
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Extracting Conditional Confidentiality Policies

Michael Carl Tschantz and Jeannet te M. W i n g

May 10, 2008
CMU-CS-08-127 2

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a static analysis that extracts from a program's source code a sound approximation of the
most restrictive conditional confidentiality policy that the program obeys. To formalize conditional
confidentiality policies, we present a modified definition of noninterference that depends on runtime
information. We implement our analysis and experiment with the resulting tool on C programs.
While we focus on using our analysis for policy extraction, the process can more generally be
used for information flow analysis. Unlike traditional information flow analysis that simply states
what flows are possible in a program, our tool also states what conditions must be satisfied by an
execution for each flow to be enabled. Furthermore, our analysis is the first to handle interactive
I/O while being compositional and flow sensitive.

This research was partially sponsored by the Army Research Office through grant number DA AD19-02-1-0389
("Perpetually Available and Secure Information Systems") to Carnegie Mellon University's CyLab and by a generous
gift from the Hewlett-Packard Corporation. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government, or any other entity. This material was based on work partially supported
by the National Science Foundation, while the second author is working at the Foundation. Any opinion, finding,
and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

University Libraries
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Sections 2 and 3 of this document includes work first published by the authors as a techincal report
on February 9, 2007 [TW07].

Keywords: Confidentiality, Privacy, Noninterference, Information Flow

r e a d (r o l e s , " r o l e s . d b ") ;
read(xray, "x ray . jpg") ;
r e a d (b i l l , " b i l l . t x t ") ;
r ead(log in , s t d i n) ;
i f (r o l e s [l o g i n] == "doc")

out := append(b i l l , x ray) ;
e l s e

out := b i l l ;
wr i t e (ou t , s t d o u t) ;

Figure 1: Code Snippet for the Doctor's Office

1 Introduction

On-line banking, databases of electronic medical records, and social networking sites all store
large amounts of sensitive information. Many of these systems run legacy code written without
a systematic means of specifying or enforcing confidentiality policies. Instead, these programs
attempt to protect confidentiality using ad hoc approaches such as conditional statements that check
if the user is authorized to access sensitive information. Since such checks are spread throughout
the program, determining the confidentiality policy that a program enforces is a difficult task.

Users should be wary of these programs. With no specification of how the program protects
confidentiality, the user would benefit from a summary of the conditions under which the program
will release his information. We have developed a tool that automatically produces such a summary,
or conditional confidentiality policy, from source code. Since confidentiality is closely related to
information flow, our tool is more general: it performs conditional information flow analysis.

Motivating Example. Consider a doctor's office where the doctor takes a digital X-ray of a
patient. The doctor stores the X-ray and the bill for the procedure in a computer system. At
this point, the patient becomes worried about the confidentiality of his X-ray and asks the doctor
how the system will protect it. That is, the patient wants to know what confidentiality policy the
system obeys.

Given that the system runs legacy code, neither the doctor nor his system administrator are
exactly sure how the system treats X-rays. To answer this question, the administrator looks at the
relevant part of the program (shown in Figure 1) and reasons as follows: First, the code loads a
database that assigns roles to user logins. Then it loads the X-ray and the bill. Next it receives
the login of the user via s td in . If the roles database lists the login as one of a doctor, the program
will store the bill and the X-ray in the variable out; otherwise, just the bill is stored. Finally, the
program prints the contents of out to the user via stdout. Since out holds the X-ray only if the user
provides a doctor's login, the administrator concludes that program only allows the doctor access
to the X-ray and notifies the patient that the confidentiality of his X-ray is protected. (Proving
that only doctors login as doctors is an issue of authentication, not authorization, and outside the
scope of this paper.)

Information flow analysis formalizes the administrator's reasoning. He followed the flow of the X-
ray from the input file xray. jpg to the variable xray to the variable out to the output buffer stdout.
However, his reasoning differed from standard information flow analysis in one important aspect:

1

0
t

policy T
(extraction tool)

application code

Figure 2: Possible uses with one body of code.

he noted that the flow from xray to out is only possible if the condition r o l e s [login] == "doc"
is true. That is, his information flow analysis kept track of the conditions that enabled the flow.

While the administrator can reasonably run such a conditional information flow analysis by
hand on the small fragment of code shown in Figure 1, he would rather have a tool to automate the
process as much as possible (Fig. 2). Unfortunately, while many tools for information flow analysis
exist, none keep track of the conditions that enable each flow of information that is relevant to
confidentiality.

In this paper, we present such a tool. Given the above program, xray. jpg as the source, and
stdout as the sink, our tool will find all flows of information from xray. jpg to stdout and report
which conditions must hold to enable each flow. In this case, it would report that xray. jpg only
flows to stdout when r o l e s [login] — "doc" holds.

Before we can describe our approach to extracting confidentiality policies as conditional infor­
mation flows, we must first consider what it means for a user's information to remain confidential
or, equivalently, what it means for information to flow from an input to an output.

Confidentiality Requirements. Confidentiality requires that sensitive information does not
flow to untrusted users. What exactly "flow to" means varies from context to context. We call
each possible meaning a different confidentiality requirement

One of the most well known and earliest confidentiality requirements is noninterference as
defined by Goguen and Meseguer [GM82]. Informally, this confidentiality requirement holds if the
outputs the program provides to untrusted users remain the same whether the program received
sensitive information as input or not.

Such a requirement is often too stringent, that is, it places so much emphasis on privacy that it
prevents some systems from achieving a reasonable level of functionality. In many realistic systems,
allowing an untrusted user to learn that sensitive information has entered the system is acceptable
as long as the untrusted user does not learn about the contents of the input. For example, the
patient from the doctor's office example would not mind if the billing department of the doctor's
office learns that he had an X-ray taken: it is the image of the X-ray he wants protected. In
Section 2.1, we provide more examples of such systems.

Motivated by these examples, we present a weakened form of noninterference that protects only
the contents of inputs. We call this weakened confidentiality requirement incident-insensitive non­
interference since untrusted users are allowed to learn of the incident of the input. Likewise, we
call the original noninterference requirement of Goguen and Meseguer incident-sensitive noninter­
ference.

2

Conditional Confidentiality. The confidentiality requirements described above have not been
conditional on user input: they require that information does not flow regardless of user inputs.
As shown in our motivating example, the presentation of certain inputs, such as a doctor's login,
can change the access rights of a user. Expressing such scenarios requires conditional confiden­
tiality requirements. Such a requirement is equivalent to a conditional information flow, a flow of
information that only occurs when some condition is met at runtime. Along with noninterference,
Goguen and Meseguer introduced a form of conditional confidentiality requirement [GM82]. Our
definition, presented in Section 3, generalizes theirs.

Policy Extraction by Conditional Information Flow Analysis. Using our formalization of
confidentiality, we develop a static analysis for finding all the conditional information flows in a
program. Equivalently, we extract from the program the conditional confidentiality requirements it
obeys. We call these requirements collectively a policy. Thus, we say our analysis performs policy
extraction.

The algorithm presents the user with the key conditional statements of the program that affect
whether an information flow will occur during program execution. The algorithm tracks the flow
of information through the program in a manner similar to type systems that track information
flow [SM03]. However, our approach is flow sensitive allowing the same variable to carry both
sensitive and nonsensitive information without considering the nonsensitive information sensitive.
While this feature matters little in the context of writing a program with type analysis in mind, it
becomes important while extracting policies from legacy code.

Road Map and Contributions. To mirror the development of this introduction we first moti­
vate and present incident-insensitive noninterference in Section 2. Then we present our formulation
of conditional confidentiality in Section 3. Using this formulation, we formally present our condi­
tional information flow analysis as a set of inference rules that operate on a small programming
language in Section 4. In Section 5, we discuss our implementation for a subset of C and experi­
mented with it on C programs. We discuss many applications of our algorithm and tool in Section 6
and related work in Section 7. We end the paper with directions for future work in Section 8.

Our work provides two novel contributions:

• We have identified the problem of policy extraction and formalized it using conditional
incident-insensitive noninterference.

• We provide a static analysis for policy extraction with an implementation.

Our algorithm, presented in Section 4, is the first to our knowledge to handle interactive I/O and be
compositional while also being flow sensitive. It is the first to extract the conditions that enable both
direct flows (from assignments) and indirect flows (from conditional statements) of information.
Extracting both types of flows is crucial for policy extraction. The only other work to extract
the conditions that enable information flows does so only for direct flows of information [KR07].
Most previous work that use the conditional statements in a program to improve information flow
analysis, such as path conditions [SRK06], only rule out infeasible flows of information. Unlike our
work, they do not characterize when a flow may be possible.

3

2 Confidentiality Policies
Before we can formalize the idea of conditional information flows, we must formalize what counts
as a flow of information. Since the primary application of our analysis is confidentiality policy
extraction, we start with a well known formalization of confidentiality and introduce adjustments
as needed.

2.1 W h a t is Confidentiality?

Goguen and Meseguer introduced noninterference to formalize when a sensitive input to a system
with multiple users is protected from untrusted users of that system [GM82]. Intuitively, non­
interference requires that the system behaves identically from the perspective of untrusted users
regardless of any sensitive inputs to the system.

This requirement is so strong that an untrusted user is not even allowed to know if the system
has received any sensitive inputs. For example, consider the following simple program:

bool in = l o a d (" s e c r e t - f i l e . d b ") ;
p r i n t (" h i ") ;

The first line reads in the contents of a secret file. The second line simply prints "hi" to the untrusted
user. If we model the reading of the secret file as receiving sensitive input, then this program fails
to meet the requirements of noninterference as defined by Goguen and Meseguer. The reason is
that the untrusted user does not see the output "hi" unless the system has received the sensitive
input, which allows the load statement to stop blocking and terminate. Thus, the untrusted user
has learned that the system has received sensitive information. This violation occurs even though
the untrusted user clearly does not learn anything about the contents of sec re t - f i l e . d b .

We believe that in many cases allowing an untrusted user to know that sensitive information
has entered the system is acceptable as long as the untrusted user does not learn the contents of
this information. Many such examples exist in practice:

• The simple example above may be extended to a realistic one: Consider a web server for
on-line banking that upon startup receives financial records from a secure database before
answering any queries from users. Even if the outputs that the unauthenticated users see
reveal nothing about the contents of the financial records, noninterference is violated because
the unauthenticated users know that the server has loaded sensitive financial records.

• The motivating example in Section 1 provides another example: If a clerk from the billing
department logs in in and is not a doctor, he will never see the X-ray. However, he will learn
that the doctor has stored one in the system.

• Consider a student who is applying for graduate school on-line. During the application
process, both the student and the professor recommending him must enter information into
the application database. Once the recommending professor has finished, the student receives
a notice stating that the graduate school has received his recommendation. The applicant is
not allowed access to his recommendation, but simply learning that the professor has entered
the sensitive recommendation is enough to violate noninterference.

These examples make clear that often simply learning that some sensitive input has entered
the system does not provide the untrusted users enough information to constitute a violation of

4

confidentiality. However, not just Goguen and Meseguer's noninterference, but most confidentiality
requirements (e.g., generalized noninterference [McC87, McC88], restrictiveness [McC87, McC88,
McC90] and separability [McL94]) are incident sensitive: they prohibit untrusted users from learn­
ing that any sensitive input has taken place.

What we desire are incident-insensitive requirements, ones that allow untrusted users to learn
that sensitive input has taken place while protecting the contents of these sensitive inputs. Intu­
itively, a system obeys incident-insensitive noninterference if the contents of sensitive inputs have
no effect on the outputs that an untrusted user sees. That is, an untrusted user must see the same
outputs regardless of which sensitive inputs the system received. The untrusted user is, however,
allowed to learn that sensitive information has entered the system.

While incident-insensitive requirements have appeared before [WJ90, OCC06], we are the first,
to our knowledge, to distinguish them from incident-sensitive requires and explain their benefits.

2.2 Noninterference Formalized

First, we present a formal model of systems. Then, to make the differences clear, we present formal­
izations of both Goguen and Meseguer's incident-sensitive noninterference and our strictly weaker
yet still safe incident-insensitive noninterference. For simplicity we limit ourselves to deterministic
systems with only two sensitivity levels (high and low). In a related technical report, we provide a
presentation not subject to these restrictions [TW07].

System Model. When modeling a system, we focus on the program controlling the system. The
program is modeled as a deterministic transducer. The program accepts inputs from some set J.
Each input is marked with either H for high-level (sensitive) or L for low-level (nonsensitive). The
system provides outputs from a set O to a high-level trusted user and a low-level untrusted user. A
high-level user is free to enter low-level information as when a high-level doctor enters a low-level
bill. However, the system will only protect information entered at the high-level.

Given a system 5 and an interleaving of high- and low-level inputs i in /*, we represent the
behavior of s on i as [«](?). The behavior of s is an interleaving of the input sequence 1 with high-
and low-level outputs from O. Thus, [s] is a function from J* to A* where A is the set of I/O
actions, that is, A = IU O.

Incident-Sensitive Noninterference. For a in A*, let [a\ represent a restricted to only those
actions that are low level. That is, it "purges" all high-level actions. Formally,

£j _ f a:IAI ^ level(o) = L
I |_SJ otherwise

LOJ = 0

where level (a) is the level of a, [] is the empty sequence, and a:a is the sequence a with a prepended
to it.

Definition 1. A system s obeys incident-sensitive noninterference iff for every two input sequences
i\ and 12 in I*,

L*xJ = I/2J implies LM(?i)J = L M &) J

5

Intuitively, this definition says that if the same low-level inputs are provided to the system,
then the same low-level outputs should result from the system with complete disregard for what if
any high-level inputs were provided to the system. Thus, the low-level user can determine nothing
about the high-level inputs, not even their existence.

Incident-Insensitive Noninterference. The requirement that any two input sequences i\ and
%2 produce the same outputs provided J = 1*2J is too strong. Consider when i\ = [aH] and ?2 = []
where a H is a high-level input with the contents a. i\ provided to the two-line program showed in
Section 2.1 would result in the output of h i L since i\ contains a high-level input that allows the
load statement to stop blocking and the print statement to execute. However, i<i would result in
no output since it contains no high-level inputs to allow the load to stop blocking. Thus, i\ and i^
demonstrate that this program violates incident-sensitive noninterference. Yet, as argued earlier,
we would not consider this program to leak high-level information.

Thus, we relax the noninterference requirement by raising the bar on how two input sequences
must be similar before we require them to result in identical low-level outputs. We now require
that not only do the two input sequences have the same low-level inputs, but also the same number
and interleaving of high- and low-level inputs.

We formalize this notion with the blur operator Like the purge operator [-J, blur takes
an input sequence and leaves the low-level inputs unchanged. However, rather than removing the
high-level inputs, it "blurs" them. That is, it replaces them with a symbol * H that only carries the
information that a high-level input was there. For example, both l[a H ,b L]j > and l [c H , b L] j blur to
[*H,bL] while ^[bL]j blurs to [bL]. We will define incident-insensitive noninterference to require that
a program produce the same low-level outputs on [a H ,b L] and [c H ,b L] while being free to produce
different outputs on [bL]. Formally,

if level (i) = L
l * H : | i y otherwise

D

Definition 2. A system s obeys incident-insensitive noninterference iff for every two input se­
quences i\ and i<i in I*,

lirf = \i2] implies LW(?i)J = LM&)J
The following theorem shows that incident-sensitive noninterference is a strictly stronger prop­

erty than incident-insensitive noninterference.

Theorem 1. If a system obeys incident-sensitive noninterference, then it will obey incident-
insensitive noninterference; the converse is not true.

Proof. It can be shown by induction that for all i\ and ii, if \i\\ = l ^ j , then \i\\ = [^J-
Thus, incident-sensitive noninterference requires at least as many input sequences to look the same.
The example program at the beginning of this section provides a counterexample to the converse.
(See [TW07] for a more formal proof.) •

6

3 Conditional Policies
While the above formulation of incident-insensitive noninterference is sufficient to formalize stan­
dard information flow analysis, we desire to formalize conditional information flow analysis to
extract conditional policies.

3.1 Mot ivat ion

We motivate the need for conditional confidentiality by referring to the doctor example from the
introduction. As described before, the system should allow access to the X-ray only if the user is
a doctor.

To model this program, let x ray . jpg be a high-level input. Let all other inputs (roles .db,
b i l l . t x t , and the login from s td in) be low-level. Let s tdout send output to a low-level user.

The program does not obey incident-insensitive noninterference. To see this, consider any input
sequence in which the login provided by s td in is one that the roles database maps to "doc". In
this case, the program sends the contents of xray. jpg to the low-level user via stdout. Thus, two
such sequences of input will produce different low-level output even if identical in all ways except
for the contents of xray. jpg.

Despite not obeying noninterference, the program does not violate confidentiality since it only
allows doctors to view the X-ray. To capture such situations, Goguen and Meseguer presented a
conditional version of incident-sensitive noninterference [GM82]. Informally, it allows a high-level
input to be accessible to the low-level user if the inputs that precede it satisfy some predicate. We
generalize their definition to allow this predicate to depend on inputs that occur after the high-level
input. The program must protect the high-level input until this predicate is satisfied. If the future
inputs never satisfy the predicate, the high-level input will always be protected. Our generalization
allows the high-level input xray. jpg of our motivating example to be released to the low-level user
if that user provides a doctor's login, an event that happens after xray. jpg is loaded.

3.2 Formalization

We first model the predicates used to determine if a high-level input should be protected as policies.
A policy represents a predicate by being the set PCI* that contains each and every input sequence
that satisfies that predicate. If an input sequence is in P , then that input sequence enables the
low-level user to gain access to the high-level inputs. Thus, those i in P are exempt from the
requirements of noninterference. Since each i in P represents an exception to a low-level user not
gaining access to the high-level inputs, the larger P is, the more permissive P is. Likewise, the
smaller P becomes, the more restrictive P becomes meaning that fewer and fewer programs would
obey P .

We define conditional incident-insensitive noninterference using prefix relation C on action
sequences. That is, a\ • S2 if a\ is a prefix of S2 or equal to S2.

Definition 3. A system s obeys a conditional incident-insensitive noninterference under the policy
P iff for every two input sequences i\ and %2 in I*, either i\ G P or

lit j = \i2 J implies IMih)] C LH&) J

This definition differs from the unconditional definition in two ways. First, we check if Ti is in
P and hold it to no further requirements if it is. Second, rather than checking if |_M(?i)J i s equal

7

to U5J(?2)J, we check if (_MI(n)J is a prefix of |_MI(?2)J. Given that we check if i\ is in P rather
than %2, it is key that we put |_[s](n)J on the left-hand side of the prefix relation. We are using i\
to stand for the input sequence the system actually received. If i\ is not in P and = £T2 j» then
the low-level user should be incapable of determining that the system did not receive 22- We use the
prefix relation since the low-level user cannot observe termination and, thus, if he sees a sequence
of outputs consistent with a prefix of LMK^)], he cannot rule out that the system received 12 and
is just being slow about producing the rest of the output.

4 Policy Extraction
Now that we have formalized conditional confidentiality policies in terms of conditional incident-
insensitive noninterference, we can formally present an analysis that extracts them from source
code. Our analysis finds information flows and the conditions that determine whether each flow
will actually occur during an execution.

Given two policies Pi and P2 such that Pi C P 2 , P x would be more restrictive (allow fewer
flows of information) than P2. Since obeying Pi would imply obeying P2, we would rather extract
Pi. Indeed, our goal is to extract the most restrictive (smallest) policy that the program obeys.
However, because of undecidability, we must settle for a sound over-approximation of the most
restrictive policy.

Rather than extract the policy P directly, we provide a syntactic policy P . P describes what
paths though the control flow graph yield information flows. For example, in our motivating
example from Section 1, only executions in which the then branch is taken result in information
flows from the high-level xray. jpg to the low-level user. Thus, the extracted syntactic policy P
for that program would include the key condition that r o l e s [login] == "doc" must hold for an
information flow to be possible.

After describing a programming language over which the analysis will soundly work and for­
malizing the idea of a syntactic policy, we give a formal description of our analysis as a set of
inference rules and demonstrate them on our motivating example. In Section 5, we discuss the
actual implementation for a subset of C.

4.1 W h i l e l O
Due to the many complex behaviors of C (e.g., arbitrary dereferencing, segfaults, stack smashing),
we have little hope of creating a sound yet accurate analysis for C. Thus, to explain the theoretical
aspects of our algorithm, we instead use the simple language WhilelO. WhilelO offers while loops,
i f statements, and operators for input and output. The syntax of WhilelO consists of statements
s and expressions e:

s ::= v:=e | wr i t e (e , d) | read(i>, d) | s;s
I if(e){s}{s} I while(e){s}

e ::= v | n | e+e | • • •

where v ranges over a set of variable names V and n over a set of numbers N. d ranges over a
set of domains D that represent I/O buffers. Since only the confidentiality level of each domain
matters to the analysis, we do not distinguish between the two. In the limited case of having only
high-level and low-level information, D would be {H, L}.

8

We require that expressions e always evaluate to a number and have no side effects. Statements
always evaluate to unit (often called "void"). A program is just a single statement.

A program goes though a sequence of reductions that produce outputs and consume inputs
while altering the contents of memory. We call a finite sequence of reductions a trace. We denote
by the I/O actions found in order in the trace generated by s given the input sequence i.
Appendix A provides a more detailed semantics for WhilelO.

4.2 Syntact ic Pol icies

A syntactic policy P describes a set of paths through the control flow graph (CFG) of a program.
A normal policy P may be recovered from a syntactic policy P by finding those input sequences
that result in the program taking one of these paths.

Since a program with loops may have an infinite number of paths, a syntactic policy does not
describe these paths directly. Rather, it provides a logical formula that constrains which branches
of control statements (if and while) the paths include. To describe only those paths that take
the then branch of some if statement, we use a control constraint c. Let e be the expression
that controls which branch of the i f statement is taken. The control constraint c is represented
as ei—>T. (We assume that each controlling expression e occurs only once in each program. Thus,
they uniquely identify the i f statement that it controls.) If instead we are interested in only paths
that take the e l se branch, we would use the control constraint e*—>F. Likewise for a while loop
with the controlling expression e , we use ei—>T for the case where the body is entered and ei->F for
the case where body is not entered.

A syntactic policy P is a boolean formula over control constraints. The policy describes those
paths in the CFG that satisfies it. For example, given the program:

while(x>0){
if(y<3){ . . . H . . . }

}

the syntactic policy
P = x>0i->F V (x>0h->T A y<3n->T A y<3n->F)

identifies those paths in which either the loop body is never entered, or the loop body is entered and
both the then and e l se branches of the if statement are taken. Taking both the then and e l se
branches makes sense since the i f statement lies within a loop body. (en->F is not the negation of
ei-*T.)

We write A =>- A if any path satisfying Pi also satisfies A- If A logically implies A? then
A A and we say that A is more restrictive than A- We denote by ((s))(i), the most restrictive
control constraint that the execution of s on i satisfies. Intuitively, ((s))(i) records every branch
taken by the execution of s on i.

Given a syntactic policy P and program s, we may identify the input sequences that result in
s satisfying P . We denote that policy P as [P] s where | P] S = { i e I \ ((s))(i) P } .

4.3 Algor i thm Specification

We now present an inference system that produces a syntactic policy P such that [P] s is a sound
over-approximation of the most restrictive policy P that a given program s obeys. Section 4.4
provides an example that explains these rules.

9

We call variables and domains collectively identifiers. For simplicity of presentation, we add a
distinguished identifier nt to the set of identifiers. We use nt to track when the value of a sensitive
input can result in nontermination. We assume that nt shows up nowhere in the analyzed program.

Let ref(e) be the set of identifiers referenced by an expression e. That is, ref(e) must contain
all the identifiers whose value affects the value of e. Let def (s) be the set of identifiers defined by
a statement s. That is, def (s) must contain all the identifiers whose value changes as a result of s
executing. In both cases, we compute over-approximations. For ref we use

ref (n) = 0
ref (v) = {v}

ref (ei+e2) = ref(ei) U ref(e2)

For def we use

def(t;:=e) = {v}
def (read (v,d)) = {v,d}

def (write (e,d)) = {d}
def (si; S2) = def (si) U def (52)

def (if (e) { 5 i } { 5 2 » = def (si) U def (s 2)

def(while(e){si}) = def(si) U {nt}

Note that both v and d are in def (read (v, d)) since the first element of the input buffer d is removed
and assigned to i>, altering both d and v. We add nt to def(while(e){si}) since while statements
can bring about nontermination.

We use the judgment x[s]py where s is a statement, P a syntactic policy, and x and y are
identifiers. Informally, x[s]py means that the value of x before the execution of s may affect the
value of y after the execution of s if P is satisfied by the execution of 5. In particular, a^sj^nt
means that the value of x before s affects whether s will terminate. On the other hand, nt[s]py
means that non-termination before s is called (i.e., s not getting a chance to execute) will result
in y having a different value than if s did get to execute.

In Table 1, we provide the inference rules for x[s]py. If the premises of a rule (the formulae
above the bar) hold, then the conclusion (the formula below the bar) holds. A rule with no premises
always holds.

The rules for i f and while statements constrain the extracted policy by adding control con­
straints. For example, rule (9) adds the control constraint e»->T to indicate that flows of information
from the then branch only execute if the condition e is true at this execution point at least once.

The rules for if and while statements also track indirect flows of information. For example,
rule (12) adds a flow from a variable x referenced by the condition e to a variable y defined by
a statement within either the then or e l se branch. Such indirect flows of information are key to
confidentiality as the following program demonstrates:

i f (x) { y := 1 }{ y : - 0 }
The i f statement copies the value of x into y without using a direct flow of information from either
assignment statement.

10

x £ r e f (e) (!) x±v

 (2)

 x g r e f

 (3) (4)

x[v:-e]rv x[v:-e]Tx x[wri te(e ,d)] T d x[wri te(e ,d)] T x

^ ^ x ± v (?) x[si]Plz z[s2}p*y^
nt[write(e,cO] Td d[rea.d(v ,d)]Tv x[iea.d(v ,d)]Tx x[si;s2]PlAp2y

x[si]py ,g) x[s2]py xjsify x[s2}py
x [i f (e) { S l } { S 2 }] p A e M T y x[if(e){si}{s2}]p*e"Fy x[if (e){Sl}{s2}]py

xere f (e) y e def gfoffy
x [i f (e) { S l } { 5 2 }] T y s[while(e){ S l }] e ~V x [w h i l e (e) { S l } f A e ~ V

— _ ^ ! f l ! ± ^ ^ _ (i 5) g € r e f ^ y 6 def(ap x g ref(e)
x[while(e){si}]^x x[while(e){si}] Ty x[while(e){s x}] Tnt

^ f£L_f l f l&(18) fifing) flf]N__flfl^ f20) a M A y Pl=*p2(21)
x[s]p^y x[s]py{ x[s]p^y x[s)\

Table 1: Analysis Inference Rules

11

Intuitively, the rules for x[s]py unroll the loop in which s is found an unbounded number of
times. .

By rule (17), the pseudo-identifier nt depends on identifiers referenced by the condition of
a while loop. It is provable given the rules of Table 1 that for all s and all P , nt[s]pnt. Since
nontermination is only noticeable to a user in the presence of a wri te statement, we have suppressed
irrelevant rules involving nt flowing to other types of statements leaving just rule (5). In summary,
a reference from the condition of a while statement will flow to the written buffer d of any wri te
statement that follows the while statement by way of nt.

These inference rules admit spurious flows. That is, x[s]py does not imply that the value of
x will definitely affect the value of y during an execution of s where P holds. However, if x does
affect the value of y during an execution of s where P holds, then x[s]py will definitely hold.

The syntactic policy that we extract is the logically weakest P such that H[s]pL. That is, P is
the disjunction of all P' such that H[s] p 'L Since the rules find every possible flow, [P] s will contain
every input sequence that results in L gaining access to a input from H. That is, the absence of i
from [P] s implies that H will surely not flow to L when the program s receives i as input (thereby
preserving the confidentiality of H). However, while sound, [P] s is an over-approximation and
might contain extra input sequences that do not actually result in such a flow.

4.4 Example

We now demonstrate these inference rules on our motivating example from Section 1. For each
statement and pair of identifiers, we apply every applicable rule to find the least restrictive syntactic
policy for the statement and identifiers. We build the policies of composite statements from the
policies of their sub-statements making our analysis compositional. Our implementation proceeds
in a similar manner. To save space we use e d o c as shorthand for r o l e s [login] == "doc".

Let us start with the last statement, wr i te (out, s tdout) . Here we apply the rules for wr i te
to learn that out flows to stdout from rule (3) and that for all x, x flows to x from rule (4):

° U t 6 r e f (° U t) :P) , _ ^ t . (4)
out[wri te(out , s t d o u t)] T s t d o u t v ' x[wri te(out , stdout)]'aT

This makes sense since the wr i te statement copies the value of out into the buffer s tdout without
overwriting any data. All of these flows are under the policy T, which means they may always be
possible. (Also, nt flows to stdout by rule (5) meaning that nontermination will be noticed by the
absence of this wr i te statement getting to execute. Since nontermination does not play a roll in
this example, we will henceforth ignore nt.)

Examining the assignment out := append (b i l l , xray), we learn by rule (1) that b i l l and
xray flow to out under T:

b i l l € ref (append (b i l l , xray)) xray e ref (append (b i l l , xray))
^ ' r „ . ^ j / i ^ - n V ^ „ M T A 1 1 + ^ > bi l l [ou t := append (b i l l , xray)] T out xray[out := append (b i l l , xray)] out

From rule (2), we learn that for all x other than out, x flows to x under T

x 7^ out
x[out := append (b i l l , xray)] T x ^ out

(2)

12

We do not allow out to flow to out since the value that was stored in out before the assignment is
overwritten with append (b i l l , xray) by the assignment. Accounting for the overwriting of data
is key to making our analysis flow sensitive.

The other assignment out := b i l l proceeds in the same manner to have b i l l flowing to out
under T and x flowing to x under T for all x other than out:

bill e w f (b i l l) *£o»t
b i l l [ou t := b i l l] T o u t x[out : = b i l l] ' x Vx ^ out

With policies for both the then and e l s e branches done, we can now compose them to get the
policies for the i f statement. The rules (9) and (10) allow us to add the flows from the then and
e l s e branches as long as we keep track of which branch they come from. To keep track, we add
the control constraint e d o c 1 - > T to the policy of any flow coming from the then branch. Likewise,
we add ed0CH->F for flows from the e l se branch. Rule (11) allows us to simplify and not add these
additional control constraints if a flow with the same policy comes from both the then and e l se
branches. With this simplification, we get the following flows: b i l l to out under the policy T,
xray to out under ed0c»->T, and x to x for all x other than out under T:

b i l l [ou t := append (b i l l , xray)] T out b i l l [ou t := b i l l] T o u t
b i l l [i f (e d o c){ou t : = append (b i l l , xray)}{out := b i l l }] T o u t

xray[out := append (b i l l , xray)] T out
xray[if (e d o c){ou t := append (b i l l , xray) }{out := b i l l }] T A e d o c H ^ T out

x[out := append (b i l l , xray)] T x Vx ^ out x[out := b i l l] T x \/x ^ out
a; [if (e d o c){ou t := append (b i l l , xray)} {out := b i l l }] T x Vx ^ out

We must also add indirect flows of information for i f statements using rule (12). Since login
and r o l e s are referenced by the condition of the i f statement and out is assigned in the i f
statement, this adds two flows: login to out under T and r o l e s to out under T:

login G ref(e d o c) out G def(out : = b i l l)
l og in [i f (e d o c) {ou t := append(bi l l ,xray)}{out := b i l l }] T o u t

r o l e s G ref(e d o c) out G def (out := append (b i l l , xray)) ^
ro les [i f (e d o c){ou t := append (b i l l , xray)} {out := b i l l }] T o u t

Now we combine the policies extracted from the if and wr i te statements using rule (8). Intu­
itively, the rule connects flows from the first statement (the i f statement) to flows from the second
statement (the wr i te statement). For example, since xray flows to out under e d o c ^ T in the i f
statement and out flows to s tdout under T in the wri te statement, xray flows to stdout under
d̂oc1—>T in their sequential composition.

"Tout xray [if (e d o c){ou t := append (b i l l , xray)}{out := b i l l }] e d o c H

out [write (out , s tdout)] T s tdout
xray[if (e d o c) {out: =append(bi l l , xray) }{out: - b i l l } ; wr i te (out , s t d o u t)] e d o c ~ T A T s t d o u t (8)

13

The same reasoning applies to the other flows, which we will not list.
Continuing this compositional reasoning and treating read statements in a manner similar to

assignment, we produce a syntactic policy for each pair of identifiers for the whole program. The
policy for flows from sensitive input xray. jpg to the untrusted user stdout is e d 0 C ^ T as expected.

5 Implementation
We have implemented a policy extraction tool based on our inference rules. The algorithm recur­
sively operates on the abstract syntax tree of a program in a depth-first fashion. It computes the
policy of a node by composing together the policies of the node's children. This requires O(n)
recursive calls where n is the number of abstract syntax tree nodes in the program.

The algorithm works on programs written in a subset of C, which includes pointers (but no
aliasing), non-recursive functions, while loops, and file operations. We do not model flows from
runtime errors, unstructured control flow, or pointers accessing memory not allocated for them.

The algorithm represents syntactic policies as binary decision diagrams (BDDs) [Bry86]. A BDD
is required for each pair of identifiers since policies between two identifiers other than L and H for a
sub-statement may affect the policy of L and H for the program. Although this requires a number
of BDDs that is quadratic in the number of identifiers, they share isomorphic sub-trees. BDDs
provide a canonical form for policies making verifying properties about policies efficient [FKMT05].

The algorithm computes the non-reflexive transitive closure for while statements using
the Floyd-Warshall algorithm (see, e.g., [CLRS01]). This requires 0(v3) steps where v is the
number of variables in the program. The policy of a function is computed once and reused for each
application of the function.

The algorithm distinguishes between pointers to arrays and the memory locations within an
array. If information flowed to a pointer y, then an assignment to y will terminate that flow since
the value of y is overwritten (as in rule (2) of our inference system). Since y would also now point
to a different memory location, flows to the memory location to which y used to point would also
be terminated. However, a write into this array, such as y[z] := 0, will not terminate any flows
since the value of y is unchanged and other locations in the array may continue to hold information
from a flow to the memory locations to which y points. Furthermore, we model that the value of
z flows to these locations. This flow arises because the zth entry of y changes to 0 while the other
entries remain the same. If every entry starts with a value other than 0, the location of this change
reflects the value of z.

To parse the C code, we use GIL [NMRW02], which unfortunately adds many temporary vari­
ables that slows down our algorithm. The main part of the algorithm is coded as a PLT Scheme
program running in DrScheme [FCF+ 02]. This code uses a foreign function interface [BO04] to the
CUDD BDD package [Som], a C library, to construct and manage the BDDs.

Since the conversion from a syntactic policy P to the policy [P] 5 may be done with standard
weakest precondition calculations, we do not provide an implementation for this operation.

First, we experimented with our implementation on C programs that exercise the subset of
C our implementation accepts. The most interesting one of these is based on the motivating
doctor example. The program includes three helper functions, error code checking, command-
line arguments, file operations, and numerous loops. After parsing by CIL, it has 93 atomic and
composite statements using 23 variables, four files, and two output streams. The analysis extracted
the correct policy in 2.68 seconds. It used 3MB of RAM on top of a 250MB baseline for DrScheme

14

Q
old policy new policy

t t
(extraction tool) (extraction tool)

old application code new application code

Figure 3: Change-impact analysis between two versions of one application.

and the operating system.
To test the scalability of our analysis, we ran our implementation on 757 statements of the

Sparse C parser (ht tp://www .kernel .org/pub/sof tware/devel /sparse/) . The analysis took
510 seconds and used 95MB of RAM. We also tested our analysis on a 3137 statement part of the
Privoxy privacy-enhancing web proxy (http://www .privoxy.org/). The analysis took 78 seconds
and 60MB of RAM. The policies extracted from these programs provide an approximation of the
real policies that the programs enforce; however, these programs use unmodeled features of C
allowing for the possibility of unsoundness.

The analysis ran on a computer with two 1.2GHz AMD Athlon processors and 757MB of RAM.
Our implementation and the analyzed programs may be downloaded from

h t t p : //www. c s . emu. edu/"mtschant /po l icy-ex t rac t ion /

6 Uses for Our Tool
Many uses exist for the extracted policy: A developer could examine the conditions in their own
right to understand the program. A system administer could use them to compute the inputs that
result in the program granting the untrusted user access to the sensitive inputs. An auditor could
use the extracted policy to verify program correctness.

A user can view the extracted policy before deciding whether to use the application. For
example, third-party applets that connect to a social networking website like Facebook typically
receive access to far more sensitive data than they need [FE], Often the access that is appropriate
for the applet depends on conditional information. For example, it becomes appropriate for an
applet to access the user's address only after the user requests the applet to perform a location
specific task. A user could use our analysis to determine if an applet has reasonable confidentiality
properties before installing it. These applets are attractive candidates for applying our analysis
since they use a standard API to access sensitive information and are typically of moderate size
and complexity.

A code maintainer could refactor a program to be configured by an externally specified policy
and use the extracted policy as the configuration. Ganapathy et al. have developed tools to retrofit
legacy code for this purpose [GJJ06].

The code maintainer could also perform change-impact analysis (Fig. 3): given application code
before and after some set of edits, he can compare the policies extracted from both versions of the
application to ensure that the program edits have not introduced unintended consequences. We
have implemented a change-impact analysis algorithm. The comparison process relies on a BDD
differencing algorithm previously presented for comparing policies [FKMT05].

15

http://www.kernel.org/pub/software/devel/sparse/
http://www.privoxy.org/

Whereas confidentiality requires that protected data does not become known to untrusted users,
integrity requires that protected data does not become tainted or corrupted by untrusted users.
By reversing the roles of the sensitive and untrusted information, integrity becomes confidentiality.
Thus, our tool can also produce conditional integrity policies.

7 Related Work
We cover related work by discussing work done on problems related to policy extraction. Interest­
ingly, the most closely related work is on the very different problem of data model extraction.

Extracting Data Models. Data model extraction attempts to infer from untyped code (such as
COBOL code), the data model that the programmer had in mind. Typically this model is presented
as a class hierarchy explaining how the analyzed program uses buffers to store multiple pieces of
data.

Although this problem is very different from ours, the information required to solve it is similar
to the information we extract. Komondoor and Ramalingam extract from source code data flows
and the conditions that enable them [KR07]. Their analysis differs from ours in that it does not
consider indirect flows of information from conditional statements. While such flows are irrelevant
to their goals, they matter greatly to ours. Also, their analysis is not compositional like ours and
uses a very different algorithmic approach based on lattices.

Enforcing a Given Policy. The problem most related in motivation to ours is the problem of
ensuring that a program will obey a specified policy. While we build on the theory underlying this
work, our approach differs from those taken in this area.

Conditional information flow analysis is a method of preventing undesired information flows
at runtime. These methods use tags present at runtime to track the flow of information. These
tags are managed using either hardware (e.g., [SLZD04]), code instrumentation (e.g., [LMLW08]),
or virtual machines (e.g., [HCF05]). If these methods detect an undesired flow at runtime, the
execution must be aborted. We instead offer a static analysis.

Many type systems for information flow analysis exist. (For a survey, see [SM03].) Most of
these use a batch-job model of systems: systems take a set of inputs before execution and produce
a set of outputs upon termination. We use an interactive model of systems where the program
may interact with the user throughout the execution. O'Neill et al. provide the only type system
of which we know for interactive programs [OCC06]. However, their work assumes a unconditional
confidentiality policy.

Information-flow type systems for declassification use conditional confidentiality policies, or
declassification policies. Of the many type systems for declassification (see [SS05] for an overview),
the work of Chong and Myers most resembles ours [CM04]. They use a type system to ensure
that sensitive information is only released to a untrusted user (is declassified) if some condition
annotating the code holds. Rather than ensuring that conditions annotating the code hold before
declassification, our analysis finds these conditions in unannotated code.

Model checking can verify that a given policy is obeyed. This requires composing a program with
itself since noninterference is a 2-safety property instead of a standard safety property [BDR04].
However, this method requires the intended policy as input whereas our analysis produces a policy.

16

Ruling Out Infeasible Flows: Path Conditions. Program dependence graphs (PDGs) repre­
sent how information flows from statement to statement in a program [FOW84, FOW87]. However,
some of these flows might require statements along an infeasible path to execute. Path conditions
provide a sound approximation of which flows in a PDG are actually feasible [Sne96].

Using PDGs with path conditions provides a sound way to determine if unconditional noninter­
ference holds [SRK06]. However, they do not directly extend to conditional noninterference. The
problem is that PDGs do not show the passive information flows that happen when statements are
not executed. This does not affect the soundness of PDGs or path conditions for unconditional
noninterference because every missing passive flow is paired with a present active flow from the
assignment being executed. In the conditional case, however, we need both flows of information to
maintain soundness. Furthermore, our approach is compositional unlike PDGs.

Extracting Business Logic. Just as a confidentiality policy may become buried within the
code of a large program, the operating procedures of a business may also become hidden within
large applications. Thus, others have created tools to extract these business rules from source
code [HTB+96, SneOl]. These tools use program slicing to track information, but they do not
provide the conditions that enable them [Tip95].

8 Summary and Future Work

After presenting a formalization of conditional noninterference, we presented a sound method to
extract from application source code an approximation of the most restrictive policy the program
obeys. This is the first policy extraction algorithm proposed and also the first conditional informa­
tion flow analysis that finds both direct and indirect flows of information. Moreover, our analysis
is flow sensitive and composition while handling interactive I/O.

Possible future work includes handling language features like exceptions, aliasing, and recursion.
Additional analyses for partitioning arrays into separate confidentiality levels would make our
analysis more accurate.

We would also like to present policies to the user in an interactive manner with a query engine
to verify properties of the policy. Lastly, we would like to explore further uses for the extracted
policies such as refactoring.

Acknowledgments. We thank Jonathan Aldrich for scrutinizing our inference rules. We also
thank him, Karl Crary, and Frank Pfenning for helpful comments.

References

[BDR04] Gilles Barthe, Pedro R. D'Argenio, and Tamara Rezk. Secure information flow by
self-composition. In CSFW '04: Proceedings of the 17th IEEE Computer Security
Foundations Workshop (CSFW'04), page 100, Washington, DC, USA, 2004. IEEE
Computer Society.

[BO04] Eli Barzilay and Dmitry Orlovsky. Foreign interface for PLT Scheme. In Olin Shivers
and Oscar Waddell, editors, Proceedings of the Fifth ACM SIGPLAN Workshop on
Scheme and Functional Programming, pages 63-74, Snowbird, Utah, September 22,

17

2004. Technical report TR600, Department of Computer Science, Indiana University,
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN .cgi?trnum=TR600.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 35(8):677-691, 1986.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In­
troduction to Algorithms, chapter 25.2 The Floyd-Warshall Algorithm, pages 629-635.
The MIT Press, Cambridge, Massachusetts, second edition, 2001.

[CM04] Stephen Chong and Andrew C. Myers. Security policies for downgrading. In CCS '04:
Proceedings of the 11th ACM Conference on Computer and Communications Security,
pages 198-209, New York, NY, USA, 2004. ACM.

[FCF+02] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Paul Steckler, and Matthias Felleisen. DrScheme: a programming
environment for Scheme. J. Fund. Program., 12(2): 159-182, 2002.

[FE] Adrienne Felt and David Evans. Privacy protection for social networking APIs, h t t p :
//www .cs .Virginia.edu/fel t /pr ivacy/ .

[FKMT05] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl Tschantz.
Verification and change-impact analysis of access-control policies. In ICSE '05: Pro­
ceedings of the 27th International Conference on Software Engineering, pages 196-205,
New York, NY, USA, 2005. ACM Press.

[FOW84] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. In Proceedings of the 6th Colloquium on International
Symposium on Programming, pages 125-132, London, UK, 1984. Springer-Verlag.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. A CM Trans. Program. Lang. Syst, 9(3):319-349,
1987.

[GJJ06] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. Retrofitting legacy code for autho­
rization policy enforcement. In Proceedings of the 2006 IEEE Symposium on Security
and Privacy, pages 214-229, Los Alamitos, CA, USA, May 2006. IEEE Computer
Society.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Sym­
posium on Security and Privacy, page 11. IEEE, 1982.

[HCF05] Vivek Haldar, Deepak Chandra, and Michael Franz. Practical, dynamic information-
flow for virtual machines. In 2nd International Workshop on Programming Language
Interference and Dependence, September 2005.

[HTB+96] Hai Huang, W. T. Tsai, S. Bhattacharya, X. P. Chen, Y. Wang, and J. Sun. Business
rule extraction from legacy code. In COMPSAC '96 - 20th Computer Software and Ap­
plications Conference, pages 162-167, Los Alamitos, CA, USA, 1996. IEEE Computer
Society.

18

http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR600
http://www.cs.Virginia.edu/felt/privacy/

[KR07] Raghavan Komondoor and G. Ramalingam. Recovering data models via guarded de­
pendences. In WCRE '07: Proceedings of the 14th Working Conference on Reverse
Engineering, pages 110-119, Washington, DC, USA, 2007. IEEE Computer Society.

[LMLW08] Monica S. Lam, Michael Martin, Benjamin Livshits, and John Whaley. Securing web
applications with static and dynamic information flow tracking. In PEPM '08: Pro­
ceedings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 3-12, New York, NY, USA, 2008. ACM.

[McC87]

[McC88]

[McC90]

[McL94]

Daryl McCullough. Specifications for multi-level security and a hook-up property. In
IEEE Symposium on Security and Privacy, pages 161-166, 1987.

Daryl McCullough. Noninterference and the composability of security properties. In
IEEE Symposium on Security and Privacy, pages 177-186, Los Alamitos, CA, USA,
1988. IEEE Computer Society.

D. McCullough. A hookup theorem for multilevel security.
Software Engineering, 16(6):563-568, 1990.

IEEE Transactions on

John McLean. A general theory of composition for trace sets closed under selective
interleaving functions. In SP '94'- Proceedings of the 1994 IEEE Symposium on Security
and Privacy, page 79, Washington, DC, USA, 1994. IEEE Computer Society.

[NMRW02] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate language and tools for analysis and transformation of C programs. In
CC '02: Proceedings of the 11th International Conference on Compiler Construction,
pages 213-228, London, UK, 2002. Springer-Verlag.

[OCC06] Kevin R. O'Neill, Michael R. Clarkson, and Stephen Chong. Information-flow security
for interactive programs. In CSFW '06: Proceedings of the 19th IEEE Workshop on
Computer Security Foundations, pages 190-201, Washington, DC, USA, 2006. IEEE
Computer Society.

[SLZD04] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS-XI: Proceedings of the
11th international Conference on Architectural Support for Programming Languages
and Operating Systems, pages 85-96, New York, NY, USA, 2004. ACM.

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal
on Selected Areas in Communications, 21(1):5-19, January 2003.

[Sne96] Gregor Snelting. Combining slicing and constraint solving for validation of measure­
ment software. In SAS '96: Proceedings of the Third International Symposium on
Static Analysis, pages 332-348, London, UK, 1996. Springer-Verlag.

[SneOl] Harry M. Sneed. Extracting business logic from existing cobol programs as a basis for
redevelopment. In Proceedings. 9th International Workshop on Program Comprehen­
sion, pages 167-175, Los Alamitos, CA, USA, 2001. IEEE Computer Society.

19

[Som] Fabio Somenzi. CUDD: The CU decision diagram package, http://vlsi.Colorado.
edu/~fabio/CUDD/.

[SRK06] Gregor Snelting, Torsten Robschink, and Jens Krinke. Efficient path conditions in
dependence graphs for software safety analysis. ACM Trans. Softw. Eng. Methodol.,
15(4):410-457, 2006.

[SS05] Andrei Sabelfeld and David Sands. Dimensions and principles of declassification. In
CSFW '05: Proceedings of the 18th IEEE Workshop on Computer Security Founda­
tions, pages 255-269, Washington, DC, USA, 2005. IEEE Computer Society.

[Tip95] Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
3(3):121-189, 1995.

[TW07] Michael Carl Tschantz and Jeannette M. Wing. Confidentiality policies and their
extraction from programs. Technical Report CMU-CS-07-108, School of Computer
Science, Carnegie Mellon University, February 2007.

[WJ90] J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic systems.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 144-161, Los
Alamitos, CA, USA, 1990. IEEE Computer Society.

A WhilelO Semantics
A WhilelO program consumes inputs and produces outputs in an interactive manner. We call
inputs and outputs collectively actions. An action represents I/O as an ordered triple: the first
component is i if the action is an input and o if it is an output, the second component is the
domain of the action, and the third component is the contents of the action, a number from N.
For example, (i, H, 5) could be an input from the domain H. We add to A a distinguished action r ,
the internal transition, that no domain sees as output or creates as input. The set of actions A is
({i,o} x DXN)U{T}.

The program moves though a series of states (r, s) where s represents the code that still must
be executed and T represents the current contents of memory. The judgment (F, s) ^(r', s') means
that the statement s goes to s' while performing the action a and changing the memory from F to
r;. We call such a step a reduction.

Table 2 gives the small-step semantics of WhilelO. We write unit as o. We model the memory
T as a store, that is, a function from variables to numbers. Let T[v i-> n] be the store such that v
is mapped to n and all vf other than v is mapped to T(vf). We extend stores to assign a number to
expressions in the usual way. For example, let r(ei+e2) be r(ei) + Tfa) and T(n) = n for numbers
n.

We represent with the I/O actions found in order in the trace generated by s given the
input sequence i. To formally define {sj(t), we introduce (T,s) -^->(T',s'), which means that the
state (r,s) transitions to (r',s') while producing the outputs o and not consuming any inputs.
Formally, <I\ s) ^(r', *') if either <I\ s) ^>(F", *") and

^ (r y) , or (T,s) A(r",s"> and (T", s") -^(V, s'). For the base case, (I\ s) A (r ' ,

20

http://vlsi.Colorado

(r,a::=e)^<r[xi->r(a)],<>) (r ,read(x, d)) ^(T[x ~ n],o)

n = T(e) <r,«i>^(lVi>
(T,wri te (e , d)) W < I \ o) (r.-i;*) A(lVi;*2> <T,o;^> - < T , s2>

T(e) ^ 0 T(e) = 0 r(e) = 0

<r, i f (e) {Sl}{s2}) <^(T, 8l) (T, i f (e){s i}{s 2 }) ^ < I \ s2) {F, wh i l e (e) {*}) <^<r,o)

F(e) ^ 0

(r,while(e){si}) w(r, si; whi le (e){s x })

Table 2: Small-Step Semantics of WhilelO

if (r, s)1-* (r',s') and there exists no (T",s") such (r',s') ^-*(r",s") where <̂> represents zero or
more T transitions.

We define ts](i) to be [s](ro,?) where To is the store that maps every variable to zero and
[sj(r,i) is defined as follows: [s j (r , = oi:i:o2ls'}(T',i) where

<r\ s) -^<r", S") A(r"', s">) -^<r', s')
and [a](r, []) = o where (r, s) -%(r', s')-

21

