that t ip region (by 
converting spare tips into regular tips). 

6.1.2 Read and write errors 

MEMS-based storage devices read or write data striped across multiple tips. For example, each 512 B sector 
is striped across 64 tips. Unfortunately, with increased t ip parallelism comes increased opportunity for one 
or more tips to suffer a read or write error. As with conventional disks, powerful error correction codes will 
correct minor recording or sensing errors. These codes may be encoded both horizontally (by switching on 
extra ECC tips during each access) and vertically (by using an N-bit-per-byte encoding under each tip). The 
horizontal ECC is useful for recovery from missing tip sectors. The vertical portion of the ECC can identify 
tip-sectors that should be treated as missing (i.e., converting large errors into erasures). 

In addition, MEMS-based storage devices are much faster at handling errors that require a second pass 
over the media. In a disk, re-reading a sector suffers an entire rotational latency penalty. In MEMS-based 
storage, the sled need only turn around (see Table 2). 

6.1.3 Seek errors 

To read or write a sector, disks first seek to the associated track and then read the servo bursts, verifying 
that the head is over the correct track and computing the rotational latency before the desired sector passes 
under the head. The penalty for a seek error is composed of the new tracking time (about 1-2 ms for short 
re-seeks) and up to the entire rotational latency (6 ms for 10,000 RPM disks) for the sector to pass under 
the head again. 

MEMS-based storage devices also contain tracking information stored in servo bursts; this information 
is duplicated across all tips and is read and verified by every tip involved in a data access. The penalty for 
a seek error could involve up to two turnarounds in the Y direction (0.04-1.11 ms each) and short seeks in 
possibly both the X and Y directions. 

6.2 D e v i c e fai lures 

MEMS-based storage devices are susceptible to similar non-recoverable failures as disk drives: strong ex
ternal mechanical or ^electrostatic forces could damage the actuator comb fingers or induce spring failure, 
manufacturing defects could surface, and the device electronics or channel could fail. These failures should 
look like and be handled in the same manner as disks. Inter-device redundancy and periodic backups are 
appropriate mechanisms for dealing with such problems. 

Interestingly, MEMS-based storage's mechanical characteristics are a better match than disks for the 
common read-modify-write operations used in some fault-tolerant schemes (e.g., RAID-5). While conven
tional disks suffer a full rotation to return to the same sector, MEMS-based storage devices can quickly turn 
around, significantly reducing the read-modify-write latency (as shown in Table 2). The small incremental 
cost for returning to the same sector obviates the need for the many optimizations [MC93, SGH93, Men95] 
that have been developed to address this problem. 
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Atlas 10K MEMS 
# sectors 8 334 8 334 
read 0.14 6.00 0.13 2.19 
reposition 5.98 0.00 0.07 0.07 
write 0.14 6.00 0.13 2.19 
total (ms) 6.26 12.00 0.33 4.45 

Table 2: A comparison of read-modify-write times for 4 KB (8 sector) and track-length (334 
sector) transfers. 334 sectors is the longest track length in the Atlas 10K disk. Conventional disks must 
wait for a complete platter rotation during read-modify-write operations, whereas MEMS-based storage devices 
need only turn the sled around. (Depending on sled position and the spring factor, turnaround time varies 
nonlinearly from 0.036 ms-1.11 ms with 0.063 ms average.) This characteristic is particularly helpful for 
code-based redundancy schemes (e.g., RAIDS; see § 6.2; or for verify-after-write operations. 

6.3 R e c o v e r y from h o s t s y s t e m crashes 
As they do with disks, file systems and databases must maintain internal consistency between persistent 
objects stored on MEMS-based storage devices [CMB+81, Hag87, GR93, GP94]. Although synchronous 
writes will still not be desirable, the much lower service times for MEMS-based storage devices should 
decrease the penalty for these writes [LC97, WPA99]. 

Another benefit is the rapid initialization (0.5 ms) of MEMS-based storage devices. No spindle spin-up 
time is required, so initialization is almost immediate. In contrast, high-end disk drives can take 25 seconds to 
spin-up [Qua99]. Further, MEMS-based storage devices do not exhibit the power surge inherent to spinning 
up disk drives, so power spike avoidance techniques (e.g., serializing the spin-up of multiple disk drives) are 
unnecessary—all of the devices may be initialized concurrently. 

7 Power Management 
Significant effort has gone into reducing a disk drive's power consumption, including (1) reducing active 
power consumption and (2) introducing numerous power-saving modes employed during idle times [DKM94, 
LKHA94, LSD99]. Supporting these power-saving modes requires OS power management software that 
controls power mode transitions as varying levels of electronics and the spindle motor are powered down. 
Since restarting components can significantly increase access time (ranging from 40 ms to over 2 seconds 
when restarting the spindle motor [IBM99, IBM00]), power management software must constantly make 
trade-offs between reducing power and increasing access time. 

The power characteristics of MEMS-based storage devices enable a much simpler OS power management 
scheme: a single idle mode that stops the sled and powers down non-essential electronics. With no rotating 
parts and a very light mass, the sled's restart time is very small (estimated at under 0.5 ms). This imper
ceptible penalty enables aggressive idle mode use, switching from active to idle as soon as the I /O queue is 
empty. 

Further, 90% of a MEMS-based storage device's power is used for sensing and recording operations, 
making the media sled's power consumption negligible. This results in a flat power-per-bit-accessed con
sumption rate and creates another set of power optimizations: minimizing the amount of data trans
ferred [NSN+97,* FS99]. In a manner similar to power optimizations for wireless communication (where 
aggressive compression can significantly save power), the embedded computational logic in MEMS-based 
storage devices could be used to compress data arriving at the media in order to minimize the number of 
active tips per access. 
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8 Conclusion 

Our work compares and contrasts MEMS-based storage devices with disk drives and provides a foundation 
for focused operating system management of these new devices. We describe and evaluate approaches for 
operating system tuning of request scheduling, da ta placement, failure management, and power management 
techniques in order to match the physical characteristics of MEMS-based storage. 

For scheduling decisions, we find adaptations of disk scheduling algorithms to be appropriate for MEMS-
based storage devices. The impact of settling time on sled seek time is the key consideration when choosing 
among these algorithms. For large settling times (where X direction seeks will generally dominate Y direction 
seeks), LBN-based algorithms that minimize sled movement in the X direction (e.g., SSTF-LBN, C-LOOK) 
achieve good performance without the overhead of calculating the exact positioning times for each outstand
ing request (SPTF). Layout decisions at the OS level also depend on the physical characteristics of the 
device. For devices with large spring factors, we find that small, random requests are optimally confined 
to the centermost subregion whereas large, sequential requests may be placed anywhere on the media with 
minimal (<10%) penalty. This encourages a bipartite layout scheme; our experiments suggest such a layout 
yields up to a 20% improvement in request service times over a simple linear layout. 

The characteristics of MEMS-based storage devices also impact failure and power management at the OS 
level. The large amount of internal parallelism among probe tips allows faulty tip regions to be remapped to 
spare probe tips with no negative impact on request service time. Because of the nature of the sled motion, 
read-modify-write requests are handled with nearly zero repositioning overhead—this has a strong positive 
impact on code-based redundancy schemes such as RAID-5. The small initialization/startup time of these 
devices (~0.5 ms) allows both fast recovery from host crashes and fine-grain idle power management by the 
OS. Finally, because power consumption is a near-linear function of the number of active tips, the OS can 
manage device power dissipation by controlling both request size and the maximum number of active tips. 

Continuing this work, we are exploring the impact MEMS-based storage devices will have on the structure 
of computer systems and the memory hierarchy [SGNG00] and investigating applications that directly benefit 
from the unique characteristics of these devices. 
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