
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



An Overview of NLP in ALICE-chan

D.A. Evans, L.S. Levin, M. Thurn, S.K. Handerson,
K. Horiguchi, K.C. Scarpinatto, D. Varma

December 1993

Report No. CMU-LCL-93-3

Laboratory for
Computational
Linguistics

139 Baker Hall
Department of Philosophy
Carnegie Mellon University
Pittsburgh, PA 15213

0."':•'
Pittsburgh ^A 15223-389



Contents

1 Character-Independent Processing 1

2 The NLP Lexicon 3

3 Morphological Analysis 6

4 Segmentation 7

5 Analysis of Syntactic Structure 8

6 The Parser 9

7 The Grammar 9

8 The Mapper 10

9 The Disambiguator 11

10 The Matcher 12

11 Overview of Error Detection and Feedback 13

List of Figures

1 An example of Japanese text entry 2

2 The NLP lexicon entry for the Japanese word *iion" ("book*) .'{

•? The NLP lexicon entry for the Japanese word for ''violin." :>

I The NLP lexicon entry for the Japanese proper noun "Yoshiko." .?

5 The NLP lexicon entry for I lie stem of the Japanese verb "kaku" ("write"). . I

6 The NLP lexicon entry for the Japanese verb morpheme uki" 4

7 The NLP lexicon entry for the Japanese present formal verb morpheme "masir. 4

S The NLP lexicon entry for the stem of the Japanese morpheme "i." 1

!) The NLP lexicon entry for the Japanese verb gerund morpheme **te" 1

10 The NLP lexicon entry for the Japanese past informal verb morpheme ;*ta". I

I I The NLP lexicon entry for the stem of the Japanese auxiliary verb uiru". . . I

12 A Japanese sentence meaning "Keiko ate sushi." 8

I'? The raw feature-structure resulting from parsing the sentence above S

I 1 A rule from the parsers grammar !)

15 Some disambiguation dialogs II

\n Overview ttf NLP in AlACK-chan (r) April 20. 1J-M-W. Evans. Levin. Tlnirn. HanHersoii. Horigurhi. SrarpiuaM-n. Variua i



J(> Feature-slot for the author's sentence 14

17 Feature-slot for the student's sentence 14

18 The feedback produced after matching the above two feature-slots M

List of Tables

I The Japanese word for "Tokyo" in various character formats 1

LIST OF TABLES



1 Character-Independent Processing

One of I lie oaiTiost design decisions for AUC'R-Hian was that the system will operate on
input in himgana, kanji, or romaji. The NLP system is designed to accept any mixture of
romaji and Japanese characters a,s input, and returns a mixture of English and Japanese
in its output. Thus, the student can type her answer in romaji, hiragana, kanji, or any
mixture of these. Feedback to the student is presented as English sentences sprinkled with
references to the students response (possibly in Japanese characters).

Vox- inputting Japanese characters, ALICE-chan utilizes the common Japanese input
method whereby the user types romaji on a standard English keyboard, the romaji is con-
verted to hirafjana automatically as the user types, and the user can request that I lie hirafjana
be converted to kanji by pressing a special key. Other functions include scrolling through
alternative kanji; and stretching or shrinking the length of word segments, which controls
how many kana syllables will be grouped together for conversion into kanji.

liomaji-to-hiragava conversion is carried out by a finite state transition process written
Hiraf/ana-to-kanji coversion is carried out by external function calls to j se rver , ain c

public domain kan//-conversion server.

English
romaji
hiragana
kanji

Tokvo
toukvou
t 0 £ Jt 1

5

5
2

characters, 5
characters. 7

bytes
bytes

characters, 10 bvtes
characters. 4 bytes

I: Tlio Japanese word for "Tokyo" in various character formats.

An Overview of A7>/' in .\LlCE-chan (r) April 20. 1993. Evans. Levin. Thum. Hanrlerson. lloriginhi. ScarpinaHo. Vnrma 1



Options Input-Mode

The user has typed "kyous".

Options Input- Mode

The user has typed "kyousurushigotohaarimasen"

The user has pressed the spacebar
and jserver has given its first guess at segmentation and kanji selection.

Options Input-Mode

• - . • • ; • . •

The user has typed " C t r l - i " to shrink the length of the first segment by one kana,
and jserver has given its first guess at kanji selection for the new segmentation.

Options Input-Mode

The user has typed " C t r l - i " again to shrink the length of the first segment by one more kana,
and jserver has given its first guess at kanji selection for the new segmentation.

Options Input-Mode

The user has typed "Return" to solidify the entire sentence of kanji.

Figure 1: An example of Japanese text entry.

.\n Ovcrvirw nl JV/J' in .\UCE-clmn 0 April 20. 1993. Evans. Levin. Tluirn, Haiulerson. liorigudii. SrarpinaUn. V'arina 2



2 The NLP Lexicon

The NLP lexicon contains information Mint allows I lie system (1) to recognize words in all of
I heir morphological variants and (2) to identify syntactic and semantic features oi the word.

Each lexical entry consists of two main parts, one is a list of keys in romaji, kana, and
kanji, and the other is a list of syntactic and semantic features. The keys indicate possible
orthographic realizations of a word. For example, the word in Figure 2 can appear as hon
(romaji). ll/x, (hiragana). or * (kanji). If a word can be written in more than one way, all
the possible keys are listed as an embedded list. For example, the word that means "violin"
(Figure .'{) can be written in two ways in kaiakana. therefore there are two kalakana strings
embedded in the key list. Lexical entries for proper names often include many kanji variants,
as shown in Figure 4.

(("hon" "J5//1 "*")
(S "book" M (hon) COUNT volume CAT noun INANI-SUBJ +

BL + R (FINAL PART) L (BEGIN G-HON)))

Figure 2: The NLP lexicon entry for the Japanese word uhon" ("book").

( ( " b a i o r i n " ("(£ K U-5 *) A," " 'v-f.+ '.J>" "*f r i t 0 > "))
(S "v io l in" M (ba io r in ) COUNT machine CAT noun INANI-SUBJ +
BL + R (FINAL PART) L (BEGIN)))

Figure 4: The NLP lexicon entry for the Japanese word for "violin." Notice the multiple strings

n«pr<\scMirni£ f IM» liir;ig;iiia ;UMI katakami versions of the word.

(("yosiko" " . t i l " (".tl-f" "T?1'" "tfH1" "R^r" "#-?" "H^f" "ftf"))
(S " Y o s h i k o — g i r l ' s name" M ( y o s i k o ) CAT noun INANI-SUBJ +

ANIMATE + PROPER + HUMAN + BL + L (BEGIN) R (SAN NAME FINAL PART)))

Figure I: The NLP lexicon ^ntry for the Japanese proper noun "Yoshiko." Notice I he multiple
strings leprescMiliuu; 1 he various kanji versions ol the word.

The second part of a lexical entry contains a list of feat lire-value pairs. The feature S
stands for sense. Its value is a short English gloss indicating the meaning of the word. The
feature M (morpheme) is a romaji spelling of the citation form of the morpheme.

Morphological analysis is guided by the special features L and R. whose values are names
of si ales in a non-deterministic finite stale transition network. The value of L is a sel of
possible* starting slates for a transition and the value of R is a set of possible ending states.
The keys of the lexical entry are the possible input strings which license the transition.
Figures 5 through 7 show lexical entries involved in the analysis of several forms of the verb
kaku (write). For example, processing of kakimasu starts at the initial state (BEGIN), and
uses the input ka to get to state K. From state K. the input ki allows a transition to stale
MAS. From slate MAS. the input masu allows a transition to state FINAL.

The addition of the lexical entries shown in Figures 8 through 11 allow the system to

An Ovrrviow of NLV in \Ll< 'E-clian (*r) April "20. 1903. Evans. Levin. Tliurii. llaiu:lersuii, Horiguclii. ScarpiimUn. Varnm "i



((MkaM "*»" "<")
(S " w r i t e " M ( k a ) W O - P A T I E N T + N I - G O A L + COMP + CAT v e r b BL +

ROOTKEYS dummy UNUM dummy SUFKEYS ( " k u M " < " M < n ) L ( B E G I N HON) R ( K ) ) )

Figure 5: The NLP lexicon entry for the stem of the Japanese verb "kakn" ("write").

(("KI" "*" ) (M (ki) L (K) R (P-NI MAS ASPV VHON DESIDER)))

Figure (3: The NLP lexicon entry for the Japanese verb morpheme b 'kr.

(("MASU" " i f " ) (M (masu) STYLE formal TENSE present L (MAS) R (FINAL)))

Figure* 7: The NLP lexicon entry for the Japanese present formal verb morpheme w;masif\

process kaiicimasu (''write/* gerund + auxiliary "to be") and kail a ("write/* past informal),
which illustrate the changing of the final stem consonant -k- to -/- before the gerund (-tr-)
and past tense (la) morphemes. Processing of these words also starts in the initial stair ,
using the input ka for a transition to state k. Then, the input / allows a transition to s ta i r
T-GER or T-PAST, etc. Notice the treatment of the stem allomorphs kak- and kai-. The
lexical (Mitrirs for -ki- and -/- both start in state k. but they end in different stairs, rrllrrl in<;
thr different possible continuations of each stem.

( ( " I " 'HV«) (M ( i ) L (K) R (T-GER T-PAST)))

I'ignir S: The NLP lexicon entry for < ho stom of the Japaneso ninrpltomo * 1 . "

( ( " T E " » X " ) (M ( t e ) GERUND + ADVERBIAL - L (T-GER) R (FINAL REQUEST WA MO GER-ASP)))

Hgnro f): Thp NLP lexicon on try for HIP .Japanese vorb gennul morphomo "tr".

(("TA11 " i t") (M (ta) STYLE informal TENSE past L (T-PAST) R (FINAL TENT)))

Figuro 10: The NLP lexicon entry for the Japanese past informal verb morpheme "ta"\

( ( " I " "v>")
(M ( i ) A (do ing) GERUND - L (GER-ASP)
R (V-NEG MAS DESIDER V-CAUS PL-PRES IMP T-PAST T-GER V-PASS POTEN V-VOLIT V-PROV)))

I'ignro | 1: Tlie NLĴ  lexicon entry for the stem of the Japanese auxiliary verb "inf.

Notice also, that lexical entries do not necessarily correspond to whole morphemes. Ka-.
-ki-. and -/-. lor example, are parts of the kak-jkai- morpheme, and -/,•/- might even span
morpheme boundaries if the analysis of kakimasu is kak+imasu. Lexical entries actually

An Dvrrvirw of NLI* in ALICE-chan (?) Apr i l 20 . 1?J93. E v a n s . Lvvin. Tl i t i rn . Hatidci-sou. Hor igur l i i . S c a r p i n a l (<». V a r m a



correspond more closely to Japanese orthography than to a linguistic morphological analysis.
Each entry corresponds to a whole number of syllables which are the pronunciations of kanji
or hana characters. Since a syllable can be part of a morpheme, or can span morpheme
boundaries, character boundaries do not correspond to morpheme boundaries. More details
about morphological processing are found in the chapter on morphology.

Tlirrr ate currently about 1700 entries in the ALlCE-chan NLP Lexicon.

j

\n Overview of i\'W in .\LlCE-chmi (r) April 20. 1993. Evans. Levin. Tliuni. Ilaiuloisoii. lk»rigu< hi. Scarpinal !«•. Varm.i



3 Morphological Analysis

The morphological processor is conceptually an interpreter for a nondcterminisfic finite state
automaton, specified by the lexicon. This allows the process to be simple, fast, and flexible
(lexicon-driven). This simplicity and speed motivated combining morphological processing
with segmentation as a single initial pass over the input string. For sentences with successful
parses, the parser is limited to determining the grammatical]ty of a segmentation, instead
of also having to determine a sentences segment-ability. In this section, we will refer to
^morphemes" and "words" without the double-quotes, a morpheme simply being a string
entered in the lexicon and a word the result of a successful morphological analysis.

Morphemes entered in the lexicon describe a nondeterministic finite-state automaton
(NI)PA) where the transitions are the morphemes. Each morpheme also specifies the allow-
able* prefix states and the potential result states. Morphemes may be entered multiply in
the lexicon to express different sets of applicable contexts and result contexts. There* are
special states signifying the initial state (morphemes that can begin a word) and final state*
(me>rphem<-\s that can end a word). A word, according to our morphological process, is any
sequence of morphemes that cause the NDFA to reach a final state.

During analysis, a simple feature-value pair feature structure is built from information
assoc-iated with the morpheme in the lexicon. This information reflects syntactic informal ion
and is converter! into a form used by the parser. This information can also be used later, by
applie*ation-specific processes (for instance, to facilitate user feedback). Since the1 pmcessor
(e>r NDKA) lacks the ability to do even simple checks based upon the built-up feature's and
valuers, this iuformatie.>n is not used directly to enforce morphological constraints, but e*e>ule|
be so use*d by the-* parser.

Currently, the runtime lexicon is stored in a hash table indexed by all morphe'ine* strings
and their prefixes, but otheT implementations are possible (fur instance, a trie*). All that is
necessary is to know whether a-given prefix string can be continued to form a me>rplicme'. A
hash table implementation was chown because the lexicon contains kanji and hira</<ttia as
well fis romaji. anel so a space-effiejent trie representation would be difficult, but we* have*
not studied this to anv great extent.

An <)vrrvic\v <tf i\U' in ALK'E-rhan (c) April 20. UM>3. Evans. Levin. Tiiiirn. IIau<lersoit. Ilorigurln. ScarpinaHo. Varina



4 Segmentation

A problem wil-li NLP for Japanese is Hiat the written language does nol have spares sepa-
rating words as in most Western languages. One of the first, problems a parser (human or
machine) for Japanese faces is to determine a sentence's word boundaries. We have found
that the left-to-right nature of our morphological analysis, together with a few assumptions
(or observations) concerning the input sentence, yield a "knowledge-poor*' (i.e. simple*) al-
gorithm which is nonetheless very efficient. The advantage of segmenting prior to parsing is
that many words can be ruled out from further consideration, since they cannot be part of
a complete1 sentence parse.

Obviously, in the absence of misspellings, any correct parse of the input sentence must
divide the input into non-overlapping words. If we first find all possible words that begin
at the first position, the second word in the intended interpretation (parse) must end after
one of these possible first words, etcetera. Also, the intended interpretation must have its
last word end at the end of the sentence: there are no "extra characters" at the end. Note
that there is an implicit assumption that the segmenter knows whether a given string can
be continued to form a new word: otherwise the "find all possible words" step might have
to look at the entire remaining sentence, for every character position. These are the main
assumptions we make about- the input: all other information is in the morphology and the
lexicon.

These constraints translate into an algorithm with a single left-to-right word generation
phase and a right-to-left elimination or filtering phase. Note that words need not he gener-
ated for every character position: only those "reachable" from the beginning of the sentence.
The liltcring phase is simply the right-to-left analogy of the generation phase, keeping in
mind that we do not need to add words that are not reachable from the beginning of the
sentence.

All interesting but not crucial last step constructs the iuput to the parser, not as words
or characters, but- chunks . A chunk* is a sequence of characters that- is never divided
between words in any segmentation. Note that passing words to the parser would be difficult
or impossible (except in a chart parser), since there may be several segmentations with
different woid boundaries. Parsing a sequence of chunks", however, is concept uallv similar
to parsing a sequence of characters with an LR parser. Also, the information needed to
construct the "chunks"' is already present in the segmentation data structures.

Hnfort unatelv, this approach does not work well in the ca.se where there are spelling
errors. II the spelling error is such that there are correct segmentations, this would make
such spelling errors harder to detect. A good approach might be to first assume no spelling
errors, and if either there are no segmentations, no parses for the resulting segmentations,
or many or serious grammatical or exercise-specific errors, then a more complex and time-
consuming process ensue, that starts by trying to identify expected words in the input.

\n Ovnvicw of ,\rLP in AUCE-chmi (r) April 20. 1093. Evans. Levin. TJiuni. HandfTson. Horigurlii. Srarpinatln. Varma



5 Analysis of Syntactic Structure

The goal ofsynta.ct.ic analysis is to identify (I) the predicate of each clause. (2) the predicate's
syntactic and morphological features, and (3) a grammatical function and/or semantic role
for every other eleinement of the clause. An example of a sentence and the raw form of its
analysis are shown in Figures 12 and 13.

Syntactic analysis is used during exercise authoring and during student exercises. In
authoring, it is used for analyzing correct answers so that the syntactic analysis of the
answers can be annotated by the author, and stored for later comparison to student answers.
In student exercises, syntactic analysis is used for analyzing student answers so that they
can be compared to previously stored authored answers.

Figure 12: A Japanese sentence meaning "Keiko ale sushi.

(((CAT VERB) (SUFKEYS (*LIST* "ru" " S " "&")) (BL +) (WO-PATIENT +) (S #:EAT)
(UNUM 3) (ROOTKEYS (*LIST* "tabe" "fz'<" "&'<")) (TENSE PAST)
(M (*LIST* TABE MASITA)) (STRKEYS (*LIST* "j£'<" "&ltl"))
(PARTSTRKEYS (*LIST* "&K" "&ltz")) (ALLKEYS (*LIST* #:G13417 #:G1598))
(MFSS (*LIST* #:G13418 #:G1599)) (END-CHUNK 3) (BEGIN-CHUNK 3)
(STR "&'<&lfz") (END-PHRASE NIL) (DICT-FORM "•&'<.£>") (BEGIN-PHRASE 0)
(SUBCAT

((GA ((ACTOR ANIMATE))) (WO ((ACTEE ANY))) (TO ((ACCOMPANIMENT ANIMATE)))
(DE ((LOCATION PLACE))) (NI ((TIME-AT TIME-NI)))

(KARA ((ACTOR ANIMATE) (TIME-FROM TIME))) (MADE ((TIME-TO TIME)))
(WA ((ACTEE ANY) (ACTOR ANIMATE))) (MO ((ACTEE ANY) (ACTOR ANIMATE)))))

(STYLE FORMAL)
(ACTOR

((BL +) (HUMAN +) (PROPER +) (ANIMATE +) (INANI-SUBJ +)

(S #: IKEIKO—GIRL'S NAMED (TITLE (*LIST* MR./MRS ./MS./MISS) ) (RESTRICT +)
(M (*LIST* KEIKO SAN GA)) (STRKEYS (*LIST* "M?" "S/v" "#"))
(PARTSTRKEYS (*LIST* " S T " "J/u" "-£»"))
(ALLKEYS (*LIST* #:G5744 #:G11652 #:G11400))

(MFSS (*LIST* #:G5745 #:G11653 #:G11401)) (END-CHUNK 1) (BEGIN-CHUNK 0)
(STR "gH 1 */,#") (BEGIN-PHRASE 0) (END-PHRASE NIL) (CAT NOUN) (PART GA)
(ROLES ACTOR)))

(ACTEE

((BL +) (INANI-SUBJ +) (COUNT OBJECT) (S #:SUSHI) (RESTRICT +)
(M (*LIST* SUSI WO)) (STRKEYS (*LIST* "3fW]M "&"))

(PARTSTRKEYS (*LIST* M^?W]" "-£")) (ALLKEYS (*LIST* #:G8724 #:G11414))
(MFSS (*LIST* #:G8725 #:G11415)) (END-CHUNK 2) (BEGIN-CHUNK 2)
(STR fl2FWJ£") (BEGIN-PHRASE 2) (END-PHRASE NIL) (CAT NOUN) (PART WO)
(ROLES ACTEE)))

(PERIOD +)))

1'̂ ' The raw feature-s1 ructure resulting from parsing the sentence above

,\M Ovrrvirw <•/r SLI* in ALK'E-chan (r) April 20. 1993. Evans. Levin. Tliuni. Haii<lcrson. Ilorigudii. SrarpinaKo. Vaima 8



6 The Parser

SvnfaHir analysis is performed via a neutralized J/R parser wil-li pseudouuifVaf ion. (The
current, version of tire parser is written in Lisp.) The parser implements a lexical-functional
grajiunar (LFG). However, in designing the syntactic analyzer, we have had to confront
several hard problems in NLP—illformed input, ambiguity, and robustness of coverage—
which have led us to augment and modify a basic LFG approach.

7 The Grammar

The grammar is a set of about 150 rules written in a pseudo-unification formalism, with
some calls to Lisp functions. The grammar covers basic mono-clausal sentences and some
sentences involving embedded complement clauses, gerund clauses, and sentential modifiers
of nouns. A range of noun phrase structures are also allowed including noun phrases with
a-djoctives, modifiers marked with no. and conjuuets marked with to and j/n. (-overage is
siidicienf for a first-year Japanese course, with some additional coverage of more complex
structures. Figure 11 shows a single grammar rule.

SURU-VERB

The following two rules are designed to give the same f-structure to verb

phrases with SURU-VERB both with or without "wo".

Nouns that takes the light verb ("suru") is marked by "suru" feature in

the lexicon with the meaning of the verbal,

(eg. "kekkon" s "marriage" suru "marry")

(1) NP SURU

(<VP> <==> (<NP> <VP>) ; "benkyou suru"

((x2 suru) =c + ) ; verb is "suru"

((xl suru) = *DEFINED*) ; noun takes "suru"

((xl part) = UNDEFINED*)

(xO = x2)

((xO previousword) <= xl)

((xO previousword separator) <= * I I)

(xO <= (combined-word-from-word-and-previousword (xO)))

((xO subcat) <= (xl subcat)) joverwrite with the noun's

;subcategorization frame

((xO s) <= (xl suru)) ;overwrite the sense

((xO begin-phrase) <= (xl begin-phrase))

Figure 1-1: A rule from the parser's grammar.

,\n Ovrn-irw trf Nhl* in \LI< 'E-chtm (?) April 20. 1993. Evans. Levin. Tliurn. Handera>n. Morigurhi. Scarpinallo. Vaima



8 The Mapper

The mapper assigns grammatical functions and/or semantic roles to phrases by determining
the best match of phrases with the predicates subcategorization frame. This is complicated
by the fact that student Japanese contains many errors in the use of case marking particles.
There is also some ambiguity caused by the use of the topic marker ira or the conjunctive
particle* wo in place of other particles.

The mosl. recent version of the mapper is called from the grammar rules that affaeh
noun phrases to sentences. Each phrase can match zero or more slots in a predie:ate\s
subcategorization frame on the basis of its particle and its semantic class. During analysis of
sttielcnt sentences, because of particle errors, there are often phrases that do not match any
subcategorization slots. In this case, the mapper searches for the meaning of the phrase in
the authored parse, the function/role of the phrase with the same meaning in the authored
parse* is hypothesized as the intended function/role in the student sentence, and an error in
particle* use* is flagged. Phrases that still do not have a function/role after this proevduiv are*
given the* function EXTRA. Phrases without particles are given the function NOMINAL. At this
point, each phrase is fagged with zero or more slots if can fill. There may be fwe> phrases
thai aw) (ill f he same slot, and any given phra.se may be able to fill more than one sle>f. The*
mapper then identifies one or more ways of filling the predicates subcategorizafie>n frame*.
pe>ssibly ivlegating more phrases to the extra function.

The* mapper is written in LISP and TransformationKit. a pseudo-unification language' for
specilying translormatieMis of feature structures.

\n Owrvivw o/ ALT in ALlCE-ch/m <c> April 20. 1993. Evans. Levin. Thuiii. llandersoii. llorigudii. SrarpinaMo. Varma 10



9 The Disambiguator

Boca use ALK'E-rhan currently has only minimal semantic analysis, there can be many unre-
solved ambiguities in the out-put of syntactic analysis. The disambiguator resolves synatctic
ambiguities interatively with the user. First, it detects certain types of ambiguities in the
output of the segmentation program, parser, and mapper. Then it formulates questions
which are presented to the user one at a time. Sometimes more than one question is formu-
lated to resolve the same ambiguity, so that the user can answer the one that is most clear.
Currently, the disambiguator can detect ambiguities in segmentation, homographs, gram-
matical function/semantic role assignment, nesting of noun modifiers marked with no and
conjuncts marked with lo and ya. and attaclinieiit ambiguities involving sentential modifiers
of nouns and gerund clauses.

The disambiguator is written in LISP, while the questions are presented and user input
is obtained with cT.

Examples of some disambiguation dialogs are shown in Figure 15.

For your sentence C Z ^ Z ^ & t t t f ^ H M in Blank #A:
What docs the bracketed word in "[ Z-<7l ] Z-<7) l£tj:-
Double-click on the appropriate answer, or defer:

THIS
CHILD

defer this question until later

mean?

For your sentence f ^ ^ ^ ' T H t t j ^ ^ H M in Blank #A:
What is the appropriate bracketing for noun-phrase modifers (if any)?
Double-click on the appropriate answer, or defer:

[ [ Z-V> ] [ C-<0 ] ] t&K-tf <fc^O
I z-<n i z<n {t+n-if & * H *

[ CO Z-ft ) l£t£-tf ^ ^ ' ^

defer this question until later

Figure 15: Some disambiguation dialogs.

An Ovrrvirw o//V/J' hi .\LU''E-chmi (O A|>ril 20. 1993. Evans. Levin. Thurii. Hamlerson. Iliirigurlij. Srarpinal (n. \aniia



10 The Matcher

Si ndent responses t hat are well formed may nevertheless he incorrect in a particular context.
Vov example, they may convey the wrong level of formality or the wrong relationship between
speakers, or they may simply express the wrong proposition. For this reason, even when the
syntactic analyzer assigns a well-formed structure to a student response, it must be checked
lor appropriateness in context. This is the job of the matcher.

The matcher compares the analysis of a student's response with the analysis of the
teacher's response, which was stored during authoring. Errors are reported if required fea-
tures or phrases are missing, if extra features or phrases are used, or if the values of any
features differ.

Some degree of flexibility is inherent in the matcher because it matches parsed analyses of
sentences instead of comparing the sentences themselves. In many cases, different sentences
with the same meaning have identical analyses. Notable examples of this in Japanese arc
sentences that dilfer in word order, but have the same meaning. If the parser assigns the
same analysis to two sentences, the matcher will treat them as identical.1

The current matcher is written in cT as a recursive string-comparison based process.

' I I should l><- noted, flmiioh. Mint not all synonymous sentences have identical analyses. Our nirrenf
rarHi involves ina-easing f-li«-> number of type* of synonymy I hat are rerngnized by the NLP programs.

An Ovrrvirw o/"iVL/f in ALI< 'E-clmn (r) Apri l 20. 1993. E v a n s . Levin. T h u n i . H a n d c r s o n . l lor igucl i i . S ra i p ina l <«». Var ina 12



11 Overview of Error Detection and Feedback

Errors in student responses are detected at three stages. First, during parsing, special
grammar rules are designed to parse errorful structures and raise error flags. Second, during
mapping, the mapper may detect phrases whose grammatical function or semantic role
cannot he determined. Third, during matching, contextually inappropriate features of the
studenTs response are detected by comparing (he analysis of the student's response to Mir
prr-slored analysis of the authored response.

\n Ovrrviiu <>(MJy in MJCE-rhan <n Apri l 20. U>93. E v a n s . Levin . T lmr i i . H a n d p i s o n . f W i g u r l i i . S r a r p i n a l l o . V a r m a I'*



causer fi
HUMAN
ANIMATE
particle (i

meaning I
actor=causee V > \ to

PROPER

HUMAN

ANIMATE
particle (C
meaning IKUO—BOY'S FIRST NAME

thing_acted_on SF3K
particle £

meaning VEGETABLES

predicate &'<•*-££
CAUSATIVE

meaning EAT
PAST

PRESENT

dictionary-form j£/s^>

INFORMAL
FORMAL
EXTENDED-PREDICATE

sentence-particle

OPT
REQ
REQ
REQ

REQ
REQ
REQ
REQ
REQ

REQ
REQ

REQ
REQ

REQ
ILL

OPT
OPT
OPT
OPT

e Ifi: Feature-slot for the author's sentence

actor=causee K»\h
HUMAN

PROPER

ANIMATE

particle $T
meaning IKUO—BOY'S FIRST NAME

thing_acted_on Sf^
particle <t
meaning VEGETABLES

predicate fcK*\t& Ifz
meaning EAT

PAST

dictionary-form JE7>v.5
CAUSATIVE
ERRORPART PART-ERROR ACTOR=CAUSEE WO V»<

FORMAL

Figure 1/: Feature-slot for the student's sentence

In b lank # A: You seem t o have used t h e wrong p a r t i c l e on l»
[The p a r t i c l e of t h e a c t o r = c a u s e e ( i»< t i ) should be (C.]
You made t h e p r e d i c a t e ( f t ^ ^ f i L / t ) FORMAL, which i s o p t i o n a l .

'S: The feedback produced after matching the above two feature-slots

\n Ovcrviiw <*f NLI* in \1J< 'E-rhmi (?) April 20. 1093. Evans. Levin. Tliiirn. Haiiflci'soti. Horiguclii. ScarpinaMo. Vanna II


