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Abstract

In this paper we isolate a particular refinement of the notion of
Nash equilibrium that is characterized by two properties: (i) it pro-
vides a unified framework for both backwards and forward induction;
and (it) it is mechanically computable. We provide an effective proce-
dure that allows us, given the extensive-form representation of a game,
to compute a set of "reasonable paths" through the tree. The set of
reasonable paths corresponds to the set of strategies that survive it-
erated elimination of (weakly) dominated strategies in the strategic
form. We prove that whenever our procedure identifies a unique path,
that path corresponds to a Nash equilibrium. Moreover, our procedure
rules out all Nash equilibria that contain (weakly) dominated strate-
gies. Further, our notion of "reasonable" paths leads to the backwards
induction solution in the case of games of perfect information, and to
forward induction in the case of games of imperfect information. We
model the players' reasoning process by giving a theory (with which
each player is supposed to be endowed), from which statements char-
acterizing the players' behavior are deducible. Such a theory is not
yet complete, in that it cannot handle true (irrational) deviations. We
point at directions for future work by showing how such a theory can
be made complete provided we re-interpret some of its axioms as de-
feasible inference rules.

1 Introduction

Two problems have been widely discussed in recent debates on the founda-
tions of game theory, namely: (i) the problem of how to handle deviations
from equilibrium play, and (ii) the problem of how to model counterfactual



reasoning patterns that appear to be necessary to carry out backwards induc-
tion (Aumann [1], Stalnaker [12]). There are obvious connections between
these two problems, although they have usually been treated separately.

The first problem appears in the context of games that have multiple
Nash equilibria, some of which might be implausible in that they involve
risky (i.e. weakly dominated) strategies and the implausible beliefs that
those strategies will be played. Various refinements of Nash equilibrium
have been proposed to take care of implausible equilibria, as well as to at-
tain predictability in the face of multiplicity. In games of perfect information
this is accomplished by applying backwards induction. In games of imper-
fect information instead, one has to appeal to different types of refinements,
each of which corresponds to a different way of checking the stability of a
Nash equilibrium against deviations from equilibrium play. The stability^
of an equilibrium, however, is a function of how a deviation is being inter-
preted. Counterfactuals play a role in this context since, from the viewpoint
of a particular equilibrium, an off-equilibrium move is a contrary-to-fact
event. When considering the possibility of such an event, a player has to
undergo a belief-revision process, retracting from his original set of beliefs
all those beliefs that contradict the statement that an off-equilibrium event
has taken place. The interpretation of out-of-equilibrium play will thus de-
pend on the model of belief revision adopted (and on the interpretation of
the counterfactual), and so will the resulting refinement (Bicchieri [2, 3, 4]).

As a refinement for games of perfect information, backwards induction
embodies the principle that a rational player will only play undominated
strategies. In this context, too, the issue of counterfactuals arises when
a player contemplates a deviation from equilibrium play. But whereas in
games of imperfect information a deviation may or may not be inconsistent
with common knowledge of rationality, in a large class of games of perfect in-
formation deviations are inconsistent with rationality being common knowl-
edge (Bicchieri & Antonelli [5]). Augmenting the theory of the game with an
account of counterfactuals can solve the problem, at a price. Different kinds
of game may need different accounts of counterfactuals to make deviations
compatible with rational behavior being common knowledge, whereas one
would like to have a unique general account of counterfactuals that applies
to all types of games.

It is often argued that a complete theory of the game is a theory that ex-
plains the unexpected, that is, it is a theory that explains all sorts of moves,
including irrational ones, on the part of the players. The task of construct-
ing such theories, however, has proved quite formidable. For example, a



theory that interprets deviations as mistakes takes into account all sorts of
deviations, but, as we shall show in section 2, a theory of mistakes may
be incompatible with rationality being common knowledge. On the other
hand, a theory that only considers rational deviations, interpreting them
as signals, is consistent with rationality being common knowledge, but it is
silent as far as irrational deviations are concerned. In the present paper,
we shall argue that the treatment of deviations, be they studied in finite
extensive form games of perfect or imperfect information, does not require a
full account of (intra-theoretical) counterfactuai reasoning, notoriously one
of the thorniest issues in philosophical logic and knowledge representation.

In our model, the players reason to a solution on the basis of the theory
of the game they are endowed with. Players are like automatic theorem
provers provided with a decision procedure that isolates, whenever possible, -:
a unique solution that satisfies the rationality conditions embedded in the
theory's axioms. A surprising result of such a decision procedure is that it
leads quite naturally to the backwards induction equilibrium in finite games
of perfect information, and to the forward induction refinement in finite
games of imperfect information.

The theory of the game T is formalized in classical first-order logic and
is a revised version of Bicchieri & Antonelli [5]. Our theory, which is inter-
pretable in Primitive Recursive Arithmetic, comprises general axioms de-
scribing the game (represented by a finite tree) and the payoff structure
for each player. We supply a function n* giving, for each information set,
the set of undominated paths starting at that set. Finally, we give "behav-
ioral" axioms describing how players' actions are determined by the set of
undominated paths and hence, indirectly, by their expected payoff at each
information set. This theory allows players to infer the sequence of moves
comprising what we call a Reasonable Path (or paths), i.e. a path that
satisfies the rationality conditions that are embedded in our theory.

The theory we propose here differs from Bicchieri & Antonelli [5] in ;

several important respects. It is far more general, as it also includes games
of imperfect information, and it is not assumed that players have "local
knowledge" at an information set; in fact, it is assumed that the theory T is
group knowledge among the players1. Since we model a decision procedure
that leads to the isolation of a subset of undominated paths, no belief revision
is needed to identify the subset of Nash equilibria (if such a subset exists)
that contains only undominated strategies. Belief revision is only necessary

*By group knowledge of p we mean that every member of the group knows p



when a player deviates to a dominated path. In our view, it makes sense
to call "deviation" only an action that is unexpected in that it is obviously
contrary to the best interest of the deviant player. Such action should then
be explained.

The theory T we assign to the players only provides a background
description of the game. Considering a deviation means augmenting T
by a "history," i.e. by axioms A I , . . . , J 4 * specifying that certain moves
have been made. Since those moves lie outside the undominated path(s),
T + A\ + . . . + Ak is inconsistent. This implies that any model of belief revi-
sion based on T and meant to accommodate deviations cannot but generate
a modification of T.

By exhibiting theory T we accomplish a twofold task: First, we show
how a first-order theory of the game is perfectly adequate to infer the back- "
wards induction equilibrium in games of perfect information and, in games
of imperfect information, it gives us a refinement that agrees with forward
induction. These results are obtained without an account of counterfactu-
als. Second, we set the stage for a default version of the theory obtained
by the original theory T by weakening the axioms, i.e. by reinterpreting
certain material implications as defeasible default rule. A default theory of
the game is a complete theory in the sense that it can be augmented with
information to the effect that a true deviation (i.e. an irrational move) from
an equilibrium path has occurred without becoming inconsistent.

2 An Example

In the refinements literature, anticipated actions off the equilibrium path
play a crucial role in sustaining an equilibrium. Given a Nash equilibrium,
the players are supposed to ask what would happen if one of them were to
deviate from the equilibrium path, and an equilibrium is considered plau-
sible (or stable) only in case the players would have no incentive to play
another strategy in face of a deviation. Form the viewpoint of a given Nash
equilibrium, asking what to do when a deviation occurs is tantamount to
asking a counterfactual question, since an off- equilibrium move is by defi-
nition a contrary-to-fact event. Though most game theorists now recognize
that the treatment of deviations involves counterfactual reasoning and a
change of beliefs on the part of the players, there are very few syntactical or
semantical models of belief change in the literature. This is mainly due to
the fact that the model of the game being played is the game theorist's and



Figure 1: A two-person game of imperfect information.

not the players'. This also explains why so little attention has been paid
to whether the beliefs attributed to the players are reasonable, in the sense
of being consistent with their information about the game. What follows is
an example of how the problem of multiple equilibria is usually addressed,
where the kinds of refinement proposed depend upon the beliefs attributed
to the players.

The game in Figure 1 is a two-person game of imperfect information.
As usual, the players are assumed to have common knowledge of rationality
(i.e. that they are expected utility maximizers) and of the structure of the
game. Player 1 has three choices: either he chooses c, which ends the game,
or he may choose b or a, in which case it is player 2's turn to move. If player
2 is called upon to move, however, she will not know player l's preceding
move, so she cannot tell whether she is at node y or y'. The game has two
Nash equilibria in pure strategies, (c, L) and (a,R), and one would like to
find some means to predict which equilibrium will be chosen by the players.
Yet in such a simple game the most common refinement concepts, such as
perfection, properness, or sequential equilibrium do not succeed in selecting
a unique equilibrium. Let us see why.

The equilibria (c,£) and (a, R) are both perfect (Selten [11]). In partic-
ular, (c, L) is perfect if player 2 believes that 1 will make mistake b with a
greater probability than mistake a, but whereas both probabilities are very
small, the probability of playing c is close to 1. If this is player 2's belief,
then she should play L with probability close to 1. In this case, player 1
should play c. But why should 2 believe that mistake 6 is more likely than



mistake a? Since strategy c strictly dominates 6, there is no reason to expect
mistake b to occur more frequently than mistake a. The beliefs that sup-
port (c, L) are thus unreasonable.2 The problem is that out-of-equilibrium
beliefs are unrestricted: A player is supposed to ask whether it is reasonable
to believe that the opponent will play his part in a given Nash equilibrium,
but not whether the beliefs supporting the opponent's choice are rational. A
rational belief, in this case, means a belief consistent with rationality being
common knowledge. In our example, player 1 attributes to player 2 a belief
that justifies her choice of strategy X, but it is not obvious that 2's belief
about the greater likelyhood of mistake b is defensible.

It could be argued that one way to restrict out-of-equilibrium beliefs is to
restrict a player's conjectures about the opponent's behavior to those that
are rationally justified. A rational player, for example, should be expected to ;
avoid costly mistakes (Myerson [8]). Proper equilibria need only be robust
with respect to plausible deviations, i.e., deviations that do not involve
costly mistakes. However, one mistake may be more costly than another
only insofar as the player who could make the mistake has definite beliefs
about the opponent's reaction. In our example, both (c, L) and (a,R) are
proper equilibria. If a deviation from (c, L) were to occur, player 2 would
keep playing L only if she were to assign a higher probability to mistake b
than to mistake a. And if player 1 were to expect 2 to play X, mistake b
would indeed be less costly than a. In this case, L would be a best reply
for player 2. Thus mistake b is less costly if 1 expects 2 to play i, and 2
will play L only if she believes that 1 expects her to play L in response to a
deviation. But, again, why should player 2 be expected to play L in the first
place? Since b is strictly dominated by c, it is very unlikely that b occurs.
The only plausible deviation is thus a, but then player 2 should be expected
to play R.

The same problem arises with the sequential equilibrium notion (Kreps
& Wilson [7]), which explicitly specifies beliefs at information sets lying off
the equilibrium path. In our example, both (c, L) and (a, R) are sequential
equilibria, since an equilibrium strategy has to be optimal with respect to
some beliefs, but not necessarily plausible beliefs. In particular, if player 1
chooses c, then any probability assessment by player 2 is reasonable, and it
is entirely possible that player 2 assesses a higher probability to strategy b
than to a.

2 Even Selten [11, p. 35] admits that game theory is concerned with absolutely rational
agents and that "there cannot be any mistakes if the players are absolutely rational."
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The equilibrium (c, L) is intuitively unreasonable precisely because the

beliefs that support it are unreasonable. By reasonable beliefs we mean
beliefs that are consistent with common knowledge of rationality. If ratio-
nality is common knowledge, a player should never be expected to choose a
dominated strategy. This must be true of weakly dominated strategies, too.
The rationale for this condition is simple: Since off-equilibrium choices are
relevant only when they affect the choices along the equilibrium path, it is
reasonable to ask that an off-equilibrium choice that is weakly dominated
should be ruled out, since it is as good as some other strategy if the oppo-
nent sticks to the equilibrium, but it does worse when a deviation occurs.
In our example, rationality is common knowledge and strategy b is strictly
dominated, therefore it must be common knowledge that b is never going to
be played. Knowing that player 2 will always respond to a deviation with i
i?, player 1 will have an incentive to choose a. This kind of reasoning rules
out (c, L) as implausible.

Considering only undominated choices means that off-equilibrium beliefs
should satisfy the following condition:

(R) When considering an off-equilibrium move, a player should not hold
beliefs that are inconsistent with common knowledge of rationality.

All that condition (R) tells us is that whenever a player has a weakly
dominated strategy he should not be expected to use it, and that no one
should choose a strategy that is a best reply to a weakly dominated strat-
egy. Common knowledge of rationality thus implies common knowledge
that weakly dominated strategies will not be used. Note that condition (R)
entails iterated elimination of dominated strategies in the strategic form.
Consider the strategic form of the game in Figure 1, which is given in Fig-
ure 2. In this game 6 is eliminated since it is strictly dominated by c. Since
b is eliminated, R weakly dominates i , which is in turn eliminated. Finally,
a dominates c for player 1, hence (a, R) is the only equilibrium that survives
iterated elimination of dominated strategies.

Is there a correspondence between the iterated procedure we have just
described and our informal argument in favor of (a, R) in the extensive form?
If the game in Figure 1 were one of perfect information, backwards induction
would give us a decision procedure that matches iterated elimination in the
strategic form. Starting from terminal nodes, players eliminate weakly dom-
inated strategies bottom up; in the absence of ties, this method determines
a single outcome. In our example, it would be the equilibrium (a,R). Note
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Figure 2: The strategic form of the game of Figure 1.

that backwards induction requires rational behavior even in those parts of
the tree that may not be reached if an equilibrium is played. As a result,
backwards induction leads to eliminate all but the equilibrium points that
are in equilibrium in each of the subgames and in the entire game. More
generally, we may state the following backwards induction condition:

(BI) A strategy is optimal only if that strategy is optimal when the play
begins at any information set that is not the root of the game tree.

In games of perfect information, (R) and (BI) guarantee that unrea-
sonable equilibria are ruled out. Together, they imply that a plausible Nash
equilibrium must be consistent with deductions based on the opponent's
rational behavior in the future. Future behavior, however, may involve
off-equilibrium play, and in this case condition (R) tells us that the only
deviations that matter are undominated choices, i.e., choices that can be
interpreted as intentional moves of rational players.

The game in Figure 1, however, is one of imperfect information; here the
backwards induction algorithm fails because it presumes that an optimal
choice exists at every information set, given a specification of play at the
successors. At 2's information set, however, there is no unique rational
action: at node y she should play i, and at node y1 she should play R. Even
if backwards induction is not defined, conditions (R) and (BI) may still
apply to games of imperfect information that have proper subgames. For
each such subgame, one may ask whether an equilibrium for the whole game
induces an equilibrium in the subgame (Selten [10]). Yet the game in Figure



1 has no proper subgames, so in this case (BI) does not apply. Condition
(R) still applies, though, by constraining the possible interpretations of
deviations.

In Figure 1, if player 2 gets to play then player 1 must have foregone
the payoff of 3 in favor of playing a. The only equilibrium that yields a
payoff greater than 3 to player 1 is (a, JR), hence 2 should deduce from the
fact that her information set is reached that 1 has chosen strategy a. If
so, 2's best reply is R and player 1, anticipating player 2's reasoning, will
conclude that it is optimal for him to play a. What we have just described
is a forward induction argument, that is, an argument based on inferences
about the opponent's rational behavior in the past. In our example there
is no past to speak of, but rather the knowledge that player 1, facing the
choice of getting a payoff of 3 for sure or playing a simultaneous game with-:
player 2, has chosen the second option. A forward induction argument thus
interprets deviations from a given equilibrium as signals, intentional choices
of a rational player (Kohlberg Sz Mertens [6]). For this interpretation of
deviations to be consistent with rationality, however, there must exist at
least a strategy that yields the deviating player a payoff greater or equal to
that obtained by playing the equilibrium strategy. This consideration leads
to the following iterated dominance requirement:

(ID) A plausible equilibrium of a game G must remain a plausible equilib-
rium of any game G1 obtained from G by deleting (weakly) dominated
strategies.

Condition (ID) implies the iterated use of condition (R) in games that
have subgames. Taken together, conditions (ID), (R) and (BI) underlie
the forward induction argument. Consider the following game: In Figure 3
each player has the choice of playing down, which ends the game, or playing -
across. At node w, if player 1 chooses to play across he plays a simultaneous _
battle of the sexes with player 2. This game has two equilibria in pure
strategies: (Ai A$T, D2) and (A\D%, A2R). Note that in the strategic form of
Figure 3 the equilibrium (A\D$, A2R) does not survive iterated elimination
of (weakly) dominated strategies.

Like other refinements, forward induction is used to check the equilibria
of the game against possible deviations. The difference with other refine-
ments lies in the criteria used to assess deviations. Suppose the players
agree to play (A1D3, A2R) but, unexpectedly, player 1 deviates at node w
by playing A3. Since A3B is dominated by £3, condition (R) rules out
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Figure 3: A more complex two-person game.
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Figure 4: The strategic form of the game in Figure 3.
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. Player 2 will then know that, if her information set is reached, A$T
has been played, therefore she will respond with L. Foreseeing this reason-
ing of player 2, player 1 should play A$T. In the subgame G1 starting at
node w, the equilibrium profile (D$B,R), though subgame perfect, is ruled
out by a forward induction argument. The equilibrium (A1D3, A2R) thus
violates all three conditions (R), (BI) and (ID).

Consider now equilibrium (AiA3T,JD2). What happens if a deviation
occurs at node y? Condition (R) suggests that, by deviating, player 2
expects a higher payoff than what she gets by playing i?2- So it must be the
case that, by deviating from the equilibrium path, player 2 is signaling that
she will play R in the battle of the sexes. In which case it would be better
for player 1 to play D$. However, this reasoning is fallacious, since condition
(R) must be applied iteratively. If rationality is common knowledge, it must \
also be common knowledge that, at node w, player 1 will not play D3 but
A3T. Hence 2's best reply is L. Since it must be common knowledge that
at node w player 1 will play A$T, it follows that in the subgame G' starting
at node y player 2 will choose I?2- The equilibrium (A1A3T, D2) survives
iterated application of condition (R), and in addition it also satisfies (BI)
and (ID).

Given the above argument it follows that, if rationality is common knowl-
edge, deviation A2 should never be observed. Thus if the forward induction
refinement has the advantage of making off-equilibrium beliefs consistent
with common knowledge of rationality, its drawback is that it does not pro-
vide a complete theory of the game: Unexpected deviations cannot happen.
One way to address this issue is to complete the theory with a model of
belief revision, but in this paper we wish to take a different path.

Instead of computing the Nash equilibria for the game and then test
them against deviations, we model how the players themselves reason to
a solution. The nature of such solutions will obviously be a function of
the way in which we characterize the players and their information. In the :

next section, we provide the players with a theory of the game T (a set of
axioms) that embodies a simple rationality condition. We show that T leads
to iterative elimination of (weakly) dominated paths, that is, T generates
an automatic decision procedure for the extensive form corresponding to
iterated elimination of (weakly) dominated strategies in the strategic form.
Through iterated elimination of (weakly) dominated paths we obtain a set
(hopefully, a singleton) of undominated branches. We prove that whenever
there exists a unique such branch, that branch corresponds to a pure strategy
Nash equilibrium for the game. Moreover, all solutions thus obtained satisfy
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the criteria (R), (BI) and (ID). Note that the converse may not be true: if
the game has a unique pure strategy Nash equilibrium that contains weakly
dominated strategies, our procedure rules it out. In the last section, we
show that for T to be a complete theory it is sufficient to interpret some of
its axioms as default rules.

3 The Theory

In general, a finite, extensive form game of imperfect information G is rep-
resented by a finite tree, having an arbitrary branching factor, equipped
with two functions p and / . Function p : G —»{1,...,&} assigns a player
i (for 0 < i < k) to each node, while / : G —• V(G) assigns to each node
the information set to which that node belongs. The branching factor of -
the tree is supposed to represent the number of choices available to each
player at each node. In order to make things interesting, p is also assumed
to be non-injective, thereby ensuring that at least one player gets to move
more than once. We shall lay the following constraints on / , namely that
(i) the sets it assigns are pairwise disjoint, and (ii) that nodes belonging to
the same information set are assigned to the same player. Payoffs at the
terminal nodes (leaves) of the tree are represented by real-valued vectors,
whose z-th projections (for 0 < i < k) represent the payoff for player i at
that node.

However, there is nothing conceptual to gain in representing such gen-
erality, while there is much to lose in notational perspicuity. All the points
that we want to make can be made equally well for a restricted class of
games. Consequently, we make the following simplifying assumptions. We
will assume only two players that move in a pre-determined order (with a
player possibly moving more than once in a row). Accordingly, payoffs at
the leaves are represented by pairs of real values. It will be convenient to
introduce a function q : G — {a} —> {1,2} (where a is the root of G), that for
each node x other than the root gives the player that moves at the previous
node.

We will also restrict ourselves to games represented by balanced binary
trees, i.e., games in which each player has precisely two choices at each node
and all branches have the same length. Conventionally, the two choices are
referred to as "moving left" and "moving right." The trees are assumed
to be "balanced," i.e., such that all branches have the same length: any
unbalanced tree can be turned into a balanced one by adding nodes that are

12



Figure 5: An unbalanced tree. ::

redundant from the point of view of the game (because they all lead to the
same payoff vector). Similarly, we want information sets to be comprised of
nodes that have the same distance from any leaf: in fact, information sets
can be re-axranged in such a way that they contain only nodes of the same
level in the tree. This can be accomplished as follows: if x1 £ I(x) is a node
having the lowest level (i.e., the greatest distance from the root) among
nodes in /(x), when re-balancing the tree we put in the same information
set all the nodes of the same level as x1 that descend from nodes in I(x)
in the original tree. As an example consider the equivalent descriptions in
figures 5 and 6.

CONVENTION Assume two players, 1 and 2, of whom player 1 is assumed
to move first, so that the root of the tree represents a choice for 1. In
what follows, a always denotes the root of G. Call a node final if it is
non-terminal, but both its children are terminal. We write x ~ y if x
and y are "siblings," i.e., they are immediate successors of the same node.
For any node x we denote by xT and x\ its right- and left-hand successors,
respectively. Moreover, by a path we mean a possibly empty sequence of
nodes, each one of which is the successor of the previous one and the last
of which is a leaf. A maximal path is called a branch. If x is a leaf, 7r(x)
represents the associated payoff vector, and if s is a path of length A:, we
write 7r(s) instead of 7r((s)fc). Also, we write 7r(x),7r(y) > T(Z) to mean
TT(X) > TT(Z) and 7r(y) > 7r(z). We use x, y, z as variables for nodes and s, £, u
as variable for paths. If 6 = (&i,..., bk) is any sequence and i = 1 , . . . , fc,
we set (6)t- = b{. If s and t are sequences of nodes, their concatenation is
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ram
Figure 6: The "balanced" version of figure 5.

denoted by s * t.
We now want to define the function TT* that associates with each infor-

mation set the set of all paths (weakly) undominated at that information
set, from the point of view of the player whose turn it is to move at that set.
The definition of 7r*(J(z)) is by recursion on the level of x. This is sound,
since all the nodes in I(x) are assumed to be of the same level.

Suppose x to be a final node (i.e., a lowest non-terminal node). Suppose
x belongs to an information set at which player i is called upon to move,
and for notational convenience, let

[(«)l = ((*)o)r ~ (A = ((«')<>)r]

Intuitively, d i r t s ' ) tells us that the two paths s and s1 that start from
sibling nodes go in the same direction (i.e., right or left). Whenever two
paths s and s' that start from sibling nodes have different directions, we
write -idir(5,5;) .

Suppose :r is a final node (i.e., a lowest non-terminal node). Suppose x
belongs to an information set I(x) at which player i is called upon to move,
and let s be a path starting from a node in I(x). We say that a node x
(weakly) dominates a sibling node y for player j, and write Dom(x,y,j), if
and only if x ~ ?/, and

s)o = xA (s')0 = y^
3s[(s)0 = xAVs'^ S«s')0 =

14



Note that Don\(xyy,q(x)) represents the fact that x dominates y for player
g(x), who moves at the previous information set.

Let us define the set of paths starting at undominated nodes of informa-
tion set I(x) as:

DOM(/(x)) = {s : -32/ Dom(y, (*)<>, ?(*))}

Whenever a player is choosing at an information set containing final
nodes, that player will first consider whether any node that belongs to his
information set is dominated for the previous player. In which case he
restricts his attention to nodes that are not so dominated. He will then
eliminate any paths starting from undominated nodes that correspond to a
weakly dominated move (from his own point of view). Note that this pro-,
cedure corresponds to applying condition (R): Eliminating nodes that are
dominated for the previous player embodies the essence of Forward Induc-
tion.

To say that a path s starting from a final node is (weakly) dominated
for player i, relative to a set P of paths, we write:

dom(s,t,P)

V* e /((s)o)VM' € P[(t)o = (Oo = * A dir(M) A -dir(s,0
- (*(t))i < (x(O)d A

3z € /((s)o)VM' € P[(t)0 = (Oo = z A dir(M) A -dir(M')

Recall that since x is assumed to be final, s is a path comprising only two
nodes.

We now construct TT*(/(X)), whenever I{x) is a final information set, at
which player i is called upon to play, as follows:

*•*(/(*)) = {s : (s)0 € /(x)A-dom(5,i,D0M(/((^)0)))A5 € D0M(/((5)0))}.

Whenever a final information set is a singleton, our procedure applies with-
out change. Consider for instance Figure 1: node y is strictly dominated
by sibling node x\ for player 1. Player 2 will thus only consider those paths
that start from node yf.

Having defined 7r* for all final information sets, we proceed recursively
to define TT* for information sets whose nodes are not final. Let I(x) be a

15



non-final information set. Now, we take the set of all paths in 7r*(/(y)),
where y is a child of a node in I(x): by inductive hypothesis, 7r*(J(y)) is
defined. For notational convenience, let

Sx = {(xf) * s : (xf e I(x) A y is a child of z') A s € 7r*(J(y))}.

Since our goal is to construct bottom up the undominated paths for the
entire game, any paths in Sx must be extended upward to their predecessors
in I(x). Let DOM be defined as before. Then we can define:

**(/(*)) =
{seSx: (s)0 e I(x) A -idom(*,t, DOM(J((s)o)) A s G DOM(J((s)o))}.

Intuitively, Sx is the set of all paths s starting from a node xf in /(a;)^
that are obtained by extending a path t in 7r*(/(y)) (where y is a child of
some x1 £ /(z)) to the node immediately above (t)o- Similarly to the case
for x final, the player who moves at I(x) selects those paths that begin
with a node that is not dominated by a sibling from the point a view of the
previous player, and then, from among these paths, the player selects those
paths that correspond to weakly undominated moves.

Let us see how this definition works by taking up the game of Figure 1.
Observe first of all that node y' dominates node y from the point of view
of player 1 who moves at the common parent of y and y'. Therefore, player
2, when considering whether she has an undominated move, only considers
paths beginning at yf. When so restricting her attention, player 2 clearly
has exactly one undominated move, namely R. At the next stage, player 1
will have to choose between move a and move c: since the former dominates
the latter, our procedure identifies (a, R) as the unique solution.

The game of Figure 3 is more complex. To apply our procedure we have
to transform the subgame starting at node w into an equivalent subgame, in
which node z has been eliminated. In the new subgame player 1 has three
possible moves at w: either he chooses D3, or he chooses A3T or A$B. That
is, player 1 may choose to play D$, thus ending the game, or engage in a si-
multaneous "battle of the sexes" with player 2. When considering the nodes
in I(s), player 2 will realize that node s' is dominated by node w\ for player
1. Player 2 will then restrict her attention to the undominated paths strat-
ing from node s; ir*(I(s)) then returns the path (s, s\). We can now compute
7T*(/(u;)), which gives the path (w, s, s\) corresponding to the combination of
moves (A3T1, i ) . In turn, 7r*(/(y)) gives the path (y, y\) corresponding to the
move i?29 and finally 7r*(/(a;)) returns the path (x,y,y{) corresponding to
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the combination of moves (Ai, JD2). According to our procedure, the unique
solution for the game of figure 3 is the path corresponding to (Ai, JD2).

Our procedure TT*(/(X)) identifies a set of paths as "solutions" to the
game. Such solutions might or might not be Nash equilibria, and some
Nash equilibria might not be in 7r*(J(x)) (e.g., because they contain weakly
dominated strategies). But if 7r*(J(x)) returns a unique path, such a path
must correspond to a Nash equilibrium. We now consider the idea of Nash
equilibrium for extensive form games. A branch through the tree corre-
sponds not to one but to two strategies, one for each player. We thus have
to compare the payoff of a given branch (for a given player) with the pay-
offs of all other branches that embody alternative strategies, keeping fixed,
however, the elements of the original branch that correspond to a strategy
for the other player.

We now proceed to capture this formally as follows. By a move we
understand a length-two sequence of nodes such that the second is a child
of the first. A strategy, in turn, is a set of moves, some of which might never
be played if the strategy is chosen.

We start from a path s and partition it into two sets M\{s) and M2{s)
corresponding to the moves of the two players: M\ is the set of all length-
two paths (x,?/) such that (x,y) is a subpath of s, and player 1 moves at
x. Similarly, M2 is the set of all length-two paths (x'yy

f) such that (x\yf)
is a subpath of s, and player 2 moves at x'. We then expand M{(s) to a
set S that is (1) "move-uniform," and moreover (2) it contains a response
to each possible move of player 3 — i. To say that S is move-uniform means
that it satisfies the following condition: if (x,y) 6 S, x1 6 I(x) and y1 is
the left- or right-hand child of x1 according as y is the left- or right-hand
child of z, then {x',y') £ 5, too. To say that S contains a response to
each possible move of 3 — i means that it satisfies the following condition: if
(x, y) € S and 3 - i moves at y and z is a child of y, then there is exactly one
move (z, u) that belongs to 5. It is clear that Mi(s) can always be extended
(non-deterministically) to a set S satisfying the above two conditions. S
corresponds to a strategy in strategic form games. Let us define a set of
moves S to be a strategy for i if it is a minimal set of moves containing
M{(s) for some branch s and satisfying conditions (1) and (2).

Given a strategy Si for player 1 and a strategy S2 for player 2, there
is at most one branch s such that all and only its length-two segments are
contained in Si H 62, in which case (by slightly abusing the language) we
will write s = SiH 62- Define ui(5i,52), the payoff for player 1 of playing
strategy Si against strategy £2, as (x(s))i if there is a unique branch s
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contained in Si 0 S2, and set ui(5i,52) = -00 otherwise; (u2 is similarly
defined for player 2).

A pair of strategies (Si, S2) (for players 1 and 2, respectively) is a Nash
equilibrium if and only if:

• for any strategy S' for 1, u^S ' , 62) < ui(Si,52); and

• for any strategy S' for 2, 112(51,5') <

THEOREM 3.1 Let 7r*(J(a)) = {s}, where a is the root of the tree, and let
Si, £2 be two strategies such that s = Si n S2. Then ( S i , ^ ) is a Nash
equlibrium.

Proof First of all notice that 7r*( J(a)) is never empty (as can be easily shown"1

by induction on the height of a), so our hypothesis comes down to the fact
that x*(/(a)) contains at most one path. Now suppose for contradiction
that (5i, £2) were not a Nash equilibrium. Then one of 5i, £2 is dominated
by some strategy S' (from the point of view if player i) in the sense that,
for example, ui(5', 62) > ui(5i,52). Suppose £1 is dominated in this sense
by S' for player 1. Of course, this can only happen if the two strategies
S', S2 intersect to give a branch, otherwise ui(S', S2) = -00. Let s' =
S'nS2] ^ follows, in particular, that s and sf must represent the same unique
sequence of moves for player 2. Our hypothesis gives (fl"(«s'))i > (T(s))i-
Furthermore, notice that this last fact implies that no move along s' is ever
weakly dominated by a move along s for player 1.

Say that two paths t and tf are undivided at an information set I(x)
if and only if either they are both in 7r*(J(z)) or they are both outside of
7r*(/(x)). Observe that s and s' must intersect the same information set (if
anything, they must meet at the root). Consider the lowest information set
I(x) intersected by both s and s'\ let k be the height of x. It is clear from
our procedure (and can be shown by induction on the height of x) that if s
and s' are undivided at such a lowest I(x) then they are always undivided,
in the sense that they are undivided at any node y not below x. In what
follows, we consider two cases according as player 1 or player 2 moves at

zoo.
Suppose player 2 moves at I(x). Then (s)k / (s')ib otherwise (since

I(x) is the lowest information set at which s and sf intersect) s and sf

would represent different moves for player 2. This is impossible, since we
are keeping player 2's strategy S2 fixed. By the same token, we must have

5/). Then the only way for s and s' to be divided at I(x) is if (s)k
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dominates (s')k from the point of view of the previous player: such a player
cannot be player 2 (or else s and s' would again represent different moves for
2), and it cannot be player 1 (by hypothesis). Then, s and s' are undivided
at /(x), which implies that they are always undivided and in particular
undivided at the root. That is, s* G 7r*(/(a)) as well, against our assumption.

Now suppose player 1 moves at I{x). Observe that the hypothesis
(TT(S'))I > (TT(S))I implies that (s)k ^ (s')k- Otherwise, the only way in
which s can survive the procedure 7r* while s' cannot is if moving in the
direction of s dominates moving in the direction of sf for the player who
moves at («s)k, which is precisely what the hypothesis rules out.

As before, it suffices to show sf € 7r*(/(a:)) (where again I(x) is the lowest
information set intersected by both s and s'). So suppose s' £ TT*(/(Z)).
Now, the hypothesis (?r(s'))i > (x(s))i implies that s' is ruled out for some"
reason other than the fact that moving in the direction of s dominates
moving in the direction of s' for the player who moves at I{x) = I((s)k) (i.e,
player 1). It follows that s' can be ruled out only in one way. That is, s*
can only be ruled out if (s)k dominates (s')k from the point of view of the
previous player: but this cannot be player 1 (by hypothesis), and it cannot
be player 2, for then s and s* would contain different moves for player 2,
which, as we have seen, is impossible. •

It is worth noting here that there is a similarity between our proce-
dure and the iterated elimination of dominated strategies for strategic form
games. In both cases, we have that if the outcome is a unique branch or,
respectively, a pair of strategies, then it must be a Nash equilibrium. In-
deed, the resemblance runs deeper. Our procedure can be thought of as a
way of performing iterated elimination of dominated strategies in a given
particular order. Such an order, however, is far from arbitrary, since it is
dictated by the topology of the tree representing the game in extensive form.
That is, the particular order is obtained from information which is lost in
the strategic form. Moreover, it is precisely the use of such information that
allows us to cast backwards and forward induction in a unified framework.

We now proceed to give a first-order theory T that, employing function
7T*, allows us to predict the players' behavior. Since the definition of TT* is
formalizable in Primitive Recursive Arithmetic, we shall assume that T con-
tains enough arithmetic to carry out that definition. Moreover, T will have
to contain axioms describing the tree representing the game and the struc-
ture of the payoffs at the leaves. We shall assume that all these "structural"
axioms have been specified, and proceed to give our "behavioral" axioms.

First of all, we want to say that if a certain non terminal node is reached,
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then the player whose turn it is to move will choose exactly one of the possi-
ble moves. We introduce predicates L(x) and R(x) with the intended mean-
ing that the player (whose turn it is to move) moves left and, respectively,
right at node x. If a is the root of the tree, we introduce an axiom

R(a) ~ -ii(a). (1)

Moreover, for each non-terminal node x other than the root, we proceed as
follows: let Xi,.. . ,xn + i = x be the nodes on the path from the root to x,
and let Q{ be R or L according as xt+i is reached by moving left or right at
X{. Then we introduce an axiom saying that

g^Xx) A . . . A Qn{Xn) -+ (R(X) ~ -£(z)). (2)

Next, we introduce an individual constant s representing (a suitable coding)
of the set of undominated paths. We introduce an axiom to the effect that
such a set is obtained by our procedure:

s = **(I(a)), (3)

where again a is the root of the tree. Finally, we introduce axioms saying that
players only move along the undominated paths: let y be any non terminal
node and suppose it has height (= number of predecessors) k. Then we have
the axioms:

L(y) ^3ses ((*)* = tt); (4)
R(y) -> 3s € s ((s)k = yT). (5)

This completes our specification of T, which will then comprise (l)-(5) as
behavioral axioms.

4 Towards a Complete Theory

We now indicate how the previous theory T can be modified to handle real
deviations (i.e., those deviations that involve (weakly) dominated strate-
gies). We are going to interpret T as a default theory V = (W,D), where
If is a set of first-order axioms and D a set of normal defaults. A normal
default is a weak inference rule of the form (p ~^ ip, interpreted as saying
"if (f is known, and tp is consistent, infer $" The sense in which tp has to
be consistent in order for it to be inferable is made precise in Default Logic;
see Reiter [9] for details.
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We have to specify W and D. In our theory, W comprises all the "struc-
tural axiom," i.e., whatever arithmetic is necessary to describe the game
and compute ?r*, along with a suitable coding of the game and associated
payoffs. As before, we will leave this unspecified. Moreover, W will contain
all formulas of the form (1) and (2).

On the other hand, D will specify the set of paths to be used in inferring
the players' behavior. This set of paths will vary according as the node that
hats been reached in the game lies on or off the undominated paths.

Let a be the root, and T a propositional constant representing truth.
Then we have a default to the effect that at the beginning of the game we
use the undominated paths provided by 7r*(/(a)):

T ^ s = 7r*(/(a)); (6),

for any other node x, let Xi,.. .,zn+i = x be the nodes on the path from
the root to x, and let Qi be R or L according as x1+i is reached by moving
left or right at x,-. Then we introduce a default of the form:

Qx(xi) A . . . A Qn{xn) -v* s = *•*(/(*)). (7)

This completes our specification of T". This theory is complete in the sense
that it can be augmented with information to the effect that a real deviation
has taken place without becoming inconsistent. Moreover, it still allows us
to say something about the game after a deviation, in the sense that it will
still have an extension (in the sense of Reiter [9]) according to which all
moves following a deviation still take place along one of the paths that are
undominated in the subgame whose root is represented by the node at which
the deviation has taken place. In this sense, T' embodies a principle of local
rationality, non dissimilar to the one in Bicchieri & Antonelli [5].
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