
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Combining Decision Diagrams and SAT Procedures for
Efficient Symbolic Model Checking

P. F. Williams 1 A. Biere 2 E. M. Clarke3 A. Gupta3

February, 2000
C M U - C S - 0 0 - 1 1 0 ^

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

^ept . Information Technology, Technical University of Denmark
2 Department of Informatics, University of Karlsruhe

3 School of Computer Science, Carnegie Mellon University

Abstract

In this paper we show how to do symbolic model checking using Boolean Expression Diagrams (BEDs),
a non-canonical representation for Boolean formulas, instead of Binary Decision Diagrams (BDDs), the
traditionally used canonical representation. The method is based on standard fixed point algorithms,
combined with BDDs and SAT-solvers to perform satisfiability checking. As a result we are able to
model check systems for which standard BDD-based methods fail. For example, we model check a 256
bit shift-and-add multiplier and we are able to find a previously undetected bug in the specification of a
16 bit multiplier. As opposed to Bounded Model Checking (BMC) our method is complete in practice.

Our technique is based on a quantification procedure that allows us to eliminate quantifiers in Quantified
Boolean Formulas (QBF). The basic step of this procedure is the up-one operation for BEDs. In addition
we list a number of important optimizations to reduce the number of basic steps. In particular the opti­
mization rule of quantification-by-substitution turned out to be very useful: 3x : g A (x f) = g[f/x].
The rule is used (1) during fixed point iterations, (2) for deciding whether an initial set of states is a
subset of another set of states, and finally (3) for iterative squaring.

This research is sponsored in part by the Semiconductor Research Corporation (SRC) under agreement through
Contract No. 99-TJ-684 and the National Science Foundation (NSF) under Grant Nos. CCR-9505472 and CCR-
9803774. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of SRC, NSF, or the United States Government.

University Libraries
Carnegie Mellon Universe
Pittsburgh, PA 15213-389*

Keywords: automatic verification, binary decision diagrams, boolean expression diagrams, SAT proce­
dures, symbolic model checking, temporal logic

1 Introduction
Symbolic model checking has been performed using fixed point iterations for quite some time [10]. The
key to the success is the canonical Binary Decision Diagram (BDD) [7] data structure for representing
Boolean functions. However, such a representation explodes in size for certain functions. In this paper
we show how to do symbolic model checking using Boolean Expression Diagrams (BEDs) [2], a non-
canonical representation of Boolean functions. The method is theoretically complete as we only change
the representation and not the algorithms. Dropping the canonicity requirement has both advantages and
disadvantages: Non-canonical data structures are more succinct than canonical ones - sometimes expo­
nentially more. Determining satisfiability of Boolean functions is easy with canonical data structures, but
with non-canonical data structures it is hard. We show how to overcome the disadvantages and exploit
of the advantages in symbolic model checking.

As a non-canonical representation, BEDs do not allow for constant time satisfiability checking.
Instead we use two different methods for satisfiability checking: (1) SAT-solvers like G R A S P [14]
and S A T O [16], and (2) conversion of BEDs to BDDs. BDDs are canonical and thus satisfiability
checking is a constant time operation. We perform symbolic model checking the classical way with
fixed point iterations. One of the key elements of our method is the quantification-by-substitution rule:
3JC : gA (x f)= g[f/x]. The rule is used (1) during fixed point iterations, (2) while deciding whether
an initial set of states is a subset of another set of states, and finally (3) while doing iterative squaring.

While complete in the sense that it handles full CTL model checking, our method performs best if the
system has few inputs and the transition relation can be written as a conjunction of next-state functions.
The reason is that this allows us to fully exploit the quantification-by-substitution rule.

Using our method, we can model check a 256 bit shifl-and-add multiplier, which requires 256 iter­
ations to reach the fixed point. This should be compared with the 23 bit multipliers that standard BDD
methods can handle. In fact, we are able to detect a previously unknown bug in the specification of a 16
bit multiplier. It was generally thought that iterative squaring was of no use in model checking. However,
we show that iterative squaring enables us to calculate the reachable set of states for all 32 outputs of a
16 bit multiplier faster than without iterative squaring.

Model checking was invented by Clarke, Emerson, and Sistla in the 1980s [12]. Their model check­
ing method required an explicit enumeration of states which limited the size of the systems they could
handle. Burch et al. [10] showed how to do model checking without enumerating the states. They called
this symbolic model checking. The idea is to represent sets of states by characteristic functions. The data
structure of Binary Decision Diagrams turns out to a very efficient representation for characteristic func­
tions. The advantages of BDDs are compactness of representation, canonicity, and ease of manipulation.
Since the appearance of BDDs, many other related data structures have been proposed. Bryant gives an
overview in [8]. One such data structure is the Boolean Expression Diagram. It is a generalization of
BDDs. In this paper we will study BEDs for use in symbolic model checking.

Biere, Clarke et al. have proposed Bounded Model Checking (BMC) as an alternative method to
BDD-based model checking [3, 4, 5]. They unfold the transition relation and look for repeatedly longer
and longer counterexamples, and they use SAT-solvers instead of BDDs. BMC is good at finding errors
with short counterexamples. The diameter of the system determines the number of unfoldings of the
transition relation. Unfortunately, for many examples the diameter cannot be calculated and the estimates
are too rough. In such cases B M C reduces to a partial verification method in practice. Our method does
not need the computation of the diameter or approximations of it. Thus it turns out to be complete for
much more examples.

The work most closely related to ours is by Abdulla, Bjesse and Een. They consider symbolic reach­
ability analysis using SAT-solvers [1]. For representing Boolean functions they use the Reduced Boolean
Circuit data structure which closely resembles our Boolean Expression Diagrams. They perform reacha­
bility analysis using a fixed point iteration, and like us they make use of the quantification-by-substitution
rule. They use Stalmarck's patented method [15] to determine satisfiability of Boolean functions. While
related, their method and ours differ in a number of ways: In essence, the basic step in their and our
quantification algorithm can be computed by the up-one BED-algorithm. Therefore we think BEDs are

1

the most natural representation in this context. We handle full CTL while they concentrate on reacha­
bility. In our method the quantification-by-substitution rule is extensively used at three different places
and not just during fixed point calculation. We have heuristics for choosing different SAT-procedure
depending on the expected result of the satisfiability check. Candidates are various SAT solvers or an
explicit BED to BDD conversion. We use SAT-solvers if the formula is expected to be satisfiable and
either SAT-solvers or an explicit BED to BDD conversion if the formula is expected to be unsatisfiable.
In their work Stalmarck's method is the only SAT procedure used. BEDs are always locally reduced and
we identify further important simplification rules. Finally we make use of iterative squaring.

This paper is organized as follows. In section 2, we review the BED data structure. In section 3,
we show how to do model checking using BEDs. In section 4, we give three applications of the
quantification-by-substitution rule. In section 5, we deal with the size of BEDs. In section 6, we present
the experimental results. Finally in section 7, we conclude.

2 Boolean Expression Diagrams
A Boolean Expression Diagram [2] is a data structure for representing and manipulating Boolean formu­
las. In this section we review the data structure.

Definition 2.1 (Boolean Expression Diagram). A Boolean Expression Diagram (BED) is a directed a-
cyclic graph G = (VyE) with vertex set V and edge set E. The vertex set V contains four types of vertices:
terminal, variable, operator, and quantifier vertices.

• A terminal vertex v has as attribute a value val(v) G { 0 , 1 } .

• A variable vertex v has as attributes a Boolean variable var(v), and two sons low{v)) high(v) G V.

• An operator vertex v has as attributes a binary Boolean operator op(v), and two sons low(v),
high{v) G V.

• A quantifier vertex v has as attributes a quantifier quantiy) G {3 ,V} , a Boolean variable var(v),
and one son low(v) G V.

The edge set E is defined by

E = {(v, low(v)) \ v£V and v has the low attribute }

U {(v, high(v)) \ v€V and v has the high attribute } .

The relation between a BED and the Boolean function it represents is straightforward. Variable ver­
tices have the semantics as vertices of BDDs and correspond to the if-then-else operator x -» f\ , /o defined
as (x A / i) V (-^JCA fo). Operator vertices correspond to their respective Boolean connectives. Quanti­
fier vertices correspond to the quantification of their associated variable. This leads to the following
correspondence between BEDs and Boolean functions:

Definition 2.2. A vertex v in a BED denotes a Boolean function f defined recursively as:

• If v is a terminal vertex, then f — val(v).

• If v is a variable vertex, then f = var{v) - » / % * (v) / M v)

• If v is an operator vertex, then f = flow^ op(v) f h i ^ .

• If v is a quantifier vertex, then / " = quantiy) var(v) : //ow(v).

2

Figure 1: The BED for : a V {a A b) a. All
edges are directed downwards; the dashed edges be­
ing the low ones.

The BED data structure is a representation form for formulas in QBF. If we disallow quantifier ver­
tices, we get a representation form for propositional logic. If we disallow both operator and quantifier
vertices, we get a BDD. As an example Figure 1 shows a BED for the formula V6 : a V {a A b) <=> a.

There exist algorithms for transforming a BED into a BDD. One such algorithm is up-one. It sifts
variables one at a time to the root of the BED. Using up-one repeatedly to sift all the variables transforms
the BED to a BDD. We refer the reader to [2, 13] for a more detailed description of up-one and its
applications.

3 Model Checking
In this section, we review the standard model checking algorithm. The system to be verified is represented
as a Kripke structure. A Kripke structure M is a tuple T,£)t with a finite set of states S, a set of
initial states / C S, a transition relation T C S x 5, and a labeling of the states £:S-> with atomic
propositions A.

A reactive system consists of a set of states and a set of inputs. The states are encoded as a Boolean
vector of state variables s\,.. .,sn. The inputs are also encoded as Boolean variables s„+\,.. .,sm. These
together form the state variables of the Kripke structure, s\y...,sm. The atomic propositions correspond
to the state variables. Each state is assumed to be labeled with the variables Si that are 1 for that state.
We use primed variables as next state variables, unprimed variables as current state variables, and we use
characteristic functions over the state variables to represent sets. Since the inputs are non-deterministic,
they are not constrained by the transition relation. Thus, the transition relation does not contain the
primed versions of the input variables.

There are two ways to specify a transition relation in an SMV program: (a) by use of the " T R A N S "
statement, and (b) by use of the "ASSIGN" statement. In (a) one specifies the transition relation directly
as a Boolean expression. In (b) one specifies next-state functions for state variables. Both methods can
be used at the same time. We capture this as follows:

where i"and s form a partitioning of s\,.. .,s„. Here, t(stF) comes from the " T R A N S " statements and
we call it the relational part, while A/^ ^ fi(s) c o m e s fr°m the "ASSIGN" statements and we call it the
functional part. (If a primed variable is restricted by both " T R A N S " and "ASSIGN" statements, we place
it in the relational part of T.) Our verification method performs best if the transition relation is mainly in
functional form.

We use CTL formulas to capture the properties we want to verify. A CTL formula characterizes
a set of states, namely the set of states satisfying the formula. This set can be computed by a fixed
point iteration. The central part of the fixed point iteration is the computation of relational products.

ls,s,)=t(s,?)A/\s?i*>fi(s) (1)

3

A relational product between the transition relation T and a set of states R is a new set of states. In a
forward computation, the new set is the set of states reachable in one step from R. We call it the Image
of R. In a backward computation, the new set is the set of states which in one step can reach a state in R.
We call it the Prelmage of R.

The following formulas show how to compute the image and preimage of R:

Imagers') = 3s : T(st^)/\R{s)

PreImageTR{s) = 3s' : T(s,s') AR(sl)

Note that all variables, including the inputs, are quantified out. For example, the algorithm in Figure 2
computes the characteristic function for the set of states satisfying the CTL formula "AG P" (read:
always globally P) using backward iteration. It actually computes "->EF ->P", i.e., it computes the set of
states from which there exists a path to a state where P does not hold. The complement set then has the
property that P holds along all paths.

A G P =
Ro <— characteristic function for

the set of states not satisfying P
i < - 0
repeat

i f - i + l
Ri+ l f - f t V PreimageTlRi (s)

until Ri+i =>Rj
return - i / ? , -

A Kripke structure M= (£,/, T}£) satisfies a specification R if and only if / is a subset of R. In terms
of characteristic functions this translates to the implication: I=>R.

3.1 Quantification
The basic step in our quantification algorithm is to eliminate one quantified variable by the following
rule:

3x:f = f[0/x] V/[\/x] Vx : / = f[0/x] Af[l fx)

Note that this basic step can easily be computed by performing a up-one(f, x) BED-operation and then
replacing the top level variable vertex by an appropriate operator vertex.

In the worst case, while removing a quantifier from a formula, we double the formula size.. Since each
(pre)image computation involves existential quantification of all m state variables, we risk increasing the
formula size by a factor of up to 2 m . In this section we present some syntactical transformations which
help us to perform the quantifications efficiently.

The most important transformation is the quantification-by-substitution rule. It allows us to replace
an existential quantification by a substitution:

3x:gA(x&f) = g[f/x] (2)

Our verification method performs best when we can exploit the quantification-by-substitution rule.
Such cases include systems with few inputs and systems with a transition relation that is mainly in func­
tional form. After performing quantification-by-substitution, we quantify the remaining state variables
(including inputs) using the rules below.

By applying scope reduction rules to a formula, we can push quantifiers down and thus reduce the
potential blowup. The scope reduction rules are the following (shown for negation, conjunction and
disjunction):

Figure 2: The algorithm for computing
"AG F9 using backward iteration. T is
the transition relation for the system.

4

3*:/Vg
3x:f(y)Ag(x)

-*x:f
(3x:f)V(3x:g)

f(y)A(3x:g(x))

V * : / A g

V ^ : / (y) V g (x)

(V * : /) A (V * : g)

/ (y) V (V x : g (*))

Because BEDs are always reduced, for details see [2 , 1 3] , the quantifiers disappear if they are pushed
all the way to the terminals.

3.2 Satisfiability Checking
There are two places where we need to determine whether a Boolean formula represented by a BED
is satisfiable. First we need to detect that a fixed point has been reached in the computation of the set
of states satisfying a CTL formula. Let Rj be the ith approximation to the fixed point. The fixed point
has been reached if Rj+\ = Rj. Using characteristic functions, this translates to Rj+\ However,
depending on the CTL operator, the series of approximations will either be monotonically increasing or
monotonically decreasing. It is therefore enough to check set inclusion instead of set equivalence. In
the increasing case we check if Rj+\ => is a tautology. In the decreasing case we check if /?,• => Rj+\
is a tautology. Until we reach the fixed point, these formulas will not be tautologies. In other words,
the negation of the formulas will be satisfiable. SAT-solvers are good at finding a satisfying variable
assignment so we use a SAT-solver here.

Second we need to determine whether the initial set of states / is a subset of the set of states R
represented by the CTL specification. In particular we have to check / => R for tautology. There are two
cases:

• The specification holds. This means that / => R is a tautology. We could use a SAT-solver to prove
that the negation of / R is not satisfiable. However, most SAT-solvers are not very good at
proving non-satisfiability. We can also use BDDs. By using the up-one algorithm, we convert the
BED for / R to a BDD. In many cases this conversion will not blow up in size [2 , 1 3] .

• The specification does not hold. A proof will be a variable assignment falsifying I =>R. Or equiv­
alent, a variable assignment satisfying R). SAT-solvers are good at finding such variable

Of course, we do not know before hand whether the specification holds. A possibility is to run a SAT-
solver and a BED to BDD conversion in parallel.

SAT-solvers like G R A S P [1 4] and S A T O [1 6] expect their input to be a propositional formula in
conjunctive normal form (CNF). After the elimination of quantifiers, as described in Section 3 . 1 , we still
need to convert BEDs into CNF. For this conversion we use the well known technique of introducing new
variables for every non-terminal vertex [3] .

4 Applications of Quantification-by-Substitution

4.1 Preimage Computation
Consider the preimage computation in section 3 . If the transition relation T is written as in equation (1) ,
then we can apply rule (2) directly for the functional part. This can be done in one traversal of the BED.
Figure 3 shows the pseudo-code. The algorithm works in a bottom-up way replacing all variables from
the functional part of T with their next-state function. Line 4 does the replacing by performing a Shannon
expansion of the variable vertex and inserting the next-state function.

assignments.

5

preimage(w)
if u is a terminal then return u
(/,/?) <r- (preimage(/ow(w)),preimage(/zig/z(w)))
if u is a variable vertex with variable from the functional part of T then

return {fvar{u) A h) V (- i / v « K «) A l)

else
return makenode(oc(w),/,/*)

Figure 3: The preimage algorithm computes the preimage of u for the functional part of the transition
relation: T/unc = A/5/ & fM- The BED u is assumed to be quantifier-free. The tag a(u) is short for
either var(u) or op(u).

4.2 Set Inclusion
We now describe a preprocessing step simplifying / R, i.e., whether the initial set of states is a subset
of the states characterized by the specification. The initial set of states / often has the form:

1= f\Si&initi(s)
i

where initi(s) is the function describing the initial state for the variable si. (Note that not all variables
have an initial state specified.) In many cases init^s) is either a constant or a very simple function, and
we can use this fact to simplify I => R. Let / be written I1 A (s/ initi{s)) and assume initi{s) does not
depend on variable j / . Recall that / R is a tautology if and only if Vs/ :I=> R is a tautology:

Vj/:/=>/?
= Vs/ : ->(/ ' A ($/ A -.J?)

= - d s / : / ' A (st initi(s)) A ->tf

= ^{I1 A^R)[imti{s)/si]

{I'^R^init^/si]

The [m (̂̂)/5/] means a substitution of /«//,(,?) for st. This reduces the number of variables and often
simplifies the formula.

4.3 Iterative Squaring
Iterative squaring is a technique for reducing the number of iterations needed to reach the fixed point [9].
During reachability analysis we repeatedly square the transition relation:

T2{sJ) = 3J':T{stsf')AT{sf'9J)

Assume that T is written as in equation (1). In general there is no way to square T and keep it in this
form - the functional part will disappear. However, if we restrict ourselves to transition relations purely
in functional form, squaring can be done easily:

r2(*,y) = 3/:r(s,y')A7yv)

i
where [f(s)/sn] is a substitution of function fj(s) for variable s'j (for all j). The algorithm is similar to
the preimage algorithm in Figure 3.

6

In this way we can compute in only k steps. is a new transition relation representing all
paths in T with a length of exactly 2k. However, it is not possible to represent in functional form the
transition relation allowing paths of length up to 2k. As a consequence we cannot combine this form of
iterative squaring with, for example, frontier set simplifications.

5 BED Simplifications
As we mentioned in section 3.2, transforming a BED to CNF increases the size of the formula as we
introduce a new variable for each BED non-terminal vertex. It is therefore vital to keep the size of the
BEDs down.

During the conversion of a BED to a BDD, the size may blow up. Even when the final BDD is small
(as for a tautology), the intermediate results might be large. In this section we describe a method of
keeping the BEDs small.

Keeping the BEDs reduced, as mentioned above, already gives us size reductions due to, for example,
constant propagation. But we can reduce the size of the BEDs even more. This can be achieved by
increasing the sharing of vertices and by removing local redundancies. In [13] we describe a set of
rewriting rules in detail. Here we will just mention some of the ideas:

• Sharing can be increased by disallowing operator vertices which only differ in the order of their
sons; for example a Ab and b A a. We fix an ordering < of vertices and only create operator vertices
with low < high.

• Size can be reduced by eliminating all negations below binary operators since for all binary oper­
ators op there exists another operator op1 with op'(x,y) = op(-*x,y)

• Size can be reduced by not using all 16 binary Boolean operators but only a subset of them. We
use the set nana1, or, left implication, right implication, and bi-implication. (For clarity, the BED
in Figure 1 has not been reduced to this subset.)

• Size can be reduced by exploiting equivalences like the absorption laws, for example a\/(aAb) =
a, and distributive laws, for example (a A b) V [a A c) = a A (b V c).

We apply all these rewriting rules each time we create a new operator vertex.

6 Experimental Results
We have constructed a prototype implementation of our proposed model checking method. It performs
CTL model checking on SMV programs. As SAT-solver we use S A T O . We compare our method with
the N u S M V model checker [11] and with Bwolen Yang's modified version of S M V 1 , both of which are
state-of-the-art in BDD-based model checking. Finally we compare reachability results with F ix lT from
Adbulla, Bjesse, and Een [1].

6.1 Multiplier
This example comes from the BMC-1.Of distribution 2 . It is a 16 x 16 —> 32 shift-and-add multiplier.
The specification is the c6288 combinational multiplier from the ISCAS'85 benchmark series [6]. For
each output bit we verify that we cannot reach a state where the shift-and-add multiplier has finished its
computation and the output bits of the two multipliers differ.

The multiplier fits into the category of SMV programs that we handle well. The operands are not
modeled as inputs. Instead they are modeled as state variables with an unspecified initial state and the

1 http://www.cs.emu.edu/~bwolen
2http://www.cs.emu.edu/~modelcheck

7

http://www.cs.emu.edu/~bwolen
http://www.cs.emu.edu/~modelcheck

identity function as the next-state function. This lets us use quantification-by-substitution for all but the
last iteration in the fixed-point calculation. Only in the last iteration do we need to quantify the operands
out using the standard quantification methods.

Table 1 shows the runtimes for verifying that the multiplier satisfies the specification. Our BED-

Bit BED N u S M V Bwolen FlXlT

0 2.2 11 9.4 2.9
1 2.3 23 17 3.1
2 2.9 50 33 3.7
3 3.8 130 71 4.8
4 5.2 290 159 6.6
5 7.0 702 383 11
6 9.2 - 1031 20
7 12 - - 47
8 16 - - 150
9 31 - - 544

10 68 - - 2078
11 352 - - 8134
12 2201 - - 30330

Table 1: Runtimes in seconds for verify­
ing the correctness of a 16 bit multiplier.
The BED, N u S M V , and Bwolen Yang's
SMV experiments were performed on the
same computer. The F I X I T experiments
are from Abdulla et al using a backward
method - computer unknown. A dash "-"
indicates that the verification could not be
completed with 800 M B of memory.

based method out-performs both N u S M V and Bwolen Yang's SMV as we are able to model check
twice as many outputs as they are. F I X I T handles the same number of outputs as our method, however,
our method is faster by an order of magnitude.

For the most difficult output in Table 1, the fixed point iteration accounts for only a fraction of the
total runtime for our method. It takes less than a minute and almost no memory to calculate the fixed
point. By far the most time is spent in proving I R. SAT-solvers gave poor results, so we converted
the BED for / R to a BDD.

We did the experiments in Table 1 without use of iterative squaring to enable fair comparisons. How­
ever, iterative squaring speeds up the fixed point calculations. Table 2 shows the runtimes for calculating
the fixed points - with and without iterative squaring - for the same model checking problem as above.

Bit Without I.S. With I.S.

0 2.1 0.9
5 6.8 1.6

10 14 3.7
15 16 8.3
20 37 12
25 19 8.8
30 > 3 0 0 6.4

Table 2: Runtimes in seconds for the fixed point calculation in
verifying the correctness of the 16 bit shift-and-add multiplier.
Results are shown for computations with and without iterative
squaring (I.S.). The space requirements are small, i.e., less than
1 6 M B .

To see how our method handles erroneous designs, we introduced an error in the specification of the
multiplier by negating one of the internal nodes (this is marked as "bug D " in the multiplier file in the
B M C distribution). We observe that the fixed points are computed in roughly the same amount of CPU
time and memory (both with and without iterative squaring). The difference is when we prove I R.
Using BED to BDD conversion as with the correct design, we now get poorer results because / R is
not a tautology and the final BDD is not necessarily small. However, using a SAT-solver, we get much
better results. In many cases, the SAT-solver is able to find a counterexample almost immediately. We
are able to model check the first 19 outputs as well as some of the later outputs of the multiplier using
less than 16 M B of memory and one minute of CPU time per output. N u S M V and Bwolen Yang's SMV
perform as bad as before.

8

We were able to find a bug in the "correct" specification of the multiplier for the two most significant
outputs. Using iterative squaring and S A T O we find these errors in seven and eight seconds, respectively.
It turns out that the two outputs have been swapped. The original net-list for c6288 does not contain
information about which gates correspond to which multiplier outputs. However, each gate is numbered
and the outputs seem to be increasing with the the gate numbers - with the exception of the last pair of
outputs. This emphasizes the fact that SAT-bases methods are good at finding bugs in a system.

We constructed shift-and-add multipliers of different sizes and verified that they always terminate,
i.e., we checked " A F done". The number of iterations needed to reach the fixed point is equal to the
size of the multiplier. This lets us test how well our methods handles cases with lots of iterations.
Table 3 shows the results. We compare our method with N u S M V and Bwolen Yang's SMV. Our method
performs much better as we are both significantly faster and we are able to handle much larger designs.
We cannot compare with F I X I T as it does not handle A F properties.

Size BED N u S M V Bwolen

16 1.6 2.2 5.2
18 1.8 18 9.1
20 2.0 90 24 Table 3: Runtimes in seconds for verifying that shift-
22 2.3 472 104 and-add multipliers of different sizes always termi­
23 2.7 - 253 nate, i.e., we check " A F done". The number of iter­
24 2.8 - - ations to reach the fixed point is equal to the size of
32 3.7 - - the multiplier.
64 17 - -

128 119 - -
256 1185 - _

6.2 Barrel Shifter
This example is a barrel shifter from the BMC-1 .Of distribution and like the multiplier, it also falls within
the category of systems which we handle well. A barrel shifter consists of two register files. The contents
of one of the register files is rotated at each step while the other file stays the same. The width of a register
is log R, where R is the size of the register file.

The correctness of the barrel shifter is proven by showing that if two registers from the files have the
same contents, then their neighbors are also identical. The left part of Table 4 shows the results. The BED
and F I X I T methods are both fast, however, the BED method scales better and thus outperforms F I X I T .
N u S M V and Bwolen Yang's SMV are both unable to construct the BDD for the transition relation for
all but the smallest examples.

We prove liveness for the barrel shifter by showing that a pair of registers in the files will eventually
become equal. The number of iterations for the fixed point calculation is equal to the size of the register
file. The right part of Table 4 shows the results. F I X I T cannot handle liveness properties so we cannot
compare with it. As in the previous case, N u S M V and Bwolen Yang's SMV can only handle small
examples.

7 Conclusion

We have presented a BED-based CTL model checking method based on the classical fixed point itera­
tions. Quantification is often the Achilles heel in CTL fixed point iterations but by using quantification-
by-substitution we are in some cases able to deal effectively with it. While our method is complete, it
performs best on examples with a low number of inputs and where the transition relation is mainly in
functional form. In these situations we can fully exploit the quantification-by-substitution rule.

9

Size BED N u S M V Bwolen F ix iT Size BED N u S M V Bwolen

2
4
6
8

10
20
30
40
50
60
70

0.1
0.3
0.4
0.4
0.6
1.9
4.0
8.0

13
19
30

0.1
0.2

1.0
2.5

2
4
6
8

10
20
30
40
50
60
70

0.2
0.5
0.7
0.9
1.2
3.2
5.9

11
18
28
47

0.1
0.2

1.0
2.1

609 521

Table 4: Runtimes in seconds for invariant (left) and liveness (right) checking of the barrel shifter exam­
ple. A question mark indicates that the runtime for F ix iT was not reported in [1]. For the BED method
we use S A T O for checking satisfiability ofI=>R.

We have shown how the quantification-by-substitution rule can also help simplify the final set in­
clusion problem of model checking and help perform efficient iterative squaring. Our proposed method
combines SAT-solvers and BED to B D D conversions to perform satisfiability checking. We have pre­
sented a set of local rewriting rules which helps to keep the size of the BEDs down.

We have demonstrated our method by model checking large shift-and-add multipliers and barrel
shifters, and we obtain results superior to standard BDD-based model checking methods. Furthermore,
we were able to find a previously undetected bug in the specification of a 16 bit multiplier.

Future work includes investigating two variable ordering problems. One is the variable ordering
when converting the BED for / => R to a BDD. The variable ordering is known to be very important in
BDD construction, and since we, in some cases, spend much time on converting / R to a BDD, our
method will benefit from a good variable ordering heuristic. The other problem is the order in which we
quantify the variables in the preimage computation. This will be interesting especially in cases where we
cannot use the quantification-by-substitution rule. Finally we are currently investigating how to extend
our method to work well for systems with many inputs.

References
[1] R A. Abdulla, R Bjesse, and N. Een. Symbolic reachability analysis based on SAT solvers. In Tools

and Algorithms for the Analysis and Construction of Systems (TACAS), 2000. (To appear).

[2] H. R. Andersen and H. Hulgaard. Boolean expression diagrams. In IEEE Symposium on Logic in
Computer Science (LICS), July 1997.

[3] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using SAT
procedures instead of BDDs. In Proc. ACM/IEEE Design Automation Conference (DAC), 1999.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In Tools
and Algorithms for the Analysis and Construction of Systems (TACAS), volume 1579 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[5] A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties of a PowerPC microprocessor
using symbolic model checking without BDDs. In Computer Aided Verification (CAV), volume
1633 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

10

[6] F. Brglez and H. Fuji ware. A neutral netlist of 10 combinational benchmarks circuits and a target
translator in Fortran. In Special Session International Symposium on Circuits and Systems (ISCAS),
1985.

[7] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on
Computers, 35(8) :677-691, August 1986.

[8] R. E. Bryant. Binary decision diagrams and beyond: Enabling technologies for formal verification.
In Proc. International Conf. Computer-Aided Design (ICCAD), pages 236-243 , November 1995.

[9] J. R. Burch, E. M. Clarke, D. E. Long, K. L. MacMillan, and D.L. Dill. Symbolic model checking
for sequential circuit verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13(4):401-424, April 1994.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking:
1 0 2 0 states and beyond. Information and Computation, 98(2):142-170, June 1992.

[11] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. N u S M V : a new Symbolic Model Veri­
fier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Conference on Computer-Aided
Verification (CAV'99), volume 1633 of Lecture Notes in Computer Science, pages 495-499 , Trento,
Italy, July 1999. Springer-Verlag.

[12] E. M. Clarke, E. A. Emerson, and A. R Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages and
Systems, 8(2):244-263, April 1986.

[13] H. Hulgaard, R F. Williams, and H. R. Andersen. Equivalence checking of combinational circuits
using boolean expression diagrams. IEEE Transactions on Computer Aided Design, July 1999.

[14] J. R Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48 , 1999.

[15] M. Sheeran and G. Stalmarck. A tutorial on Stalmarck's proof procedure for propositional logic.
In G. Gopalakrishnan and P. J. Windley, editors, Proc. Formal Methods in Computer-Aided Design,
Second International Conference, FMCAD'98, Palo Alto/CA, USA, volume 1522 of Lecture Notes
in Computer Science, pages 82-99 , November 1998.

[16] H. Zhang. SATO: An efficient propositional prover. In William McCune, editor, Proceedings of the
14th International Conference on Automated deduction, volume 1249 of Lecture Notes in Artificial
Intelligence, pages 272-275 , Berlin, July 1997. Springer-Verlag.

11

