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Abstract

We present an axiomatic approach for a class of finite, extensive form games
of perfect information that makes use of notions like "rationality at a node"
and "knowledge at a node." We distinguish between the game theorist's and
the players' own "theory of the game." The latter is a theory that is sufficient
for each player to infer a certain sequence of moves, whereas the former is
intended as a justification of such a sequence of moves. While in general
the game theorist's theory of the game is not and need not be axiomatized,
the players' theory must be an axiomatic one, since we model players as
analogous to automatic theorem provers that play the game by inferring (or
computing) a sequence of moves. We provide the players with an axiomatic
theory sufficient to infer a solution for the game (in our case, the backwards
induction equilibrium), and prove its consistency. We then inquire what
happens when the theory of the game is augmented with information that a
move outside the inferred solution has occurred. We show that a theory that
is sufficient for the players to infer a solution and still remains consistent
in the face of deviations must be modular. By this we mean that players
have distributed knowledge of it. Finally, we show that whenever the theory
of the game is group-knowledge (or common knowledge) among the players
(i.e., it is the same at each node), a deviation from the solution gives rise to
inconsistencies and therefore forces a revision of the theory at later nodes.
On the contrary, whenever a theory of the game is modular, a deviation from
equilibrium play does not induce a revision of the theory.



1 Introduction
There are two fundamentally different approaches to modeling cognition
within game theory. Understanding the differences between these approaches
is of central importance in getting to grips with the problem of backwards
induction, and its connection to the consequences of assuming that there
is common knowledge of rationality among the players. Our paper makes
two important distinctions. The first is the distinction between the game
theorist's and the players' own theory of the game. The former provides a
justification for a certain solution (e.g., backwards induction), the latter al-
lows the players to infer or compute that solution. The second distinction is
one between the meta-language (i.e., the language of justification) and the
object-language (the language of the players).

Meta-theoretic justification is the game theorist's task; computing a so-
lution is the task of the players. While the backwards induction solution
has been successfully justified using meta-theoretic arguments (as we show
in Section 2), no formal theory of the game from the players' viewpoint has
been developed. In this paper we provide the players with a formal (i.e., ax-
iomatic) theory of the game. We want such theory to be the minimal theory
sufficient for the players to infer the backwards induction equilibrium. We
think of players as theorem provers. If we want them to infer a given solu-
tion, we have to provide them with a given axiomatic input. At each node,
the relevant axioms will allow the player who chooses at that node to play
an optimal move. A player's set of such moves is his equilibrium strategy.

The traditional backwards induction argument is informal, and perfect
for the purpose of justification. However, it is not players' argument. The
usual implicit premise of the traditional backwards induction argument is
that mutual rationality and the structure of the game are common knowl-
edge among the players. It has been argued by Binmore [8], Reny [12], and
Bicchieri [5, 6] that under certain conditions common knowledge of rational-
ity leads to inconsistencies. Their argument is that a player will be unable to
explain another player's deviation from the backwards induction equilibrium,
since such a deviation is inconsistent with common knowledge of rational-
ity. In this case, it is argued, players become unable to predict future play;
as a corollary, what constitutes an optimal choice at a node remains inde-
terminate. As a consequence of the above criticisms, the usual premises of
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backwards induction arguments have come to be questioned (Pettit and Sug-
den [11], Basu [3], Bonanno [9]). However, as Bicchieri [7] has shown, the
problem lies in attributing the traditional backwards induction argument to
the players. Part of such argument is an analysis of out-of-equilibrium play,
which is typically used to justify a given equilibrium path. When the usual
backwards induction argument is formalized in the most straightforward way
as the players' own theory, it gives rise to an inconsistency when coupled with
information that a deviation has occurred. Thus, the inconsistency is not to
be attributed to the players' theory of the game, insofar as this theory is
used to infer an equilibrium. Any consistent theory that allows the players
to infer an equilibrium becomes inconsistent when combined with a state-
ment to the effect that a deviation from equilibrium takes place. It is only
when considering deviations that inconsistencies may arise, but an analysis
of deviations need not be part of players' theory of the game. Such theory
may thus harmlessly assume that players' rationality is common knowledge:
The players would still succeed in computing the backwards induction equi-
librium. If we want instead to provide the players with the means to justify
a given solution, we have to endow them with an appropriate meta-language
within which to express the process of belief revision that out-of-equilibrium
play engenders. Such language might contain counterfactual conditionals (to
talk about the possibility of deviations), and will be rich enough to express
belief revision (which is needed to regain consistency). It is only at the level
of belief revision that an assumption of common knowledge of rationality (or
of the theory of the game) may be too strong, in that it forces a much more
extensive revision of the theory than weaker assumptions.

We choose to make our players rather simple reasoners. We provide them
with a theory that is sufficient for them to infer the backwards induction
solution directly from the structure of the game alone (we prove the theory
to be sufficient in Theorem 2). In order to infer a solution for the game, no
counterfactuals are needed. Again, counterfactuals pertain to the realm of
justification, and our players just infer (or compute) a solution; we do not
ask them to justify it.

The players' theory is expressed in a first-order language containing a
modal fragment. In Section 3 we give a model for the theory, and prove the
theory's consistency (Theorem 1). In Section 4 we explore what happens if
a deviation from the solution occurs. As long as our logic is monotonic, any



theory of the game that is sufficient to infer a solution becomes inconsistent
when augmented with information that a move outside the solution path
takes place. In order to preserve consistency, a revision of the theory is
in order. Our players cannot carry out such a revision, since we have not
endowed them with a meta-language within which to express belief-revision,
nor with a meta-theoretic account of belief revision. Do they need such a
meta-language? Not in our model, since the theory of the game is modular.
This means that players have just enough knowledge to infer an optimal
move at a node or, in other words, that they have "distributed" knowledge
of the theory of the game. Distributed knowledge means that - whereas the
first player to move has information about all subsequent nodes - the second
player has slightly less information. She will have full information about all
subsequent nodes, but not about the first node. Similarly for any following
player. At every node, the player who chooses at that node has a minimal
theory that is just sufficient to infer an optimal move at that node, but does
not imply anything about the preceding nodes. If a deviation occurs, it does
not force a revision of such a minimal theory. Thus we do not need a model
for belief-revision.

In Section 4, we also examine what happens if we relinquish modularity
(distributed knowledge). If the theory of the game is group-knowledge (i.e.,
each player knows the theory of the whole game), then a deviation makes
the theory inconsistent and forces a revision. A fortiori, this also happens if
the theory is common knowledge. In this case, we might want to endow the
players with a meta-language within which to express belief-revision (but this
is stricly outside their theory). Finally, in Section 5 we look at alternative
formulations of the players' theory that are still sufficient to infer a backwards
induction equilibrium. We assess their merits with respect to how they handle
off-equilibrium play, and show that the theory we propose requires the least
extensive revision in case it is group-knowledge, and no revision at all when
we assume modularity.

2 Justification: An example

As an example of what we mean by a justification of backwards induction,
let us consider the game of Figure 1. We assume, as usual, that the structure



Figure 1: A simple game.

of the game and players' rationality are common knowledge among them.1

By "rationality" is simply meant that a player, when facing a decision under
uncertainty, will select that action that maximizes her expected utility with
respect to her subjective probability over the uncertain events (in this case,
the other player's moves). In the game of Figure 1, the backwards induc-
tion equilibrium (lifaL) is justified as follows: Given common knowledge of
rationality (CKR), the following proposition must be true

(i) "If node c is reached, player 1 will play /2."

By CKR, the truth of proposition (i) is common knowledge. Now suppose
node b is reached. Player 2 knows that proposition (i) is true, hence she knows
that if she plays i?, 1 will play /2- We then have proposition

(ii) "If node b is reached, player 2 will play L".

By CKR, proposition (ii) is common knowledge. Consider now node a.
Player 1 knows that proposition (ii) is true, so he knows that if he were to

xBy "common knowledge" of p is meant that everybody knows that p, and everybody
knows that everybody knows that p, and so on ad infinitum. For a definition of common
knowledge, see Lewis [10] and Aumann [1].



play ri, player 2 would play L. We then have proposition

(iii) "At node a, player 1 will play l\\

Note that proposition (iii) does not falsify (i) or (ii). (i) and (ii) are
conditional propositions with a false antecedent, therefore they are trivially
true. They have a false antecent because, given CKR, the nodes b and c
will never be reached. In deriving proposition (i), we assume that node c is
reached. And given CKR, node c must be reached by rational play. So (i) is
a hypothetical statement that is used as part of a proof that node c cannot
be reached by rational play. It is then proved (by reductio) that player 1,
being rational, will play /i.

Notice what the above line of reasoning shows: The standard reductio
argument that the Nash equilibrium (hhL) will be played is valid. Moreover,
there is no need to interpret, as it has been repeatedly suggested, the relevant
conditionals as counterfactual conditionals. 2Any reductio ad absurdum proof
in mathematics uses material conditionals, and we see no good reason to put
subjunctive conditionals in their place.

However, offering a reductio proof amounts to an informal justification
of backwards induction. There is a difference between justifying a given
solution and actually inferring or computing it: Inferring a solution is the
players' task, to be done by means of an appropriate formal (i.e., axiomatic)
theory. We may think of players as theorem provers. If we want them to
compute a given solution, we have to provide them with a given axiomatic
input. At each and every node, the relevant axioms must allow the player
who chooses at that node to play an optimal move. In Section 3, we show that
all that is needed by the players to infer the backwards induction solution
is a minimal theory of the game. Such theory is modular, in that for each
subgame Gl of G, theory TQ must contain just enough information about G1

to infer an equilibrium for G1. This means that the level of knowledge relative
to G' must not be the same as the level of knowledge relative to G. In other
words, players have distributed knowledge of the theory of the game.

When we formalize the theory of the game in a rigorous way, it becomes
evident that the backwards induction solution is compatible with many dif-
ferent levels of players' knowledge of mutual rationality and of the structure

2For an explicit discussion and modeling of counterfactuals in game theory, see Bicchieri
[4] and Shin [13]. More recent papers are Aumann [2] and Stalnaker [14].



of the game. As far as computing a solution is concerned, we can indiffer-
ently assume, for example, players' common knowledge, group knowledge, or
distributed knowledge of rationality.3

A different issue is the following: What happens if a deviation from equi-
librium play does occur? An analysis of out-of-equilibrium play is especially
important when there are multiple Nash equilibria, some of which might be
ruled out if we can show that they are unstable in the face of deviations. A
justification of the backwards induction solution might involve showing that
the equilibrium thus obtained is stable, as opposed to, say, some other Nash
equilibrium that employs weakly dominated strategies. From the viewpoint
of a player playing a given equilibrium strategy, an off-equilibrium move is
a contrary-to-fact event. An analysis of deviations might thus be cast in
terms of counterfactual conditionals.4 Such analysis is usually done at a
meta-theoretic level, but nothing prevents us from including it in the play-
ers' theory of the game. Counterfactuals have been analyzed using the notion
of minimally distant or most similar world. If we want to include counter-
factuals in the players' own theory in such a way that the solution can be
computed, we must do one of the following: (a) Define the similarity relation
explicitly and provide a semantic account of counterfactuals; or (b) Give an
explicit set of axioms providing a proof-theoretic account of counterfactuals.
However, neither (a) nor (b) has been carried out or seems to be forthcoming.
Nothing short of this will allow a meta-theoretic justification of backwards
induction in terms of counterfactuals to be included in the players' theory of
the game.

Note, again, that to compute a solution is a different task than justifying
it. Any theory of the game that allows the players to compute the backwards
induction equilibrium can dispense with counterfactuals or, for that matter,
with any model for belief revision. In Section 3 we present one such theory,
and in Section 5 we look at alternative theories that are still sufficient for

3 By group knowledge of rationality we mean that each player knows that the other
players are rational at every node. By distributed knowledge of rationality we mean that
each player knows that the successive players in the game tree are rational, but does not
know anything about the preceding players.

4 A contrary-to-fact event can be dealt with in several different ways. Instead of using a
possible world semantics we could use a syntactical model of belief revision. Alternatively,
if the whole theory is expressed in a non-monotonic logic (e.g., default logic), considering
contrary-to-fact events does not require the use of belief revision models.



the players to infer the backwards induction solution. From the viewpoint
of computing an equilibrium, all the theories that we discuss are equivalent.
They differ, however, in the way they handle deviations. A criterion of
choice among them might thus be the extent of the revisions that a deviation
induces.

Any theory of the game that employs a monotonic logic and is sufficient
for the players to infer a solution becomes inconsistent when augmented with
information that an off-equilibrium move has been played. In order to pre-
serve consistency, a revision of the theory is in order. When revising the
theory of the game, it matters how much the players know, i.e., it matters
whether the theory is common knowledge, group knowledge, or distributed
knowledge among the players. When the theory of the game is common
knowledge, a deviation at any node forces an extensive revision of the whole
theory. Such revision will be very costly in terms of lost information: For
example, we show in Section 4 that the players have to relinquish the ax-
ioms concerning their rationality. When there is much less than common
knowledge, a deviation would force a less extensive revision. In Section 4,
we consider a case (Case 2) in which what has to be revised are the axioms
expressing players' beliefs about other players' rationality. Such axioms are
less well entrenched than the rationality axioms, so a revision in this case
would be less costly. If the theory is distributed knowledge instead, at every
node the player who moves there has a local theory that allows her to infer an
optimal move at that node. Such theory contains no information about the
preceding nodes. If a deviation occurs, it has no effect on theories at subse-
quent nodes. Of course, the statement that a deviation occurs is inconsistent
with the theory of the game of the deviating player. This is fairly obvious:
Since a player can infer from the theory that a given move(s) is optimal at
a node, any alternative moves at that node must be inconsistent with the
theory. The important point is that a deviation in such a theory does not
force a revision at later nodes. The advantage of the theory of the game we
propose is thus that, being modular, it does not require belief revision.

We prove in Section 3 that a theory of the game that is sufficient for
the players to infer the backwards induction equilibrium is modular, or its
knowledge is distributed among the players. This means that players have
just enough knowledge relative to a node to infer an optimal move at that
node, but the information relative to a node does not imply anything about



previous nodes in the game. In Figure 1, for example, a theory of the game
for player 1 at node a must contain information about player 2's move at
node b. In turn, player 2's move will depend on her state of knowledge at
node 6, which includes what player 2 knows of player 1 's state of knowledge
at node c. In order to choose an optimal move at node a, player 1 has to
know what the optimal moves of the subsequent players are. At node c,
however, all he needs to know to make a decision are the payoff values at the
leaves. Let us now briefly discuss an apparent difficulty with the notion of
local rationality we employ in our proposal, since this is strictly related to
assuming distributed knowedge of the theory of the game.

In Section 3 (Axiom 5), we define rationality to mean that a player max-
imizes her expected payoff at a node. Furthermore, we argue that, in order
to be rational, a player has to know (or believe) that the successive player
is rational and knows that the successive player is rational ... and so on up
to the end of the game. This requirement has a straightforward explanation.
In our model, we do not allow degrees of belief, but just probability-one
beliefs (weak knowledge). In order to decide that a given move is optimal
at a node, a player has to calculate the consequences of that move. Unless
the node is terminal, the consequences of a given move will depend on what
the next player is expected to do in case she is given a chance to choose.
Our player has thus to make assumptions about the next player's propen-
sity to choose rationally, as well as her capability of so doing, which may
depend on her information about the following player, if there is one. Now,
suppose our player has no knowledge about the next player's rationality or
information. In this case, she cannot predict the consequences of moving
to the next node (at which the other player is choosing). Can she still de-
cide what her optimal move is? If we were to allow degrees of belief, then
she could still optimize, given whatever subjective probability she assesses
about the next player's rationality and information. However, our model (or,
better, the theory we give the players) does not allow for degrees of belief,
only knowledge (or probability-one belief). This is consistent with the usual
game-theoretic treatment of common knowledge of rationality. If rationality
is common knowledge, a player does not attribute a certain probability to an
opponent's being rational, he just knows it. Now, if a player is not allowed
degrees of belief, in order to be rational (i.e., maximize) at a node she must
know whether the next player is rational (or can make a rational choice, for
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the same reason) at the following node. Otherwise, our player cannot decide
what her optimal choice is (i.e., she cannot maximize her expected payoff).

Recall that our goal is to provide the players with the minimum amount
of information that is sufficient for them to infer the backwards induction
solution. Suppose we wanted to endow them with degrees of belief instead
of knowledge. For the players to be able to infer the backwards induction
solution, such degrees of belief would have to be pretty specific, i.e., lie within
an appropriate range. Take for example the game in Figure 1. At the second
node, player 2 will go right for any probability greater than 1/3 that player
1 is not rational (and thus chooses to go right). If we want to give player
2 beliefs that will let her infer that her optimal move is going left, then she
must have a degree of belief greater than 2/3 that player 1 is rational (and
thus plays left). Could a player be rational with different degrees of belief?
Yes, she would obviously still maximize her expected payoff. However, she
would no longer play her part in the backwards induction equilibrium.

An axiomatic theory of the game that endows players with degrees of
belief would thus have to provide axioms specifying players' probabilistic
beliefs, and a formal model for such a theory would be much more complex
and cumbersome than the kind of model we provide. A much simpler and
manageable axiomatic theory of the game is a theory that employs a (weak
or strong) knowledge operator. In this case, in order to maximize one's
expected payoff at a node a player has to know what to expect at following
nodes, which is tantamount to saying that she has to know that the following
players act rationally.

3 The Theory of the Game

A generic finite, extensive form game of perfect information G is represented
by a finite tree, having an arbitrary branching factor. For the purposes of this
section let us fix a particular tree (T, <), where T = {n i , . . . np} is a finite
set of partially ordered nodes that satisfy a precedence relation denoted by
< 5. We will use n,n',n",... informally as variables ranging over T. Since

5The relation < is asymmetric, transitive, and it satisfies the following property: If
n < n" and n' < n" and n ^ n', then either n < n' or n' < n. The precedence relation is
thus only a partial order.



the tree represents a game, we assume that it is equipped with a function
g : G —> {l,. . . ,fc} that assigns a player i (for 0 < i < k) to each node.
The branching factor of the tree represents the number of choices available
to each player at each node. In order to make things interesting, g is also
assumed to be non-injective, thereby ensuring that at least one player gets to
move more than once. Payoffs at the terminal nodes (leaves) of the tree are
represented by vectors of real numbers whose i-th projections (for 0 < i < h)
represent the payoff for player i at that leaf.

However, there is nothing conceptual to gain in representing such gen-
erality, while there is much to lose in notational perspicuity. All the points
that we want to make can be made equally well for a restricted class of
games. Consequently, we make the following simplifying assumptions. We
will restrict ourselves to games represented by binary trees, i.e., games in
which each player has precisely two choices at each node. Conventionally,
these moves are referred to as "moving left" and "moving right." Morover,
we will assume only two players that move in turn in a pre-determined order.
Accordingly, payoffs at the leaves are represented by pairs of real values.

In what follows, we will be employing a notion of limited rationality:
rather than presupposing that an agent's rationality is an absolute notion,
an all-or-nothing affair, we will focus on the idea of player i being rational at
a given node, and not absolutely. We are now ready to provide our theory of
the game. The theory will comprise two kinds of axioms: structural axioms,
describing the game and the payoffs, and behavioral axioms that allow the
players to infer a move or a sequence of moves.

CONVENTION 1 Assume two players, 1 and 2, of whom player 1 is assumed
to move first, so that the root of the tree represents a choice for 1. Call a
node final if it is non-terminal but all of its children are leaves. Let n be any
non-terminal node; then nT and n\ denote its right-hand and left-hand child,
respectively. Consequently, TQ will be the theory of the game from the point
of view of player 1.

Before we present the theory of the game, we shall specify a language
for the theory and a corresponding class of models. Having done so, we will
refer to any formula (p that is true in all models of TQ as a "theorem" or a
"consequence" of theory TQ •

DEFINITION 1 Our language C will be a two-sorted first-order language
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4

containg a modal fragment The language comprises two kinds of variables,
i.e., V\ = b,c,d... (which will refer to the nodes of the game tree) and
V2 = x, j / , z,... (which will refer to pairs of payoffs, one for each player). Our
language will also contain the following: the individual constant a, (which
will denote the root of the tree); the propositional constants Rat^, it^, Ln

(for £ = 1,2 and n a non-terminal node in the tree T); the function symbols
maxt(x,j/) and TT(6); the predicate symbols P(6, x), b <T c, and x <Y y for
i = 1,2; the connectives -», A, the universal quantifier V, and the operator
K4(i = 1,2).

Other connectives and quantifiers are defined from the primitive symbols
of the language, so for instance (p —> ip abbreviates -•(<£> A ->̂ >) and 3xip
abbreviates -Nx-np.

DEFINITION 2 We can now give the inductive definition of formulas. To
simplify this as well as later definitions, we will use b, c, etc. as meta-
variables for terms ranging over V\ U {a}. In this case, we do not need
to have separate definitions for formulas containing variables and formulas
containing constants.

1. P(b, x), maxt(x,r/) = z, ?r(b) = x, b <T c and x <J y are formulas;

2. Rat^, Rn, Ln, KjR&t^ are formulas;

3. if Ki(p is a formula then so is KjK{<p;

4. if cp and tp are formulas and 6, x are variables then (p A ^> ~1^
are formulas;

5. nothing else is a formula.

Observe that we allow the modal operator K{ to be applied only to the
propositional constants Rat^.6 Next, we specify a class of models for this
language.

6Here K{ is construed as weak knowledge, i.e., probability-one belief. The alternative
is to employ strong knowledge, that is, justified true belief. This would mean validating
the axiom schema K{(p —• (p. For instance, this is the approach adopted in Bicchieri [7],
but in the present context it would lead to unnecessary complications.

11



DEFINITION 3 A model for £ is a tuple

where:

1. (T, <T) is a finite tree (representing the game);

2. V is a set of fc-tuples of values, and <x
v (0 < i < k), where k is the

number of players (in our case, k = 2), is a reflexive and transitive
relation over V (elements of V represent the players' payoff vectors);

3. W is a set of worlds;

4. R{ (0 < i < k) are binary accessibility relations over W; the only as-
sumption on Ri is seriality: for all w G W there is a w' G W such that

5. p : T —> V (p assigns payoff vectors to the terminal nodes of T)\

6. P* is a relation over T x V (P* will be used to represent a partial
function assigning expected payoff vectors to nodes in T);

7. m,i : V xV -+ V (mt- represents a generic maximizing function subject
to conditions to be specified below);

8. / is a an interpretation function taking as input an individual or propo-
sitional constant and a world and returning a truth value as output,
satisfying the following conditions:

(a) for some m G T, /(a, w) = m for every w G W;

(b) for some t G {true, false}, I(Ln,w) = t for every w G W;

(c) for some t G {true,false}, I(Rn,w) = t for every t/; G W\

(d) /(Rat;,u;) G {true,false}.
7While in the object language we denote the partial order relation with the symbol

<T , in the model for the language we denote the corresponding relation with the symbol
<T- The same holds for the relation < as applied to payoff values. Likewise, the symbols
P, max,- and ?r of the object language are interpreted in the model by P*, m,- and p,
respectively.

12



It follows from the definition of a model that only the value assigned by
/ to Rat^ depends on the possible world; all the other constants in the
language behave as rigid designators. This is due to the fact that in our
model the only objects of belief are players' rationality and players' beliefs
about other players' beliefs. In particular, possible worlds could be identified
with assignments of truth values to the constants Rat^.

DEFINITION 4 If M is a model for £, an assignment (for the variables
and the constant a) over M. is a function s : Vi U V2U {a} -+ T U V such
that s(a) = /(a) , and moreover if b £ V\ then s(b) £ T, and if x £ V2 then
s(x) £ V.

DEFINITION 5 If M is a model, s an assignment for M and n £ T,
then s% is the unique assignment such that s%(a) = s(a) if a is not 6, and
s™ (a) = n otherwise. Similarly, if v £ V, sv

x is the unique assignment such
that sv

x(a) = s(a) if a is not x, and sv
x(a) = v otherwise.

DEFINITION 6 Let M be a model (with interpretation function /) and s
an assignment. We specify when an assignment satisfies a formula in a model
at a world, written A4yw,s (= tp. We proceed inductively:

1. M, tx;, s f= b <T c if and only if s(b) <T S(C);

2. Ai, w, s \= x <Y y if and only if s(x) <%
v s(y);

3. M, w, s f= P(b, x) if and only if P*(s(b), s(x));

4. M, u>, 5 ^= maxt(x, y) = z if and only if rrii{s(x), s(y)) = s(z);

5. A4,w,s f= fl"(b) = t/ if and only if j9(^(b)) = «S(T/);

6. A4, iu, 5 f= Rat^ if and only if /(Rat^, u;) = true;

7. A4, w;, 6 [= Ln if and only if I(Ln, w) = true;

8. .A/f, i^, 5 (= /?„ if and only if I{Rn, w) = true;

9. M, w, s (= if^ if and only if for all w1 such that Ri{w, w1), A4, w', s \=

10. A4, wys \= -i0 if and only if A4, u;, s ^ 0;

13



11. M,w,s \= <p Alp if and only if M,w,s \= tp and Ai,w,s f= v;

12. Ai,w, s \= Vb(p if and only if M, tt% s™ [= ip for every n € T;

13. -M, iu, 5 |= Vx (p if and only if A4, tu, s£ =̂ y? for every v G V.

REMARK Observe that from the above definitions alone it follows that
certain axiom schemata are validated. Beside the usual first-order validities,
the following are also true in every model for C:

(this follows from the satisfaction clause for Ki and implies that Ki((pAx/))
Knp A Kiip), and

(this is equivalent to the condition of seriality on ft). Recall that we construe
Ki as belief and therefore we give up the axiom schema Knp —• (p. We require,
however, beliefs to be consistent, which is precisely what seriality implies.

CONVENTION 2 We now introduce a particularly important abbreviation.
We are going to introduce a "partially defined" function symbol ?r*(b), rep-
resenting the expected payoff at node b for the player who moves at b. 7r* is
not a new primitive symbol of the language: any formula ty(7r*(b)) in which
7r*(b) occurs should be regarded as a shorthand for Vx(P(b,x) = ^ ^(x)).
This gives the desired result in the context of our theory because, as we shall
see, the theory will contain an axiom to the effect that for every b there is
at most one x such that P(b,x).8

DEFINITION 7 Theory TG contains the following structural axioms:

maxt(x, y) = x V maxt(x, y) = y Al.

maxt(x, y) = z-^x<YzAy <Y z A2.

V6VxVt/(P(fe, x) A P(b, y)-^x = y) A3.

The first two axioms specify that max, is a function that, given two k-
tuples of real values, returns the one with the greater i-th projection (if it

8Recall that the symbol P is interpreted in the model by the relation P* over T x V
(see Definition 3).
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exists), and chooses arbitrarily otherwise (the axioms do not constrain the
behavior of the function on pairs with the same i-th projection). Further,
Axiom 3 specifies that P is a functional relation on its domain (but its domain
might be strictly smaller than T).

We now give axioms governing the behavior of the players on the basis of
the values (among other things) of the propositional constants Rat^. Such
constants represent player z's rational behavior at node n (given Convention
1, i = 1 if and only if n has height m and m is even, and i = 2 otherwise;
the height of a node n is taken to be the number of links between n and the
root). Recall that Rn and Ln are propositional constants representing player
Vs moving right or left, respectively, at node n (since the player whose turn
it is to move is determined by the height of the node, it doesn't need to be
explicitly indicated in Rn or Ln). Then for each non-terminal node n we have
the axiom:

Qa A . . . A Qn. -> (Rn V Ln), A4.

where a... n' is the sequence of nodes leading from the root to node n, and
each Qn" is Ln» or Rn» according as the next node in the sequence is the left-
or right-hand child of n". If n is the root, then the antecedent in Axiom 4
becomes empty, and the axiom reduces to (Rn V Ln). Axiom 4 says that if a
non-terminal node is reached, then the player whose turn it is to move will
choose one of the available moves. Of course, we also need to say that such
choice is subject to a rationality condition, that is, that the player moves left
or right only if by so doing she maximizes her expected payoff (if the two
moves carry equal expected payoffs, they are both allowed). The expected
payoff at a node is given by the "function" ?r*, whose definition we will give
shortly. For any non-terminal node n we have the axiom:

R a t ; <=> [(Rn -> ma.Xi(7r*(nT),7r*(ni)) = 7r*(nr)) A A5.

(Ln -> maxt(7r*(nr),7Tltt(n1)) = **(

According to Axiom 5, to be rational at a node n means choosing that move
that maximizes the expected payoff at that node. This involves knowing
that, at the successor nodes nr and ni, 7r*(nr) and ?r*(ni) are defined. In
other words, the player who has to move at node n must know that the
successive player(s) are rational at nodes nr and n\. In order to define one's
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expected payoff at a node, one must know what the expected payoff of the
following player is at the next node, and at nodes following that, etc., up
to the end of the game. Axiom 5 also says that, whenever there are ties,
rationality is relative to a choice policy. When there is a tie, a player can
adopt any of several choice rules, but precisely which one is not part of a
rigorous definition of rationality. For rational choice to be defined also in
the case of ties, one might add a behavioral axiom further specifying the
function max,-, for example assuming that whenever a player is indifferent
between m options, he will randomize over them with probability 1/m. Such
behavioral axioms will, however, be ad hoc, and they certainly are not part
of the definition of rationality.

By a description of the game we mean a finite conjunction of formulas
uniquely characterizing the tree representing the game as well as the structure
of the payoffs associated with the terminal nodes. Such a conjunction is
obtained as follows. We assumed that T contains p nodes n i , . . . , np; if q of
these nodes are leaves, let vi,...,vq be the associated payoffs (^-tuples of
values). For brevity, let 6 = 6 1 , . . . , bp and ~x = x\,..., xq. In our theory, we
use the variables 6 1 , . . . , bv to refer to the nodes n i , . . . , np of T, respectively.
Similarly, we use the variables xi,...,xq to refer to the payoffs i>i,..., vq.
This reflects the distinction between the formal language of the theory and
the informal language within which we describe the game. Having established
a correspondence between the nodes of T and the variables 6, we will refer
from now on to the variable bj as the variable corresponding to the node
rij. Then the description of the game and of the payoffs is the following
conjunction, which we abbreviate by £(6, a;): 9

A (^<T* ; )A A A (*»<r*m)A A (
p(n)=v

We now give the behavioral axioms. First we "lift" the function TT to a
function ?r*, with domain C T and values in V. Function TT* will be an
extension of ?r, but it will not, in general, be total. Function ?r* is supposed
to represent each player's expected payoff at a node, and it will not supply a
value unless a player has the "right" amount of knowledge. (Recall that this

9Note that this conjunction is just the metalinguistic abbreviation of a formal object.
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is achieved formally by taking the notation ?r*(b) = x as our metalinguistic
shorthand for the relation P.) The behavior of the function is specified by
the following axioms: 10

7T*(&) = 7T(6), A6 .

for each variable b corresponding to a terminal node n. Let us abbreviate
the conjuction of all such formulas by /?i(6). These sentences say that the
expected payoffs at the final nodes are just the payoffs associated with those
nodes by the description of the game. For each non-terminal node we have:

Kio ... # i , (R<-" A Rat*"') -> **{b) = max , -^^ ) , ir*(k)), A7.

where n is non-terminal and: b is the variable corresponding to node n; q =
the height of n (i.e., its distance from the root); i = io] io = 1 if and only if
q is even, and i0 = 2 otherwise; finally, i*+i = 3 — i*, for each k < q. Let
us abbreviate all such formulas by ^2(6). (Some of the alternatives to this
axiom are explored in Section 5.) Note that the string of leading K^s in the
antecedent of Axiom 7 represents the knowledge of the player who moves at
n, and if n is the root, it represents the knowledge of the player who moves
first in the game. The reason is straightforward: For the first player to decide
what to do, it is not only necessary that the other players behave rationally,
it is also necessary that he knows that they so behave at every node. We can
now introduce the axiom

3!63!x[5(6, x) A ft(6) A fo(b)] A8.

(where 3! means "there exist exactly"). Axiom 8 completely defines the struc-
ture of the game and 7r* at every node, provided there is enough knowledge
to calculate TT* at subsequent nodes.

Finally, we come to the special axiom specifying to what extent players'
rationality is "common knowledge" among them. First, for each node n we
specify a sentence $n . We proceed by induction on (the tree representing)
the game. If n is a leaf, we let 3>n be a fixed sentence representing "the true"
— for instance, a — a (this is a mere technicality, intendend to take care of

10Recall that in Definition 2 we have used b as a meta-variable for terms ranging over
i U {a}.

17



"unbalanced" trees); if n is a final node, then <£n is just Rat^, where i = 1 if
and only if the height of n is even, and i = 2 otherwise. If n is a non-final,
non-terminal node, then

$ n = Rat; A / £ ( $ n r A$ n i ) ,

where, again, i = 1 if and only if the height of n is even. (Strictly speaking
this is not a well-formed formula of the language, since we allow K{ to be
applied only to the Rat^ constants; this presents no problem, since K{ dis-
tributes over conjunctions, as it can be easily verified.) Then our last axiom,
Axiom 9, is 4>a (recall that a is the root of the tree).

We claim that the theory To, comprising axioms 1-9, is consistent and
sufficient to infer the backwardss induction equilibrium.

THEOREM 1 Theory TG is consistent.
The proof of Theorem 1, together with the proof of the following theorem,

can be found in the Appendix.

THEOREM 2 For each game G, theory TG is sufficient to infer Ex V.. . V En,
where each E{ is a conjunction of "moves" M t l A . . . A Mlm (where each Mi-
is of the form Ln or Rn for some node n) representing the branch through G
corresponding to an equilibrium.

Theory TQ allows the players to infer an equilibrium path(s). Note that
TQ refutes any proposition to the effect that a move off the solution path(s)
takes place. Indeed, to choose an off-equilibrium move would mean violating
Axiom 5.

4 Deviations
We now turn our attention to the way deviations from equilibrium can be
handled in the framework of our theory. First observe that, as long as the
logic we adopt is monotonic, any theory of the game that is sufficient to infer a
solution becomes inconsistent when augmented with information that a move
outside the solution path has taken place. In order to preserve consistency, a
revision of the theory is in order. However, even if a revision is necessary in
any theory of the game whose underlying logic satisfies monotonicity, there
are more or less drastic revisions. As we shall presently show, the magnitude
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of a revision will depend on whether the information relative to a node does
or does not imply something about previous nodes in the game.

When we analyze how the theory of the game has to be modified in the
face of a deviation from equilibrium, it is necessary to draw a careful dis-
tinction between the level of the theory of the game (on the basis of which
each player is making a choice) and the meta-level at which belief revision
takes place. As we already mentioned, it is useful to resort to the following
metaphor: We imagine each player to be represented by an automatic theorem
prover that is supplied a theory of the game as input, and returns as output
one of the two possible moves "left" or "right." When faced with inconsis-
tencies, there is nothing a player can do: It is only at the meta-level that we
can start talking about belief revision. It is indeed plausible to assume that
players are capable of revising their own theory in the face of inconsistencies,
but this requires that we endow them with a meta-language within which
to express belief revision, as well as with a meta-theoretic account of belief
revision. Any talk of belief revision should thus be understood to be taking
place at a meta-theoretic level. As it turns out, since our players only have
distributed knowledge of the theory of the game, we do not need to endow
them with a model for belief revision.

Let us now take some time to explore three possible candidate theories
to be assigned to a node n of G. We want to assess their relative merits
with respect to the way in which they handle deviations from equilibrium
play. Suppose that, for simplicity, we have a game G with root a, whose
left- and right-hand children are denoted by 6 and c (see Figure 2). Player
1 moves at node a. We want to consider some combination of the theories
$ a , <!>&, $c- Notice that although $a is recursively defined in terms of <!>& and
$ c , it does not entail either one of them. This has to do with our construal of
the operators K{ as belief operators for which the axiom schemata K^p —> <p
are not assumed. Then, keeping axioms A1-A8 fixed, we consider assigning
a theory of the game to each node n of G as follows.

Case 1: we assign to each node n 6 G the same theory 3>a. That is, we
make 4>a group knowledge among the players.11 Suppose that playing Ra is
a strictly dominated strategy. Then, as we already know, the theory 4>a A Ra

is inconsistent, and therefore of no use for the second player, were she to find

11 By group knowledge of p we mean that every member of the group knows p.
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Figure 2: A schematic game.

herself playing at c. Consequently, the second player has to revise her theory
of the game in such a way that the resulting theory is still sufficient to infer
an equilibrium for the subgame having c as its root. But

clearly <J>& is of no use for the second player, since it contains information
relative to a subgame that is no longer accessible. So the theory that must
be revised is Rat* A K\($c), neither of whose conjuncts is enough to infer an
equilibrium. Having rejected $ a , player 2 has no theory of the game to speak
of; what she does at node c is undefined. The situation of player 1 is quite
different: $ a allows him to calculate fl"*(a), and thus choose an optimal move
at node a. Of course $ a A Ra is inconsistent, but all that player 1 needs to
infer his optimal move is just 4>a. In general, to compute the expected payoff
at a node it is not necessary to assume that that node has been reached.

Case 2: we assign to each node n 6 G the same theory $ a A $& A $ c .
Again, this theory is group knowledge among the players, and as before it is
inconsistent with Ra. Finding herself in the position of having to revise her
theory, player 2 cannot but reject $ a . However, 3>c still is sufficient to infer
an equilibrium, i.e., to compute a value for ft*{c).
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Case 3: we assign to each node n £ G the theory $ n . This is the approach
we have adopted, which calls for assigning to each node n a minimal theory
that is sufficient to infer an equilibrium for the corresponding subgame. Thus,
each player finds himself choosing at each successive node on the basis of
weaker and weaker theories. In our example, this means that player 2 will
find herself to choose at node c on the basis of the theory $c (or, perhaps,
$c A i?a). But whereas $a A Ra is obviously inconsistent, $c A Ra is not. If
player 1 were to ask what would happen in case he were to play i?a, he would
know that player 2 would play her optimal move at node c, since 4>c is still
sufficient to infer an equilibrium for the subgame starting at c (i.e., K*{C) can
be computed). When the theory of the game is modular, a deviation at a
node does not force a revision at later nodes, since the theories at later nodes
are not inconsistent with a statement to the effect that a deviation at some
previous node has occurred.12

Our framework makes it easy to understand in which sense it can be
argued that common knowledge of rationality leads to inconsistencies in the
face of deviations.13 As it should now be clear, such inconsistencies arise only
at the level of the object-language (i.e., the players' theory of the game); there
is no inconsistency at the meta-linguistic level of justification of backwards
induction.

To define common knowledge of rationality in our model, recall that the
notion we employ is that of rationality at a node. Local rationality simply
amounts to an agent's choosing an action with the highest expected utility,
and this is always possible as long as our functions TT* are defined. Conversely,
an agent Vs being not rational at a node n means that 7r*(6) is not defined
(where b is the variable assigned to n in our theory). On a local construal
of rationality, assuming common knowledge of rationality amounts to saying
that a player's expected payoff at a given node is common knowledge. Since
in our axiomatization TT*(6) is not defined unless it is defined at all lower
nodes in the tree, common knowledge of rationality means that the value of
7r*(a) is common knowledge among the players (where a is the root of the
tree). Equivalently, since such a value is determined by $ a , we can identify

12Note that, whenever every node is reached in equilibrium, it makes no difference
whether theory TQ is assigned to every node or whether we let the theory vary according
to the node to which it is assigned.

13See for example Bicchieri [5], Binmore [8], and Reny [12].
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common knowledge of rationality with common knowledge of $ a .
We have shown in Case 1 above that when the theory of the game is

group knowledge among the players such theory becomes inconsistent with
the statement that a deviation from equilibrium play has occurred. A for-
tiori, when the theory is common knowledge among the players, such theory
becomes inconsistent when augmented with information that a move outside
the solution path has taken place. When the theory is common knowledge
(or group knowledge), the inconsistency is not limited to the node where the
deviation occurs, but it spreads to the whole game. In order to preserve
consistency, a revision of the theory at every node is in order. In both cases,
we might want to endow the players with a meta-language within which to
express belief-revision. In our model, however, players do not need such a
meta-language, nor a theory of belief revision, since they have just enough
knowledge to infer an optimal move at a node or, in other words, they have
"distributed" knowledge of the theory of the game.

5 Alternative Accounts

Let us now explore two alternatives to our crucial axiom Al (Recall that A5
and A7 are axiom schemas that stand for finite collections of sentences, one
for each node). The intended meaning of axiom Al is that i/player io has the
"right" amount of knowledge, and function TT* is defined on the children of n,
then it is defined on node n too. For player i to choose what to do at node n,
it is necessary both that the other players behave rationally and that i knows
that they so behave. Hence, the string of leading K^s in the antecedent of
Al. However, all that is needed in order to infer the backwards induction
equilibrium is the consequent of Al. So it is worth considering what would
happen if we were to replace axiom Al by (i) its consequent, thus obtaining
the sentence

or (ii) replace Al with a sentence in which we drop the leading K^s from its
antecedent, thus obtaining

' A Rat*"') - *'(&)

(and modify 3>n by analogously dropping the occurrence of Ki).
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In both cases our modified theory would still be sufficient to infer a back-
wards induction equilibrium. This means that in either case the theory, when
augmented with information to the effect that a deviation has taken place,
is simply inconsistent. But at a meta-theoretic level, what kind of belief
revisions does this warrant? The two cases crucially differ between them-
selves, and with our proposal, in the way deviations from equilibrium can be
handled.

Case (i) is simply classical backwards induction: We have replaced Al
with the new axiom

and axiom <£a (Axiom 9) is not needed in this case to infer an equilibrium.
The theory thus modified does not leave a player much room to maneuver
in case a deviation from equilibrium is observed: There is no natural way of
revising a player's beliefs in order to accommodate a deviation.14 The only
conclusion is that the other player acted against her own best interests for
mysterious reasons.

Consider as an example the game in Figure 1, and suppose that player 2
observes r\. Given our modified theory TQ (we have now changed axiom A7),
both players are able recursively to define the value of TT*(6) at each node 6,
and in particular both players know that 7r*(a) is defined. By axiom A5, if
7r*(a) is defined, then Rat1. Observing rx forces player 2 to abandon A5 for
node a, i.e., to abandon the assumption that player 1 is rational at node a.

Case (u) is different: we replace A7 by the new axiom

A RatJ-') - TT*(6) = max,(7r*(6r),7r*(&1))

and correspondingly drop occurrences of K{ from A9. In the presence of
an observed deviation from equilibrium, a tentative "explanation" is available
for the other player. When player 2 observes a deviation, she is not forced to
give up axiom A5: She can now revise the theory of the game by assuming
that player 1 is not rational, at least at node a, because 7r*(a) may not be

14It is certainly possible to modify the theory to account for a deviation by giving up
the very definition of rationality at a node as given in axiom Ah or, for that matter, by
changing the structure of the payoffs of the game: we do not regard these as natural belief
revisions.
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defined. In turn, 7r*(a) may be undefined if player 1 does not know that
player 2 is rational at node 6, or if TT*(6) is not defined because player 2 does
not know that Rat*. A deviation in case (ii) is therefore less costly in terms
of revisions than a deviation in case (i).

Case (ii) is on a par with the present proposal, since our version of Al
leaves open the possibility that a player's rational behavior at a node is not
known by another player, which would serve equally well to "explain" the
latter's deviation at a previous node (this possibility is discussed as Case 2 in
Section 4). Case (ii) and our proposal differ, however, in another important
respect. First note that in case (u), but not in our proposal, if node n' is a
descendant of node n in G, then 3>n implies $n/. It follows that if a deviation
at node n1 is observed, it is not only the theory 3>n/ that needs to be revised,
but also $ n . This is not the case with Al as we defined it. In our theory,
deviations from equilibrium play can be dealt with locally. They might force
a revision of the theories assigned to later nodes in the game, but never of
theories assigned to earlier nodes (again, consider Case2 in Section 4).

6 Conclusion

We have argued that there is a distinction between justifying a certain so-
lution (e.g., backwards induction) and inferring or computing that solution.
Furthermore, we have suggested that a distinction must also be drawn be-
tween the meta-language (i.e., the language of justification) and the object-
language (the language of the players). Meta-theoretic justification is the
game theorist's task; computing a solution is the task of the players. While
the backwards induction solution has been successfully justified (as we did
show in Section 2), no formal theory of the game from the players' viewpoint
has been developed. Our paper has provided the players with a formal (i.e.,
axiomatic) theory of the game. We have proved such theory to be consis-
tent, and sufficient for the players to infer the backwards induction solution
directly from the structure of the game alone. Finally, we did show that (i)
common knowledge of rationality (or of the theory of the game) is not needed
by the players in order to infer the backwards induction solution, (ii) If the
players' theory of the game is common knowledge (or even group-knowledge)
among them, a deviation from equilibrium play forces a global revision. In
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this case, we should endow the players with a meta-language within which to
conduct belief revision. If the theory of the game is modular (or distributed
knowledge), a deviation does not force a revision at subsequent nodes, (iii)
The game theorist's justification of backwards induction can include a state-
ment to the effect that players have common knowledge of rationality.

A Appendix

This Appendix contains proofs of the results in Section 3.

THEOREM 1 Theory TG is consistent.

Proof. We establish the claim by exhibiting a model M. Such a model will be
the formal counterpart of the game represented by T, under the hypothesis
that the backwards induction equilibrium is played. To make things simple,
suppose that there are no ties in the payoffs, so that there is only one sequence
of moves through T that is consistent with backwards induction. We set:

M = ((T,<T),(V,<1
v,...,<

k
v),W,R1,...,Rk,P\mu...,mk,pJ),

where:

1. T is the game tree T for which we are giving the theory;

2. V is the set of fc-tuples of real numbers representing the payoff vectors
associated with the terminal nodes of T, and the relation <l

v holds
between two vectors x = X\... xn and y = j / i . . . yn if and only if
x% 5^ J/t (as usual, k = the number of players);

3. W = {w}, i.e., W contains only one world.

4. all the R+ relations (0 < i < k) are the same, namely the universal
relation over W', which is serial;

5. p is the function that assigns to each terminal node in T the corre-
sponding payoff vector (and assigns arbitrary values to non-terminal
nodes — TT is never applied to non-terminal nodes in the theory);15

15Recall that the symbol TT is to be interpreted by p in any model for C.
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6. rrii is a function taking as input two vectors from V, say x and y (in
this order), returns the one with the higher i-th projection if it exists,
and returns x otherwise;16

7. P* is defined inductively on the generation of the tree, beginning with
the leaves as a base case; if n is a leaf, P*(n, x) holds if and only if x =
p(n); if n is not a leaf, P*(n, x) holds if and only if x = m t(^, z), where
P*(n' ,y) and P*(n", z), and n\nn are the children of n (this definition
implies that for each node n there is an x such that P*(n, x));17

8. / is defined as follows:

(a) /(a, w) = the root of T, for every w G W\

(b) I{Ln,w) = true for every w G W, if the left-hand child of n lies
along the solution path, and I(Lnjw) = false for every w G W
otherwise;

(c) I(Rn, w) = true for every w G W, if the right-hand child of n lies
along the solution path, and I(Rn,w) = false for every w G W,
otherwise;

(d) /(Rat^tu) = true for every w G W.

It is immediate to verify that Ai is a model for TG> The structural axioms
are obviously satisfied, since they were formulated in such a way as to be
true of T. As to the behavioral axioms, ?r*(b) = fl"(b) (where b corresponds
to a final node) holds since P* extends p (viewed as a relation). Moreover,
since all sentences ?r*(&) = maxi(7r*(6r),7r*(&i)) (where b is non-terminal) are
true by definition of P*, the axioms

Kio ... tf,-,(R<"' A Rat*-') -> *•*(&) = maxt(7r'(6r), r*(k)),

are true. Finally, all the Rat^ constants are true, and since the accessibility
relations R{ are all universal, all sentences of the form

16Recall that the symbol max, is to be interpreted by m,- in any model for C
17Recall that the symbol P is to be interpreted by P* in any model for C.
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are also true. Therefore the axiom $a is true. To complete the proof it
remains to observe that in the model each player moves at least once at each
non-terminal node that is reached in the backwards induction equilibrium,
and that all and only such nodes are reached. •

THEOREM 2 For each game G, theory TG is sufficient to infer Ex V. . . V En,
where each E{ is a conjunction of "moves" M t l A . . . A Mtm (where each Mtj

is of the form Ln or Rn for some node n) representing the branch through G
corresponding to an equilibrium.

Proof. It suffices to show that ?r*(a) is defined. We proceed by induction
on (the tree representing) G. If G comprises a unique final node n, then it
suffices to invoke Axiom 6. (i.e., the conjunct /?i(6) of Axiom 8.).

Now consider a game G, with root a, and let b and c be its children.
Let Gb and Gc be the subtrees of G with roots b and c, respectively. By
inductive hypothesis (modulo a permutation of 1 and 2), theories Tob and
TQC are sufficient to infer that TT*(6) and TT*(C) are defined.

If theories Tob and TQC were subtheories of TG, then the desired conclusion
would easily follow from the inductive hypothesis. However, this is not so,
given our interpretation of K{ as a belief operator, and the way /32(b) and
$a (Axiom 9) have been formulated. It is indeed one of the characteristic
features of the present approach that if node n' is a descendant of node n,
then $n does not imply $^.

There is a way around this difficulty. Theories Tch and TQC allow us to
derive a value for TT*(&) and 7r*(c) because for each node n in Gb or Gc, they
contain the corresponding instance of Axiom 7, which has the form

K^K^cp => 7r*(n) = • • •,
n times

and $t or $c (according as n is in Gb or Gc) provides the antecedent

Kx...Knip.

Now it is easy to verify that for each node n in Gb or Gc, theory TQ contains
the axiom

K_^K,<{> =• 7r*(n) = • • •
n+1 times
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(with one more occurrence of the K operator with respect to Tcb or TQC).
Correspondingly, $ a will now supply the antecedent of the above formula. It
follows that just as a value for 7r*(6) or ?r*(c) can be obtained in Tob or TQC,
so it will be obtained in TG, too.

All that is left to observe is that TQ contains the following instance of
Axiom 7:

A Rat*) ==> 7r*(a) = maxi (TT*(C), TT*(6)),

whose antecedent, in turn, is supplied by $ a . This allows us to derive a value
for ?r*(a). •
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