
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Program Transformation

and Proof Transformation

by

Wilfried Sieg and Stanley S. Wainer

June 1994

Report CMU-PHIL-56

Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890

Program Transformation and Proof
Transformation

Wilfried Sieg
(Carnegie Mellon University, Pittsburgh USA)

Stanley S. Wainer *
(University of Leeds UK)

Abstract. A "linear - style" sequent calculus makes it possible to explore the
close structural relationships between primitive recursive programs and their
inductive termination proofs, and between program transformations and their
corresponding proof transformations. In this context the recursive - to - tail
- recursive transformation corresponds proof theoretically to a certain kind of
cut elimination, called here "call by value cut elimination".

1 Introduction.
An old and well-known theorem of logic, due variously to Kreisel, Parsons,
Mints, Takeuti and others, states that the primitive recursive functions are
exactly those which can be proved to terminate in the fragment of arithmetic
with induction restricted to existential (Ex) formulas, and more generally as
shown in Sieg (1991), in the fragment with (n2) - induction provided any
side assumptions are less complex, i.e. at worst E2. This is an "extensional"
result, characterizing a certain class of number-theoretic functions .

What we are looking for here is something more "intensionaP, i.e. a
logic which allows us to distinguish between different kinds of primitive re-

*The second author thanks the Department of Philosophy at Carnegie Mellon Univer-
sity for generous hospitality during a sabbatical year as a Fulbright Scholar 1992-93.

cursive programs according to the structure of their respective termination
proofs. Preferably it should provide a clear correspondence between proofs
and programs, and also at the higher level between proof-transformations
and program- transformations, so that "program-complexity99 is measurable
directly in terms of "proof complexity". See Feferman (1992) for another
development of similar ideas.

Note that work of e.g. Goad (1980), Pfenning (1990), Schwichtenberg
(1992), Madden (1992), and Anderson (1993) already illustrates the potential
applicability of proof-transformation as a means to synthesize and analyze
useful program-transformations. However our present concern lies rather in
the general proof-theoretic principles which underly such applications. Thus
we will be very restrictive in considering only programs over the natural
numbers N since they already serve to illustrate the essential logical features,
but with the least amount of syntactic "fuss".

The logic we arrive at below is a strictly "linear" one (no contraction, no
weakening and no exchange !) obtained simply by analyzing just what one
needs to prove the totality of primitive recursive definitions. The absence of
exchange rules means that two cut rules are needed - an ordinary one and an-
other one which we call "call-by-value cut" for reasons which will be obvious.
It then turns out that, in the appropriate setting, the transformation from
recursive to tail-recursive programs is precisely call-by-value-cut-elimination !

Definition. A recursive program over N, the natural numbers, is a finite
sequence of function-definitions

fi (• • •) = Ti (/o , . . . , fi-ufi ; xij..., xk)

where the arguments . . . of /t- are the variables x 1 ? . . . , a;*, or successors of
them, or the constant 0; and T{ is a term built up from those variables and the
constant 0 by arbitrary applications of the successor function, the previously
defined functions / 0 , . . . , /,_i and possibly the function /,- itself.

Evaluation is by "substitution" or "call-by-value". That is, on given nu-
merical inputs n = n! , . . . ,n* we are allowed successively to replace any
subterm fj(n) of 7} by its previously-computed value until eventually a nu-
merical value for / t(n) is obtained. However termination is not guaranteed
in general.

A (partial) recursive Junction is then one which is defined by a recursive

program, according to the usual least-fixed-point semantics.

Example. Given a program denning g, add to it the new equations :

h(0,y,z) = y
h(x + l,y,z) = z
f(x) =

Then on input x := n, and assuming g(n), g(n + 1), . . . defined, we have

/(n) = n ifg(n) = 0
= /(n + 1) ifflr(n)^0

f(n + 1) = n + 1 if g(n + 1) = 0
= f(n + 2) if g(n + 1) ^ 0

etcetera, and therefore if g has a "zero" above n then / computes it :

/(n) = least m>n such that g(m) = 0 .

Note on the other hand that if the third equation defining / is simply re-
garded as a left-to-right term rewrite then f(n) can be expanded continually
without ever giving a value.

Definition. Call a recursive program defining a function / provably recur-
sive or verifiable in a given logic L if

L h V£3y{f(2)~y).

Obviously the more restrictive the logic, the more restricted will be the
class of recursive programs we can prove to terminate in it. The aim here is
to impose simple logics on the equation calculus in such a way that there is a
clear and precise structural correspondence between termination proofs and
known subclasses of recursive programs. We concentrate here on primitive
recursive programs, though the ideas have a much wider range of application.

2 Primitive Recursive Programs.
Definitions. A primitive recursive program is one in which every defining
equation has one of the five forms "zero", "successor", "projection", "explicit

definition" and " primitive recursion" as follows :

(Z)
(S)
(P)
(E)
(PRo)

/<(*)
/«(*)

= 0
= ar + 1

= xi
= r (/ o ,

where in the (PR) scheme to, t'i < t.
A generalized primitive recursive program is one in which the primitive

recursion equation (PRi) is generalized to allow substitution of terms for the
parameters x in the recursive call /,-(z, x) as follows :

(GPRi) fi(z + l x) = fi (z x fi(z fi(zx) . . . /,- (z x)))

where to9 ti, t 2 , . . . , tjk+i < t.
A primitive tail recursive program is one in which generalized primitive

recursion is allowed, but only in the following restricted context, where the
recursive call on / i (z , . . .) is the final function-call made in the evaluation of

Remark. Tail recursive programs

) = g(x)
f(z + l,x) = /(*,*(*,*))

axe "efficient" since they can immediately be recast as while-loops :

while z ^ 0 do z := z — 1; x := A(z, x) od ; / := g(x) .

The following transformations are either explicit or implicit in the classic
R. Peter (1967) which contains a wealth of information on the reduction of
various kinds of recursions to simpler forms. See also for example, Wainer
(1993) for a survey of further basic information on primitive recursion.

Theorem 2.1 Every generalized primitive recursive program can be trans-
formed into a primitive tail recursive program defining the same function.
Every primitive tail recursive program can be transformed into an ordinary
primitive recursive program defining the same function.

Proof, (i) A generalized primitive recursion (i.e. with parameter substitu-
tion) such as

/(0,x) = g(x)
f(z + 1, x) = h(z, x, f(z,p(z, x)))

can be transformed into a tail recursive program as follows (note however that
three tail recursions seem to be needed - the two given here plus another one
implicitly used in order to define the "modified minus" from the predecessor)

(TRQ) /o(0,*,x) = x
(TRt) /0(n + l ,z,x) = / 0 (n ,z - l ,p (z - l ,x))
(E) /i(n,z,x,y) = h(z-(n + l),fo(n,z,x),y)
(TRo) /2(0,*,x,y) = y

/2(n + l,z,x,y) = f2(n,z,x,fi(n,z,x,
/3(z,x) = f2(z,z,x,g(f0(z,z,x

The devoted (!) reader with a taste for intricate inductions might now like
to verify that

VzV*(/3(*,s) = /(*,*)).

Hint : one needs first to check the following identities

and then a further induction on z yields the desired result,
(ii) A primitive tail recursion such as

) = g(x)

f(z + l,x) = /(z,p(z,x))

can be transformed into an ordinary primitive recursion as follows

(PRo) fo(0,z,x) = x
(PR1) /0(n + l,*,z) = p(z-njo(n,z,x))

(E) Mz,x) = g(fo(z,z-l,x)).

The verification needs a preliminary induction on n to show

/o(n + l,z,z) = fo(n,z-l,p(z,x))

and then by a further induction on z,

VzVx(fx(z,x) = f(z,x)).

Notice that the above program - equivalences are all provable by induc-
tions on quantifier - free equational formulas, or on universally quantified
equational formulas, i.e. Ill formulas.

We are now going to devise a logic exactly tailored to proofs about prim-
itive recursive and generalized primitive recursive programs.

3 The Logic of Primitive Recursion (LPR).
Formulas A, B, C , . . . will be either atoms of the form f(x) ~ y with y a
variable, meaning f(x) is defined with value y, or Ei -formulas 3y(f(x) ~ y)
or n2 -formulas Vx3y(f(x) ~ y) .

The axioms are of two kinds, the principal ones being purely relational
sequents or "logic programs" describing the order of evaluation of individual
equations in a primitive recursive program, thus for example

(Ax) /0(x) ~ y0, fi(x, y0) ~ yi, . . .

corresponds to an explicit definition

The other axioms simply express that the zero, successor and projection
functions are defined :

(N-Ax) h 3 y (0 ~ y) , h 3y(x + 1 ~ y) , h 3y(x ~ y) .

The logic rules are the sequent rules for 3 and V :

- h B (h 3) - h B ^
. . . , 3 y A (y) , . . . \- B v ""' . . . h

(vi-) '"^yy-** (i-v) - h B w. . . , VxA(x) , . . . h B v ' . . . h VxS(x)

with the usual "eigenvariable" conditions on (3 h) and (h V), i.e. the quan-
tified variable can not occur free in the "side formulas".

In addition there are two cut rules :

C, ... \- B (CVC) *" ^ ... jC, ... \- B
H B v ' V B

and the induction rule :
h B(0) B(z) \- B(z + 1)

^W) *
Note. What you see is all there is ! The dots . . . denote arbitrary finite
sequences of assumptions and the logic is strictly linear in the sense that
there are no hidden structural rules - no Contraction, no Weakening, and
furthermore no Exchange ! Hence the need for two Cut rules, the second
of which applies a cut "in context" and is called a "call by value" cut for
reasons which will shortly become obvious. Note also that there are no other
assumptions in the induction rule besides the induction hypothesis B(z).

Definition. LPR(3) and LPR(V3) denote the logics restricted to Ex and U2

formulas respectively. LPR(V3)-(CVC) denotes the logic LPR(V3) without
call-by-value cuts.

Theorem 3.1 • Primitive Recursive = LPR(3) - verifiable.

• Generalized Primitive Recursive = LPRfi/3) - verifiable.

• Primitive Tail Recursive = LPR(43)-(CVC) - verifiable.

Proof. We do not give a completely detailed proof here, but sufficient to
display the basic relationships.

(i) That primitive recursive programs are LPR(3) - verifiable is easily
seen. Suppose for example that / is defined explicitly from g and h by

f(x) = g(h(x))

where g and h are already assumed to be LPR(3) - verifiable. Then the
starting axiom is

h(x) ~ y , g(y) ~ z \- f(x) ~ z .

By (h 3) followed by (3 h) we then obtain

h{x) ~ y , 3z (g(y) ~ z) h 3z (/(x) ~ z) .

From this and the assumption 3z (^(y) ^ z) we then have by a call by value
cut (CVC),

h(x) ~y\-3z (/(*) ~ z)

said then by (3 h),

3y (h(x) ~y)\-3z (f(x) ~ z) .

Thus by the assumption 3y (h(x) ĉ y) and an ordinary cut (<7),

h 3z (f(x) ~ .r) .

Note how the eigenvariable conditions on (3 h) rules completely determine
the order of events in the above proof, so that the call by value cut was
essential.

As a further example, suppose / is defined primitive recursively from g
and h as follows ;

) = g{x)
f(z + l,x) = h(z,x,f(z,x)) .

where h By (g(x) ~ y) and h 3u (h(z,x,y) ~ u) are assumed. Then the
starting axioms are

</(x)~y h / (0 , z) ~ y

and
/ (z , z) ~ y , /»(z,x,y)~u H /(z + l , x) ~ u .

Concentrating on the induction step first, we have by (h 3) and (3 h),

/(z, x) ~ y , 3u (/»(z, x, y) ~ u) h 3y (f(z + 1, x) ~ y) .

Then by a call by value cut,

f{z,x)~y h 3y(/(z + l , x)~y)

and by (3 h),

3y (/(z, x) ~ y) h 3y (/(z + 1, x) - y) .

Applying (h 3), (3 h) and an ordinary cut to the first axiom we easily obtain
h 3y (/(0, x) ~ y), and so by the induction rule we have

H 3y(/ (* , s)~y)

as required.

(ii) Next we show why LPR(V3) - verifiable programs are generalized
primitive recursive. Suppose we had a proof of

H V*3y(/ (z ,x)~y)

by induction on z. The induction step would therefore be

Vx 3y (f(z, x) ~ y) h Vx 3y (/(z + 1, x) ~ y) .

This deduction presumably used some recursive calls on "given" functions,
so let us assume it came about by means of one ordinary cut on a function
p and a call by value cut on a function h from :

Vx 3u (p(z, x) ~ u) , Vx 3y (/(*, x) ~ y) , Vx Vy 3v (&(z, x, y) ^ v)
h Vx3y(/(* + l , x) ~ y) .

The eigenvariable conditions place heavy restrictions on how this could have
been derived. Essentially it must have come about by applying (3 h), (V h),
(h V), in that order (!) to :

p(z, x)~u, Vx 3y (/(z, x)~y) , Vx Vy 3v (h(z, x, y) ĉ t;)
h

Stripping away the quantifiers prefixing f(z,x) ~ y we now see that this
would have come from

p(z,x) ^ u, /(^,tx) ^ y, Vx Vy 3v (h(z,x,y) ^ v) h Vx 3y (/(z+l,x) ^ y)

by applying (3 h) and then (V h) with u as witnessing variable (the only
other possible witnessing variables would have been z or x but these are less
general). Now we can strip away the quantifier prefix on h(z> x, y) ~v to see
that this last line would have come about by applying (3 h) and (V h) to :

p(z,x) -f u , f(z,x) ^ y , h(z,x,y) ~ v h 3y (/(z + l,x) ^ y) .

Finally, this would have arisen by (h 3) from the axiom :

p(z,x)~u, f(z,x)~y , h(z,x,y)~v h f(z + l,x) ~ v

describing a generalized primitive recursion :

/(0,x) = g(x)
f(z + l,x) = h(z,x,f(z,p(z,x))) .

By reversing the above we also obtain the converse, that every generalized
primitive recursion is LPR(V3) - verifiable. Note that if we took apart an
LPR(3) - inductive proof in a similar way then we would be prevented (by
the absence of the V h rule) from substituting p(z, x) for the variable x and
so an ordinary primitive recursive program would be the only possible result.
Hence the converse to part (i).

(iii) The only other crucial thing to note is that if call by value cuts were
disallowed in the derivation in part (ii) above, then the h function could not
appear and so the extracted program would have to be a tail recursion :

/(0,*) = g(x)
f(z + l,x) = f(z,p(z,x)).

This completes the proof.

Theorem 3.2 Hence the transformation from generalized primitive recur-
sive programs to primitive tail recursive programs corresponds exactly to the
elimination of call by value cuts in LPR(i3).

Remarks.

A careful analysis of the above termination proofs in LPR should convince
the reader of the close correspondence between the proof - structure and the
computation - structure of the given program. By reading the termination
proof in a goal - directed way, one sees how the order of V3 - eliminations
exactly reflects the intended order of evaluation.

Although the transformation to tail recursion corresponds to elimination
of call by value cuts in LPR(V3), the actual transformation itself takes place
at the equational rather than the logical level, as given by Theorem 2.1. Thus
most of the complexity of the transformation is tied up in the IIi - induc-
tive proofs of program - equivalence associated with 2.1, rather than in the
structural complexity of changing call by value cuts into ordinary ones, since
this only amounts to an implicit use of the exchange rule to swap the order
of cut - formulas in a sequent ! However it is Theorem 2.1 that tells us this
is indeed possible, and furthermore what the new exchanged cut formulas
should be !

It should be clear by now that the form of the induction rule severely
restricts the kinds of recursion that can be verified in the given logic. The
simple form we have used so far, in which the induction step requires just one
use of the premise B(x) to derive B{x +1), limits the corresponding forms of
verifiable recursions to those in which only one recursive call is made. If we
wish to verify a recursion with two recursive calls, then the linear - style logic
requires an induction rule in which the premise B(x) of the induction step
is explicitly written twice ! In this way the logic reflects the fine structural
distinctions between various kinds of recursive programs. To illustrate, we
consider some well known examples below.

4 Example : The Minimum Function.
Colson (1989) points out that the minimum function min(x,y) cannot be
computed by an ordinary primitive recursive program in time O(min(x,y)).
This is essentially because one of the variables would have to be chosen
as the recursion variable, and the other one would then remain unchanged
throughout the course of the recursion, so the number of computation steps -
irrespective of the additional subsidiary functions needed to define it - would
still be at least either x or y. He notes however that it can be computed in
time O(min(x, y)) by a generalized primitive recursion, say on y, with the
predecessor x—1 substituted for the parameter x, thus

min(x, 0) =0
min(x, y + 1) = if x = 0 then 0 else min(x—1, y) + 1

and he comments that this should really be regarded as a higher type " func-
tional" form of recursion.

In our sense, the efficiency is gained by virtue of a necessary increase in
the quantifier complexity of the inductive termination proof, from Ei up to

n2.
Note also the use of the "cases" function here. But this can be verified

easily by a degenerate form of our induction rule, in which the premise B(x)
of the induction step is not used.

5 Example : Term Evaluation.
This is a classic example of nested recursion, requiring two calls on the in-
duction hypothesis in its termination proof. We show how to transform it to
a tail recursion, and again try to assess the incurred "cost".

Consider a system of applicative numerical terms (or straight - line pro-
grams) t(x) with one free variable xy generated inductively from a collection
of "basic" terms 6(x), including the identity term x, by the rules :

(i) each basic term is a term of height 0,

(ii) if t0 and ti are terms of height h0 and /ix, then t := (Aar.to)(<i) is a term
of height max(^o, hi) + l.

Suppose we are given two term - decomposition functions / and r such that
(i) if £ is a basic term then l(t) = x and r(t) = t, and (ii) if t := (Arr.<0)(<i)
then l(t) = t0 and r(t) = tx. Suppose also we are given a function v which
evaluates basic terms outright, i.e. if t is a basic term then for every natural
number n, v(<, n) gives the value of term t(x) under assignment x := n.

Now let / be the term - evaluation function such that for arbitrary terms
t of height < z, / (z , t, n) gives the value of t(x) under assignment x := n.
Then / is obviously definable by the following nested recursion over z :

/(O,*, n) = v(t,n)

Notice that the LPR derivation of the induction step in the termination
proof for / begins with

l(t) ~ y0, r(t) ~ yu f(z,yux) ~ y2, /(^,yo,y2) ^ ya H /(* + M,*) ^ ya

and then by quantifier rules and ordinary cuts on the formulas 3y(l(t) ~ y)
and 3y(r(t) ~ y) we obtain

V* V* By (/(*,*,*) * y)W Vx 3y (/CM,*) - y) h V* V* 3y (f(z+l,t,x) ~ y)

Since LPR does not allow contraction, the only way in which we can now
derive

h \/tVx3y(f(z,t,x)~y)

is by an extended induction rule :

I- B(0) B(z), B{z) h B(z + 1)

which explicitly allows two uses of the induction hypothesis.

The lesson is of course, that each new form of recursion must carry its
own new form of induction in LPR- However we can still try to transform the
recursion to, say, a tail recursion, and thereby bring the termination proof
back into the original logic LPR(V3). In the case of the term - evaluation
function / this is an interesting and informative thing to do.

To obtain a primitive tail recursive definition of / we make use of the bi-
nary representation of numbers. Let / (z , t) denote the function An./(z, i, n).

Define
3r(0, *,n) := n

and for each
a + 1 = 220 + 2Z1 + . . . + 2Zk

where z0 > zx > . . . > zk define

Then if a + 1 is odd, zk = 0, so /(**, /(r*(t)), n) = v(/(r*(<)), n) and hence

On the other hand if a + 1 is even then z/* > 0. In this case we first
do a little surgery inside the term t, replacing its subterm rk(t) by l(rk(t)).
Call the resulting term tf. Then for each t < k we have /(rf"(t)) = /(rf"(f)),
whereas l(rk(t)) = rk(t'). Now by unravelling the nested recursive definition
of / we see that

, n) = /(** - 1, /(r*(<0)) o /(«* - % /(r*l(*0))
*

Combining this with the above definition of g(a +1, t, n), and noting that
if a + 1 is even then

a = 2*° + 2Z1 + ... + 22*"1 + 2Z*~2 + ... + 2°

we thus obtain

Therefore p can be defined by a primitive tail recursion :

g(0,t,n) = n

where if a is even then p(a,t) := t and q(a,t,n) := v(Z(r*(<)),n), and if a is
odd then p(a,t) := f and q(a,t,n) := v ^ ^ * ^) ^) .

Furthermore the original evaluation function / can now be extracted from
9 by

/(*,*, n) = 0(2*, (A*.*)*, n) .

a doubly nested recursion over N can be transformed to a tail re-
cursion over "2N".

It is a quite general principle that nested recursions can be transformed to
tail recursions, but at the cost of an "exponential increase" in the complexity
of the well - ordering used. See Fairtlough and Wainer (1992).

6 Example : Ackermann - Peter Function.

This is a more complex nested recursion over the lexicographic ordering on
N2:

F(0,n) = n + l
F(m+l,0) = F(m,l)
F(m + l,n + l) = F(m,F(m + l,n)).

The induction step in the LPR termination proof for F begins with

F(x + l,y)~zo, F(x,zo)~Zl h F(x + l,y + l)~zt

and by quantifier rules proceeds to

3z(F(x + l ,y) ~ z), Vy3z(F(x,y) ~ z) h 3z(F(x + l ,y + 1) ~ z).

At this point we can go no further without augmenting LPR with a still
more complex induction rule, having an additional II2 assumption C thus :

(TNn x ~ • "v, B(y),C \~ B(y + 1
V*"*) c H B{y)

With (7 = Vy3z(F(x, y) ~ z) we can now derive

Vy3z(F(x,y) ~ z) h 3z(F(x + l,y) - ar)

and then
V y 3 ^ F (x , y) - *) H Vy3z(F(x + l,y) - f

and finally, by a further II2 induction in the original form,

Again it is possible to transform the nested recursive definition over N2

to a tail recursion. But now the complexity of the ordering goes up to NN.
See Fairtlough and Warner for details.

REFERENCES.

(1) P. Anderson, Program Derivation by Proof Transformation, Carnegie
Mellon Technical Report CS - 93 - 206, 1993.

(2) L. Colson, About Primitive Recursive Algorithms, in Proceedings ICALP
'89, Springer Lecture Notes in Computer Science 372, 194 - 206.

(3) M.V. Fairtlough and S.S. Wainer, Ordinal Complexity of Recursive Defi-
nitions, Information and Computation Vol. 99, 1992, 123 - 153.

(4) S. Feferman, Logics for Termination and Correctness of Functional Pro-
grams II, Logics of Strength PRA, in "Proof Theory", Eds. P.Aczel, H.
Simmons, S. Wainer; Cambridge 1992, 195 - 225.

(5) J.Y. Girard, Linear Logic, Theor. Comp. Science Vol.50, 1987, 1 - 102.

(6) C. Goad, Computational Uses of the Manipulation of Formal Proofs,
Stanford Technical Report CS - 80 - 819, 1980.

(7) P. Madden, Automatic Program Optimization through Proof Transfor-
mation, Proc. 11th. Intl. Conf. on Automatic Deduction, Ed. D. Kapur,
Springer-Verlag LNAI 607, 1992, 446 - 460.

(8) R. Peter, Recursive Functions, Academic Press 1967.

(9) F. Pfenning, Program Development through Proof Transformation, AMS
Contemporary Mathematics Vol.106, 1990, 251 - 262.

(10) H. Schwichtenberg, Proofs as Programs, in "Proof Theory", Elds. P.Aczel,
H. Simmons, S. Wainer; Cambridge 1992, 79 - 113.

(11) W. Sieg, Herbrand Analyses, Archive Math Logic Vol.30,1991, 409 - 441.

(12) S.S. Wainer, Four Lectures on Primitive Recursion, in "Logic and Al-
gebra of Specification", Eds. F. Bauer, W. Brauer, H. Schwichtenberg;
Springer-Verlag ASI Series F Vol. 94, 1993, 377 - 410.

