
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

K-GRAPH MACHINES:

Generalizing Turing's

Machines and Arguments

by

Wilfried Sieg and John Byrnes

June 1994

Report CMU-PHIL-55

•o Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890

C•<?'<':•
iii rA U~i3-389$

K-GRAPH MACHINES:
generalizing Turing1 s machines and arguments

Wilfried Sieg and John Byrnes
Department of Philosophy
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract The notion of mechanical process has played a crucial role in mathe-
matical logic since the early thirties; it has become central in computer science,
artificial intelligence, and cognitive psychology. But the discussion of Church's
Thesis, which identifies the informal concept with a mathematically precise
one, has hardly progressed beyond the pioneering work of Church, Godel, Post,
and Turing. Turing addressed directly the question: What are the possible
mechanical processes a human computor can carry out in calculating values of a
number-theoretic function? He claimed that all such processes can be simulated
by machines, in modern terms, by deterministic Turing machines. Turing's
considerations for this claim involved, first, a formulation of boundedness and
locality conditions (for linear symbolic configurations and mechanical
operations); second, a proof that computational processes (satisfying these
conditions) can be carried out by Turing machines; third, the central thesis that
all mechanical processes carried out by human computers must satisfy the
conditions. In Turing's presentation these three aspects are intertwined and
important steps in the proof are only hinted at. We introduce K-graph
machines and use them to give a detailed mathematical explication of the first
two aspects of Turing's considerations for more general configurations, i.e. K-
graphs. This generalization of machines and theorems provides, in our view, a
significant strengthening of Turing's argument for his central thesis.

INTRODUCTION. Turing's analysis of effective calculability is a paradigm of a
foundational study that (i) led from an informally understood concept to a
mathematically precise notion, (ii) offered a detailed investigation of that
mathematical notion, and (iii) settled an important open question, namely
the Entscheidungsproblem. The special character of Turing's analysis was
recognized immediately by Church in his review of Turing's 1936 paper. The
review was published in the first issue of the 1937 volume of the Journal of
Symbolic Logic, and Church contrasted in it Turing's mathematical notion for
effective calculability (via idealized machines) with his own (via \-
definability) and Godel's general recursiveness and asserted: "Of these, the
first has the advantage of making the identification with effectiveness in the
ordinary (not explicitly defined) sense evident immediately"

Godel had noticed in his (1936) an "absoluteness" of the concept of
computability, but found only Turing's analysis convincing; he claimed that
Turing's work provides "a precise and unquestionably adequate definition of
the general concept of formal system" (1964, p. 369). As a formal system is
simply defined to be a mechanical procedure for producing theorems, the
adequacy of the definition rests on Turing's analysis of mechanical
procedures. And with respect to the latter Godel remarked (pp. 369-70):
"Turing's work gives an analysis of the concept of •mechanical procedure1

(alias 'algorithm' or 'computation procedure' or 'finite combinatorial

procedure1). This concept is shown [our emphasis] to be equivalent with that
of a Turing machine1.11 Nowhere in Godel's writings is there an indication of
the nature of Turing's conceptual analysis or of a proof for the claim that the
(analyzed) concept is equivalent with that of a Turing machine.

Godel's schematic description of Turing's way of proceeding is indeed
correct: in section 9 of (Turing 1936) there is an analysis of effective
calculability, and the analysis is intertwined with a sketch of an argument
showing that mechanical procedures on linear configurations can be
performed by very restricted machines, i.e., by deterministic Turing machines
over a two-letter alphabet. Turing intended to give an analysis of mechanical
processes on planar configurations; but such processes are not described, let
alone proved to be reducible to computations on linear objects. This gap in
Turing's considerations is the starting-point of our work. We formulate
broad boundedness and locality conditions that emerge from Turing's
conceptual analysis, give a precise mathematical description of planar and
even more general computations, and present a detailed reductive argument.
For the descriptive part we introduce K-graph machines; they are a far-
reaching generalization of Post production systems and thus, via Post's
description of Turing machines, also of Turing machines.

l. TURING'S ANALYSIS1. In 1936, the very year in which Turing's paper
appeared, Post published a computation model strikingly similar to Turing's.
Our discussion of Post's model is not to emphasize this well-known
similarity, but rather to bring out the strikingly dissimilar methodological
attitudes underlying Post's and Turing's work. Post has a worker operate in a
symbol space consisting of "a two way infinite sequence of spaces or boxes ...".2

The worker can be in and operate in just one box at a time; the boxes admit
only two conditions: they can be empty or unmarked, or they can be marked
by a single sign, say a vertical stroke. The worker can perform a number of
primitive acts; namely, make a vertical stroke [V], erase a vertical stroke [E],
move to the box immediately to the right [Mr] or to the left [M\] (of the box he

1 This section is based on (Sieg 1994) which was completed in June of 1991; for details of the
reconstruction of Turing's analysis and also for the broader systematic and historical context of our
investigations we refer the reader to that paper.
2 Post remarks that the infinite sequence of boxes is ordinally similar to the series of integers and can be
replaced by a potentially infinite one, expanding the finite sequence as necessary.

is in), and determine whether the box he is in is marked or not [D]. In
carrying out a particular "combinatory process" the worker begins in a special
box and then follows directions from a finite, numbered sequence of
instructions. The i-th direction, i between 1 and n, is in one of the following
forms: (i) carry out act V, E, Mr, or Mi and then follow direction j i r (ii) carry
out act D and then, depending on whether the answer is positive or negative,
follow direction ji1 or ji". (Post has a special stop instruction, but that can be
replaced by the convention to halt, when the number of the next direction is
greater than n.)

Are there intrinsic reasons for choosing Post's Formulation 2 as an
explication of effective calculability, except for its simplicity and Post's
expectation that it will turn out to be equivalent to recursiveness? An answer
to this question is not clear from Post's paper, at the end of which he wrote:

The writer expects the present formulation to turn out to be equivalent to recursiveness in the
sense of the Godel-Church development. Its purpose, however, is not only to present a system of
a certain logical potency but also, in its restricted field, of psychological fidelity. In die latter
sense wider and wider formulations are contemplated. On the other hand, our aim will be to
show that all such are logically reducible to formulation 1. We offer this conclusion at the
present moment as a TDorking hypothesis. And to our mind such is Church's identification of
effective calculability with recursiveness.

Investigating wider and wider formulations and reducing them to
Formulation 1 would change for Post this "hypothesis not so much to a
definition or to an axiom but to a natural law".

It is methodologically remarkable that Turing proceeded in exactly the
opposite way when trying to justify that all computable numbers are machine
computable or, in our way of speaking, that all effectively calculable functions
are Turing computable: He did not try to extend a narrow notion reducibly
and obtain in this way quasi-empirical support, but rather he analyzed the
intended broad concept and reduced it to a narrow one — once and for all.
Turing's On computable numbers opens with a description of what is
ostensibly its subject, namely, "real numbers whose expressions as a decimal
are calculable by finite means". Turing was quick to point out that the
problem of explicating "calculable by finite means" is the same when
considering, e.g., computable functions of an integral variable. Thus it
sufficed to address the question: "What does it mean for a real number to be

calculable by finite means?" But Turing developed first the theory of his
machines.3

A Turing machine consists of a finite, but potentially infinite tape; the
tape is divided into squares, and each square may carry a symbol from a finite
alphabet, say, the two-letter alphabet consisting just of 0 and 1. The machine
is able to scan one square at a time and perform, depending on the content of
the observed square and its own internal state, one of four operations: print 0,
print 1, or shift attention to one of the two immediately adjacent squares. The
operation of the machine is given by a finite list of commands in the form of
quadruples qiSkqqm that express: if the machine is in internal state qi and finds
symbol Sk on the square it is scanning, then it is to carry out operation q and
change its state to qm. The deterministic character of the machine operation is
guaranteed by the requirement that a program must not contain two different
quadruples with the same first two components.

In section 9 Turing argues that the operations of his machines "include
all those which are used in the computation of a number". But he does not
try to establish the claim directly; he rather attempts to answer what he views
as "the real question at issue": "What are the possible processes which can be
carried out [by a computor] in computing a number?" Turing imagines a
computor writing symbols on paper that is divided into squares "like a child's
arithmetic book". As the two-dimensional character of this computing space
is taken — without any argument — not to be essential, Turing considers the
one-dimensional tape divided into squares as the basic computing space and
formulates one important restriction. That restriction is motivated by limits
of our sensory apparatus to distinguish at one glance between symbolic
configurations of sufficient complexity. It states that only finitely many
distinct symbols can be written on a square. Turing suggests as a reason that
"If we were to allow an infinity of symbols, then there would be symbols
differing to an arbitrarily small extent", and we would not be able to
distinguish at one glance between them. A second and clearly related way of
arguing this point uses a finite number of symbols and strings of such
symbols. E.g., Arabic numerals like 9979 or 9989 are seen by us at one glance
to be different; however, it is not possible for us to determine immediately

3 Note that the presentation of Turing machines we give is not Turing's, but rather the one that evolved
from Post's formulation in (1947).

that 9889995496789998769 is different from 98899954967899998769. This second
avenue suggests that a computer can operate directly only on a finite number
of (linear) configurations.

Now we turn to the question: What determines the steps of the
computer, and what kind of elementary operations can he carry out? The
behavior is uniquely determined at any moment by two factors: (i) the
symbolic configuration he observes and (ii) his "internal state". This
uniqueness requirement may be called the determinacy condition (D); it
guarantees that computations are deterministic. Internal states, or as Turing
also says "states of mind", are introduced to have the computer's behavior
depend possibly on earlier observations and, thus, to reflect his experience.
Since Turing wanted to isolate operations of the computer that are "so
elementary that it is not easy to imagine them further divided", it is crucial
that symbolic configurations relevant for fixing the circumstances for the
actions of a computer are immediately recognizable. So we are led to
postulate that a computer has to satisfy two boundedness conditions:

(B.i) there is a fixed bound for the number of symbolic configurations a

computor can immediately recognize;

(B.2)4 there is a fixed bound for the number of internal states that need be

taken into account.

For a given computor there are consequently only boundedly many different
combinations of symbolic configurations and internal states. Since his
behavior is, according to (D), uniquely determined by such combinations and
associated operations, the computor can carry out at most finitely many
different operations. These operations are restricted by the following locality
conditions:

(L.D only elements of observed symbolic configurations can be changed;

(L.2) the distribution of observed squares can be changed, but each of the new

observed squares must be within a bounded distance of an immediately

previously observed square.

4 Godel objected in (1972) to this condition for a notion of human calculability that might properly extend
mechanical calculability; for a computor it is quite unobjectionable.

Turing emphasized that "the new observed squares must be
immediately recognisable by the [computor]11; that means the observed
configurations arising from changes according to (L.2) must be among the
finitely many ones of (B.i). Clearly, the same must hold for the symbolic
configurations resulting from changes according to (L.I). Since some steps
may involve a change of internal state, Turing concluded that the most
general single operation is a change either of symbolic configuration and,
possibly, internal state or of observed square and, possibly, internal state.
With this restrictive analysis of the steps a computor can take, the proposition
that his computations can be carried out by a Turing machine is established
rather easily.5 Thus we have:

Turing's Theorem (for calculable functions) Any number theoretic function F that can
be calculated by a computor satisfying the determinacy condition (D) and the
conditions (B) and (D can be computed by a Turing machine.

As the Turing computable functions are recursive, F is recursive. This
argument for F's recursiveness does not appeal to any form of Church's
Thesis; rather, such an appeal is replaced by the assumption that the
calculation of F is done by a computor satisfying the conditions (D), (B), and
(L). If that assumption is to be discharged a substantive thesis is needed. We
call this thesis — that a mechanical computor must satisfy the conditions (D)
and (B), and that the elementary operations he can carry out must be restricted
as conditions (L) require — Turing's Central Thesis.

In the historical and systematic context Turing found himself, he asked
exactly the right question: What are the possible processes a human computor
can carry out in calculating a number? The general problematic required an
analysis of the idealized capabilities of a mechanical computor, and exactly
this feature makes the analysis epistemologically significant. The separation
of conceptual analysis (leading to the axiomatic conditions) and rigorous
proof (establishing Turing's Theorem) is essential for clarifying on what the
correctness of his general thesis rests; namely, on recognizing that the

5 Turing constructed machines that mimic the work of computors on linear configurations directly and
observed: "The machines just described do not differ very essentially from computing machines as
defined in § 2, and corresponding to any machine of this type a computing machine can be constructed to
compute the same sequence, that is to say the sequence computed by the computer [in our terminology:
computor]/' Cf. section 2 below for this reductive claim.

axiomatic conditions are true for computors who proceed mechanically. We
have to remember that clearly when engaging in methodological discussions
concerning artificial intelligence and cognitive science. Even Godel got it
wrong, when he claimed that Turing's argument in the 1936 paper was
intended to show that "mental processes cannot go beyond mechanical
procedures11.

2. POST PRODUCTIONS & PUZZLES. Godel's misunderstanding of the intended
scope of Turingfs analysis may be in part due to Turing's provocative, but
only figurative, attribution of "states of mind" to machines; it is surprising
nevertheless, as Turing argues at length for the eliminability of states of mind
in section 9 (IE) of his paper. He describes a modified computer and avoids
the introduction of "state of mind", considering instead "a more physical and
definite counterpart of it". The computer is now allowed to work in a
desultory manner, possibly doing only one step of the computation at a
sitting: "It is always possible for the [computer] to break off from his work, to
go away and forget all about it, and later to come back and go on with it." But
on breaking off the computer must leave a "note of instruction" that informs
him on how to proceed when returning to his job; such notes are the
"counterparts" of states of mind. Turing incorporates notes into "state
formulas" (in the language of first order logic) that describe states of a
machine mimicking the computer and formulates appropriate rules that
transform a given state into the next one.

Post used in (1947) a most elegant way of describing Turing machines
purely symbolically via his production systems (on the way to solving,
negatively, the word-problem for semi-groups).6 The configurations of a
Turing machine are given by instantaneous descriptions of the form ocqiSkP,
where a and p are possibly empty strings of symbols in the machine's
alphabet; i.e. more precisely, an id contains exactly one state symbol, and to its
right there must be at least one symbol. Such id's express that the current
tape content is askp, the machine is in state qi, and it scans (a square with
symbol) Sk- Quadruples qiSkQqm of the program are represented by rules; for
example, if the operation q is print 0, the corresponding rule is:

6 Post's way of looking at Turing machines underlies also the presentation in (Davis 1958); for a more
detailed discussion the reader is referred to that classical text.

=> aqm0p.

That can be done, obviously, for all the different operations; one just has to
append 0 or so to a (p) in case q is the operation move to the left (right) and a
(p) is the empty string — reflecting the expansion of the only potentially
infinite tape by a blank square. This formulation can be generalized so that
machines operate directly on finite strings of symbols; such operations can be
indicated as follows:

ayqi8p=>aY*qm8*p.

If in internal state qi a string machine recognizes the string y8 (i.e., takes in the
sequence at one glance), it replaces that string by y*8* and changes its internal
state to qm. Calling ordinary Turing machines letter machines, Turing's claim
reported in note 5 can be formulated as a Reduction Lemma: Any computation of
a string machine can be carried out by a letter machine.

The rule systems describing string machines are semi-Thue systems
and, as the latter, not deterministic, if their programs are just sequences of
production rules. The usual non-determinism certainly can be excluded by
requiring that, if the antecedents of two rules coincide, so must the
consequents. But that requirement does not remove every possibility of two
rules being applicable simultaneously: consider a machine whose program
includes in addition to the above rule also the rule

where 8# is an initial segment of 8, and 'f is an end segment of y; then both
rules would be applicable to yqi8. This kind of non-determinism can be
excluded in a variety of ways, for example, by ordering the rules and applying
always the first applicable rule.

However, as we emphasized a number of times, Turing had intended
to analyze genuine planar computations (not just string machines or letter
machines operating in the plane)7. To formulate and prove a version of the
above Reduction Lemma for planar computations, one has to specify the
finite symbolic configurations that can be operated on and also the
mechanical operations that can be performed. Turing recognized the
significance of Post's presentation for achieving mathematical results, but

7 Such machines are also discussed in Kleene's Introduction to Metamathematics, pp. 376-381 in an
informed and insightful defense of Turing's Thesis. However, in Kleene's way of extending
configurations and operations, much stronger normalizing conditions are in place; e.gv when considering
machines corresponding to our string machines the strings must be of the same length.

8

also for the conceptual analysis of calculability: as to the former, Turing
extended in his (1950) Post's and Markov's result concerning the unsolva-
bility of the word-problem for semi-groups to semi-groups with cancellation;
as to the latter, we will look briefly at Turing's semi-popular and most
informative presentation of Solvable and Unsolvable Problems (1953).

Turing starts out with a description of puzzles: square piece puzzles,
puzzles involving the separation of rigid bodies or the transformation of
knots; i.e., puzzles in two and three dimensions. "Linear" puzzles are
described as Post systems and called substitution puzzles. They are viewed by
Turing as a "normal" or "standard" form of describing puzzles; indeed, a
form of the Church-Turing thesis is formulated as follows:

Given any puzzle we can find a corresponding substitution puzzle which is equivalent to it in
the sense that given a solution of the one we can easily find a solution of the other. If die
original puzzle is concerned with rows of pieces of a finite number of different kinds, then the
substitutions may be applied as an alternative set of rules to the pieces of the original puzzle.
A transformation can be carried out by the rules of the original puzzle if and only if it can be
carried out by the substitutions ... (1953, p. 15)

Turing admits, with some understatement, that this formulation is
"somewhat lacking in definiteness" and claims that it will remain so. In his
further discussion, Turing characterizes its status as lying between a theorem
and a definition: "In so far as we know a priori what is a puzzle and what is
not, the statement is a theorem. In so far as we do not know what puzzles
are, the statement is a definition which tells us something about what they
are." Of course, Turing continues, one could define puzzle by a phrase
beginning with 'a set of definite rules1, or one could reduce its definition to
that of 'computable function1 or 'systematic procedure1. A definition of any
of these notions would provide one for puzzles.

Even before we had seen Turing's marvelous 1953 paper, our attempts
of describing mechanical procedures on general symbolic configurations had
made use of the puzzle-metaphor. The informal idea had three distinct
components: a computor was to operate on finite connected configurations;
such configurations were to contain a unique distinguished element
(corresponding to the scanned square); the operations were to replace
neighborhoods (of a bounded number of different forms) of the distinguished
element by appropriate other neighborhoods resulting in a new
configuration, and such replacements were to be given by generalized

production rules. Naturally, the question was how to transform this into
appropriate mathematical concepts; referring to Turing's statement above, we
were unwittingly trying to remove (as far as possible) the lack of definiteness
in the description of general puzzles. But in contrast to Turing, we wanted
to analyze deterministic procedures and follow more closely his own analysis
given in 1936. For this purpose we introduced K-graph machines. These
machines were inspired by the analysis of algorithms given in 1956 by
Kolmogorov and Uspensky.

K-graph machines operate on finite connected graphs whose vertices
are labeled by symbols and that contain a uniquely labeled central vertex. The
graphs have the crucial property of satisfying the principle of unique location:
every path of labels (starting with the label of the central vertex) determines a
unique vertex. We call these graphs K-graphs. K-graph machines replace
distinguished K-subgraphs by other K-graphs; their programs are finite lists of
generalized rules specifying such replacements. As these replacements are
local, we also say that the machines satisfy the principle of local action. (The
subtle difficulties surrounding this principle, even for the case of Post
productions or string machines, are discussed in Remark 1 of the next
section.)

Turing machines, when presented by production systems as above, are
easily seen to be K-graph machines. Conversely, the theorem in section 5
shows that computations of K-graph machines can be carried out by Turing
machines. Given this mathematical analysis, Turing's central thesis is turned
into the thesis that K-graph machines, clearly satisfying the boundedness and
locality conditions, subsume directly the work of human computers. Our
main theorem thus reduces mechanical processes carried out by computers to
Turing machine computations.

3. K-GRAPH MACHINES. To state and prove the main theorem we have to
review some concepts from graph theory. A graph G is an ordered pair (V,E);
V is the set of vertices of G, and E the set of edges of G, i.e., pairs {u,v} of
distinct vertices. As we consider arbitrarily large finite graphs, we need a
potentially infinite set of vertices; to be concrete, we choose natural numbers.
Edges between u and v are denoted by uv, and the vertices u and v are called
adjacent. For a vertex pe V and an edge uve E, we write also ve G and uve G.
Given G={V,E), V'^V, and E'^{uve E I u,v both inV} we call G'=(V, E'> a

10

i

subgraph of G and write G'cG; we define GvG'=(VvV,E uE'> and G-G'=<V-
V',E-E'-{uv1 ue V or ve V'}). We consider unions GKJV and GuE' of a
graph G with a set of vertices V or a set of edges E'; they are defined to be the
graphs (V vV,E) and <VuUE',EuE'). Two graphs G and G' are disjoint iff the
sets of vertices V and V are disjoint. We sometimes denote a function
f:V-¥V' by/:G-»G' and may refer to / as a function on graphs. / is said to be
edge preserving if Vu,ve V[uve E &f(u)f(v)eE'].

A path in G from u\ to un is a sequence ujU2-..wn of distinct vertices of G
such that for every pair of consecutive vertices U{ and uJ+1 the edge UjUj+i is
in G. A vertex v belongs to the path if v is an element of the sequence; an
edge uv belongs to the path when u and v are consecutive vertices in the
sequence. The length of a path is defined as the number of edges belonging to
the path; len{u,v) is the length of a shortest path from u to v, if any path from
u to v exists. A connected component of a graph G is a subgraph G' of G such
that for any two vertices u and z? in G', there is a path in G' from u tov. If G
is a connected component of G, the graph is called connected.

In the same way in which symbols (or rather tokens of symbols) are
written on the tape of a Turing machine, we will "write11 symbols from some
alphabet L on the vertices of graphs. An L-labeled graph K is an ordered pair
{G,Lb), where G=(V, E) is a graph and Lb is a function from V to L; Lb is a
labeling of G. For a distinguished element * of L, an L*-labeled graph G is an
L-labeled graph that contains exactly one vertex with label *; this vertex is
called the central vertex of G and is referred to simply as * when the context is
clear. For an L •-labeled graph K, K* is the largest connected component of K
containing *. For L-labeled graphs JC= (G,Lb) and K* = (G',Lb'),f:K->K' is said
to be label preserving, if Vt?e G[Lb'(f(v))=Lb(v)]. A label and edge preserving
bijection f:K-±K' is an isomorphism; if there is an isomorphism between K
and K' we write K~K'. KSK' abbreviates that K is isomorphic to a subgraph
of K'. For ease of presentation, we may use the term graph to apply to graphs
or to L-labeled graphs: we can redefine for L-labeled graphs all of the above
notions for graphs, extending and restricting the labeling functions in
obvious ways. Finally, we come to a notion that is special for our purposes: a
sequence a of labels associated with a path from the central vertex * to some
vertex v is called a label-sequence for v; the set of such sequences is denoted
by Lbs(v). If labeled graphs have the property that, for any vertex v, a label
sequence from Lbs(v) labels a path to v and not to any other vertex, then the

11

labeling provides a coordinate system. Notice, however, that each vertex may
have a number of different "coordinates". This leads to the following
definition:

Definition. A connected L*-labeled graph K is a Kolmogorov-graph, or K-graph,

over L if and only if (Vu,veK)[ae Lbs(u) and as Lbs{v) => u=v].

We refer to the above property of graphs as the principle of unique location;
this principle and its relation to condition (a) in Kolmogorov and Uspenky's
work is discussed in remark 2 below. Here we just note that isomorphisms
between K-graphs are uniquely determined. — K-graphs constitute the class
of finite symbolic configurations on which our machines operate, and we
describe now what elementary operations are allowed on such configurations.
The operations take the form of generalized production rules and are directly
motivated as puzzle-replacement operations.

Definition. A rule £ is an ordered triple {A,C,<f>), where CRfs antecedent) A and
CR's consequent) C are K-graphs and <f> is an injective, label preserving partial
function from A to C. For a given rule R we let AR be A, CR be C, and fa be 0.

Below is an example of a rule, where the dotted arrows indicate 0. We use
capital letters to indicate the elements of L associated with each vertex and
lowercase letters to indicate the underlying structure of the graphs (i.e., the
natural numbers which are the vertices). We make that structure explicit to
point out that, even when we are discussing distinct graphs, the graphs may
share vertices.

12

The rules are production rules that allow us to replace a (subgraph of a) K-
graph that is isomorphic to the antecedent A of a rule by that rule's
consequent C. For example, if we apply the above rule to the following K-
graph K:

we get the K-graph:

The rule application removes, first of all, the part of K that is isomorphic to
A. Then C is connected to the resulting graph by drawing, for each vertex v
in the image of <p, an edge between v and the vertex adjacent in K to Q^iv).
(The vertices of K that remain unconnected to * may be removed.) As some
of the vertices of C are vertices of K (namely, q and r), these vertices have to
be replaced by vertices new to (K -A)vC (above, i and /), otherwise we would
identify vertices we wish to consider distinct. It is clearly necessary to
determine the isomorphism from A to the subgraph of K in order to remove
the appropriate subgraph and reconstruct edges after the replacement. That is
achieved more easily when — given the rule R above — we actually apply the
following rule R' instead:

13

w
Here the embedding function from AR> to K is just the identity function.
Such a move is always possible, when we are given a rule whose antecedent
A is isomorphic to a subgraph of K (cf. the remarks after the next definition).
This discussion of the steps involved in computations of a K-graph machine
motivates, we hope, the following definitions.

Definition, (i) Rules R and R' are called isomorphic (R~R') just in case there is
an isomorphism \ff between ARUCR and AR-VCR> with <f>R> =ys<pRyrl.

(ii) A rule R is applicable to a K-graph K iff ARSK.

(iii) The result of applying R to K is given by £UOKUC-AR0uQ'UE')*, where
(a) R'~R with AR*QK and such that CR> is disjoint from K-AR>

and
(b) E'={uv I u eK-AR> and (3we AR>)(uzveK &L<J>R>(W)=V}.

Assume that the rule R=(A, C, 0) is applicable to a K-graph K; then one can
generate an appropriate R' in a canonical way as follows: (i) Since A^X, there
is an isomorphismv such that \ff[A]^K, and, by the principle of unique
location, this isomorphism is unique, (ii) If Cn(K-y/[A]) is the set {vlfV2,.~,vn}
such that v1<v1<—<vn, then extend y t̂o this set by vK^i)=max(Cu(iC-^[A]))+z
for all l<z<n. We assume that this method is always used to generate the rule
R' for a given £ and K; thus, R(K) is determined uniquely (rather than up to
isomorphism) by R and K.

Allowing non-deterministic computations means allowing different
rules to have the same antecedent. But even if we require that all rules in a
given set have different antecedents, it may still be (as in the case of the string
machines in section 2) that a number of different rules are applicable to a
given state K. For example, if the above rule is applicable to some K, then the
following rule is also applicable to K:

14

To avoid this kind of non-determinism, we order the rules linearly and
always use the first (in that ordering) applicable rule. The ordinary kind of
non-determinism is excluded by requiring that for Q, R in a rule sequence 3t:
if AQ~AR/ then Q=R. A sequence of rules satisfying this condition is called a
program. Finally, having defined the structures on which our machines
operate and the steps they can take, we define the machines themselves.

Definition. Let L be a finite alphabet with a distinguished element * and let
9tt=(©,$), where © is the set of all K-graphs over L and $ is a partial function
from © to ©. 3ft is a K-graph Machine over L if and only if there is a program
3t=<Ro,...,£n) such that:

For every Se ©, if there is an Re 3t that is applicable to S, then
5(S)=«I-(S)/ where i=min{/1 Rj e<R is applicable to S}; otherwise $
is undefined for S.

The elements of © are the states of 3W; $ is called the transition function of CR.
We also say that $ satisfies the principle of local action.

We can give an obviously equivalent definition of K-graph machines that
brings out the special principles more directly. Let 3K=(©,$), where 6 is a set of
L* -labeled graphs and $ is a partial function from © to ©; 50? is a K-graph
Machine over L if and only if (i) © is the largest set of L*-labeled graphs that
satifies the principle of unique location, and (ii) £ satisfies the principle of
local action. (For a less restrictive formulation see Remark 1 in section 4.)

Remarks. 1. Turing's conditions. K-graph machines satisfy clearly the
determinacy condition, but also the boundedness and locality conditions —
when those are suitably interpreted: the number of "immediately
recognizable" symbolic configurations is given by the number of distinct
antecedents and consequents of the machine's program; operations are quite
properly viewed as modifying observed configurations, and observed labeled
vertices lie always within a fixed "radius" around the central vertex. (The
radius can be read off from the program, e.g., it can be taken to be the maximal
length of paths in any K-graph of the program.) We make some additional
remarks about the principle of local action, as it might be thought that— even

15

in the case of string machines — locality is violated! The reason being, that in
an "implementation" of those machines, e.g., on a standard Turing machine,
the total tape content is affected when using a rule that replaces a string by
either a longer or a shorter one. This seems to be pertinent only if the tape
has a rigid extrinsic coordinate system as given, for example, by the set of
integers Z. When a different presentation of Turing machines is chosen, as
suggested for example in (Gandy 1980), or when the underlying structure is
flexible to insertions, as in our set-up, the concern disappears.8 It is precisely
the use of an intrinsic coordinate system, guaranteed through the principle of
unique location, that makes for the locality of the replacement operations.

2. The principle of unique location. It guarantees that, for any L .-labeled
graph, paths starting at the central vertex are uniquely characterized by the
sequence of symbols labeling their vertices. Thus, by using the lexicographical
ordering on strings of labels from L, we can choose for each vertex a unique
address which picks out that vertex in terms only of labels; for details cf.
section 5. Kolmogorov and Uspensky used their condition (a) for a similar
purpose; that condition is formulated in our setting as follows: For every
graph Se <5, if u and v are vertices of S both adjacent to some vertex w of S,
then Lb(u)*Lb(v). We call a connected L .-labeled graph satisfying condition
(a) a Kolmogorov complex over L* or, briefly, a K-complex.

Condition (a) implies our principle of unique location, but is not
implied by it. The first claim is easily established; for the second claim one
sees directly that the following graph K' is an example of a K-graph that is not
a K-complex.

Thus, the principle of unique location is strictly weaker than condition (a).

3. Preservation under rule application. We require that § is a partial function
from 6 to 6 , but we have not made explicit how to construct a program that
computes such an $. In order to see that not every rule, when applied to a K-
graph, yields a K-graph, consider the K-graph K:

8 These two ways of dealing with the issue are two sides of the same coin.

16

and this rule R:

*)—TCI—(B)—fA

*)—fC>—(B) • (B) — f *

The application of R to K yields the graph:

R(K) is clearly is not a K-graph; just note that there are two distinct vertices
both having label sequence *BA.

If we wish to construct a program that can be seen to define a K-graph
machine, it is useful to have some guidelines. Kolmogorov and Uspensky
required a particular structure on rules preserving condition (a). As one has
to be careful only about the symbols adjacent to vertices in the image of 0,
they imposed in effect the following condition (p) for a given rule (A, C, 0):

(p) (VyeC) {(y=0Ot) &cvyeC)=*[Lb(v)=* or OwKwxeA and Lb(w)=Lb(v))]}.

We say that a program 9t satisfies (P) if every rule in 31 satisfies (P).
Condition (p) can be somewhat restrictive. An alternative is to use a

slightly weaker restriction (P): we can "guard" any rule R which violates (p)
by a rule R' ordered before R; i.e., R' is obtained from R by extending AR to
AR> to include any vertex which could cause an application of R to result in a
graph violating the principle of unique location. Thus, R can fire only if R'
does not, and the result of the application of R will be a K-graph. Of course,
R' must then either satisfy (p) or be guarded by some R'', and so on. Note
that if a set of rules satisfies (p) it also satisfies (£). We can think of (P) and (P)

17

as sufficient conditions to guarantee that a program preserves the principle of
unique location. Consequently, if a program 31 on L satisfies (P), then 5W=<@,̂ >
is a K-graph machine, where 6 is the set of all K-graphs on L and $ is the
unique function on <5 defined by 31.

4. SUBSUMPTTONS. In this section we indicate first that standard planar algo-
rithms (with minor normalization) are K-graph machine computations; we
do this by considering an example that might have appeared in Turing's
"arithmetic book for children". Then, we show that a variety of computation
models fall directly under, or are subsumed by, our K-graph machine concept.

A planar addition problem consists of a set of n integers, each of at
most m digits (when expressed in decimal form) and at least one of which has
exactly m digits. We present a K-graph machine which carries out an algo-
rithm for adding these integers similar to the familiar algorithm that a child
is taught in elementary school. We assume that the integers are expressed in
decimal form and arranged in order of nonincreasing length. We use the
symbols f+' and '=' to differentiate between the remaining part of the
problem and the current partial sum. A box vertex is used as a buffer between
digits so that we can manipulate the structure independently of the value of
those digits that are not currently being scanned. Let d^ be the /th digit of the
ith integer (counting digits from the right). Their sum, dyd^...di, will be
given in the form:

The problem itself is presented by:

18

where only the first /-many numerals have m-digits, only the first f-many
numerals have at least 2 digits, and so on.

The algorithm collapses each column, two digits at a time, into the
single digit which should appear below that column in the sum. The rules
must carry digits into the next column, move from the current column to the
next, and store the partial sum when we shift columns. We present the rules
in the order in which they appear in the program. For each z,/e {0,...,9}, z+/<10,
there is a rule which replaces i and / with the sum /+/:

19

For each z+;>10, there are 3 rules. These rules must carry a 'I1 to the next
column to the left and replace i and j with d=i+/-10. The first rule is for the
case when at least two columns occur to the left of the current column—here
we carry the '1' to the top of the first column to the left and maintain the
connection to the second column.

The second rule treats the case when only one column occurs to the left (and
hence no connection has to be maintained).

y

A third rule is needed for the case that the current column is the only one; in
this case a new column must be created.

20

^ ^ y

Finally, we need rules for moving to the next column and storing the result
from the current column. These rules are ordered last, and hence will fire
just in case there is a single digit in the current column. Each of these rules
will take the current column and move it to the immediate right of the '='
sign. If there is a column to the left of the current one, then it becomes the
current column; if there is a column to the right of the '=' sign, then we must
connect the current column to it. There are four rules, as either of these
conditions may or may not apply. For example, when both conditions apply,
we have the following rule.

Not only are particular informal algorithms, like this addition
example, directiy seen to be K-graph computations, but classes of algorithms
presented as computations of particular computation models are subsumed
under K-graph computations. We start this discussion by showing that
Turing's machines are K-graph machines. To do that we make a slight
modification in the definition of K-graph machines; this is done only for
convenience (and to indicate the flexibility of the notion).

21

Remark 1. We supplement the finite alphabet L now by a set Q of "states";
L(Q)-labeled graphs are labeled with elements from L, and exactly one vertex
is labeled by an element from Q. The L*-labeled graphs defined above are the
L({*})-labeled ones according to the present definition. If in addition the Q-
label is surrounded by "direction indicators" L and R in the one-dimensional
case, by pairs ap (where a and p are either L or R) in the two-dimensional
case, etc., we call the resulting graph an L+(Q)-labeled one.

For an arbitrary Turing machine M we define a K-graph machine 9ft which
simulates M. Let qo/-/qn be the states of M, and so,-..,sm be the symbols which
can appear on the tape. Let 6 be the set of all L+(Q)-labeled K-graphs. We
represent the instantaneous description

of M by the following K-graph (thus without the square-buffers that were
used in the addition example):

L and R indicate left and right with respect to the central Q-vertex. Note that
without L and R the tape has no orientation; with L and R the principle of
unique location is automatically satisfied. — For each command qiShRqj in M
(and each sp and skin L) we have rules in 3ft, reflecting the different possible
contexts, as follows:

1.

22

3.

The L-commands are treated similarly. — For each command qiShskqj in M
(and every sp in L) we have these rules in 2R:

1.

3ft "simulates" M - one computation step of 9K corresponding to one of M.
Consequently, the notion of K-graph machine directly generalizes the notion
of Turing machine.

THEOREM. Turing machines are subsumed under K-graph machines.

23

These considerations can be carried out in a similarly direct way for string
machines and their generalizations to higher dimensions, thus in particular
for the generalized Turing machines described in (Kleene 1952). Using the
observations in Remark 2, section 3, Kolmogorov machines as defined in
(Uspensky and Semenov) are also K-graph machines. For that we have only
to observe that such machines operate on Kolmogorov complexes of a
particular radius (the "active zone" of the complex) and that the immediate
transformations specifying the program of a machine satisfy (P). — For a host
of other models of computations one can show that they are also subsumed
under K-graph machines, for example, the register machines introduced by
Shepherdson and Sturgis. Joining these observations with the main result of
the next section, we have an absolutely uniform way of reducing
computations of a particular model to Turing machine computations: We
have only to verify that the computation model is subsumed under K-graph
machines.

Remark 2. There are, however, models that are not subsumed under the
general concept; one example are the storage-modification-machines
introduced by Schonhage (and the equivalent RAMs). At issue is the size of
the configurations on which a storage-modification-machine can operate; that
size can grow unboundedly, and thus SMMs can violate Turing's condition
(B.i). That gives a sharp answer to Uspensky's question raised in his (1992), p.
397: Are the storage-modification-machines still in conformity with human
intuition concerning computations? If boundedness is crucial, then the
SMMs are not in conformity with intuition. — The SMMs compute only
recursive functions, and most interesting complexity issues arise. For
example, SMMs multiply in linear time, whereas Turing machines do not
(Cook and Aanderaa; Paterson e.a.); what are bounds for simulating SMMs by
K-graph machines? (These matters, as well as connections of our K-graph
machines to other general models, e.g., the evolving algebras of Gurevich,
will be dealt with in our next paper.)

This remark is a challenge to probe the justification of Turing's
analysis more deeply. For Turing the ultimate justification lies in the
necessary limitation of human memory, and that can be directly linked to
physical limitations also for machines (cf. Mundici and Sieg, section 3).

24

Church in his review of Turing's paper seems to have mistaken Turing's
analysis as an analysis of machine computations. Church's apparent
misunderstanding is common: see, for example, Mendelson (1990). So it is
worthwhile to point out that machine computability was analyzed only much
later in (Gandy 1980). Turing's three-step-procedure of analysis, axiomatic
formulation of general principles, and proof of a reduction theorem is
followed there, but for "discrete deterministic mechanical devices". Gandy
showed that everything computable by a device satisfying his principles, a
Gandy machine, can already be computed by a Turing machine. To see
clearly the difference between Turing's analysis and Gandy's, note that Gandy
machines incorporate parallelism: they compute directly Conway's game of
life and operate, in parallel, on bounded parts of symbolic configurations of
possibly unbounded size. The boundedness conditions for Gandy machines
and, in particular, the principle of local causation are motivated by physical
considerations. From this perspective it seems that the SMMs are not
physically plausible!

5, SIMULATION THEOREM. We reduce computations of K-graph machines to
computations of Turing machines; more precisely, for an arbitrary K-graph
machine 3ft=(©,$) over the language L we construct a Turing machine9 M
over the alphabet {0, 1} that simulates 3ft. The simulation requires (i) that we
give linear representations of K-graphs, and (ii) that we show for every Se ©,
if <j=S,Slf...,Sn is a computation of 3ft, then r=T0,T1,...,Tm is a computation of M.
Here To represents S, and Tm represents a K-graph isomorphic to Sn; further-
more, there exists a subsequence TiuTi2,...,Tinml of x, such that for l</<n-l,Tf.
represents a K-graph isomorphic to S;. (The conditions for infinite compu-
tations are similar.) The subsequent considerations establish:

THEOREM. Any K-graph machine 3ft can be simulated by some Turing machine
M.

Let < be a linear ordering on L and <f the lexicographical ordering on
finite sequences of symbols from L induced by <. The ordering < on finite
sequences of symbols is defined by a<p iff a is shorter than p or a and p are

9 In contrats to our earlier discussion, we are going to use a Turing machine whose tape is extendable only
to the right.

25

of the same length and a<'p. For a given vertex v in V the address Ad(v) of
v is the ominimal element of Lbs(v). By connectedness such an address
exists, and by the principle of unique location Ad is injective.

Definition. For an arbitrary edge uve E we define the location description
LD(uv) by:

if Adiu)<Adv)
LDkv) \{v,LKv),u,LKu)) if Adv)<AAu)

When we refer to an edge uv we assume from now on that Ad(u)<Ad(v). Let
G be the graph whose LDs appear on the tape; we say that the tape represents
the K-graph G*. In order to encode the graph on the tape initially, we have to
choose a particular way of proceeding, for example, by exploiting the ordering
of the location descriptions. We obtain a canonical graph representation
GR(K) for a given K-graph K by ordering LD(E)={LD(uv) I uve E] as follows:
LD(u\Vi)<LD(u2v2) iff Ad(ui)<Ad(u2) or Ui=u2 and Ad(t;1)<Ad(v2). GR(K) is
thus the <-ordered sequence of location descriptions for K.

To obtain a tape representation of this sequence in the binary alphabet
{0,1}, we assign a natural number to each of the symbols in L, using 0 for the
<-least element of L, 1 for the next element (under <), and so on. Of course,
every vertex ve V is already a natural number, and we assume w.l.o.g. that a
state S with n vertices consists of {l,...,n}; Lb(v)eL is a natural number as well.
We represent natural numbers in a modified binary form obtained from the
standard one by replacing every 1 with 11 and every 0 with 10. We assume
that the initial encoding of a sequence of numbers separates them by exactly
two 0fs; a sequence of sequences of numbers is obtained by placing three 0fs
between each coded sequence.

We describe the program for a Turing machine M that is to simulate 9ft
and assume that M has states q0/.../jn. The program transforms any state S
into $(S), then it returns to its initial Turing state, and, if possible, further
transforms the resulting state $(S); the machine halts, when none of the rules
defining $ can be applied. (It should be obvious that this yields the kind of
simulation indicated above.) In the following, we will always use S to refer to
the graph currently coded on the tape, even though there are stages when
some edges are removed and others are added.

26

The rules RQ,...^^ in the program 9t computing $ are encoded into the
program of M.10 For a given rule R the antecedent AR and the consequent CR

are encoded by GR(AR) and GR(CR). We assume that the vertices in the
antecedent of each rule are distinct from those in its consequent (if they are
not, we rename them appropriately). Thus, each vertex in the range of <f>R can
be replaced by its pre-image in AR turning <j>R into the identity function. We
are only concerned with the isomorphism class represented by each rule, so
we are free to encode R{ by any R that is isomorphic to R{ (0<i<r); we modify
rules as follows: let N be the maximum number of vertices occurring in any
rule and replace each rule R{ by an isomorphic R{' such that for every vertex v
of Kf',N-i<t7<N-(f+l). 91 will indicate now the modified program Ro V-/&r-i'•
We try to apply each rule of 91 in the given order to the tape and execute the
first applicable one; the tape contains then all the edges of $(S). We repeat
this until none of the rules is applicable to the state represented on the tape.
Initialize the tape. S is put on the tape; each vertex v in S is replaced by v+M
[where M=N-r] so that all (vertex-) numbers of S are greater than M. This has
the following advantage: by looking at a vertex we can determine imme-
diately, whether it occurred in the original state or whether it was written by a
rule; in the latter case we can decide which rule wrote it. Furthermore,
CRn(S-AR)=0 for any R.

Find the appropriate rule. We examine each rule in the given order and
define a subroutine CHECK-R that determines, whether R can be applied to S.
If R is applicable, then CHECK-R transforms the tape to contain S '«S with
AR^S'; i.e., the algorithm tries to modify S to an isomorphic S', such that AR

is a subgraph of S'; we say AR is matched with a subgraph of S. If R is found
not to be applicable, CHECK-R may nevertheless have changed some vertices
on the tape, but the modified graph is isomorphic to S.

CHECK-R starts with the head leftmost on the tape and proceeds by
moving to the right, searching for appropriate edges one at time. Let min be
the least and max the greatest vertex of R. In the zth step, we are looking for

10An alternative to this simulation is the following: We can also represent a rule on the tape simply by
writing GR(A) followed by a separator (say, '0000') and then by GR(C). To represent the program we
represent each rule in order, separating them by, say, '00000'. Then, we can describe a Turing machine U
that simulates any K-graph machine conceptually in exactly the same way in which a universal Turing
machine simulates any other Turing machine M. In the latter case the input to the machine is a Godel
number of M and an input to M. Here, U will take as input the coded program for the K-graph machine
followed by the initial state. Then U will carry out systematically the coded program.

27

an edge in S which matches the fth edge uv of AR. u is the second vertex of
some edge (already matched to an edge in S) and occurs consequently in S.
We search for w in S, such that the edge {u,w} is in S, and such that
Lb{w)-Lb{v). If such a vertex is found, we distinguish two cases: (i) if
min<w<max and w*v, then w was written by R and is the image of some
vertex in AR other than v, and the search for the correct vertex has to be
continued; (ii) if w<min or w>max or zv=v, then w is the correct vertex, and
we substitute v for w everywhere on the tape and proceed to search for the
next matching edge in S.

In sum, if we reach the end of the tape before finding such a vertex, we
fail for this R; if CHECK-R fails for every rule R, the machine halts; if CHECK-
R finds a matching edge for every edge in AR, R is applicable. (Note that the
principle of unique location allows us to avoid backtracking in case the
algorithm fails for a particular vertex.)
Apply the appropriate rule. For each rule R there is a subroutine APPLY-R
which applies R to the current state: all edges from AR on the tape are erased
and all those from CR are inserted — leftmost onto the tape (in the order of
their appearance in the canonical encoding GR(CR)). The edges given by E'
in the definition of rule application are never removed from the tape and
need not be constructed, since <f>R is the identity. The tape contains now
R(S)=[(S-AR)vCRvE']*, i.e., a representation of the next state &(S). Finally, the
head is returned to the left end of the tape, and the state is set to q$.

Complexity of Simulation. We want to determine, in a rough way, the
number of steps M needs to transform a K-graph S with n vertices into $(S).
Assume that the language for 3ft contains / symbols, and that 3ftfs program has
r rules of size at most N (i.e., at most N vertices occur in AuC). For a given
state S with n vertices, the maximal degree of each vertex is /+1; otherwise,

the principle of unique location would be violated. Thus at most — -

edges have to be represented. The largest (vertex-) number to be represented
is n, which has length 21ogn in our modified binary notation. The largest LD
has length of order log(2n+2/). Thus the representation of S is of length
O(nlogn).

The renumbering step must traverse the entire tape. Since we wish to
increase each vertex by at least M, we take M' to be the least power of two

28

greater than or equal to M and add M' to each vertex. This operation requires
shifting all of the cells right of the vertex being updated up to logM' cells to
the right. This requires rewriting up to O(nlogrz) cells for each vertex. Since
this operation is done to all occurrences (of which there may be up to /+1
many) of each of the n vertices, it is an O(n2logn) operation. (The rewriting
itself can be done in a single pass over the number and requires logn steps.)

The further rewriting operations required for finding the applicable
rule all involve replacing numbers greater than M' by numbers smaller than
M'; thus, no shifting is involved in these operations, since we allow extra O's
to occur between integers. Attempting to match a given edge in a rule to one
on the tape might require looking at the entire tape and is an O(nlogn)
operation; that may have to be done for every edge in every antecedent.

If we succeed in finding an applicable rule, we apply it; i.e., we
transform the tape by erasing all edges from AR and inserting all edges from
CR at the beginning of the tape. This may require shifting all O(nlogn)
symbols by at most the length of the largest GR(AR). Hence only O(nlogn)
many steps are required for rule selection and application. But once this has
been accomplished, the entire transformation is complete, so the complexity
of the simulation is O(n2logn).

Now let us consider simulating a full computation of 9ft. If we let
Jt=max{ICRl-IARl I Re <K}, then for any Se 6 , I &(S) I < I S I +Jk; here \K\ is the
cardinality of the set of vertices of K. Let ft be a natural number, such that
hn2logn is the complexity of the "step-simulation" for M of 9ft we just
discussed. Assume, in a first example, that 9ft runs in constant time, say, in m
steps. Then the length of the computation of M for input of size n is bounded
by

s=hn2logn+h(n+k)2log(n+k)+...+h(n+km)2log(n+km).
Clearly,

n2logn<s<m/z(n+/cm)2log(n+Jtm)=0(n2logn),
so s=O(n2logn).

If 9ft runs in higher order time, however, the step-complexity of M is
not preserved. Assume, for example, that 9ft runs in mnc-many steps, for
some m and c. Then the complexity of M for input of size n is bounded by

29

M

mnc

Clearly, £ty2logn
;=0 ;=0

On the left, we have:

)2login+ kj)<)2 login+ kmnc).

mnc

;=0 ;=0

Mogn[j(2(mnc)3 +3(mnc)2

O(n3clogn).

On the right

£ fc(n + Jt/)2 log(n + itmnc) =
;=0

mnc

>x
;=0

+2nJt/ + Jt2;2)
;=0

(2mnc)3+3(mn c)2+ranc l

J
)\n2(rnnc

L

= 0(n3clogn).

Thus s is O(n3clogn).

CONCLUDING REMARKS. We have been concerned with an explication and
generalization of Turing's arguments for his thesis, i.e., the claim that all
mechanical processes can be simulated by (Turing) machines. We are coming
back to the starting-point of our considerations through three remarks.

^One can easily verify by induction on n that]ST ;2 = i (2n 3 + 3n2 + n).

30

First, Turing analyzed mechanical processes of a human computer.
The reduction of string machines or of K-graph machines to letter machines
(over a two-element alphabet) does not show that mental processes cannot go
beyond mechanical ones; it only shows that Turing machines can serve as a
"normal form" for machines, because of the simplicity of their description.12

The question, whether different kinds of machines are adequate mathe-
matical models for mental processes, is left completely open. That is an
empirical issue!

Second, the formulation of the boundedness and locality conditions for
mechanical processes and the design of general machine models allow us to
give uniform reductions and to make reasoned differentiations between
computation models; cf. Remark 2 in section 4. A natural generalization of
K-graph machines, not giving up the above broad conditions, would allow
the description of parallel computations. Gandy developed in his (1980) a
most important way of formulating such a generalization.

Third, support for Turing's thesis is best given in two distinct steps: (i)
mechanical processes satisfying boundedness and locality conditions can be
recognized — without coding or other effective transformations — as compu-
tations of a general model; (ii) computations of the general model can be
simulated by Turing machines. The plausibility of Turing's thesis rests
exclusively on the plausibility of the modified central thesis (i); after all, (ii) is
a mathematical fact. Our modification of Turing's central thesis states that
mechanical processes are (easily seen to be) computations of K-graph
machines; in our view, this is a most plausible claim.

1 2 For this reason Turing machines are most suited for theoretical investigations. This state of affairs is
analogous to that involving logical calculi: natural deducton calculi reflect quite directly the structure of
ordinary arguments, but have a somewhat involved metamathematical description; in contrast, axiomatic
logical systems are not suited as frameworks for direct formalizations, but — due to their simple
description - are most suitable for metamathematical investigations.

31

REFERENCES.

A. Church, Review of (Turing 1936); J. Symbolic Logic 1(1), 1937,42-3.

S.A. Cook and S.O. Aanderaa, On the minimum computation time of functions; Trans. Amer.
Math. Soc. 142,1969, 291-314.

M. Davis, Computability and Undecidability, McGraw-Hill, 1958.

R. Gandy, Church's thesis and principles for mechanisms; in: Barwise, Keisler, and Kunen
(eds.), The Kleene Symposium, Amsterdam, 1980, 123-48.

K. Godel, Uber die Lange von Beweisen; Ergebnisse eines math. {Colloquiums 77, 1936,23-4.

K. Godel, On undecidable propositions; Lecture Notes, Princeton, 1934 - with a Postscriptum
from 1964, reprinted in: Godel's Collected Works I, Oxford, 1986, 346-71.

K. Godel, Some remarks on the undecidability results; written in 1972, reprinted in: Godel's
Collected Works II, Oxford, 1990, 305-6.

Y. Gurevich, Evolving algebras. A tutorial introduction; Bulletin of the European Association
for Theoretical Computer Science, 43, February 1991.

S.C. Kleene, Introduction to metamathematics, Groningen, 1954.

E. Mendelson, Second thoughts about Church's Thesis and mathematical proofs; The Journal of
Philosophy, 87(5), 1990, 225-33.

D. Mundici and W. Sieg, Paper machines; to appear in: Philosophia Mathematica, 1995.

A.N.Kolmogorov and V.A.Uspensky, On the definition of an algorithm; Uspekhi Mat. Nauk
13 (Russian), 1958; English translation in: AMS Translations, 2, 21 (1963), 217-245.

M.S. Paterson, M.J. Fischer, and A.R. Meyer, An improved overlap argument for on-line
multiplication; SIAM-AMS Proceedings, 7,1974, 97-111.

E. Post, Finite combinatory processes. Formulation I; J. Symbolic Logic 1,1936,103-5.

E. Post, Recursive unsolvability of a problem of Thue; J. Symbolic Logic 12,1947,1-11.

A. Schonhage, Storage modification machines; SLAM Journal on Computing 9,1980,490-508.

J.C Shepherdson and H.E. Sturgis, Computability of recursive functions; J. Assoc. Computing
Machinery 10,1963, 217-55.

W. Sieg, Mechanical procedures and mathematical experience; in: Mathematics & Mind, A.
George (ed.), Oxford University Press, 1994, 71-117.

A. Turing, On computable numbers, with an application to the Entscheidungsproblem; Proc.
London Mathematical Society, ser. 2, vol. 42 (1936-7), 230-265.

A. Turing, The word problem in semi-groups with cancellation; Ann. of Math., 52,1950,491-505.

32

A. Turing, Solvable and unsolvable problems; Science News 31,1953, 7-23.

V.A. Uspenski, Kolmogorov and mathematical logic; J. Symbolic Logic 57,1992, 385-412.

V.A. Uspenski and A.L. Semenov, What are the gains of the theory of algorithms: Basic
developments connected with the concept of algorithm and with its application in
mathematics; in: Algorithms in Modern Mathematics and Computer Science, A.P. Ershov and
D.E. Knuth (eds.), Lecture Notes in Computer Science 122,1981,100-235.

33

